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Abstract

These notes are to accompany my lectures at the Courant Institute in
the Fall 2023. Besides presenting basic theorems, we try to show several
different proofs of most of them.
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1 Magnificent Seven

1.1 Classical Eucleadean and non-Euclidean Isoperimetry
The volumes of all bounded domains X ⊂ Rn are bounded by "areas" their
boundaries

[Is]X V oln(X) ≤ CnV oln−1(∂X)n/n−1,
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where the constant Cn is such that the unit balls Bn = Bn(1) ⊂ Rn satisfy the
equality

V oln(∂Bn) = CnV oln−1(Sn−1)n/n−1,

where Sn−1 = ∂Bn is the unit sphere. For instance C2 = 1
4π

= π
(2π)2 and C3 =

1
6
√
π
= (4/3)π

(4π)3/2 .

Furthermore, the equality V oln(∂X) ≤ CnV oln−1(∂X)n/n−1 implies that X
is a round ball.

Thus
Among all domains with a given volume, balls and only balls have minimal

surface area.
(This is obvious for n = 2 by calculus of variations: extremal Y = ∂X are

closed curves with constant curvature, hence, circles, where justification of reg-
ularity of extremal Y is easy for dim(Y ) = 1.)

1.1.1 Sharp Isoperimetric Inequalities in Spheres, Balls, Hyperbolic
Spaces and Gaussian SpacesMOVE?

Besides the above, the sharp isoperimetric inequalities are known in all simply
connected fully homogeneous Riemannian manifolds X, where "fully homo-
geneous" signify that all isometries between subsets X1 ↔ X2 between subsets
X1,X2 ⊂X extends to isometries X ↔X and where the extremal hypersurfaces,
i.e.

hypersurfaces of given "areas" enclosing maximal volumes are metric spheres.

(The only fully homogeneous Riemannian, as well as finite dimensional
geodesic, spaces besides the Euclidean ones are spheres, real projective spaces,
and hyperbolic spaces, where the real projective spaces Sn/ ∓ 1 are non-simply
connected.

According to [Vil 2023], the extremal hypersurfaces in Sn/∓1, are Sk×Sl/∓1
for O(k + 1) ×O(l + 1)-equivariant (Clifford) embeddings. Sk × Sl ↪ Sn, k + l =
n − 1.1)

Also one knows (we prove this in section???) that
the extremal hypersurfaces S in the (say open) balls B ⊂X in the above (sim-

ply connected fully homogeneous Riemannian manifolds) X are totally umbilical.
(These, in the present case, are intersections of fully homogeneous, hence

complete, hypersurfaces Y ⊂X with B.)
For instance, hypersurfaces, which divide Euclidean n-balls B in equal halves

are intersection of B with hyperplanes.
(This brings to one’s mind Bourgain’s Difficult Slicing Problem. 2 Let

X ⊂ Rn be convex body of unit volume. Does there exist a hyperplane H ⊂ Rn,
such that

voln−1(H ∩K) ≥ δ

for some universal δ > 0, say for δ = 0.1?)
1.1.??? Metric&Measure, µ-Isoperimetry&µ-Extremaliy. Let us

extend the range of isoperimetric phenomena to Riemannin manifolds X, e.g,
1I have not studied yet the proof of this theorem.
2https://www.weizmann.ac.il/math/klartag/sites/math.klartag/files/uploads/

bourgain_slicing_problem.pdf
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X = Rn with smooth non-Riemannian measures µ(x) = φ(x)dx on them, e.g.
to measures µ on Rn with finite mass M = µ(Rn).

Here a cooriented hypersurface Y ⊂ Rn, which divide the space into halves
with given masses, sayM− andM+, M1+M+ =M , is called µ-extremal if it min-
imizes the integral ∫Y φ(y)dy. and thus solves the −mu-isoperimetry problem,

In general, the solution to such a problem seems fairly complicated but for
the Gaussian µ it comes up with an unexpectedly neat solution.

1.1.??? Tsirelson-Sudakov-Borell Theorem. If

µ(x) = e−∥x∥
2

dx,

then the µ-extremal hypersurfaces are affine hyperplanes.
This follows from the isoperimetric inequality for SN for N → ∞, since the

Gauss measure on Rn is equal to the limit of the push-forwards of the normalized
spherical measures on the spheres SN+n−1(R), R =

√
N + n, under the normal

projections RN+n → Rn (see section ???).

1.2 Sobolev and Gagliardo–Nirenberg
Smooth functions f with compact support in Rn satisfy

(∫ ∣f(x)∣n/n−1dx)
n−1/n

≤ Cn ∫ ∥df(x)∥dx

with the above constant Cn.
In fact, as we shall see presently, if all compact domain V in a Riemannian

n-manifold X satisfy

vol(V ) ≤ Cvoln−1(∂V )n/n−1 ⇔

for some constant C, then the inequality

(∫ ∣f(x)∣n/n−1dx)
n−1/n

≤ Cn ∫ ∥df(x)∥dx

holds for the functions f with compact supports in X3[Maz 1960)].

1.3 Minkowski Concavity
Given subsets X,Y ⊂ L in a linear n-space L(= Rn), the Minkowski sum is

X + Y = {x, y} ⊂ L,x ∈X,y ∈ Y,

that is the image of the product X × Y ⊂ L ×L under the addition map

L ×L +→ L, (l1, l2) ↦ l1 + l2

Minkowski ⌢1/n-Inequality. The volume of the Minkowski sum of arbi-
trary open subsets in Rn satisfies

[⌢1/n]
M

(vol(X + Y ))1/n ≥ (vol(X))1/n + (vol(Y ))1/n,

3This, applied to powers of ∣f ∣ yields all Sobolev Inequalities p
√

∫ ∣f ∣p ≤ cons q
√

∫ ∥df∥q for
p, q ≥ 1 and p ≤ nq/(n − q).
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Equivalently,

(vol (X + Y
2

))
1/n

≥ 1

2
(vol(X)1/n + vol(Y )1/n) ,

where X+Y
2

geometrically is the set of the centers of the segments [x, y] ⊂ Rn
for x ∈X and y ∈ Y . 4

If Y is an infinitesimal ball Y = Bn(o(1)) then [⌢1/n]
M

implies the isoperi-
metric inequality for X.

1.4 Almgren’s Sharp Filling Inequality
Let Y ⊂ RN be a piecewise smooth (n −
1)-cycle e.g. a smoothly embedded sphere

Sn−1(1) f↪ RN . Then Y bounds a piece-wise
smooth n-chain X ⊂ RN ,

∂X = Y,

which satisfy the above [Is]X

V oln(∂X) ≤ CnV oln−1(∂X)n/n−1,

where the equality holds only for flat round
spheres Sn(R) ⊂ Rn ⊂ RN

Moreover, if Y = f(Sn−1(1)), then the map f ∶ Sn−1(1) ↪ RN extends to a
smooth map F ∶ Bn(1) → RN , such that

V oln(F ∶ Bn(1)) ≤ Cn(voln−1f(Sn−1))n/n−1,

where this F can be chosen to be a smooth embedding for 2N > 3n

1.5 Loomis-Whitney Inequality and Subadditivity of En-
tropy

Let X ⊂ Rn be a measurable subset and let
Xî ⊂ Rn−1

î
= Rn,i = 1, ..., n, be the normal

projections of X to the hyperplanes

Rn−1
î

= {(x1, ..., xn)}xi=0 ⊂ Rn

[Loo −Whi] voln(X) ≤
n

⨉
i=1

voln−1(Xi)1/n−1.

This, almost obviously, implies a non-
sharp isoperimetric inequality, namely

vol(X) ≤ 1

(2n))n/n−1
vol

n/n−1
n−1 (∂X)

with equality for cubes X = [01]n.
In turn, [Loo-Whi] also almost obviously, follows from the Shannon (Boltz-

mann? inequality:
4This makes sense for subsets in Riemannian manifols, while the additive [⌢1/n]

M
gener-

alises to subsets in Lie Groups.
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Figure 1: From "The mathematical theory of communi-
cation" by Shannon

Strong Subad-
ditivity of Entropy.
Let µ = µ123 be
a probability measure
on R3 let µ1, µ2, µ3

be the push-forwards
of µ to the coordi-
nate lines (coordinate
marginals of µ) and
µ12, µ13 and µ23 be
the push-forwards of
µ to the coordinate
planes. (Thus, µ1 is
the marginal of µ12 as
well as of µ13, etc.)

Then Boltzmann’s
entropies of these satisfy

ent(µ123) ≤ ent(µ12) + ent(µ13) − ent(µ1),

where the entropy of a measure µ = µ(x) = φ(x)dx for a positive function
φ(x) ≥ 0, such that ∫X φ(x)dx = 1 and such that logφ is summable on the
support S = S(φ), (∫S ∣ logφ(x)∣dx < ∞), are evaluated by the Boltzmann-Gibbs
formula:

ent(µ(x) = −∫ φ(x) logφ(x)dx5

1.6 Poincaré Inequality on the unit n-Sphere X = Sn(1).
If

∫
X
f(x)dx = 0,

then

∫
X
f2(x)dx2 ≤ 1

n2 ∫X
∥df∥2dx,

Equivalently, all smooth maps

F ∶X → RN

satisfy

n2

2vol(X) ∫X×X
∥F (x1)−F (x2)∥2dx1dx2 ≤

1

V ol(Sn−1) ∫UT (X)
∥∂τxF (x)∥2dτxdx,

where UT (X) is the unit tangent bundle of X and ∂τx = dF (τx) , τx ∈ Sn−1
x =

UTx(X), is the derivative of F by the vector τx.
5This can be taken for the definition of entropy for all measure spaces (X,dx), e.g. for

X = R6N (Boltzmann’s N -partical gas) and/or for Shannon’s finite or countable sets X = {xi}
with atoms xi of equal weights, where ent(µ) = −∑i∈I log2 µ(xi), compare https://www.
crmarsh.com/pdf/Charles_Marsh_Continuous_Entropy.pdf.
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1.7 Selberg Theorem, Selberg 1
4-Conjecture and Ramanu-

jan Graphs.
Preparation to Selberg. There is a strictly decreasing sequence of subgroups of
finite index in the free group on two generators,

F2 = Γ1 ⊃ Γ2 ⊃ ... ⊃ Γl ⊃ ...,

with the following property.
LetX be a compact connected Riemannian manifold, such that the fundamental

group π1(X) admits a homomorphism onto F2, e.g. X is a smooth bounded planar
domain with at least two holes, such as a small neighbourhood of the figure∞.

Then there exist compact Riemannian manifolds Xl and l-sheeted coverings
Xl → X,6 where l → ∞ and such that all smooth functions f(xl) on Xl with
∫Xl f(xl)dxl = 0 satisfy

∫
Xl

∥df(xl)∥2dxl ≥ const ⋅ ∫
Xl
f2(xl)dx2

l ,

where the constant const = const(X) > 0 doesn’t depend on l.
Equivalently maps F ∶Xl → RN satisfy

1
vol(Xl)2 ∫Xl×Xl ∥F (xl) − F (x′l)∥2dxl, dx

′
l

1
vol(Xl) ∫Xl ∥dF (xl)∥2dxl

≤ 2

const
7

In truth, the above are "coarse corollaries" of a particular instance of a
precise form of such an inequality for a specific family of complete non-compact
Riemann surfacesXl with constant curvatures −1 and with finite volumes proved
by Selberg in 1965.

These Selberg’s Xl are the quotients,

Xl =H2/Γl,

where H2 is the hyperbolic plane and Γl are subgroups in the group of (2 × 2)-
matrices (aij) with integer entries and determinants one,

Γl ⊂ SL(2,Z),

where SL(2,Z) naturally acts on H2 by isometries and where where Γl consists
of matrices congruent to upper triangular ones mod l, i.e. where the entry
a12 = 0 mod l.8

6These are locally isometric maps with l pullbacks of all x ∈ X. In particular vol(Xl) =
d ⋅ vol(X).

7One’s experience in the classical PDE – (Hersch S2-eigenvalue theorem,
Rayleigh–Faber–Krahn Inequality...) points to the opposite:

∫Xl×Xl
∥F (xl) − F (x′l)∥

2dxl, dxl

∫Xl
∥dF (xl)∥2dxl

→ 0

for l-sheeted coverings of compact manifolds: the ground frequency of an oscillating membrane
X must tend to zero for size(X) → ∞. This is true in the "real world", and, probbaly, true in
mathematics under some reasonable assumptions on X, but... this is not so in general.

8Strictly speaking, these Xl are not quite coverings of X1 = H2/SLZ(2), since torsion
elements in SL(2,Z) do not act freely on the hyperbolic plane H2, but this needs only a
minor adjustment of our terminology.
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Selberg proved that the above constant in his case, call it λ = const(XSelb)
is bounded from below by 3/16 and conjectured that λ ≥ 1/4; The best current
bound is λ ≥ 1

4
( 7

64
)29

Remark. Mathematics behind λ is fundamentally different from what is seen
in the other six famous "isoperimetric theorems".

The later essentially depend on similarities between the geometries of the
spaces these theorems apply to with the geometries of the corresponding Eu-
clidean models, where everything boils down to the inequality ∣f(1) − f(0)∥ ≤
∫

1
0 ∣f(t)∣dt with occasional use of the O(n)-symmetries.

But the geometry of the spaces Xl for l →∞ is maximally non-Euclidean,10

which, in fact, follow from the inequality

lim inf
l→∞

λ(Xl) > 0.

2 Methods of Proofs

2.1 Coarea Inequality, Volumes of Cones, Divergence and
Green’s Formula

2.1.A. Coarea Equality. LetX be a Riemannian manifold, e.g. the Euclidean
N -space X = RN let X0 ⊂X be a subset, e.g. the origin {0} ⊂ RN and let

d0(x) = dist(x,X0)

be the distance function to X0 (e.g. d0(x) = ∥x∥ for X0 = {0} ∈ RN ).
Let V ⊂X∖X0 be a measurable, e.g an open subset in the complement ofX0.

Then the (N −1)-volumes, N = dim(X), of the intersections Vr = V ∩d−1
0 (r) ⊂ V

of V with the r-levels of the function d0 satisfy:

∫
∞

0
volN−1(Vr)dr = volN(V ).11

2.1.B. Coarea Inequality. Let V ⊂ X be a smooth n-dimensional sub-
manifold. Then the intersections Vr = V ∩d−1

0 (r) ⊂ V , which are smooth (n−1)-
submanifolds for almost all r by the Sard theorem, satisfy:

∫
∞

0
voln−1(Vr)dr ≤ voln(V ).12

2.1.C. Cone Inequality. Let Conex0(Y ) ⊂ RN be the cone over a subman-
ifold Y = Y n−1 ⊂ RN from a point x0 ∈ Rn.

Then the n-volume of this cone is

voln(Conex0
(Y )) = 1

n
∫
Y
∥x0 − y∥ sin∠(x0 − y, Ty(Y ))dy ≤ 1

n
∫
Y
∥x0 − y∥dy

9Kim & Sarnak 2003).https://www.ams.org/notices/199511/sarnak.pdf
10These Xl admit no approximately isometric embeddings to the Hilbert space. In fact,

1-Lipschitz maps f ∶ Xl → R∞ satisfy vol(Xl)−1 ∫X×X dist(f(x), f(y))/dist(x, y)dxdy → 0 for
l →∞.

11This, for d0(x) = ∥x∥ in the 3-space, may be attributed to Cavaleri (1635) and in general
to Fubini (1907) and Fedrer (1959), see https://www3.nd.edu/~lnicolae/Coarea.pdf .

12This is seen clearly for intersections Vr of a curve or surface V ⊂ R3 with (a family
of) parallel planes Hr ⊂ R3. In fact, this inequality applies to Lipschitz maps d ∶ X → R
between general metric spaces and measures dv in X, see https://en.wikipedia.org/wiki/
Eilenberg%27s_inequality.
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≤ 1

n
voln−1(Y ) sup

y∈Y
∥x0 − y∥ ≤

1

n
diam(Y ) ⋅ dist(x0, Y ).

Therefore, the volume of the cone from some point x0 is bounded by the volume
and the diameter of Y as follows

[Cone] voln(Coneo(Y )) ≤ N

n
√

2(N + 1)
diam(Y )voln−1(Y ),

since
there exists a ball Bo(r) ⊂ Rn, o ∈ RN , of radius N ⋅diam(Y )√

2(N+1)
, which contains

Y by Jung’s theorem.
If N = n and Y ⊂ Rn is a closed naturally (say, inward) cooriented hypersur-

face, then the angle between the vector x − y ∈ Rn and he tangent space Ty(Y )
comes with a ∓-sign and the volume of the domain X ⊂ Rn bounded by Y is
equal to the absolute value of the "signed volume" of the cone, i.e.

[Cone]∓. ∣vol(X)∣ = 1

n
∣∫
Y
∥x0 − y∥ sin∠(x0 − y, Ty(Y ))dy∣

This yields a non-sharp isoperimetric inequality for n = 2 by Jung’s theorem,

area(X) < 1

4
√

3
length(Y )2.

(Yung’s heorem for closed curves gives you area(X) ≤ 1
8
length(Y )2.13)

But since the diameters of (connected) hypersurfaces for n ≥ 3 are not con-
trolled by their (n−1)-volumes for n ≥ 3, this only indirectly leads to non-trivial
bounds on vol(X) by voln−1(∂X) and actual proofs of isoperimetric inequalities
often amounts to particular specifications of this "indirectly".

2.1.G Gauss-Green Formula. If τ is a vector field in Rn with divergence
n, then

[div = n] vol(X) = 1

n
∫
Y
⟨τ(y), ν(y)⟩dy ≤ 1

n
∫
Y
∥τ∥dy,

where ν is the unit normal vector field on the boundary Y = ∂X and which
reduces to the above [Cone]∓ applied to grad∥x0 − x∥2, that is the

gradient of the squared distance function x↦ ∥x0 − x∥2.

2.2 Volumes of Radial Projections and Isoperimetry in
Balls

Let Y be a smooth. (or piecewise smooth) (n − 1)-dimensional submanifold in
the unit ball

Y = Y n−1 ⊂ BN(1) ⊂ RN

Since N > n − 1, the integral ∫ 1
∥x∥n−1 dx converges at zero in RN and the

mean of the distn−1-function in the ball BN(r) ⊂ RN satisfies,

1

volN(BN(1)) ∫BN (1)
∥x − x0∥−(n−1)dx ≤ constN 14

13The sharp inequality for n = 2 is area(X) ≤ 1
4π
length(Y )2.

14Since the measures of balls concentrate near their boundaries, this constN → 1 for N →∞.
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for all x0 ∈ RN .
It follows, that for all submanifolds Y in RN , (not necessarily contained in

particular balls) and all r-balls BN(r) ⊂ RN , there exist x ∈ BN(r), such that

∫
Y
∥y − x∥−(n−1)dy ≤ constNvoln−1(Y )

rN
.

Therefore, for all domains V ⊂ RN , which contain an r-ball BN(r),

BN(r) ⊂ V ⊂ RN ,

the cylinder of the radial projection, cal it ψ = ψx, x ∈ BN(r), of a submanifold
Y = Y n−1 ⊂ BN(r) from some point x ∈ Bn(r) to the boundary ∂V of V satisfies:

voln(cylψ) ≤ voln−1(Y )constN
n

(diam(V )
r

)
n

,

2.1.D. Corollary: Smaller Half Inequality. Let V ⊂ RN be a connected
domain and let a hypersurface Y = Y N−1 ⊂ V ⊂ RN divide V in two subdomains.
V1, V2 ⊂ V with common boundary V1 ∩ V2 = Y in V . Then

min(volN(V1, volN(V2)) ≤ voln−1(Y )constN
n

( diam(V )
inrad(V )

)
n

.

2.1.D. Exercises. (a) Let V ⊂ RN be a convex domain and Y = Y n−1 ⊂ V .
Show that there exists a point x ∈ V ???

(b) Let V satisfy ???

2.2.1 "Involutive" Proof of Isoperimetry in Convex Sets and Cheeger
Constant in Manifolds with Ricci ≥ −const

Cheeger Constant for Convex Sets. Let Y,W1,W2 ⊂ Rn be closed subsets. of
finite volumes , such that all straight segments [w1,2 ] ⊂ Rn, wi ∈ Wi, i=1,2
intersect Y .

Then – this 99% obvious – one of the subsets, say W1 contains a point w1

and the second subset contains a subset W ′
2 ⊂W2, such that

● voln(W ′
2) ≥ 1

2
volW2;

● each segment [w1,w
′
2], w′

2 ∈W ′
2, intersect Y at a point y ∈ Y , such that

dist(w1, y) ≥ dist(y,w′
2)

.
Conclusion. Let Y a smooth hypersurface divide a convex domain W ⊂ Rn

into two parts W1 and W2. Then

min(vol(W1), vol(W2)) ≤ 2nvoln−1(Y ) × diam(W ).

2.1 E. Cones, Mapping Cylinders and Volumes /Measures of non-
Injective Maps ???

2.1.E. Geodesic Cones: Riemannian and non-Riemannian ???
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2.3 Parallel Displacement of Volume and Isoperimetry
15

Given a a bounded domain V ⊂ Rn with a smooth boundary, (or any Borel
subset for this matter) it is geometrically obvious and is justified below that
V can’t be almost invariant under parallel translations by vectors x ∈ Rn with
norm ∥x∥ ≤ d for d >> vol(V )1/n.

For instance if d ≥ R, where R = RV is the radius of the ball Bn(R = RV ) ⊂
Rn such that vol(Bn(R)) = 2vol(V ), that is

R = (2vol(V ))1/n

vol(Bn(1))1/n ,

then⋆1/2 at least half of the volume of V is transported out of V by an x with
∥x∥ ≤ RV .

This means that
vol(V ∩ V + x) ≤ 1

2
vol(V ),

where V + x = {v + x} is the x-translate of V .
Then clearly, since ∥x∥ ≤ R,

vol(Vx) ≤ R ⋅ voln−1(∂V ) = (2vol(V ))1/n ⋅ voln−1(∂V )
vol(Bn(1))1/n

and

vol(V ) ≤ 2vol(Vx) ≤
2(2vol(V ))1/n ⋅ voln−1(∂V )

vol(Bn(1))1/n ,

which can be rewritten as an
isoperimetric inequality with a non-sharp constant,

[Iso2]. vol(V ) ≤ 2n+1/n−1

vol(Bn(1))1/n−1
voln−1(∂V )n/n−1

Proof of ⋆1/2. Let D ⊂ V ×Bn(2R) ⊂ R2n be the subset of the pairs (v, x),
such that v + x ∈ V and let us evaluate the 2n-volume of D in two ways.

vol2n(D) = ∫
V
voln(V ∩ (Bv(2R))dv ≤ voln(V )2,

where Bnv (2R) ⊂ Rn is the 2R-ball with center v. Thus,

vol2n(D) = ∫
Bn(2R)

voln(V ∩ (V + x)dx ≤ vol(V )2 ≤ 1

2
vol(V ) × vol(Bn(R)),

since vol(Bn(R) = 2vol(V ).
Therefore, there exits an x ∈ Bn(R), such that

voln(V ∩ (V + x) ≤ 1

2
vol(V )

15Compare with ???
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by the mean value theorem. QED. ???Reference to Minkowski (for small R)
and to Saloff-Coste???

???similar proof for subdomains in a convex sets.
???
Euclidean Geometry and Descendants : Semi-Algebraic Integral Formulas,

Calculus of variations, Rearrangements
Non-Euclidean Symmetry: Amenability, T-property and ...
Probability ???
Linear Algebra and Algebraic Geometry

2.4 Sharp Santalo’s Argument for n = 2 and non-Sharp
for n ≥ 3

Let X ⊂ R2 be a bounded planer domain with smooth boundary Y = ∂X and
proceed with the proof of the isoperimetric inequality

area(X) ≤ length(Y )2

4π

as follows.
???A. Let φ(x, y) be the norm of the differential of the radial projection

from Y to the unit circle S1
x(1) ⊂ R2.

Let V ⊂ X × Y be the set of pairs (x, y), such that the segment [x, y] ⊂ R2

is contained in X and let

Vx = V ∩ {x} × Y ⊂ V and Vy = V ∩X × {y} ⊂ V .

Let X ′ be the disk B2 = B2(R(a)) with

area(X ′ =X ′(a)) = a = area(X).

Then, clearly,

[lenght] ∫
Vx
φ(x, y)dy = 2π for all x ∈X

and

[area] ∫
Vy
φ(x, y)dx ≤ ∫

X′
φ(x′, y′)dx′ = c(v) for all y ∈ Y,

since the levels of the x-function φy(x) = φ(x, y) are r-circles tangent to Y = ∂X
at y and φ is monotone decreasing in r.

It follows that on the one hand

∫
V
φ(x, y)dxdy = ∫

X
dx∫

Vx
φ(x, y)dy ≥ 2π ⋅ area(X)⋅

and on the other hand

∫
V
φ(x, y)dxdy = ∫

Y
dy∫

Vy
φ(x, y)dx ≤ length(Y )c(a)

Thus
length(Y )c(a) ≥ 2π ⋅ area(X)

14



and since this becomes the equality for X ′,

c(v) = 2π ⋅ area(X ′)
length(Y ′)

(=
√
πa),

this implies that
area(X)
length(X)2

≤ area(X ′)
length(X ′)2

(= 1/4π).

QED.
Commentary. Santalo’s argument is, logically, the most elementary among

known proofs of the sharp 2d-isoperimetric inequality; besides, this proof gives
an exemplary form of the deviation of the ratio area(X)/length(∂X2) from
that for the ball X ′ = B2 ⊂ R2.

??? [area], [length]-Divergence and Greens Formula. There is a (unique)
vector field ν = νy = νy(x), for all y ∈ Y = ∂X, normal to the levels of the
function φy(x) = φ(x, y), such that

div(νy)(x) = divX(νy) = φy(x) and ∥νy(x)∥ = 1/2 for all y and x

and the Green’s formula delivers an alternative proof of the key inequality [area]
in the length form

∫
Vy
φ(x, y)dx ≤ length(Y )/2.

If sect.curv ≠ 0. The above generalizes to surfaces with non-zero, e.g
constant<0, curvatures, as follows

Non-Sharp Santalo for all dimensions n. Let X ⊂ Rn be a compact
domain with a smooth boundary Y and let

ψ(x, y) = dist(x, y)−(n−1)

(instead of the above φ(x, y)). Then, clearly,

∫
Y
ψ(x, y)dy ≥ an = voln−1(Sn−1(1)), x ∈X,

and
∫
X
ψ(x, y)dx ≤ bnr = ∫

Bn(r)
∥x∥−(n−1)dx, y ∈ Y = ∂X.

where Bn = Bn0 (r(v)) ⊂ Rn is the ball with volume v = voln(X).
Evaluate the integral of ψ over X × Y (instead of V ⊂X × Y ). as earlier,

an ⋅ voln(X) ≤ ∫
X×Y

ψ(x, y)dxdy ≤ bn ⋅ r ⋅ voln−1(Y ).

Write voln(X) = voln(Bn(r)) = βnrn and conclude to the inequality

voln(X)/r = voln(X)n−1/n ≤ Cnvoln−1(Y ), for Cn = a−1
n bnβ

1/n
n .

??? On Divergence and Green’s Formula

15



2.5 Santalo Formula and Croke Inequality
A point x in a Riemannin manifold X, e.g. x ∈ X = Rn, is ray-surrounded by a
subset Y ⊂ Rn if all geodesics in X issuing from x intersect Y .

Let
←→
[Y ] ⊂X be the set of all x surrounded by Y .

Observe that
←Ð→
[∂V ] ⊃ V for all bounded domains V ⊂ Rn.

Theorem.16 Let X be a complete simply connected Riemannian n-manifold
with

sect.curv(X) ≤ 0,

e.g. X = Rn, and let Y = Y n−1 ⊂X be a smooth submanifold. Then

(voln
←→
[Y ])n−1 ≤ constn(voln−1(Y ))n

for where

constn =
voln−2(Sn−2)n−2 ⋅ (∫

π/2
0 cos(t)n/n−2 sin(t)n−2dt)

n−2

voln−1(Sn−1)n−1

Proof.???
Sharp 4d-Isoperimetric Corollary. Bounded domains V in complete

simply connected Riemannian 4-manifolds X with sect.curv(X) ≤ 0 satisfy:

vol4(V ) ≤ (const4(voln−1(∂V ))4/3

for

const4 =
vol(B4)3

vol(S3)4
=
vol2(S2)2 ⋅ (∫

π/2
0 cos(t)2 sin(t)2dt)

2

voln−1(S3)3
.

******************************************************************

Bound on volm1+m2+1 of the set

←ÐÐÐ→
[Y1, Y2] ⊂ UT (RN) = RN × SN−1(1)

of the unit tangent vectors to the segments [y1, y2] ⊂ RN joining points y1 ∈ Y1,
and y2 ∈ Y2, Y1 = Y m1

1 , Y2 = Y m2

2 RN by

constNvolm1(Y1) ⋅ volm2(Y2).

Measure of flags of affine (k, k − 1)-subspaces Ak,Ak − 1) in Rn+k, such that
both half-spaces Ak∓ ⊂ Ak intersect Y = Y n−1 ⊂ Rn+k,

(Alternatively, where Ak−1 is linked with Y .)

2.6 Steiner Symmetrizations and Isoperimetry in Balls
with Constant Curvature

16https://link.springer.com/content/pdf/10.1007/BF02566344.pdf.
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??? A. Mirror Symmetry by Parallel Rearrangement
.17 Let V ⊂ Rn be a bounded Borel (e.g closed or open) subset
and let H ⊂ Rn be a hyperplane. Then there exists a unique
subset

VH = symmH(V ) ⊂ Rn,

such that
●⊥ the intersections of VH with all lines L ⊂ Rn normal

to H are closed segments, the Lebesgue measures (lenghts
for segments) of which are equal to those of the intersections
L ∩ V .

●sym VH is symmetric under the reflection in H, that is
all segments L ∩ VH intersect H at their middle points.

???B. Central Symmetrization. If we symmetrize V successively in the n
mutually orthogonal linear hyperlanes, then the resulting subset, call it V◻n will
be centrally symmetric with respect to the origin 0 ∈ Rn and this central symme-
try will be preserved by all further H-symmetrizations "◻n-symmetrizations."

??? C. Trivial Observation and Useful Corollary. Let V ⊂ Rn be
a bounded centrally symmetric. domain Then H-symmetrizations increase the
volumes of the intersections of symmetrized sets VH = symmH(V ) with balls,

vol(V1 ∩Bn0 (r) ≥ vol(V ∩Bn0 (r), r ≥ 0,

for all (linear) hyperplanes H ⊂ Rn.
Moreover, if ε-much of addtional measure of V could have been put to Bn0 (r),

that is if
min(vol(V ∖Bn0 (r)), vol(Bn0 (r),∖V ) ≥ ε > 0,

then there exists an H such that the above inequality is controllably strict;

vol(V1 ∩Bn0 (r) ≥ vol(V ∩Bn0 (r), r ≥ δ > 0,

where this strictly positive δ depends (only) on ε > 0 as well as on R and vol(V ).
Corollary. If V ol(V ) = voln(Bn0 (R)), then there exists a sequence of hy-

perplanes Hi, such that the sequence Vi of Hi-successive symmetrizations of
V ,

Vi = symmH(Vi−1)

volume-wise converges to Bn0 (R), that is

vol(Bn0 (R)) ∖ Vi → 0 for i→∞.

Now comes the basic step in Steiner’s (attributed to Steiner?) symmetriza-
tion proof of the isoperimetric inequality.

??? B. Area Decrease of the Boundary. The boundaries of sym-
metrized of polyhedral domains18 satisfy

voln−1(∂(VH) ≤ voln−1(∂V )).

In fact this inequality trivially reduces to the special case, where V is a
trapezoid in the plane.

17https://www.math.utah.edu/~treiberg/Steiner/SteinerSlides.pdf
18???

17
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??? A. Symmetric Trapezoid Lemma. Among all trapezoid T ⊂ R2

with a given hight and the lengths of the two parallel bases, an isosceles T has
the minimal sum of the lengths of its two side legs because the differential of the
distance function φ0 ∶ x ↦ dist(x,x0) depends only on the direction (but not
the length length) of the segment [x,x0], namely

dφ0(τ) =
⟨τ, x − x0⟩
∥x − x0∥

,

the horizontal derivative of the sum of the m lengths of the legs of T vanishes
if and only if T is isosceles.

In fact, the derivative of the sum of distances dist(x,x1) + dist(x,x2 in an
arbitrary Riemannian manifoldX, where x runs along a geodesic L ⊂X vanishes
iff the angles α1 and α2 of minimizing segments [x,x1] and [x,x2] with L ∋ x
at x are π-complementary i.e. α1 + α2 = π.

However simple, this is sole of Steiner’s symmetryzation, which, together
with the cone inequality 2.1.C??? yield the following.

??? B. Isoperimetric Conclusion. All bounded polyhedral domains in
Rn satisfy

vol(V )n−1/vol(∂V )n < vol(Bn(1))n−1/vol(Sn−1(1))n.

Complexity Remark The statement and the above proof of this inequality
for n = 3 is limited to the high school level of geometry and if you comfortable
with calculus and rudimentary differential geometry, this trivially generalizes to
domains V with almost everywhere smooth boundaries in all complete simply
connected spaces with constant sectional curvatures (i.e. inspheres and hyper-
bolic spaces).

Strangely however,
this (19th century)
argument was consid-
ered incomplete and
difficult by the early
20th century math-
ematicians, e.g. Blaske
(above is from his
book "Kreis und Kugel",
1916) and Loomis and
Whitney 194919

Correction Term in Symmetrization and Isoperimetric Stability of
Balls.

2.7 Formal Schwarz Symmetrization
The Geometric Schwarz Symmetrization transforms domains V ⊂ Rn = Rn−1×R
to V○ ⊂ Rn, such that

19Here is a quote from their 1949 paperhttps://www.ams.org/journals/bull/1949-55-10/
S0002-9904-1949-09320-5/S0002-9904-1949-09320-5.pdf where they refer to E.Schmidt’s
99 pages 1939-paper https://link.springer.com/article/10.1007/BF01210681Compare
with https://maa.org/sites/default/files/pdf/upload_library/22/Ford/blasjo526.pdf.

18

https://www.ams.org/journals/bull/1949-55-10/S0002-9904-1949-09320-5/S0002-9904-1949-09320-5.pdf
https://www.ams.org/journals/bull/1949-55-10/S0002-9904-1949-09320-5/S0002-9904-1949-09320-5.pdf
https://link.springer.com/article/10.1007/BF01210681
https://maa.org/sites/default/files/pdf/upload_library/22/Ford/blasjo526.pdf


V○ are invariant under the orthogonal group O(n−1) of rotation around the
0 ×R axes

and
the intersections of V○ with the hyperplanes parallel to Rn−1 ⊂ Rn, say Ht =

Rn−1 × {t} are balls, say Bn−1(Rt) = Ht ∩ V○ with the (n − 1)-volumes equal to
these of the intersections V ∩Ht.

voln−1(Bn−1(Rt)) = voln−1(V ∩Ht).

The isoperimetric inequality in Ht, along with the trapezoid lemma ???A
and an obvious integral (same Schwartz?) inequality show that

voln−1(∂V○) ≤ voln−1(∂V ).

This, technically speaking, seems as a trivial generalization of the area de-
crease property for the Steiner symmetrization, but it has a much wider range
of application when combined with the 1-dimensional calculus of variation.

In fact, a single Schwarz symmetrization reduces the general isoperimetric
problem for V ⊂ Rn to that for O(n − 1)-invariant domains, that are obtained
by rotating a domain V● in the plane P = R2 ⊃ R2 ⊃ Rn which contains the 0×R
axes.

Thus, the (first) variation extremality condition for the isoperimetric prob-
lem, that is the is the constancy of the mean curvature of the hypersurface
∂Vextr, translates to a certain second order ordinary differential equation for
the boundary of V● ⊂ R2.

Then (by the same argument Newton shown that the elliptic orbits are the
only solutions of the second law with the inverse quadratic attraction):

among all O(n − 1)-invariant closed Euclidean hypersurfaces S with given
(n − 1)-volumes, spheres maximize the volumes of domains V ⊂ Rn bounded by
S.

This implies, by Schwratz, similar extremality of spheres among all domains
S in the Euclidean space Rn.

Isoperimetry in Euclidean and Non-Euclidean Balls. The Schwartz
symmetrization equally applies to intersections of V with concentric spheres
Ht = Sn−1(t) ⊂ Rn, thus deriving the sharp isoperimetric inequality in Rn from
those in the (n − 1)-spheres (rather than in Rn−1).

In fact, the spherical Schwartz symmetrization effortlessly extends to all
complete simply connected spaces Xκ with constant sectional curvature κ, i.e.
in spheres and hyperbolic spaces and yields

the isoperimetric extremality of balls in all Xκ.
Moreover, this applies to domains V in the balls Bnκ = Bnκ(R) ⊂ Xκ and

shows that
among all domains V ⊂ Bn, the ones with minimal voln−1(∂(V )),(here ∂V

denotes the topological boundary of V in the ball) are those, where this boundary
∂(V ) ⊂ Bn. is an umbilic hypersurface20 normal to ∂B.

Formal Schwartz. Let us apply the above argument to domains in a
cylindrically split Riemannian manifold,

V ⊂X =X0 ×R
20???
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and observe that this leads to a lower bound on voln−1∂(V ) in terms of voln(V )
provided the "corresponding" bounds hold for domains

Wt = V ∩Xt ⊂Xt =X × {t} =X0, t ∈ R,

where "corresponding" means "some bounds" on voln−1(Wt) in terms of voln−2(∂Wt).
For instance, if all W ⊂X0 satisfy the (n−1)-dimensional Euclidean isoperi-

metric inequality,

voln−1(W )/voln−2(∂W )n−1/n−2 ≤ voln−1(Bn−1)/voln−2(Sn−2)n−1/n−2,

where Bn−1 = Bn−1(1) ⊂ Rn−1 is the unit ball and Sn−2 = ∂Bn−1 is the unit
sphere, then all V ⊂X0×R also satisfy the n-dimensional Euclidean isoperimet-
ric inequality,

voln(V )/voln−1(∂V )n/n−1 ≤ voln(Bn)/voln−1(Sn−1)n/n−1.

More generally, a minor elaboration of this argument (left to the reader)
shows that

if X = X1 ×X2, where Xi = Xni
i , i = 1,2, are Riemannian manifolds, such

that
all Vi ⊂ Xi, i = 1,2, satisfy the ni-dimensional Euclidean isoperimetric in-

equalities, then
all V ⊂X satisfy the (n1 +n2)-dimensional Euclidean isoperimetric inequal-

ity.21

2.8 "Isoperimetric" Proof of Sobolev’s bounds on the in-
tegrals ∫ ∥f∥p by ∫ ∥df∥q

Let X be a Riemannian n-manifold without a boundary and f(x) ≥ 0 be a
Lipschitz function on X with a compact support. Let B(t) = f−1(t) ⊂ X be
the t-levels of f and let A(t) = f−1[t,∞) ⊂ X be the compact domains in X
bounded by B(t).

2.6.A. Maz’ya-Cheeger Conditional Inequality. If

[isop]ν voln(A(t)) ≤ c(voln−1(B(t)))ν for some ν ≥ 1 and all t ≥ 0,

(e.g. ν = n/n − 1 as in the Euclidean isoperimetric inequality) then

[∥...∥pq∣ν] ∥f∥Lp =
p

√
∫ f(x)pdx ≤ pc

ν
∥df∥Lq =

pc

ν
c q
√
∫ ∥df(x)∥qdx

for all p ≥ 1 and
1

p
= 1

q
− ν − 1

ν

Proof for q = 1 and p = ν. Here this inequality reads:

[∥...∥ν] ∥f∥Lν =
ν

√
∫ f(x)νdx ≤ c∥df∥L1 ≤ c∫ ∥df(x)∥dx,

21See https://math.williams.edu/symmetrization/#:~:text=Steiner%20and%20Schwarz%
20symmetrization%20can,ball%20of%20the%20same%20volume and p.p. 204-214 inhttps:
//www.ihes.fr/~gromov/wp-content/uploads/2018/08/waists.pdf for this and similar in-
equalities of this kinds for more general fibrations of metric measure spaces X.

20
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where it is immediate if f is the characteristic function χ = χA of a smooth
domain A ⊂ X, since ∥f∥Lp = voln(V ) for all p and ∥df∥L1 = voln−1∂C, where,
either the integral ∫X dχ(x)dx is understood in the distribution sense, or, more
geometrically, as the limit of smooth or Lipshitz approximations of χ, of f , e.g.
by the trapezoidal functions

χA/ε(x) = max(0,1 − 1

ε
dist(x,A)) , ε→ 0.

Thus, [∥...∥ν] is the same as [isop]ν for q = 1.
Next, if f = ∑i αiχAi then

∥f∥Lν ≤ ∑
i

∣αi∣∥χAi∥Lν

by convexity of the norm ∥...∥Lν , and if αi ≥ 0, then

∥df∥L1 = ∑
i

∣αi∣∥χAi∥L1 .
22

It follows that [isop]ν does imply [∥...∥ν] for such f = ∑i αiχ(Ai).
Then we approximate our general positive Lipschitz function f(x) by such

sums, where one takes A(ti) = f−1[t1,∞), (or smooth approximations to A(ti),
see remark ??? below) (see Lemma??? below), and thus conclude he proof for
q = 1.

The proof for q ≥ 1. The above applied to f
p
ν and the Gölder (r, q)-inequality,

where r( p
ν
− 1) = p, q = (1 − 1

r
)−1

yield:

∥f∥
p
ν
p = ∥f

p
ν ∥ν ≤ ∥df

ν
p ∥1 =

cp

ν
∥f

p
ν −1df∥1 ≤

cp

ν
∥f

p
ν −1∥r∥df∥q =

cp

ν
∥f∥

p
r
p ∥df∥q;

thus
∥f∥p = ∥f∥

p
ν −

r
p

p ≤ cp
ν

∥df∥q.

QED.
On Sharp Sobolev. If q = 1 the inequality [∥...∥ν] = [∥...∥ν ,1∣ν] is sharp but

it is only exceptionally sharp with our constant pc/nu for q > 1 and p > ν, since
the extremal functions fextr are not like χX in general, but they are associated
to smooth solutions of certain Bessel-like (ordinary) differential equations, (see
???? below), from which sharp constants can be derived.

2.6.B. L2-Example. If ν = 1 and p = q = 2, then the above inequality for
c = 1, which says that

∥f∥L2 ≤ 2∥df∥L2 ,

is sharp for the cylinder X = R+ × S1 with the the (hyperbolic) metric dx2 =
dt2 + e−2tds2 (compare with ???).

2.6.C. Obvious Approximation Lemma. Let φ(x) be a smooth function on
a Riemannin manifold, e.g. on the Euclidean n-space, with compact support
X. Then there exist decreasing families of smooth bounded domains

X ⊃X1 ⊃X2 ⊂ .... ⊃Xk

22One may be justifiably worried with possible intersections of boundaries ∂Ai of different
subsets Ai but this introduces no correction terms at least for smooth ∂Ai; besides our
∂Ai∂Ai = B(ti) = f

−1(ti) do not intersect anyway.

21



, such that (multiples of) the sums of trapezoidal functions

fk,ε(x) =
supx φ(x)

k

k

∑
1

χXi/ε(x)

uniformly, hence Lp for all p converge to f for k → ∞ and ε → 0 and the
differentials of these sums L1 converge to df ,

dfk,ε(x) →L1 df

●⋐ The set Xi is contained in the interior of Xi+1 for all i,

Xi ⋐Xi+1, i = ... − 2,−1,01.2, ...

2.6.D. Remark: Sard Theorem and Lipschitz φ. ???
2.6.D. Sharp Sobolev.

2.8.1 Cavalieri Principle, Coarea Formula, Pushforward Measures
and Formal Symmetrization

. Let φ ∶ x↦ t ∈ R be a smooth function on Rn, let

Aφ(t) = {x ∈ Rn}φ(x)≤t

be the sublevels of φ and

Bφ(t) = φ−1(t) ⊂ ∂Aφ(t)

be the levels of φ.
Then

A ∫
R
vol(Aφ(t))dt = ∫

Rn
φ(x)dx

and

B ∫
R
voln−1(Bφ(t))dt = ∫

Rn
∣dφ(x)∣dx.

To see this, check A and B for the function which is equal to x ↦ ∣∣x∣∣ in an
annulus r ≤ ∣∣x∣∣ ≤ R and which is zero outside this annulus and then extend this
to all φ by linearity of integrals and differentials.23

More generally, and equally obviously, all continuous (or just Borel) functions
ψ(x) with compact supports on an arbitrary Riemannian manifoldX = (X,g),24
e.g. on X = (Rn, gEucl = ∑i dx2

i )

[coar] ∫
X
ψ(x)∥dφ(x)∥dx = ∫

t=+∞

t=−∞
dt∫

Bφ(t)
ψdbt

for all smooth functions φ = φ(x) on X.
23Alternatively, refer to Cavalieri/Fubini for A and to the coarea formula for B.
24The Riemannin metric g on X is assumed continuous, although bounded Borel measurable

will do here.
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This, in terms of the φ-pushforward of the Riemannin measure dx, reads:

φ∗(dx) = µ(t)dt for µ(t) = ∫
B(t)

∥dφ∥−1dbt

Thus, for instance

∫
X
φ(x)p = ∫

∞

−∞
tpµ(t)dt

and
∫
X

∥dφ(x)∥dx = ∫
∞

−∞
b(t)dt for b(t) = voln−1(Bt)

Let us assume (to avoid irrelevant terminological complications) that the
support S of the function b(t) is a union of disjoint intervals and replace the
t-parameter in S by s, such that ds = b−1(t)dt

Formal Symmetrization. From now on, we think of S = S(X) = Sφ(X) as
an oriented 1-dimensional Riemannian manifold with the metric ds2, where the
function t(s) is viewed as a kind of symmetrization of φ(x), now denoted φ(s).

Observe that ds2 depends only on the partition of X to the levels of the
function φ(x) (but not on the values of φ on these levels) and that there is a
natural map, say σ ∶X → S, such that, for all segments S0 ⊂ S.

voln(σ−1(S0)) = ∫
S0

b(s)ds,

where b(s) = b(φ(s)) = voln−1(σ−1(s)).
Also observe that

[Symm] ∫
X
φp(x)dx = ∫

S
φp(s)b(s)ds,

[Symm]d ∫
X

∥dφ(x)∥dx = ∫
S
∥dφ(s)∥b(s)ds

and

[Symm]pd ∫
X

∥dφ(x)∥pdx ≥ ∫
S
∥dφ(s)∥pb(s)ds for p ≥ 1,

where the later follows from [Symm]d and convexity of the function z ↦ zp,
p ≥ 1.

Symmetrization and Comparison Inequalities . Let Y = (Y,h) be a Rie-
mannian m-manifold, e.g. m = n − 1, or m = 1. with volm(Y ) = 1 and let
X = Y × S with the (warped product) metric g = ds2 + b(s) 2

mh, i.e. such that
volm(Y, b(s) 2

n−1h) = b(s) = voln−1(σ−1(s)).
Then

Sφ(s)(X = Y × S) = Sφ(x)(X)

and if Y is a homogeneous manifold, e.g. the sphere, this is commonly called a
"symmetrization of" X.
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2.9 Needle Decomposition

2.10 Metric Measure Spaces, Moment Maps, Maxwell Law,
and Gaussian Isoperimetry

All of the above symmetrizations equally applies to Riemannin manifolds with
(more ore less) arbitrary measures µ on them, where the Riemannin metric is
used for evaluation of the norms of differentials ∥df∥ while integrals are taken
with respect to µ rather then with the Riemannin measure.

Thus symmetrizartion keeps us within he same the category of metric mea-
sure spaces.

But if you want you can return, at least for smooth measures µ(x)p(x)dx,
to the pure metric Riemannian category by passing from (X,g,µ to the warped
product of X with the circle X × S1 with the metric dx2 + p(x)2/nds2.

2.11 Needle Decomposition

2.12 Cabré’s ABP-Proof of the Classical Isoperimetric In-
equality

25

Logic of the Proof. Assume without loss of generality that the boundary of
a smooth bounded domain X ⊂ Rn has the same (n − 1)-volume as the unit
sphere,

voln−1(∂X) = voln−1(Sn−1),

and let f(x) be a smooth function, such that

∆(f) = a and df(ν) = 1.

Then the proof would trivially follow from the inequaliy

an−1voln−1(∂X) = anvol(X)≥nnvol(Bn(1)) = nn−1voln−1(Sn−1) = nn−1voln−1(∂X)

where ≥ is proven below by constructing a map from a part of X onto Bn(1)
with Jacobian ≤ an/nn.

Let X ⊂ L = Rn be a bounded domain with a smooth boundary ∂X and let
f ∶X → R be a smooth function.

Let L′ = Rn be the linear dual of L, let us identify the tangent spaces Tx(L),
x ∈ L ⊃ X with L and let df ∶ X → L′ be the map, which thus corresponds to
the differential df ∶ x↦ Tx(L).

ABP26-Lemma. Let X⌣ ⊂ X be the subset, where he function f is locally
convex, i.e. where the Hessian of f , (full second differential) {d2f/∂xi∂xj} of f
is semipositive definite.

If the normal derivative of f on he boundary ofX is bounded from below by
a positive constant R,

df(ν) ≥ R,
25https://pdfs.semanticscholar.org/0b0f/91abb26f8ae7c6d304f0881f646d28cabf7a.

pdf
26Aleksandrov–Bakelman–Pucci.
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where ν ∶ ∂X → T (X) is the outward looking unit normal vector field, then the
image d(X⌣) ⊂ L′ = Rn contain the R-ball inL′,

df(X⌣) ⊃ Bn(R) ⊂ L′ = Rn.

Let S′ = Sn−1(1) ⊂ L′ = Rn be the unit sphere in the dual space to L and let
R(s′) be the infimum

and let T+(∂X) ⊂ T (∂X) be the set of the supporting hyperplanes to X that
are the hyperplanes tangent to ∂X at the intersection points of ∂X with the
boundary of the convex hull conv(X) = conv(∂X).

Let S′ = Sn−1(1) ⊂ L′ = Rn be the unit sphere in the dual space to L and
s′T ⊂ L denote the supporting hyperplanes to X parallel to the hyperplanes at
the origin in L, which correspond to s′ ∈ S′.

let Rf(s′)f , s′ ∈ S′, be the maximum of the values of the differential d(f) at
the outward looking unit normal vector field to the boundary of X at the points,
where the supporting hyperplane is tangent to ∂X, i.e. at x ∈ ∂X ∩s′ T .27

Let Rf ≥ 0 and let U ′(Rf) ⊂ L′ be the set of the vectors r(s′)s′ ∈ L′ for all
s′ ∈ S′ and r(s′) ≤ Rf(s′). (if R is constant this is the R-ball.)

???
ABP Corollary. The Laplacian of f satisfies

ABP ∫
X

∣∆(f)∣ndx ≥ ∫
X⌣

∣∆(f)∣ndx ≥ nnvol(Bn(R)).

Proof. The arithmetic/geometric inequality applied to the (real positive)
eigenvalues of the Hessian of f at he points in X⌣ shows that the Jacobian of
he map df ∶X⌣ → Bn(R) satisfies

Jac(df) ≤ (∆(f))n/nn,

while the integral of this Jacobian overX⌣ is bounded from below by the integral
over our R-ball of the multiplicity of the map df ,

∫
X⌣

∣Jac(f)∣ndx ≥ ∫
Bn(R)

card(df
−1

(l′))dl′, l′ ∈ Bn(R) ⊂ L′,

where card(df
−1

(l′)) ≥ 1 on Bn(R) by the ABP-Lemma.
—————-
Linear PDE-Recollection. (Neumann Boundary problem.) Let a(x) and

b(y) be smooth functions in x ∈X and y ∈ ∂X. If

[GF ] ∫
X
a(x)dx = ∫

Y
b(y)dy

(this is Green’s formula), then there exists a smooth function f(x), such that
the Laplacian of f and the normal derivatives of f satisfy

∆f(x) = a(x) and df(ν(y)) = b(y).

Proof of the Isoperimetric Inequality. Let us assume without loss of
generality that the boundary of X has the same (n − 1)-volume as the unit
sphere,

voln−1(∂X) = voln−1(Sn−1),
27A supporting hyperplane to an X can be tangent to ∂X at several points x.
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let b = 1 and let a > 0 be a constant, such that

[a/1] a ⋅ vol(X) = voln−1(∂X).

Let f(x) be a smooth function, such that

∆(f) = a and df(ν) = 1.

Then the above ABP inequality reads

an−1voln−1(∂X) = anvol(X) ≥ nnvol(Bn(1)) = nn−1voln−1(Sn−1) = nn−1voln−1(∂X)

Hence a ≥ n and [a/1] shows that

vol(X) ≤ 1

n
voln−1(∂X).

QED.
Question. Is there a natural Borel (measurable) correspondence

X × Sn−1 ↔ ∂X ×Bn

which would geometrically implement the inequality

vol2n−1(X × Sn−1) ≤ vol2n−1(∂X ×Bn)?

Or, maybe a natural family of similar correspondences between powers of
these sets

(X × Sn−1)N ↔ (∂X ×Bn)N

N = 1.2, ..., which implements the inequality

lim
N→∞

N

√
volN(2n−1)(X × Sn−1)N ≤ lim

N→∞
N

√
volN(2n−1)(∂X ×Bn)N

2.13 Dimension 2: Steiner, Santalo, Cabre, Wirtinger...

3 Laplace Operators on Riemannian manifolds X
and Eigen Values λ1(X) and λ2(X).

Let X be a smooth Riemannian n-manifold, e.g. a domain in Rn or a smooth
closed hypersurface, such as the n-sphere Sn ⊂ Rn+1.

Recall that the Laplace operator on X is defined as

∆f(x) = div gradf(x) =
n

∑
i=1

∂2
i f(x)

where ∂i ∫x(X) are orthonormal tangent vectors at x and ∂2
i is the second deriva-

tives along the geodesic issuing from x in the ∂i-direction, where this is inde-
pendent of a choice of orthonormal vectors by the Pythagorean theorem.

??## Exercises. (a) Show that 1
n

∆f(x) equals the spherical average of the
second derivatives of f along geodesics issuing from x,

1

n
∆f(x) = 1

vol(Sn−1) ∫Sn−1x

∂2
sf(x)ds
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where Sn−1
x ⊂ Tx(X) is the tangent unit sphere of X at x,

(b) Express the integrals ∫X ∥∆f(x)∥p by lifting f(x) to a function f(τ) on
the unit tangent bundle UT (X), twice differentiating f along the orbits of the
geodesic flow and integrating ∥∂2

τf(τ)}p over UT (X) with the Liouville measure
(which is invariant under the geodesic flow) .

(c) f ∶ X → RN be an isometric embedding (immersion will do) and show
then the Laplace operator coordinate-wise applied to f = (f1, ..., fN) as ∆f =
(∆f1, ...,∆fN) is equal the mean curvature vector field of X ↪ RN interpreted
as a map X → RN (by identifying the tangent spaces Ty(RN) with RN for all
y ∈ RN ),

∆f = mean.curv(X ↪ RN),
where the mean curvature vector of X at x ∈X is the n-times spherical average
of the Euclidean curvature vectors of geodesic in X issuing from x.

For instance, the mean curvature of the sphere Sn(R) ⊂ Rn+1 is n
R
ν(s),

where nu(s) ∈ Ts(Rn+1) is the outward looking unit normal vector to the sphere
at s ∈ Sn(R).

(d) Using this definition of the mean curvature, show that it is equal to the
gradient of the function X ↦ voln(X) on n-submanifolds in Rn.

Observe that ∆ is a negative operator as

∫
X
⟨∆f(x), f(x)⟩dx = −∫

X
∥df∥2

on closed manifold by the Green’s formula (integration by parts) and the same
is true for compact manifolds with boundaries for functions f if either f or df
vanish on ∂X.

Poincaré inequality concerns the smallest non-zero eigenvalue of the operator
−∆ = −∆X on the space of smooth L2-functions f on X 28 with either Dirichlet
or Neumann boundary conditions, that is either for functions which vanish on
the boundary ∂X or with the gradient gradf on the boundary ∂X normal to
∂X.

If all connected components of X are compact with nonempty boundaries
then there is no zero eigenvalue: harmonic function zero on the boundary vanish.

Thus the first non-vanishing Dirichlet eigenvalue is the smallest one, denoted
λ1(X).

But since constant functions satishy Neumann’s condition, the first non-
vanishing Neumann’s eigenvalue on a compact connected manifold with or with-
out boundary is actually the second smallest one, which we denote λ2(X). 29

Examples. (a) The segment [a, b] has λ1 = 0,

λ2[a, b] =
π2

(b − a)2
,

since the only bounded eigen functions of ∆ = d2

dt2
on the line are sin and cos 30

and, for all i,

λi[a, b] =
(i − 1)2π2

(b − a)2

28"L2" means that ∫X f2(s)dx < ∞.
29According to our notation, compact disconnected manifolds X have Neumann’s λ2 = 0.
30Probably there is a direct proof of the inequality ∫

π/2

−π/2
f2(t)dt ≤ ∫

π/2

−π/2
(f ′(t))2dt for func-

tions f such that ∫
π/2

−π/2
f(t)dt = 0, but I couldn’t find it.
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(b) ??? Spectra of Riemannian Products One knows that the eigenval-
ues of −∆X×Y are the sums λi(X) + λj(Y ).

In fact, this follows from general properties of elliptic selfadjoint opera-
tors(See ??? below for a direct proof).

(c) The eigenvalues of the cube [0, π]n are the sums i21 + i22 + ... + i2n. Thus,
there are roughly Rn/2 eigenvalues λi ≤ R.

Variational Principle and Green’s Formula. The (infinite dimensional
in the present case) linear algebra tells you that the eigen values λ1, λ2, , , , λi, ...
of ∆ be they Dirichlet’s or Neumann’s ones, are equal to the critical values of
the quadratic function

f ↦ −⟨f,∆f⟩ = ∫
X
f(x)∆fdx

on the unit sphere in he Hilbert space of L2-functions f(x),where the corre-
sponding eigen functions φi, or spaces if these for multiple λi, are mutually
orthogonal.

Green’s Formula. "Integration by Parts" shows that he above quadratic func-
tion is equal to the Dirichlet (energy) functional,

−⟨f,∆f⟩ = ∥df∥L2 = ∫
X

∥df∥2dx

for smooth functions f on compact manifolds, such that either f vanishes on
the boundary ∂X or the normal derivative of f on ∂f vanish.

(In the case of disconnected boundary, one may have f vanishing on some
components of ∂X and the normal derivative of f vanishing on the remaining
components.)

Thus

λ1(X) = inf
f∣∂f=0

∥df∥2
L2

∥f∥L2

and

λ2(X) = inf
∫f=0

∫X ∥df(x)∥2dx

∫X ∥f(x)∥2dx

???Remarks (a) Since the orthogonality to constants condition ∫x f(x)dx = 0
(easily) implies that

∫ f2(x)dx = 1

2vol(X) ∫X×X
∣f(x1 − f(x2)∣2dx1dx2

one can define λ2, as

λ2(X) = 1

2vol(X)
inf
f

∫X×X ∣f(x1 − f(x2)∣2dx1dx2

∫X ∥f(x)∥2dx
,

where this definition makes sense for maps f froX to an arbitrary Riemannian
(and Finsler) manifold with ∣a − b∣ understood as dist(a, b)

(b) The definition of λi via the Dirichlet functional ∥df∥2
L2

without a direct
reference to the Laplace operator makes sense for manifolds X with bounded
measurable Riemannin metrics and it is quasi-invariant under bi-Lipschitz maps:
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if Φ ∶ X1 → X2 is a l-Lipschitz (i.e. ∥dΦ∥ ≤ l) homeomorphism, where
Φ−1 ∶ X2 → X1 is also l-Lipschitz, then, clearly, both Dirichlet and Neumann
eigenvalues saisfy:

1

l2n−1
λi(X1) ≤ λ2(X2) ≤ l2n−1λi(X1)

for all i = 1,2, ....
Exercises. (a) Show that Dirichlet’s eigen values of subdomains X0 ⊂ X

satisfy λi(X0) ≥ λi(X)
(a) Let Φ ∶X1 →X2 be an l-Lipschitz map, where the (compact Riemannian)

manifolds X1 and X2 may have different dimensions and let the pushforward of
the Riemannian measure dx1 be

Φ∗(dx1) = δ(x2) ⋅ dx2

for some positive function δ(x2) > 0 on X2. (This makes dim(X1) ≥ dim(X2).)
Show that the Neumann’s eigen values satisfy

λi(X1) ≤ l2
supx∈X2

δ(x2)
infx∈X2 δ(x2)

⋅ λ2(X2).

(b) Show that, for all pairs of compact Riemannian manifolds X1 and X2

where dim(X1) ≥ dim(X2) (e.g where X1 is the n-cube [0,1]n and X = Xn is
arbitrary) there exist positive constants l > 0 and δ > 0 depending on X1 and
X2 and l-Lipschitz maps,

Φ ∶X1 →X,

such that the pushforward measures Φ∗(dx1) are constant δ-multiples of dx.
Remark. Arbitrarily large balls B(R) in hyperbolic spaces may have arbi-

trarily large Dirichlet’s λ1.
Less obviously, one can show, using Riemann surface expanders, that all

compact manifolds X of dimension n ≥ 3 (4 maybe) admit arbitrarily large
Riemannian metrics with arbitrary large Neumann’s λ2.

(c) Derive the above formula for the eigenvalues of ∆X×Y from the variational
principle.

(d) Combine this with (b) for X1 = [0, π]n and show that Neumann’s eigen-
values of compact connected manifolds X satisfy

λi ≥ constX(in/2 − 1).

(e) Derive a similar bund from this for Dirichlet’s eigenvalues of compact con-
nected n-manifolds with boundaries by applying (d) to a connected n-manifold
X+, which contains two copies of X e.g. to the double of X obtained by gluing
two copies of X across their boundaries.

(f) Let X be a compact manifold with a boundary and show that he first
Dirichlet’s eigenvalue of X is equal to the

supremum of numbers λ, such that X admits a smooth positive function
f(x) > 0, such that

−∆f(x) ≥ λf(x),

that is
λ1(X) = sup

f>0
inf
x∈X

−∆f(x)
f(x)

.
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Hint. Use the maximum principle for the first Dirichlet eigenfunction f1,
(g) Divide a closed Riemannin n-manifold X into two domains X− and X+

with common smooth boundary Y =X−∩X+ ⊂X, let λmax(Y ) = max(λ1(X,λ1(X+)
and show that

λ2(X) = inf
Y ⊂X

λmax(Y ),

where ” sup ” is taken over all smooth closed cooriented hypersurfaces Y ⊂X.
Laplacian on Riemannin Metric Measure Spaces. This ∆ is defined

on X = (X,g,µ) as
∆(f) = divµgradg(f),

where themu-divergence of the vector field τ on X is the ratio of the τ -Lie
derivative of µ by µ, which makes sense for µ(x) = p(x)dx where p(x) > 0. In this
case the µ-Laplacian at least for smooth p has the same properties as the pure
Riemannian one which can be seen, for instance, by looking at the Riemannian
Laplacian on the S1-invarian functions on the warped product X ×S1 with the
metric gX + p2/nds2.

3.1 Spectra of Cubes, Spheres, Balls and Hyperbolic Cusps
3.1.1 Rayleigh–Faber–Krahn Inequality

rewrite
Let f ∶ X → R+ be a non-negative measurable function on a measure space

X = (X,µ) e.g. on X = Rn, which is supported on a subset with finite measure.
Recall that the f -pushforward of µ is the measure on R+, such that

µ(S) = µf−1(S)

for all Borel subsets (segments [a, b] will do] will do) S ⊂ R+.
Define the O(n)-invariant model f(x) = f

O(n)(∥x∥) of f as the radial func-
tion on Rn, such that the f -pushforward of the Euclidean measure dx is equal
to the f -pushforward of µ, that is such that the Euclidean volumes of the
balls Bn(a) ⊂ Rn for all a ≥ 0 , where the function f is ≤ a, are equal to the
µ-measures of the corresponding subsets in X, i.e. where f(x) ≤ a,

Remark. In the case of the Faber-Krahn theorem, the functions f and f are
defined on the same space Rn, but one also may compare a function f on an
arbitrary n-dimensional Riemannin manifold with its O(n)-symmetric model
on Rn as well, more generally, on another n-manifold with O(n)-symmetry, e.g.
the sphere Sn or the hyperbolic n-space.

Now, similarly to the above proof of the Sobolev&... inequality, the Eu-
clidean isoperimetric inequality

voln(X)/voln−1(∂(X)n/n−1) ≤ voln(Bn)/voln−1(Sn−1)n/n−1)

and the coarea formula [coar] imply that the differentials of Euclidean O(n)-
symmetric models f(x) of Lipschitz functions f on X = Rn with bounded sup-
ports satisfy the following

∥df∥Lp-Symmetrization Inequality.

∥df∥Lp =
p

√
∫
Rn

∥df(x)∥pdx ≤ ∥df∥Lp =
p

√
∫
Rn

∥df(x)∥p
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for all p ≥ 1.
It follows that the infimum of the ratio

γp,q(X) = (∥df∥Lp/∣f∥Lq , p, q > 1

over all Lipschitz functions on Rn with supports in a given bounded domain
X ⊂ Rn is bounded from below by γp,q(Bn(a)), where Bn(a) ⊂ Rn is the ball
with the volume equal to that of X.

This, for p = q = 2 is called the Faber-Krahn inequality, which, as ex-
plained below, shows that

among all bounded domains in Rn with a given volume, balls have the highest
bottom oscillation frequency.

3.1.2 Bochner Formula and Lichnerowicz λ2-Inequality

3.2 ???
More specifically the "spherical Poincaré" says that

λ2(Sn(1)) = n

where the corresponding eigen functions are the linear ones. In fact a straightfor-
ward computation (see section ??? below) shows that the Euclidean coordinates
xi regarded as functions xi(s) on

Sn = {x0, ..., xn}∑i x2
i=1

satisfy
∆Snxi(s) = xi(s) ⋅mean.curv(Sn, s) = −nxi(s),

which agrees with the identities

∫
Sn
∑
i

∥xi(s)∥2ds = ∫
Sn

1ds = vol(Sn)

and
∫
Sn
∑
i

∥dxi∥2 = ∫
Sn
nds = n ⋅ vol(Sn),

Bochner Formula

1

2
∆∥df∥2 = ∥Hessf∥2 + ⟨d∆f, df⟩ +Ricci(df, df)

0 = ∫
X

∥Hessf∥2 − λ⟨df, df⟩ +Ricci(df, df)

∥Hessf∥2 ≥ 1
n
∥∆f∥2

RicciSn = (n − 1)gSn
and Lichnerowicz λ1-theorem
λ1 for convex domains by needle integration and by needle decomposition.
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3.3 Cheeger’s constant and Cheeger’s λ2 inequality
change!

Let X be Riemannian n-manifold(possibly with a boundary and let che(X)
be the supremum of the numbers c > 0,such that all smooth domains V ⊂ X
with vol(V ) ≤ 1

2
vol(X) satisfy

vol − n − 1(∂V ) ≥ c ⋅ voln(V ).

3.3.A. Cheeger Inequality [Che1969]. Let a smooth function on X satisfy
one of the following conditions

●1 the volume of the support of f is finite and it is smaller than the volume
of its complement, i.e. voln(suppf ≤ 1

2
vol(X);

●2 the function f is orthogonal to constants,

∫
X
f(x)dx = 0.

Then

[che]1/4 ∫
X

∥df∥2dx ≥ che2

4
∫
X
f2dx.

Proof. The ●1 case in the form

∥f∥L2 =
√
∫
X
f(x)2dx ≤ che

2
∥df∥L2 =

√
∫
X

∥df(x)∥2dx

follows from he Maz’ya-Cheeger conditional inequality (L2-Example???) while
●2 reduces to ●1 by the following.

[λ1 Ô⇒ λ2]-Lemma. If the first Dirichlet eigenvalues of all smooth domains
V ⊂X with vol(V ) ≤ 1

2
vol(X) satisfy λ(V ) ≥ c, for some c = c(X) > 0, then the

second Neumann eigenvalue of X is also ≥ c.
In fact, let f be a non-zero Neumann’s λ-eigen-function in X, let Y ⊂ X be

the zero set of f ,which divide X into two reagins, X+ and X1 with common
boundary Y .

Then
∫
X∓

df2(x)dx = ∫
X∓

f(x)∆f = λ∫
X∓

f2dx

by the Green’s formula, since, in both regions, f vanishes on Y and its gradient
is normal to he remaining boundaries of X∓.

Since the minimum of the ratio

min
f

∫X df
2

∫ f2

on functions in X normal to the constants is achieved on a non-zero λ2-eigen-
function f2,an application of ●1 to the smallest of the two X∓ yields ●2.

3.3.B. On Logic of Proofs of ●1 and ●2. The reduction of ●2 to ●1 appears
less elementary than the proof of ●1.

For example, ifX is a polyhedral domain and f is a piecewise linear function,
the proof of the ●1-case of [che]1/4 in section ??? can be rendered in a purely
algebraic (first order) language, namely that of ordered real fields and piecewise
affine (or semialgebraic if you wish) function, while the reduction ●1 Ô⇒ ●2
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depends on eigenfunction that are minima of the Dirichlet functional in the
space all(!) functions.

Besides, while the proof of ●1 given in ??? depends only on the isoperimetric
properties of the domains A(t)) bounded by the t-levels B(t) = f−1(t) of our
function f , while, in the ●2 case, one needs this for all domains in X with
volumes ≤ 1/2vol(X).

However, if one doesn’t care for sharpness of constants one can proceed as
follows.

function on a compact Riemannian n-manifold, possibly with a boundary,
and let, as earlier,

B(t) = f−1(t) = ∂A(t) ⊂X, for A(t) = f−1[t,∞).

Let, for some t0 ≥ 0, all domains A(t) ⊂ X with t ≥0 satisfy the same isoperi-
metric inequality as in 2.6.A:

voln(A(t)) ≤ c ⋅ (voln−1B(t))ν for some ν ≥ 1.

Then the Lp nom of f is bounded in terms of its L1 norm, the Lp-norm of the
differential of f , where, as in and he volume v0 of A(t0), where

1

p
= 1

q
− ν − 1

ν
,

as follows
∥f∥p ≤

pc

ν
∥df∥Lq + v

1
p−1

0 ∥f∥1

Indeed, this follows from the Maz’ya-Cheeger inequality 2.6.A applied to the
function h(t) = f(x) − t0 restricted to A(t0), where h is positive and vanishes
on B(0) = ∂A(t), and where, clearly, ∥df∥Lq = ∥dh∥Lq , and

∥f∥p ≤ ∥h∥p + t0 p
√
v0 ≤ ∥h∥p + v

1
p−1

0 ∥f∥1.

Next, let ∫ f(x)dx = 0 as in ●2 and let X− and X+ be the negative/positive
regions of f of volumes v− and v−, and let f−(x) = min(f(x),0). Then

∥f∥p ≤
pc

ν
∥df∥Lq + (v−

v0
)

1− 1
p

∥f−∥p.

Finally, let v≤v0 and let the domains A(t) = f−1(−∞, t] for t ≤ 0 satisfy the
isoperimetric inequality

voln(A−(t) ≤ c(voln−1(∂A−(t))ν ,

then

∥f∥p ≤
⎛
⎝
pc

ν
(1 + 1

2
)

1− 1
p⎞
⎠
∥df∥q.

For instance, if ν = 1 and p = q = 2, then

∥f∥2 ≤ 2c

√
3

2
∥df∥2
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This proof uses the isoperimetric inequality only for the levels of f , but the
factor

√
3
2
> 1 makes it non-sharp.

To make it sharp, let S = Sf(X) = (S, ds2, b(t)ds2) be the formal sym-
metrization of (X,f) (see section??), that is a one dimensional Riemannian
manifold S = (S, ds2) isometric to (R with a measure b(t)ds.

The above argument applies to (Sds2, b(s)ds) – in fact, it applies to all
metric measure spaces and yields Cheeger’s inequality for (S, f , that is

but by applying Cheeger’s argument to the formal symmetrisation of f ...
???

on sharpness on hyperboluc cisps ec,
evaluation of Cheeger Constant [che] for specific manifolds convex sets, hy-

perbolic spaces, hyperbolic balls, hyperbolic quotients.
[Che1969].

4 Minkowski and Brunn
Divide and rule.(Hadwiger-Ohmann?) cut Let two subsets X,Y ⊂ Rn be
divided by a hyperplane into X− ⊔X+ =X and Y− ⊔Y+ = Y , then the Minkowski
sums of corresponding "half-subsets" X−+Y− and X−+Y+ in Rn do not intersect
– they lie in different half-spaces of Rn divided by H – and, since

X + Y ⊃ (X− + Y−) ∪ (X+ + Y+),

vol(X + Y ) ≥ vol(X− + Y−) + vol(X+ + Y+).

Therefore, if H equidivides both sets,

vol(X−) = vol(X+) =
1

2
vol(X) and vol(Y−) = vol(Y+) =

1

2
vol(Y ),

Then the Minkowski ⌢1/n-inequalities for the pairs (X∓, Y∓)

vol(X− + Y−)1/n ≥ vol(X−)1/n + vol(Y−)1/n,

and
vol(X+ + Y+)1/n ≥ vol(X+)1/n + vol(Y+)1/n,

imply this inequality for (X,Y )

vol(X + Y )1/n ≥(vol(X− + Y−) + vol(X+ + Y+))
1/n ≥

((vol(X−)1/n + vol(Y−))1/n)
n
+ (vol(X+)1/n + vol(Y+)1/n)

n
)

1/n
=

vol(X)1/n + vol(Y )1/n

Since all sets in Rn can be translated to a position where they are equidivided
by a given hyperplane H ⊂ Rn, the ⌢1/n-inequality for (X,Y ) reduces to those
for two pairs of twice "thinner" sets (X∓, Y∓).

Then by equidividing further and further we reduce ⌢1/n for (X,Y ) to in-
equalities for arbitrary thin sets, i.e. to intersections of X and Y with regions
Hn−1 × [0, ε] ⊂ Rn between pairs of mutually ε-close hyperplanes.
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If X is a smooth or piecewise domain and H is transversal to ∂X then

voln(X ∩Hn−1 × [0, ε]) = ε ⋅ voln(X ∩Hn−1) + o(ε), 31

i.e.
∣voln(X ∩Hn−1 × [0, ε]) − ε ⋅ voln(X ∩Hn−1∣/ε→ 0 for ε→ 0.

Moreover, the intersection X ∩Hn−1 × [0, ε] ⊂ Rn is "physically" o(ε)-close
to the product

(X ∩Hn−1) × [0, ε] ⊂ Rn,

that is the volume of the symmetric difference between the two subsets is o(ε).
It follows, in the limit for ε→ 0, that the ⌢1/n-inequality for (X,Y ) reduces

to ⌢1/n for pairs of products X ′ × [0, ε] Y ′ × [0, δ] for X ′, Y ′Rn−1, which is
obviously equivalent to the ⌢1/(n−1)-inequality for (X ′, Y ′)

Then he Minkowski ⌢1/n-inequality for piecewise smooth domains follows by
induction on n and, if you care, this inequality for general measurable subsets
follows by approximation.

Isoperimetric Corollary. Isoperimetric inequality for smooth and piecewise
smooth domains X ⊂ Rn follows from ⌢1/n applied to X and the ε-ball Bn(ε)
for ε→ 0.)

Indeed, since

volm(X +Bn(ε)) = voln(X) + εvoln−1(∂X) + o(ε),

the ⌢1/n implies that

(voln(X) + εvoln−1(∂X))1/n + o(ε) ≥ volm(X)1/n + εvoln(Bn(1))1/n Ô⇒

voln(X)+εvoln−1(∂X) ≥ voln(X)+nvol(X)(n−1)/nεvoln−1(Bn(1))1/n+o(ε) Ô⇒

voln−1(∂X) ≥ nvol(X)(n−1)/nvoln−1(Bn(1))1/n Ô⇒
voln−1(∂X)
vol(X)(n−1)/n ≥ n ⋅ voln−1(Bn(1))1/n,

which is recognizable for the constant-wise sharp isoperimetric inequality, as it
becomes equality for X = Bn(1):

voln−1(Sn(1))
vol(Bn(1))(n−1)/n = n ⋅ voln−1(Bn(1))1/n.

(This proof, unbelievably primitive, sharply contrasts with the elegance of
the ABP-proof, but, at the bottom, the two arguments rely on the same prin-
ciple.)

Exercises. (a) Prove ⌢1/n for connected solvable simpy connected n-dimensional
unimodular32 Lie groups G. Hint. Use a normal codimension one subgroup in
G for H.33

(b) Show that If the Haar measures of subset X and Y in a compact topo-
logical group G satisfy mes(X) +mes(Y ) >mes(G), then X ⋅ Y = G.

31Here Rn is represented as Hn−1 ×R.
32The Haar measure is biinvariant.
33See https://link.springer.com/article/10.1007/s00039-023-00647-6 for such an in-

equality for more general locally compact groups.
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Remark . (a) There are similar results for infinite discrete groups G, e.g.
Mann’s theorem for G = Z, but the proofs of these are more subtle. may (b) If G
is an infinite, e.g discrete non-abelian group then it may satisfies much stronger
isoperimetric and Minkowski type inequalities for sufficiently large and/or dense
subsets as we shall see in section ???

Projection Concavity Theorem. A measure µ = µ(x)dx on Rn with
Borel measurable density µ(x) , x ∈ X, is called ∗1/λ-concave if the function
µ(x)1/λ is concave on the support of µ.

BRUNN’S THEOREM. Let µ be a ∗1/λ-concave measure on Rn with convex
support V ⊂ Rn and let π ∶ Rn → Rn−k be a surjective linear map. Then the
pushforward measure π∗µ on Rn−k is ∗1/λ+k-concave.

Example. If V ⊂ Rn is a convex subset and µ(x) is constant on V , this says
that the function

y ↦ (voln−1(π−1(y))
1
n−k , y ∈ Rn−k,

is concave on the image π(V ) ⊂ Rn−k.

4.1 Reparamerization, Knöte Map and Prekopa-Leindler
inequality

4.2 Mass Transportation, Brenier Maps...

4.3 Alexandrov-Fenchel and Hodge Inequalities

4.4 Minkowski Inequality in Arakelov Geometry

5 Filling Inequalities

5.1 Non-Sharp Federer Fleming Filling Inequality in RN

???A. Euclidean Filling-by-Collapsing with Codimension one Theo-
rem. Let Y = Y n−1 ⊂ RN be a smooth submanifold .

Then there exist constants CN and DN and a smooth homotopy Φt(y) of the
embedding Y ↪ RN , that is a smooth map

Φ ∶ Y × [0,1] → RN , Φy,0 = y,

with the following properties.
●∂t the partial t-derivative. of Φ is bounded by:

∥∂tΦ∥ ≤DNvoln(X
1
n−1 );

●∥dΦ∥n−1 The Ln−1 norm of the differential of the map Φ on the subset Y⋆ =
supp⋀ndf ⊂ Y , where rank(Φ) = n is Cn-boundd

∫
Y⋆

∥df(y)∥n−1dy ≤ Cn−1
N .

Consequently, the n-dimensional volume of the map Φ34 satisfies

●vol voln(Φ) ≤DNC
n−1
N voln−1(Y ).

34This volume may be, a priori, greater than that of the image of Φ as we count the of the
volume of the image with multiplicity.
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●n−2 The image of Φt=1 is a piecewise smooth subset in RN of dimension
(n − 2),

dim(Φ1(Y )) = n − 2.

Remark. If N = n and Y ⊂ Rn is closed hypersurface, then the above
implies a non-sharp isoperimetric inequality, since the domain X bounded by Y
is, because of ●n−2, contained in the image of the (cylinder) map Φ.

(A natural candidate for a collapsing φ-like map. from the boundary ∂X of
a closed hypersurface X ⊂ Rn is the canonical retraction of X to the cut locus
of Y = ∂X in X, but there is no apparent simple geometric map, which would
also satisfy ●∥df∥n−1 and or ●n−2.)

In fact, ●vol and ●n−2 show that closed submanifolds Yn−1 ⊂ RN (this effort-
lessly extends to quite general (n−1)-cycles) bound "cylindrical" n-chains with
volumes bounded by constNvoln−1Y

n/n−1.

Proof of ???A. Since N > n − 1, the integral ∫ 1
∥x∥n−1 dx converges at zero in

RN , the mean of the distn−1-function in the ball BN(r) ⊂ RN satisfies,

1

volN(BN(r)) ∫BN (r)
∥x − x0∥−(n−1)dx ≤ constN /rn

for all x0 ∈ RN .
It follows, that for all submanifolds (not necessarily of dimension n − 1) in

RN , there exist points x ∈ BN(r), such that

∫
Y
∥y − x∥−(n−1)dy ≤ constNvol(Y )

rN
.

Therefore, the radial projection ψx, x ∈ BN(r), of Y = Y n−1 from such a
point x to the boundary of a convex subset V ⊃ BN(2r) satisfies:

voln−1(ψx(Y ∩ V )) ≤ ∫
Y ∩V

∥dψ(y)∥n−1dy ≤
diam(V ) ⋅ const′Nvoln−1(Y ∩ V )

rN
.35

Now, let us partition RN ⊃ Y into parallel translates of the cube [0, d]N ⊂
RN , where d is much larger than voln−1(Y )1/n−1, say

d = (10N)10N2

voln−1(Y )1/n−1.

Then radially project the intersections of Y with these cubes, say Y ∩([0, d]N+xi,
where xi are vectors in the lattice dZNRN , to the boundaries of these cubes with
a controlled increase of their volumes, say by factors (2N)N .

Then apply the same to the images of these maps intersected with the(N −1-
faces of the cubes and continue until you land up in the n − 1-faces.

Since the cubes were chosen so large, none of these maps is onto, hence their
imagers can be radially projected to the (n−2)-dimensional boundaries of these
faces.

Then composition of all these radial projections naturally included into a
homotopy of maps satisfies ●∂t ●∥dΦ∥n−1 ●vol and ●n−2. QED.

35Even if the boundary ∂V is non-smooth, this makes sense since the map φx is Lipschitz.
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Questions. (a) What are the optimal constants CN and/or DN in ●∂t ,
●∥dΦ∥n−1 and ●vol? Do they depend on n rather then on N? (Compare with
???C below).

(b) Does ???A hold for submanifolds Y in complete simply connected spaces
with sect.curv ≤ 0?

Does ???A hold with logarithmic bound on ∥∂t∥ and on ∥dΦ∥Ln−1 in symmetric
spaces with sect.curv ≤ 0 and with rank ≤ n − 1 = dim(Y )?

Does ???A hold in complete N -dimensional manifolds with sect.curv ≥ 0
(and singular Alexandrov spaces) with volume growth constRN?

5.1.1 Slicing by Parallel "Planes

. Let us show that an isoperimetric (filling) inequality for maps – we allow non-
embeddings Y ↪ Z but keep notation as if these are embedding – for manifolds
(or cycles) of dimensions n − 1 and n − 2 in a Riemannian manifold Z, e.g.
Z = RN−1, implies a similar inequality for maps Y n−1 → Z ×R.

In fact, given Y ↪ Z×R, the mean/mean value argument, implies, as earlier,
that, for all d there a "greed of parallel Z-planes within distance d one from
another", that is a subset Z ′ = Z × (dZ + t). for some t ∈ R, such that

voln−2(Y ∩Z ′) ≤ voln−1(Y )/d.

Let d = voln−1(Y )1/n−1, let is fill in all intersections Y ∩Z ×{di+ t}, i ∈ Z by
(n− 1)-chains in the "planes" Zi = Z × {di+ t} and thus decompose the (n− 1)-
cycle (represented by) Y into the sum Y = +i Yi, where each Yi is contained in
the "d-band between two "planes",

Yi ⊂ Z × [di + t, d(i + 1)] + t.

Then, fill in all Yi by firstly normally projecting them to Zi = Z × {di + t}
and then filling them in these Zi = Z.

Example. Let Z = R2 and Y ⊂ Z × R = R3 be a surface with unit area.
Then d = 1 and the total sum of the planar domains in all Zi encompassed by
their intersections with Y is < 1/2 by the (rough) 2-dimensional isoperimetric
inequality. Then we project each Yi to Zi which needs d⋅-area of filling 3-volume,
while nothing is added in Zi since dim(Zi) = dimYi in the present case.

Thus we conclude that the domain X ⊂ R3 bounded by Y satisfies
vol3(X) < C●area(Y )2/3 with C● = 2 instead of C3 = 1

6
√
π
= 4π/3

(4π)3/2 of the
sharp inequality.

Question. Does the Euclidean type filling inequality hold for (n − 1)-cycles
Y in product manifolds Z1 × Z2, where Z1 and Z2 are complete contractible
Riemannian manifolds, such that sect.curv(Z1) ≤ 0, sect.curv(Z2 ≥ 0 and where
Z2 has (at least) const2Rdim(Z2)-volume growth?

Remark. The (n1 − 1)-cycles Y ⊂ Z1. are known (see [???] and section ???)
to bound chains X with

voln1(X) ≤ constn1voln1−1(Y )
n1
n1−1 , n1 = 2,3, ...

and Y n2−1 ⊂ Z2 bound X with

voln2(X) ≤ constn2

const
n2/N
2

voln−1(Y )
n2
n2−1 , n2 = 2,3, ...,
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(see section ??? in [???]).
Such inequalities with n1 = dimZ1 and n2 = dimZ2 imply the corresponding

Euclidean-type isoperimetric inequality for hypersurfaces in Z1×Z2 by the (for-
mal) Schwarz symmetrization argument (see section ??? below, [grigorian???95],
section 9 in [waists???2003], [morgan????2006] and references therein) but a
similar product property is unlikely to hold, in general, for cycles of higher
codimension.

However, this may work in the (annoyingly eclectic) [curv ≤ 0] × [curv ≥ 0]-
case.

5.2 Filling Lipschitz Cycles in Riemannian Manifolds
Let X be a Riemannian manifold and

C∗ = (C∗(X,F, ∂∗) = ({∂i ∶ Ci → Ci−1}i=0,1,...,n=dim(X)

be the complex of Lipschitz singular chains: the i-chains are finite sums c =
∑j fjσj , where σj ∶ ∆i → X are Lipschitz maps of the standard i-simplex to X
and fi ∈ F.

If F comes with a norm (e.g. F equals R, Z, or Z2 = Z/2Z), then each chain c ∈
Ci is given the Riemannian i-volume norm, voli(c) = ∣∣c∣∣voli = ∑i ∣∣fj ∣∣voli(σj).

Clearly ∣∣∂i∣∣ = ∞ for all i ≥ 2 (and also for i = 1 if the norm in F is unbounded).
The corresponding minimal norm on the homology Hi(X) =Ker∂i/Im∂i+1,

that is the infimum of the volumes of the cycles c ∈ Ker∂i=1 representing an
h ∈Hi(X) is called the volume or the mass norm,

voli(h) = inf[c]=hvoli(a).

If X is compact, or, more generally, admits a co-compact isometry group,
then one easily sees that this norm does not vanish: infh≠0 voli(h) > 0, for h ≠ 0.

The i-th F-systole of X is then defined as

systi(X) = inf
h≠0

voli(h), where h ∈Hi(X).

5.2.1 Riemannian Federer-Fleming

Aminor modification of Federer-Fleming’s "filling-by-collapsing" argument from
section ??? yields. the following general filling inequality for "small" Lipschitz
chains in all Riemannian manifolds with bounded Lipschitz geometries.

Let X be a Riemannian manifold and

C∗ = (C∗(X,F, ∂∗) = ({∂i ∶ Ci → Ci−1}i=0,1,...,N=dim(X)

be the complex of Lipschitz singular chains: the i-chains are finite sums c =
∑j fjσj , where σj ∶ ∆i → X are Lipschitz maps of the standard i-simplex to X
and fi ∈ F.

If F comes with a norm (e.g. F equals R, Z, or Z2 = Z/2Z), then each chain c ∈
Ci is given the Riemannian i-volume norm, voli(c) = ∣∣c∣∣voli = ∑i ∣∣fj ∣∣voli(σj).

Clearly ∣∣∂i∣∣ = ∞ for all i ≥ 2 (and also for i = 1 if the norm in F is unbounded).
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The corresponding minimal norm on the homology Hi(X) =Ker∂i/Im∂i+1,
that is the infimum of the volumes of the cycles c ∈ Ker∂i=1 representing an
h ∈Hi(X) is called the volume or the mass norm,

voli(h) = inf[c]=hvoli(a).

An N -dimensional Riemannian manifold (possibly with a boundary) X is
bLg (bounded Lipschitz geometry) if there exit numbers r0 > 0 and λ > 0, such
that all ball B(r) ⊂X, r ≤ r0 admit λ-bi-Lipshitz embeddings B(r) → RN .

For instance compact manifolds and those admitting co-compact isometry
groups are bLg

Exercise. Show that the mass/volume norm does not vanish in the bLg
manifolds: infh≠0 voli(h) > 0, for h ≠ 0.

??? A. Theorem Let X be an N -dimensional Riemannian bLg manifold.
Then there exists a positive constant β0 = β0(X) > 0, such that if n− 1 ≥ 1, then
every (n − 1)-cycle b in X with ∣∣b∣∣ ≤ β0 satisfies

∣∣b∣∣fil ≤ cons∣∣b∣∣
n
n−1 , where const = const(N, r0, λ),

where the n-fillings cε, varepsilon > 0 of a (n − 1)cycle b, i.e. chains ∂cε, such
that ∂cε = b and ∥c∥ ≤ cons∣∣b∣∣ n

n−1 = ε, ε→ 0, are (implemented by) the cylinderes
of Lipschitz map Φε from the support of b to X, such that dist(x,Φε(x) ≤
const + ε for all x in the support of b and such that the rank of the differential
of Φε is almost everywhere ≤ n − 2.

If, moreover, X is compact, then all b homologous to zero satisfy

∣∣b∣∣fil ≤ constX ∣∣b∣∣.

mostly move to ???From const(N) to const(n). A Riemannin manifold X is
ulLc(uniformly locally Lipschitz contractible) if there exist positive constants
constants ,r0 > 0 and λ ≥ 0 such that all balls B(r) = Bx(r) ⊂ X, x ∈ X, with
r ≤ r0 admit λ-Lipschitz homotopies Ht, t ∈ [0,1] to points in X:

these homotopies are λ-Lipschitz maps H ∶ B(r) × [0,1] → X, such that
H0 ∶ B(r) → X are equal to the original embeddings B(r) ↪ X and H1 are
constant maps, Bx(r) → x′(x) =H1(Bx(r)).

??? B. Theorem. Let X be an UulLc Riemannian manifold. Then there
exists a positive constant β0 = β0(X) > 0, such that if n − 1 ≥ 1, then every
(n − 1)-cycle b in X with ∣∣b∣∣ ≤ β0 satisfies

∣∣b∣∣fil ≤ cons∣∣b∣∣
n
n−1 , where const = const(n, r0, λ),

If, moreover, X is compact, then all b homologous to zero satisfy

∣∣b∣∣fil ≤ constX ∣∣b∣∣.

Remark. Unlike the above theorem ???A, it is unclear if there are n-fillings
c of b, which can be implemented by the cylinderes of dim(b)-controllably Lips-
chitz homotopies Φt with dist(x,Φε(x)) ≤ const(n)∥b∥1/n−1 and with the ranks
of the differentials of Φ1 almost everywhere bounded by n − 2.
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5.3 Vitali Decomposition of Submanifolds and Measures
into ε-Round Peacies

???A. Vitali Covering Lemma. Let a metric space X, e.g. X ⊂ Rn, be
covered by finitely many subsets Bi ⊂X, i ∈ I, of diameters δi (e.g by balls of radii
ri = δi/2). Then there exists a subset J ⊂ I, such that the sets Bj , j ∈ J , do not
pairwise intersect and such that the closed δi-neighbourhoods36 Uδj(Bj) (e.g. the
concentric balls B(3rj) in the case of rj-balls) cover X.

Proof. Let B1 be the subset with the largest diameter, let B2 be the largest
subset which doesn’t intersect B1, let B3 be the largest one, which doesn’t
intersect B1 ∪ B2 , and, in general, let Bj+1 be the largest subset, among Bi,
which don’t intersect the union B1 ∪ ... ∪Bj .

Since each Bi intersects some Bj with δj = diam(Bi) ≥ diam(Bi)

Uδj(Bj) ⊃ Bi

and the proof follows. ,
Corollary "Round" (Quasi) Decomposition of Measures and Submanifolds.
Let V be a metric space, e.g. V ⊂ RN with the Euclidean metric (distance

function)) and µ be a Borel measure in v, e.g. the n-volume measure on a
smooth n-dimensional submanifold in V ⊂ RN and let υ(r), r ≥ 0, be a positive
monotone increasing function, e.g. υ(r) = εrn.

A Borel (e.g. closed) subset B ⊂ V is called υ-round with respect to µ if

µ(V ) ≥ υ(diam(V )).

More specifically an n-dimensional submanifold V ⊂X is called ε-round if

voln(V ) ≥ ε ⋅ diam(V )n

For instance the Euclidean n-balls Bn(r) in Rn are εn-round with εn > n−n,
while the cylinders Bn−1(r) × [0,R] are ε(n, r,R)-round with ε(n, r,R) → 0 for
R/r →∞ as well as for R/r → 0.

???B. Let V be covered by finitely many υ-round subsets Bi ⊂ V , i ∈ I. If

υ(3r) ≤ Cυ(r) for all r > 0 and some C > 0,

(e.g. υ(r) = εrn, where C = 3n). Then there exit finitely many disjoint υ-round
subsets B+

j ⊂ V , j ∈ J , which contain a "substantial amount" of the measure of
V , that is

µ
⎛
⎝⋃j∈J

B+
j

⎞
⎠
≥ µ(V )

C
.

Proof. Let ρ+i ≥ 0 be the maximum of the numbers ρ ≥ 0 such that the
ρ-neighbourhood Uρ(Bi) ⊂ V is υ-round 37 and apply Vitali ’s lemma to the
covering of V by B+

i = Uρ+i (Bi), i ∈ I.
38This [argument, I guess, is used

everywhere in analysis; I learned it from the geometric paper [We????]
36???
37This ... taken with respect to the. restriction of the metetric (distance function) in CV

indused from CX
38(
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???C. Let X be a Riemannian Manifold V ⊂ X a compact n-dimensional
submanifold with a (possibly empty) boundary ∂V let µ = dv be the Riemannian
measure of V , let v(r) = εrn and let Bi ⊂ X be a covering of V by v-round
subsets.

Then there exit finitely many disjoint υ/9n-round n-dimensional submani-
folds B++

k ⊂ V , k ∈K, such that

µ( ⋃
K∈J

B++
j ) = voln ( ⋃

k∈K
B++
j ) ≥ µ(V )

9n
= voln(V )

9n

and such that the (n− 1)-dimensional volumes off the boundaries of B++k in V
satisfy

voln−1(∂VB++
k ) ≤

2nvoln(B++
k )

diam(B++
k )

.

Proof. Let B+
j ⊂ V be as above, apply Vitali’s lemma to the covering of V by

Uj = Udj(B+
j ), for dj = diam(B+

j ) and let Uk = Udk(B+
k ) ⊂ V be Vitali’s disjont

subsets, which, observe, cover at least voln(V )/3n.
Then let ρk(v) be the distance functions on Uk,

ρk(v) = dist(v,B+
k ),

let S++k = ρ−1(rk) ⊂ Uk be the level of the function ρk, which minimizes voln−1(ρ−1(r))
for 0 ≤ r ≤ dk = diam(B+

k ) and observe that the subsets

B++
k = ρ−1

k [0, rk] ⊂ Uk ⊂ V, k ∈K ⊂ J,

satisfy the requirements of ???C by. the coarea inequality.

5.3.1 From const(N) to const(n) by Cutting off Bubbles on Narrow
Necks.

Let Z be a Riemannian manifold and A,B, d be positive numbers, such that
●A (n−2)-cycles Y ′ in a Riemannian manifold Z bound (n-1)-chains X ′ with

volumes

[V oln−2] vol(X ′) ≤ A ⋅ voln−1(Y ′)
n−1
n−2 ;

●B (n − 1)-cycles Y with dimeters D, bounds chains X in Z with

[D ⋅ voln−1] voln(X) ≤ BD ⋅ vol(Y )n/n−1;

●d (n − 1)-cycles Y in the δ-balls Bz(δ) ⊂ Z for δ ≤ d bound n-chains X ⊂
Bz(δ) of volumes

[δ ⋅ V oln−1] voln(X) ≤ Bδ ⋅ vol(Y )n/n−1

and (n − 2)-cycles Y ′ ⊂ Bz(δ) bound (n − 1)-chains X ′ ⊂ Bz(δ) of volumes

[δ ⋅ V oln−2] voln−1(X) ≤ Bδ ⋅ vol(Y )n−1/n−2

Then there exists a constant C, which depends only on n, A, B (but not on
d), such that (n − 1)-cycles in Z bound chains X with

voln(X) ≤ voln−1(Y )n/n−1.
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Remark. The condition ●d with some d > 0 is satisfied by all compact mani-
folds Z and also non-compact complete ones with locally bounded geometries.

Idea of the Proof. Property ●A allows a decomposition of Y into a sum
Y = Y1 = YD + Y2, such that ●B applies to ("connected components" of) YD
and where vol(Y2) ≤ (1 − ε)vol(Y1). Then this applies to Y2, etc and eventually
reduces the problem to cycles of volumes << dn−1, where ●d leads to termination
of the iteration process.

(See https://arxiv.org/abs/math/0703889,
https://arxiv.org/abs/math/0306089,
https://www.ihes.fr/~gromov/wp-content/uploads/2018/08/fillingRiemannianManifolds.
pdf

for several versions of this inequality.)
Questions.
(Hypebolic case? sharp constant π/2?
2. proof induction with hyperplanes.
3. Induction with spheres, Banach spaces

5.4 Dehn-Levy-Almgren Local-to-Global Argument

Here we are mostly concerned with explicite bounds on the constants constn
and constX for ”simple“ manifolds and we start with

Sharp evaluation of ∣∣∂−1
i+1∣∣rand for round spheres. If X is the round Eu-

clidean sphere Sn with the O(n+ 1)-invariant i-volumes normalized so that the
equatorial spheres Si ⊂ Sn have volume 1, then the average (i + 1)-volume of
the geodesic cones from the points s ∈ SN over an equator Si ⊂ Sn (with re-
spect to every probability measure on Sn), obviously, equals 1/2. Since the
group O(n + 1) is transitive on the set of tangent i-planes in Sn, the equality
∣∣Si∣∣rand = vol(Si)/2 for the averages with respect to the O(n + 1)-invariant
measure on Sn implies that ∣∣c∣∣rand = vol(c)/2 for all i-chains c; hence

∣∣∂−1
i+1∣∣rand(β) = 1/2 for all i = 1,2, ..., n − 1 and β ≥ 0.

Notice that the resulting bound ∣∣∂−1
i+1∣∣fil(β) ≤ 1/2 is not sharp unless β = 1,

but, as one everybody would guess,
If X is either Rn or Sn, then round (umbilical) i-spheres of volume v0 (filled-

in by flat (i + 1)-discs) have maximal filling volumes (i.e. ∣∣...∣∣fil) among all
i-cycles b in X, with vol(b) = v0.

If X = Rn this is due to Almgren [?] and the spherical case was reduced to
Rn+1 ⊃ Sn by Bruce Kleiner (private communication.)

Remarks. If X = Sn, this leaves open the sharp bound on ∣∣∂−1
i+1∣∣fil(β) for

β > 1 that may depend on n (if n > i + 1) and on the coefficient field F in a
rather complicated manner.

Also, the "filling extremality" of round i-spheres (filled -in by flat (i+1)-discs)
remains unproven in the hyperbolic spaces X; but the Almgren-Levy argument
provides rather sharp bounds on the filling volume of cycles in manifolds with
lower bounds on curvatures (see below).

Local-to-Global Variational Principle: ∣∣...∣∣fil ≤ ∣∣...∣∣locfil. Let (C∗, ∂∗) be normed
chain complex, h ∈Hi(C∗) a homology class and let B = Bi(h) ⊂ Ci be the space
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of i-cycles in the class of h with the filling metric distZ(b1, b2) = ∣∣b1−b2∣∣fil. De-
fine the supremum norm of the "downstream gradient" of the function b ↦ ∣∣b∣∣
on B as follows,

∣∣ ↓ b∣∣sup = lim sup
∣∣c∣∣→0

∣∣b∣∣ − ∣∣b + ∂i+1(c)∣∣
∣∣c∣∣

for c ∈ Ci+1 ∖ {0}.

Observe that this norm on smooth submanifolds Y representing cycles b
in Riemanniann manifolds X equals the supremum of the norm of the mean
curvatures of Y , denoted supy ∣∣M(Y )∣∣y.

Let m(v) = inf ∣∣b∣∣=v ∣∣ ↓ b∣∣sup, define

∣∣∂−1
i+1∣∣locfil(β) = ∫

β

0
v ⋅m−1(v)dv

and say that ∂i+1 satisfies local-to-global principle if

∣∣∂−1
i+1∣∣fil ≤ ∣∣∂−1

i+1∣∣locfil.

This would hold if we had a gradient flow b(v) in B parameterized by v = ∣∣b(v)∣∣
starting from b with ∣∣b∣∣ = β and terminating with b = 0. One can not, in general,
guarantee such flows; yet,

if C∗ is the complex of Lipschitz chains in a smooth Riemannian manifold
X with (possibly empty) i-mean convex boundary ∂X (i.e. where the traces of
the second fundamental form are non-negative on all tangent i-planes in ∂X),
then

∣∣∂−1
i+1∣∣fil ≤ ∣∣∂−1

i+1∣∣locfil
for all i = 1,2, ....

In fact, there is the following better bound. Call a compact i-dimensional
subvariety (rectifiable set) Y in X quasiregular if the subset reg(Y ) ⊂ Y of
C2-smooth points has full i-measure in Y and such that the function dx(y) =
distX(x, y) assumes its minimum in Y at a regular point y ∈ reg(Y ) ⊂ Y for
almost all x ∈X. Set

mreg(v) = inf
∣Y ∣=v

sup
y

∣∣M(Y )∣∣y (this is ≥m(v))

where the supremum is taken over all compact quasiregular i-dimensional subva-
rietyies Y in X with ∣Y ∣ =def voli(Y ) = v, where ∣∣M ∣∣y denotes the norms of the
mean curvature vectors at regular points y ∈ reg(Y ) and where the supremum
is taken over all y ∈ reg(Y ). Define

∣∣∂−1
i+1∣∣

reg
fil (β) = ∫

β

0
v ⋅m−1

reg(v)dv (this is ≤ ∣∣∂−1
i+1∣∣locfil(β))

and conclude, appealing to the geometric mesaure theory, to the (intuitively
obvious but technically non-trivial)

Local-to-Global Inequality. ——————-

∣∣∂−1
i+1∣∣fil ≤ ∣∣∂−1

i+1∣∣
reg
fil

for all i = 1,2, ....
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Remark. The local-to-global principle is ubiquitous in the geometric measure
theory, albeit it is rarely stated explicitly (see [?] and references therein). It
holds for complete non-compact X with "decent" behavior at infinity e.g. for ε-
locally contractible X with some ε > 0 where every ball of radius ε is contractible
in the concentric unit ball. (This principle seems to hold for many classes of non-
Riemannian X, e.g. for Alexandrov spaces with a lower bound on curvatures
and for smooth strictly locally convex Finsler spaces.)

Example: Dehn’s Lemma. Let X admit a family of properly immersed coori-
ented smooth hypersurfaces Sr, r > 0, such that

(a) the i-mean curvaturesMi−1(Sr) of all Sr, i.e. the traces of the restrictions
of the second fundamental form of Sr to all tangent i-planes to Sr, are bounded
from below by a positive constant m0.

(b) There exists a locally compact space X̃, a proper continuous map p ∶
X̃ →X and a continuous function f ∶ X̃ → R+, such that

(b1) p−1(Sr) = f−1(r) for all r > 0;
(b2) the map p properly embeds the 0-level f−1(0) ⊂ X̃ to X, where the

image is a rectifiable set and where either dim(f−1(0)) ≤ i − 1 (e.g. f−1(0) is
empty) or f−1(0) is contractible of dimension i.

Then every quasiregular Y , that is not contained in p((f−1(0)), (obviously)
has supy ∣∣M(Y, y)∣∣ ≥m0; hence,

∣∣∂−1
i+1∣∣fil(β) ≤m−1

0

for all β ≥ 0.
Example. The concentric r-spheres Sr in the hyperbolic n-space X, and in

every complete simply connected manifold of curvature ≤ −1, have Mi(Sr) ≥ i;
thus, ∣∣∂−1

i+1∣∣fil(β) ≤ i−1 for all i ≥ 1 in these X.
Remark. The Dehn inequality is never sharp (at least in the natural exam-

ples) and the true value of ∣∣∂−1
i ∣∣fil remains unknown in most cases, even in the

hyperbolic n-space for 3 ≤ i ≤ n − 1.

5.5 Tube Formulas and Generalized Levy-Almgren In-
equalities move tubes to an appendix

Given a submanifold Y ⊂X, possibly with a boundary ∂Y denote by U�
R(Y ) ⊂X

the subset of those x ∈ X for which distX(x,Y ) ≤ R and such that all distance
minimizing segments [x, y] ⊂ X (of lengths = dist(x,Y ) have their Y -ends y in
the interior Y ∖ ∂Y of Y .

Observe that if Y has no boundary, then U�
R(Y ) equals the R-neighbourhood

UR(Y ) and, thus, voln(U�
R(Y )) = volnUR(Y ) ≥ voln(UR(y)) for n = dim(X)

and all y ∈ Y (where UR(y) is the r-ball around y).
If X = Xn(κ) is the complete simply connected n-dimensional manifold of

constant sectional curvature κ and Y = Y i(M) is a round (umbilical) i-sphere
of mean curvature m, let V li(R; ,m,κ) = voln(UR(Y ))/vol(Y ).

The Hermann Weyl tube formula implies that every quasiregular Y = Y i ⊂
Xn(κ) with supy∈reg(Y ) ∣∣M(Y )∣∣y ≤m has

voln(UR(Y ) ≤ V li(R,m,κ) ⋅ voli(Y ).

If κ = 1 and R = 2 this, combined with the local-to-global-principle, immedi-
ately yields the Almgren-Kleiner result on filling extremality of round subspheres
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in Sn and a similar filling inequality in X = Sn/G for finite isometry groups G
(fixed points are allowed) of order ∣G∣:

the filling norm in X is bounded by that in Sn as follows:

∣∣∂−1
X ∣∣fil(β) ≤ ∣∣∂−1

Sn ∣∣fil(∣G∣ ⋅ β) for all β ≤ voli(Si)/∣G∣.

If κ = 0 this yields, with R →∞, Almgren’s sharp filling inquality in Rn and
similar inequalities in the quotient spaces Rn/G.

Question. Does this bound on ∣b∣∣fil remain valid if voli−1(b) is substituted
by the measure of the set Acros(b) ⊂ Afn−i+1(Rn) of the (n− i+ 1)-dimensional
affine subspaces g in Rn that intersect b? (See the last three lines in 5.7 of [?]
for such bound for hypersurfaces.).

LetX be an n-dimensional Riemannian manifold, and Vε = V iε ⊂X an ε-germ
of a smooth i-submanifold at a point v0 ∈X.

The normal R-tube around Vε, denoted Vε+̇R ⊂ X, is the union of the
geodesic segments γ = [v, x] ⊂X normal to Vε, such that, every γ has lenght(γ) ≤
R and such that no point in γ is focal with respect to Vε, (which is essentially
equivalent to dist(x, )Vε = dist(x, v) = lenght(γ)).

If ε→ 0, then the volume of the tube depends on the second jet of Vε at v0,

voln(Vε+̇R) = voli(Vε) ⋅ V Li(X,R, v0, τ0,K0) + o(voli(Vε))

where τ is the tangent space to Vε at v0 and K0 the second fundamental form
of Vε at v0.

Denote by MV Li(X,R,m) the supremum of V Li(X,R,u0τ0,K0) over all
K0 with the norm of the trace (mean curvature) bounded by m, over all tangent
i-planes τ at v0 and all v0 ∈X.

For instance, if X is a complete simply connected space of curvature κ
then MV Li(X,R,m) equals the above V li(R,m,κ), since the supremum of
V Li(X,R,u0τ0,K0) is asssumed on umbilic submanifolds Vε.

Clearly, every qusiregular Y with mean curvature bounded by m satisfies

voli(Y )/voln(X) ≥MV Li(X,R,m)

for all R ≥ diam(X) and so an upper bound on MV L can be used in a conjunc-
tion with the local-to global-principle same way as the Weyl tube formula.

On the other hand, the functionMV Li can be evaluated in a variety of cases.
This provides lower bounds on the volumes of quasiregular Y ⊂ X in terms of
the the mean curvature, namely supy ∣∣M(Y )∣y. However, the such bounds are
sharp only in rather special cases.

Examples. (A) If X is a symmetric space (where the equation for Jacoby
fields along geodesics γ in X satisfy a linear ODE-system with constant coef-
ficients) it satisfies a Weil type formula and MV L is, in principle computable.
The resulting lower bound on vol(Y ) by supy ∣∣M(Y )∣y is sharp for manifolds of
constant curvature.

Also, ifX = CP k is a complex projective space and Y is minimal, i.e. M(Y ) =
0, then the above indicated bound is sharp: every 2j-diminsional quasiregular
Y ⊂ CP k has vol2j(Y ) ≥ vol2j(CP j).

However, the corresponding sharp bound is unknown for odd dimensional Y .
For instance, if Y ⊂ CP k is a hypersurface, dim(Y ) = 2k−1, one expects that its
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volume is bounded from below by the volume of some homogeneous Y0 ⊂ CP k
with ∣∣M(Y0)∣∣ = supy ∣∣M(Y )∣y, where ”homogeneous“ means that the isometry
group of CP k preserving Y0 is transitive. on Y0.

On the other hand, if, for instance, M(Y ) = 0 (i.e. M is minimal), then a
potential Y0 with minimal volume guarantied by the tube formula would be a
totally geodesic submanifold. But there is no odd dimensional totally geodesic
Y0 ⊂ CP k for dim(Y0) > 1.

It follows by compactness argument, that, there is a non-zero correction term
to the lower bound on voli(Y ) impruving the bound with the tube formula, but
it still leaves far from a sharp bound.

Also, one does not know if domains U ⊂ CP k solving the isoperimetric prob-
lem have homogeneous boundaries, unless they have (very) small volumes.

(B) If Ricci(X) ≥ (n − 1)κ and i = n − 1, then

MV Li(X,R,m) ≤ V li(R,m,κ),

by the Paul Levy tube bound.
(C) IfX is a Riemannian manifold where the sectional curvatures are bounded

from below by κ, then

MV Li(X,R,m) ≤ V li(R,m.κ),

for all i by Buyalo-Heintze-Karcher comparison theorem [?], [?]
(D) If Ricci(X) ≥ (n − 1)/ρ2 > 0, then, MV Li(X,R,m) ≤MV Li(X,πρ,m)

for all R. and if, moreover, curv(X) ≥ κ, then MV Li(X,R,m) ≤ V li(πρ,mκ).
These, together with the local-to-global principle, provide bounds on the

filling volumes in X, e.g. as follows.
Let X = Xn be a complete no-compact Riemannian manifold with sectional

curvature≥ 0 and let the R-balls around some (and, hence each) point satisfy,

lim sup
R→∞

voln(B(R;X))/Rn ≥ c ⋅ voln(B(1;Rn)).

Then, for each i = 1,2, ..., dim(X) − 1, every i-cycle of volume c ⋅ α bounds an
(i + 1)-chain of volume c ⋅ β where β = β(α)) equals the volume of the (i + 1)-
dimensional Euclidiean ball B with voli(∂B) = α. Furthermore, if i = dim(X)−
1, then the condition curv ≥ 0 can be relaxed to Ricci ≥ 0.

Remarks and Questions. (a) If X = Rn this reduces to Almgren’s inequlity.
(b) If The sectional curvatures of X are bounded from below by 1, then

the corresponding filling inequality generalizes that of Kleiner for Sn, where the
case i = n − 1 and Ricci ≥ n − 1 goes back to Paul Levy.

(c) Does every quasiregular Y i in a complete simply connected manifold X
with non-positive curvature (or in any CAT (0) space for this matter) and with
Riccii+1(X) ≤ −i have supy∈reg(Y ) ∣∣M(Y )∣∣y greater or equal than the mean cur-
vature of a round (umbilical) sphere Si with voli(Si) = voli(Y ) in the hyperbolic
space of constant curvature −1? (The lower bound on supy∈reg(Y ) ∣∣M(Y )∣∣y and
the issuing bound the filling inequality issuing from Weyl’s formula are non-
sharp in the hyperbolic spaces of constant curvature κ < 0.)

(b) Can one "hybridize" Dehn’s and Almgren’s inequalities, e.g. for Carte-
sian products of manifolds of positive and of negative curvatures?
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(c) If X =X∞ is an infinite dimensional Riemannian manyfold that densely
and isometrically contains an increasing union of finite dimensional subman-
ifolds, X∞ ⊃ ... ⊃ Xn+N ⊃ ... ⊃ Xn, such that all Xn+N , N = 1,2, ..., have
∣∣∂−1
i ∣∣fil(β0) ≤ δ0, for some i(< ∞), then, obviously, X∞ also has ∣∣∂−1

i ∣∣fil(β0) ≤
δ0. This applies, for example, to the Hilbert space R∞, to the Hilbertian sphere
S∞ ⊂ R∞+1 and to other infinite dimensional symmetric spaces of "compact
type", where the argument depends on the N -asymptotic of the (n+N)-volumes
of Xn+N .

Is there a dimension free proof applicable to more general X∞ (e.g. to S∞

divided by an infinite discrete isometry group)?
(d) Is there a (sufficiently) sharp generalization of Almgren’s filling bound

in Rn to non-Euclidean Banach-Minkowski spaces Xn in the spirit of the Brunn-
Minkowski inequality (corresponding to i = n−1)? Are there such inequalities in
the metric spheres in these Xn and other flag (e.g. Grassmannian) manifolds?

(e) Does the variational method apply to ∆(V ) and similar measurable com-
plexes, and improve the bound ∣∣(∂i)−1∣∣fil ≤ 1?

(f) Is there an algebaric/topological version of ∣∣...∣∣locfil in the context of our
chpter 4?

6 Isoperometry on Submanifolds

6.1 n-Divergence, Mean Curvature, Minimal Surfaces and
Allard-Michael&Simon Inequality

???A.The n-Divergence div[n](τ) = div[n](τ, V ) of a vector field τ in a Rie-
mannian manifold X is the rate of increase (decrease) of the volumes of n-
submanifolds V = V n ⊂X under the flow generated by τ .

That is, if the the-ε-initial τ -flow moves

V
ετ↦ (1 + ετ)(V ) ⊂X.

then
div[n](τ, V ) = ∂τvoln(V ) = lim

ε→0

voln((1 + ετ)(V )) − voln(V )
ε

,

where, for smooth fields τ , div[n](−τ) = −div[n](τ, V ) by the basic rules of the
calculus.

???B.Examples. (a) If n = N , this is the ordinary divergence,

div[n](τ) = div(τ),

(b) if X = RN and τ is the radial field x↦ τx ∈ Tx(RN), x ∈ Rn,39 that is

τ = grad∥x∥2,

then
div[n](τ) = n,

39Here τx is the tangent vector corresponding to the point (Euclidean vector) x ∈ Rn under
the obvious identification Tx(RN ) = RN .
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since the multiplicatively written one-parameter group, generated by this field
is the group of homotheties, x ↦ tx, which expands the volumes of all n-
submanifolds by the factor nt.

(c) Let X be a Riemannian manifold, where the inverse exponential map
exp−1

x0
∶ X → Tx0(X) is a homeomorphism onto a (star convex) domain in the

tangent space Tx0(X)(= RN ,N = dimX, ),.i.e. all x ∈ X are joint with x0 ∈ X
by a unique geodesic segment [x0, x] ⊂X.

Let τ0(x) be the field tangent to [x0, x] at x with norm ∥τ(x)∥ = length[x0, x],
that is τ0 is equal to the gradient of the squared distance function to x0,

τ0 = graddist(x,x0)2.

.If sect.curv(X) ≤ 0, then

div[n](τ0) ≥ n

and if sect.curv(X) ≤ −1 then the corresponding unit field τ● = τ0/∥τ0∥ satisfies
a similar inequality

div[n](τ●) ≥ n.

???C. First variation of the n-Volume. LetX be a Riemannian manifold
and V ⊂X an n-dimensional submanifold with a boundary S = ∂V , e.g. a curve
or surface in the Euclidean space, and let τ ∶ V → TV (X) be an X-tangent field
along V . Then the τ -derivative of the volume of V is equal to the sum of two
terms:

∂τvoln(V ) = ∫
S
⟨τ(s), ν(s)⟩ds +H∗(V, τ),

where:
●S the field ν ν ∶ S → TS(V )⊖T (S) is the external looking unit normal field

to S in V , thus, ⟨τ(s), ν(s)⟩ is the (signed) length of the normal projection of
τ to V along S;

●H the second term H∗(V, τ) = mean.curb(V ) is the mean curvature of V ,
that is a cotangent vector filed along V ,

mean.curv =H∗ ∶ V → T ∗V (X),

which is the differential of the n-volume function(al) on the space of submani-
folds in X obtained by normal deformations40 of V , which is customary repre-
sented by the scalar product of tangent fields τ with a normal (also called mean
curvature) field

H ∶ V → T ⊥(V ) = TV (X) ⊖ T (V ),

which represents the "normal gradient" of the volume function. Thus, the value
of H∗ on the tangent fields τ ∶ V → TV (X) is:

H∗(V, τ) = ∫
V
H∗(v)dv = ∫

V
⟨τ,H(v)⟩dv41

40This means "along vector fields normal to V ".
41A priori, the mean curvature is a vector valued measure on V but it is represented by a

(co)vector valued function on V , i.e. a section of the bundle TV (X) → V , in the present case
of a Riemannian X and smooth V and τ .
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1d Example. If V 1 ↪ RN is a curve parametrized by the ark length t, then
the mean curvature vector H(v) is equal to the second derivative of v(t)

H(t) = d
2v(t)
dt2

.

"From-1-to-n" Example. If V 1
i ⊂ V = V n ⊂ RN , i = 1, ..., n, are mutually

normal geodesic (with respect to the Riemannian metric induced from RN ⊃ V )
lines in V at v ∈ V , then

H(V, v) =
n

∑
i=1

H(V 1
i , v).

"Spherical" sub-Example. The (normal) mean curvature field of the sphere
Sn(R) ⊂ Rn+1 ⊂ RN is contained in (tangent to) Rn+1 ⊃ Sn−1) and the norm of
this field is everywhere

∥mean.curv(Sn(R), s)∥ = n/R

"Closed" Example. Let V ⊂ BN(R) ⊂ RN be a closed (i.e. compact
without boundary) n-submanifold in the R-ball. Then (the mean value of) the
norm of the mean curvature of V is bounded from below by that of the sphere
Sn(R) = ∂Bn+1(R),

∫
V
R∥mean.curv(V, v)∥dv ≥ n ⋅ voln(V ).

In fact,
∂τvoln(V ) ≤ ∫

V
∥τ∥ ⋅mean.curv(V, v)∥dv

for all fields τ , and the proof follows by applying this to the above radial field
τ(x) = grad∥x∥2.

??? D. Example "with a Boundary". Let V ⊂ BN(R) ⊂ RN be a compact
manifold with a boundary S = ∂V . then

∫
V
R∥mean.curv(V, v)∥dv +R ⋅ voln−1(S) ≥ n ⋅ voln(V ).

Proof. Argue as above with τ = ∥x∥2 and observe that the ∫S-term in the
first variation formula (●S in ???C) is bounded by

∫
S
⟨τ(s), ν(s)⟩ds ≤ R ⋅ voln−1(S).

Minimality: Definition/Exercise. A smooth submanifold V ⊂ X is called
minimal if one of the following four equivalent conditions is satisfied.

●ν ∂νvoln(V ) = 0 for all fields ν normal to V ;
●τ ∂τvoln(V ) = 0 for all fields τ with compact supports away from the

boundary of V , supp(τ) ⊂ ∖∂V .
●H the mean curvature of V is zero;
●min V is locally volume minimizing: all points v ∈ V ∖ ∂V admit neighbout-

hoods, U = U(v) ⊂ V , such that all n-submanifolds U ′ ⊂ X with ∂U ′ = ∂U have
larger volumes than U ,

voln(U ′) ≥ voln(U),
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where this inequality is strict unless U ′ = U.
Miranda-Allard-Michael-Simon Inequality. Let X be a Riemannian

manifold and let δ > 0 and R0 ≥ 0 be constants, such that all balls BNx (r),
x ∈X, r < R0 admit vector fields τ = τx,r, such that

div[n](τ) ≤ −δ

and the norms of τ on the boundaries of these balls are bounded by r. (E.g.
X = RN ,, R0 = ∞, and δ = n.)

Let V = V n be a smooth compact n-dimensional submanifold with a (possi-
bly empty) boundary.

Then either voln(V ) ≥ Rn0 /δn or

∫
V
∥mean.curv(V, v)∥dv + voln−1(S) ≥ constn ⋅ voln(V )n−1/n

for some strictly positive const = const(n, δ) > 0.
Proof. ???

6.2 Mass Transportation: Castillon-Brendle Inequality

7 Bolzmann-Gibbs-Shannon Entropic Inequalities

7.1 Hölder Inequality via Tensorisation.
We introduce below the Gibbs tensorisation trick and then use it for the proof of
the Shannon inequalities relating the entropy of a measure and its pushforards
under the maps (partitions) in a given family.

Hölder Inequality. The log of the integral

∫
X
∏
i∈I
fi(x)βidx

is a convex function of β = {βi} ∈ RI for arbitrary positive functions fi on X.
Proof. The inequality

log (∫
X
∏
i∈I
fi(x)αiβi)dx ≤ ∑

i∈I
αilog (∫ fi(x)βi) = log∏

i∈I
(∫ fi(x)βi)

αi

for ∑i αi = 1, αi ≥ 0 is (trivially) true if the functions fi(x) are constant on
the intersection S ⊂ X of their supports (with the equality for functions with a
common support S ⊂X, where all fi are constant) and the general case reduces
to this by the law of large numbers via the tensorisation.

This argument also shows by how much the inequality deviates from equality.
Denote µi = gidx for gi = fβii and let µ = (∏i∈I g

αi
i )dx. Then

log∫ ∏
i∈I
gαii dx ≤ ∑αientµi(µ) ≤ ∑αilog(µi(X)) = log∏

i∈I
(∫

X
gidx)

αi

.

The Hölder Inequality can be equivalently stated as follows
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let ν be a measure on the linear space X, and let Y be the linear dual to X.
Then the function

Ψ(y) = Ψν(y) = log (∫
X
exp⟨x, y⟩dν)

is convex on Y , where the entropy of a measure with the density function
exp(ϕ(x)), x ∈ R equals the derivative ψ′(y = 1) for ψ(y) = ∫R exp⟨x, y⟩dx
by the Boltzman formula.

This appears in the Gibbsian thermodynamics as the concavity of the entropy
of the ideal gas and represents a tiny instance of Boltzmann’s and Gibbs’ ideas
(see [?]).

Remarks.(a) The information theoretic rendition of the Gibbs argument is of-
ten presented as a chat between Alice and Bob. (See [?] and references therein.)

(b) The differential DΨ ∶ Y →X injectively sends Y to X, where
the closure of the image equals the convex hull of the support of µ.
Thus, if X = Y = Rn, then the volume of this hull equals the integral of the

determinant of the Hessian of the (convex!) function Ψ, where the R+-valued
map

Ψ↦M(Ψ) =def ∫
Y
det(Hess(Ψ(y)))dy

obeys non-trivial convexity relations: the Minkovski inequality, M
1
n (Ψ1 +Ψ2) ≥

M
1
n (Ψ1) +M

1
n (Ψ2), and the Alexandrov-Fenchel-Hodge inequality. (See [?] for

a survey and references).
Let (X,λ) be a Borel measure space, where λ is regarded as a background

measure and where we use the notation ∣Y ∣ = ∣Y ∣λ = λ(Y ) for all Y ⊂X.
The basic examples are given by countable spaces (X,λ) with the unitary

measures, where all atoms have unit weights (thus, ∣Y ∣ = card(Y )) and by the
Euclidean spaces with the Lebesgue or with the Gaussian measures λ.

Consider measures µ = f(x)λ for (non-strictly) positive measurable functions
f on X and first define the entropy of such a µ where f(x) is constant on its
(essential) support S = supp(f) ⊂X by

entλ(µ) = log∣S∣ = log(µ(S)) − µ(S)−1 ∫
S

log(f)dµ,

where, observe, f ≡ µ(S)/∣S∣.
Then, for a general µ = fλ, let ∣µ∣ε = λε(µ) denote the infimum of the λ-

measures of the subsets Sε ⊂ X with µ(Sε) ≥ (1 − ε)µ(X), where we assume
that µ has finite total mass, ∣µ∣ =def ∣X ∣µ = µ(X) < ∞.

Take the Cartesian (tensorial) powers (XN , λN = λ⊗N , µN = µ⊗N) and with
λ⊗N for the background measures on XN . Set

ent(µN − [ε]) = lim inf
N→∞

1

N
log∣µN ∣ε)

and

ent(µ) = entλ(µ) = lim
ε→0

ent(µN − [ε]).

Observe that, this entropy is invariant under scaling of µ, that is ent(c ⋅µ) =
ent(µ), while entcλ = entλ + log(c)∣µ∣.
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If µ is a probability measure with a λ-measurable density function f = dµ/dλ
and with the support denoted S ⊂ X, then entλ(µ) ≤ logλ(S) with equality
(only) for µ = λ(S). On the other hand, entλ(µ) ≥ log(supx∈S f(x))−1.

We shall use the above definition only for log-LLN-measures µ, i.e. where
µ = fλ for a λ-measurable function f , such that log(f) satisfies

The Law of Large Numbers. The µ⊗N measure of the subset
Y (ε,N) ⊂XN of the points y ∈XN , where

1

N
∣log(f⊗N(y)) − ∫

S
log(f)dµ∣ ≥ ε

satisfies

(LLN) µ⊗N(Y (ε,N)) → 0 for N →∞.

.
One knows that (LLN) is satisfied if and only if the function ∣log(f)∣ is

summable on its support S, e.g. if ∣log(f)∣ is bounded on S.
If µ is not log-LLN, one can LLN-regularize it, e.g. by cutting away the part

of the suppopt of f where ∣log(f)∣ approaches infinity and then define a suitable
regularized entropy with such an approximation.

Cartesian Additivity of the Entropy. Observe that LLN ensures the additiv-
ity of the entropy under the Cartesian product of measure spaces and yields the
celebrated

Boltzman Formula. All log-LLN-measures µ satisfy,

entλ(µ) = log∣µ∣ − ∣µ∣−1 ∫
S
log(f)dµ = log∣µ∣ − ∣µ∣−1 ∫

S
flog(f)dλ

(for ∣µ∣ denoting the total mass µ(X) = µ(S)).
In other words,

the µ-average of log(f) plus entλ(µ) equals the log of the total mass of µ.

In particular, the entropy of a probability measure µ is expressed by the
Boltzman integral,

ent(µ) = ∫
S
log

1

f
dµ = ∫

S
flog

1

f
dλ.

This formula is customary taken for the definition of the entropy without
assuming LLN, but only the convergence of the Boltzman integral, possibly to
±∞. This definition is equivalent to the above “regularized entropy” but in all
our applications we can (and do) assume that µ is log-LLN.

7.2 Entropic Profiles and Stable E○ Functions of Families
of Partitions.

Given a finite mass measure µ on a Borel measure spaceX = (X,λ) with a family
of partitions Pi, we denote by µi = µ/Pi = the pushforward of µ to Xi = X/Pi,
call this the Pi-reduction of µ, and write

ent(µ/Pi) = ent(µi) = entλi(µi)
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for the background measures λi in Xi.
For example, if µ equals the restriction of the background measure λ on X

to a subset Y ⊂ X, then the value of the density function of µi with respect to
the background measure λi on X/Pi at each point xi ∈ X/Pi equals the Fubini
mass of the corresponding Pi-slice of Y .

Denote by µxi xi ∈ Xi = X/Pi the measure fdP (x) on the slice P −1(xi) for
the background Fubini measure dP (x) on this slice and f = dµ/dλ and let entxi
be the entropy of µxi with respect to dP (x) on this slice. Define the entropy of
(X,µ) over Xi, also denoted ent(Pi) as the average

ent(Pi) = µ(X)−1 ∫
Xi
entxidµi.

It is obvious (but significant) that
Entropy is additive.

ent+ ent(P ) + ent(µ/P ) = ent(µ).

Finite Example. Let P be a partition of X, a finite set with the unitary
atoms and take a subset Y ⊂X. Denote by ∣P (y)∣ the cardinality of the P -slice
of Y through y ∈ Y , and observe with the Boltzman (and Shannon in the finite
case) formula that

ent(P ∣Y ) = log∏
y∈Y

∣P (y)∣
∣P (y)∣
∣Y ∣ .

Entropic Profile. Consider a family P of partions Pi, i ∈ I, of X, where we
usually assume that the single slice partition, corresponding to the map of X to
a single point, is among our P . Every LLN measure µ on X defines the point
e(µ) = {ent(Pi)} ∈ RI ; the set ENT (P) of these points for all µ is called the
entropic profile of P. In what follows we shall evaluate the conical convex hull
of ENT (P) ⊂ RI in the simple cases.

The definition of the entropy and the slice removal lemma from 4.4 imply
the following

Sliced Tensorisation Lemma. Given a finite family P of partitions Pi,
i ∈ I, of X and an LLN measure µ on X, there exists, for every ε > 0, an integer
N0 = N0(ε, µ,P) and a subset Y = YN in the Cartesian power XN , for every
N ≥ N0, such that

Y ⊂ supp(µ⊗N), where µ⊗N(Y ) ≥ (1 − ε)µ⊗N(X),

and the Fubini measures φNi = λ⊗N /λ⊗Ni of the PNi -slices of Y satisfy,

N(ent(PNi ) − ε) ≤ log(φNi (PNi (y) ∩ Y )) ≤ N(ent(PNi ) + ε)

for all y ∈ Y and all i ∈ I.
Next, observe that the E○-functions of Cartesian powers of partitions Pi of

X, satisfy,

E○(nN1

i ;PN1

i ) ⋅E○(nN2

i ;PN2

i ) ≥ E○(nN1+N2

i ;PN1+N2

i )

and define

E∞(ni;Pi) = lim
N→∞

(E○(nNi ;PNi ))
1
N .
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The above lemma implies the following
Shannon E∞-Inequality. Let P = {Pi} be a finite family of partitions on

X and µ a measure of finite mass on X = (X,λ). Then the entropies ent(Pi) =
ent(µ) − ent(µ/Pi) of Pi with respect to µ satisfy,

ent(µ) ≥ logE∞(exp(ent(Pi));P).

Remark on Hölder. The tensorisation lemma also implies the Hölder version
of the above inequality.

Let fi ≥ 0 be measurable functions on Xi =X/Pi, let

∣fi∣p = (∫
supp(fi)

fpi )
1
p

and let ∣ΠPfi∣1 denote the integral of the product of the pullbacks of fi to X.
Then

∣ΠPfi∣1 ≥ E∞(∣ΠPfi∣1/∣fi∣pi ;P)

for all {pi} ∈ RI+.
If all Pi are single slice partitions, this reduces to the Hölder inequality from

5.1 with positive pi (and with no entropic correction term).

7.3 Shannon and Harper Inequalities for the Coordinate
Line and Plane Partitions.

Let (X,λ) = ×i(Xi, λi), i = 1,2, ..., k. Then the partitions Pi of X into the
”coordinate lines“ with the slices isomorphic to Xi and corresponding to the
projections Pi ∶X →Xî = (Xî, λî) = ×j∈I∖{i}(Xj , λj) satisfy

Sh1 ent(µ) ≥ ∑
i

ent(Pi),

or, equivalently,

ent(µ) ≤ 1

k − 1
∑
i

ent(µ/Pi)

for all measures µ on X. Furthermore, the partitions PJ of X into the fibers of
the projections X = XI → XI∖J = ×i∈I∖JXi (with ”J-plane“ slices representing
XJ = ×i∈JXi) satisfy

Shα ent(µ) ≥ ∑
J⊂I

αJ ⋅ ent(PJ)

for all partitions of unity αJ of I (see 4.3).
Proof. Here, obviously, E∞ = E○ and the above applies.
Loomis-Whitney Inequality. This is an upper bound on ∣Y ∣ = λ(Y ) for

subsets Y ⊂ X in terms of the background measures of Y /Pi, (assuming these
are measurable) written as if it were a lower bound,

∣Y ∣ ≥ ∏
i

∣Y ∣(λî(Y /Pi))−1.
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This follows from the Shannon Inequality, since entλî(µi)) ≤ λî(supp(µi))
and ent(µ) = log(λ(Y )) for µ = λ∣Y .

Similarly one derives the Shearer Inequality that is the bound on log∣Y ∣ by
log∣Y ∣ − log(λĴ(Y /PJ) substituting ent(PJ) in Shα. (The role of the entropy in
such inequalities was pointed out to me by Noga Alon.)

If Xi are countable sets with the atoms of unit weights, then the Shannon in-
equality for subsets Y ⊂X = ×iXi with the restricted product unitary measures
reads,

Combinatorial Shannon Inequality for the Coordinate Line Parti-
tions. Let ∣Pi(y)∣, y ∈ Y , denote the cardinality of the Pi-slice of Y through y.
Then the geometric means

∣MPi∣ =
⎛
⎝∏y∈Y

∣Pi(y)∣
⎞
⎠

1
∣Y ∣

satisfy

∏
i

∣MPi∣ ≤ ∣Y ∣.

Harper Inequality. The Shannon inequality, when applied to the vertex
set X of the edge graph of a Euclidean n-cube with the edges for slices, says
that

the vertex and the edge numbers of every subgraph Y in the cubical graph
satisfy,

(4N) Nvert ≥ 4Nedg/Nvert .

For example, if all vertices in Y have the valency (degree) at least d, then ∣Y ∣ ≥
2d.

Another corollary of the combinatorial Shannon inequality is the following
(well known) relation between the three numbers: the cardinality ∣Y ∣, the num-
ber N of the slices of Y with respect to all Pi and the sum C of the cardinalities
of all these slices.

AB-Inequality. Let A = C/N and B = C/∣Y ∣. Then

∣Y ∣ ≥ AB .

Proof. Since the function ss is log-convex, log(ss)′′ = 1/s,

AB ≤∏
S

∣S∣
∣S∣
∣Y ∣ ≤ ∣Y ∣,

where the product is taken over all slices S of the partitions Pi.

7.4 Strict Concavity of the Entropy and Refined Shannon
Inequalities.

A probability measure µ on X1 ×X2 can be regarded as a family of probability
measures µx1 on X2 parametrized by x1 ∈ X1, where the density fx1(x2) of
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(almost) every measure µx1 on X2 equals the restriction of the density of µ to
x1 ×X2 ⊂X1 ×X2 divided by p(x1) = ∫X2

fx1(x2)dλ2.
The Shannon inequality written as ent(µ/P2) ≥ ent(P1)(= ent(µ)−ent( µ/P1))

says that the entropy is a concave function on the space of probability measures
on X2, since the measure µ2 on X2, that is the pushforward of µ, equals the
p(x1)-weighted convex combination of the probability measures µx1 , while the
entropy is (defined as) the corresponding convex combination of the entropies
of µx1 .

In fact, the entropy is strictly concave as follows from the Boltzmann formula
and the strict convexity of the function t ⋅ log(t). (This is the common way for
deriving the Shannon inequality). Then the quantity ent(µ)−ent(P1)−ent(P2) ≥
0 tells us how far µ is from equilibrium, i.e. a probability measure µ′ on X1×X2,
for which the probability measures µ′x1

on X2 are mutually equal for all x1 ∈X1,
or equivalently all µ′x2

on X1 are equal.
Here is another characteristic of (non-)equilibrium for measures µ on product

spaces X = ×iXi, i ∈ I.
The index set I⊔I, (disjoint union of I with itself) and, hence, the Cartesian

power X2 of X, is naturally acted by the Mendelian recombination group ZI2 =
(Z/2Z)I generated by ∣I ∣ coordinate involutions on I ⊔ I and/or on Xi ×Xi for
all i ∈ I. By strict convexity, a measure µ on X is at equilibrium, where (by
definition if you wish) all Shannon inequalities Shα becomes equalities, if and
only if the measure µ⊗2 on X2 is invariant under ZI2 and (where, observe, µ⊗2

is invariant under the diagonal involution on X2 for all µ on X.)
We introduce the entropic displacement of µ⊗2 by z,

∣µ⊗2 − z(µ⊗2)∣ent =def ent(
1

2
(µ⊗2 + z(µ⊗2)) − 1

2
(ent(µ⊗2) + ent(z(µ⊗2))) ≥ 0

and then identify involutions z ∈ ZI2 with subsets J ⊂ I by

z ↔ J = J(z) = supp(z) ⊂ I

where the support of z is defined by z(i) ≠ i.
The composition of involutions corresponds to the symmetric difference of

subsets that we denote J1 ⋅ J2 =def (J1 ∪ J2) ∖ (J1 ∩ J2). We also abbreviate by
writing

∣J ∣ent(µ) = ∣µ⊗2 − z(J)(µ⊗2)∣ent,

where, observe, ∣J ∣ent(µ) = ∣J⊥∣ent(µ), for J⊥ = I ∖ J .
A measure µ on X satisfies the equality

ent(PJ) + ent(PJ⊥) = ent(µ)

if and only if µ⊗2 is z(J)- (or,equivalently z(J⊥))-invariant; this is also equiva-
lent to

∣J ∣ent(µ) = 0.

Since the entropy is strictly concave, the function ∣J ∣ent(µ) of J ⊂ I satisfies
some triangle-type inequalities,
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(∆) ∣J1 ⋅ J2∣ent(µ) ≤ ∆µ(∣J1∣ent(µ), ∣J2∣ent(µ)),

where ∆µ(0,0) = 0 for all µ and ∆µ(a, b) is uniformly continuous in (a, b) with
the modulus of continuity δ depending on µ. Moreover, δ is uniformly bounded
on certain (compact in a suitable sense) classes of measures µ.

For example, if the density function f of µ satisfies

∫
X

∣log(f(x))∣dµ ≤ const < ∞,

then δ is bounded by some universal δconst as a simple continuity argument
shows.

This is useful, for instance, if log(f(x)) ≤ 0, e.g. if X is a discrete space
with unitary atoms, where (∆) becomes a relation between the entropies of PJ
depending only on ent(µ),

(∆) ∣J1 ⋅ J2∣ent(µ) ≤ ∆ent(µ)(∣J1∣ent(µ), ∣J2∣ent(µ)),

for some function ∆e(a, b) that is continuous in a, b and e and such that ∆e(0,0) =
0.

Remarks. (a) All this is, apparently, well known but I could not find a
reference; nor do I know a specific sufficiently “elegant” ∆e(a, b). I guess, there
are sharp “mixed symmetric mean inequalities” for measures on ×Xi similar to
the classical Muirhead’s inequalities, such as the mixed discriminant inequality
of Alexandrov (that is GL(k)- rather than just Sk-symmetric).

(b) The above generalizes to the Cartesian powers XN with the Cartesian
products of I-copies of the permutation group SN acting on it. The resulting
inequalities become, in a sense, asymptotically sharp for N →∞ due to the law
of large numbers (applied to convolution of measures on the spaces of measures).

A possible framework for this is suggested by the Mendelian dynamics

7.5 Equipartitions, Tensorization and the Hölder-Looms-
Whitney-Shearer Inequality

https://web.mit.edu/paigeb/www/994paper.pdf
Recall the classical Hölder inequality

∫
X
∏
i∈I
fi(x)piβi ≤∏

i∈I
(∫

X
f(x)pi)

βi

, βi ≥ 0,∑
i∈I
βi = 1,

which takes more familiar form for βi = 1/pi.
Exercise. Show that the Hölder inequality implies log-convexity of the func-

tion
H(pi) = H{fi}(pi) = ∫

X
fi(x)pi

in (pi) ∈ RI for all positive measurable functions fi(x) on a measure space X,
that is convexity of logH(pi).

The Hölder-Looms-Whitney-Shearer Inequality refines classical Hölder as fol-
lows.
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Let K be a finite or countable set, let Xk, k ∈ K, be measure spaces, e.g.
Xk = R or Xk = {0,1}, let Ji ⊂ K, be subsets indexed by a finite or countable
set I ∋ i and let βi ≥ 0 satisfy the following partition of unity condition:

∑
i∈I
βi1Ji(k) = 1,

where 1Ji(k) are the characteristic functions of the subsets Jk ⊂K
For instance, if all Ji =K, this becomes ∑i∈I βi = 1.
Let Y = ⨉k∈KXk and let fi(y), y = (xk) ∈ X be positive measurable func-

tions, such that fi depends only on the variables xk for k ∈ Ji.
In other words fi is equal to the pullback of a function on ⨉k∈JiXk under

the projection
Y = ⨉

k∈K
Xk → ⨉

k∈Ji
Xk.

Then

[HLWS] ∫
Y
∏
i∈I
fpiβii ≤∏

i∈I
(∫

Y
fpi)

βi

,

Proof. Observe that the integral ∫Y a(y) is multiplicative under product of
measure spaces

∫
Y ×Z

a(y)b(z) = ∫
Y
a(y)∫

Z
b(z)

Therefore [HLWS] for the functions fi(y) is equivalent to this inequality for
the corresponding product functions

fi,N(y1, ..., yN) = fi(y1) × ... × fi(yN)

and/or their geometric means N
√
fi,N on the Nth power spaces

Y N = Y × Y × ... × Y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

.

Next, letXk be finite sets with atoms of unit weight, observe that the general
case of [GLWS] reduces to that by an obvious approximation argument. 42 and
also observe. that if a function f(y) > 0 satisfies ∫Y f(y) = ∑y∈Y f(y) = 1, then,
the law of large numbers for the sums of independent random variables

N

∑
j=1

log f(yj)

on the power probability spaces (Y, f(y))N ,yields the following.
Bernoulli Approximation Theorem. There exist (automatically mea-

surable under our assumptions) subsets VN ⊂ Y N , such that some constant mul-
tiples of the characteristic functions of these subsets are asymptotically equivalent
to functions fN , according to the following definition.

Definition. Two sequences of probability measures φN and ψN defined
by positive functions φN(y) and ψN(y) on finite sets YN are asymptotically

42This is unnecessary, if you are comfortable with the abstract measure theoretical termi-
nology.
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equivalent if there exist subsets Y ′
N ⊂ YN , such that both functions φN(y) and

ψN(y) are strictly positive on Y ′
N and

● φN(Y ′
N) → φN(YN) = 1 and ψN(Y ′

N) → ψN(YN) = 1 for N →∞;

● supy∈Y ′
log ∣φ(y)/ψ(y)∣

log card(Y′
N
) → 0 for N →∞.

Conclusion. [HLWS] reduces to [LWS], that is where the functions fi are
characteristic functions of measurable subsets Vi ⊂ Y .

This settles the problem for card(K) ≤ 1 (the classical Hölder inequality)
and card(K) = 2, where [LWS] is obvious but if Y = ⨉k∈KXk and card(K) ≥ 3,
which, geometrically, is the most interesting case, one needs to use the law of
large numbers for the second time as follows.

Lemma. Let X1 = (X1, dx1) and X2 = (X2, dx2) be measure spaces, let V ⊂
X1 ×X2 be a measurable subset with measure one and let χN be the characteristic
functions of power subsets V N ⊂XN

1 ×XN
2 .. Then there exists subsets V1,N ⊂XN

1

and V2,N ⊂XN
2 , such that the characteristic functions of the products

V1,N × V2,N ⊂XN
1 ×XN

2

are asymptotically equivalent to χN .
Proof. Apply Bernoulli approximation theorem to φ1 = φ1(y1) and φ2 =

φ2(y2) that are the pushforwards of the measure χ(x1, x2)dx1dx2 to X1 and to
X2 under the projections maps X1 ×X2 ⇉X1,X2.

Proof of [LWS]. Apply lemma to the subsets Vi ⊂ Y =XK = ⨉k∈KXk and the
splittings Y = XJ1 ×XJ2 for all decomposition K = J1 ⊔ j2 and thus reduce the
general [LWS] to the trivial case, where all Vi are products sets, Vi = ⨉k∈K Vi,k,
Vi,k ⊂Xk. Q.E.D

[LW]-Corollary (Loomis-Whitney theorem V from section 1) The volumes
of subsets V ⊂ Rn are bounded by the volumes of their n projections Vi to the
coordinate hyperplanes as follows:

voln(V ) ≤
n

∏
i=1

voln−1(Vi)1/n−1.

Indeed, this is [LWS] for subsets Ji ⊂ K, which are complements to points
k ∈K.

Non-Sharp Isoperimetric Subcorollary. Let V ⊂ Rn be a domain with
a smooth boundary. Then

vol(V ) ≤ ( 1

2n
voln−1(∂V ))

n/n−1

.

In fact, vol(Vi) ≤ 1
2
voln−1(∂V ) and the arithmetic/geometric mean inequal-

ity applies.
Exercises. (a). Derive [HLWS] from the classical Hölder by induction on

card(K).
(b) Prove the followingBolloás-Thomason Box Theorem. Given a bounded

measurable subset V Rn, there is a rectangular parallelepiped U of the same volume
as V , such that the projection of U onto any coordinate subspace is at most as
large as that of the corresponding projection of V .
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Apology. I couldn’t find the above "Bernoulli proof" of [HLWS] in the liter-
ature and recorded it in [???] and [???]. My apologies to the person who was
the first to use it.

Remark. Besides Bernoullian, there are other "equalization techniques" such
as Knöte map, Brenier’s solution to Monge-Kantorovich transportation prob-
lem in the proof of Bracamp-Lieb refinement of the Shannon-Loomis-Whitney-
Shearer inequality (see [?] and references therein) and invertibility of some Hodge
operators on toric Kähler manifolds as in the analytic rendition of Khovanski-
Teissier proof of the Alexandrov-Fenhcel inequality for mixed volumes of convex
sets [?]. It is tempting to to find "quantum counterparts" to these proofs.

Also it is desirable to find more functorial and more informative proofs of
"natural" inequalities in geometric (monoidal?) categories. (See [?],[?] for how
it goes along different lines.)

7.5.1 Reverse Loomis-Whitney Inequality

Let
Vi,d ⊂ V ⊂ Rn

be the union of straight segments I, contained in V ,
which are parallel to the i-th coordinate axes in Rn
and such that lenght(I) = d.
Observe that the
volume of the complement to Vi,d is bounded by the (n − 1)-volume of the

boundary of V as follows,

[V ol∖ < d...] vol(V ∖ Vi,d) ≤ d ⋅ vol(∂V ).

Next, given numbers di ≥ 0, i = 1, ..., n, let

εi = vol(V ∖ Vi,di)/vol(V )

and rewrite [V ol∖ < d...] as

[V ol < di/εi...] vol(V ) ≤ di
εi
voln−1(∂V ), i = 1, ..., n.

Let
V◻ = ⋂

i

Vi,di ⊂ V,

observe that

[V ol◻ > ...] vol(V◻) ≥ (1 −
n

∑
n=1

εi) vol(V ).

and that, by the mean value theorem, there exists an affine hyperplane A =
An−1 ⊂ Rn parallel to the first n − 1 coordinate axes, such that

voln−1(V◻ ∩A) ≥ (1 −
n

∑
n=1

εi) voln−1(V ∩A).

Since
V ∩A)i,di ⊃ V◻ ∩A i=1,...,n-1,
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this shows that

voln−1(V ∩A)i,di ≥ (1 −
n

∑
n=1

εi) voln−1(V ∩A)

∎ our V contains a large part of the volume, say more than one half, of a
Euclidean rectangular ×idi-solid

n

⨉
i=1

[ai, bi] ⊂ Rn = R × ... ×R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

, [ai, bi] ⊂ R, bi − ai = di.

It follows, that
dio = min

i
di ≤ 2 n

√
vol(V )

and [V ol < di/εi...] for i = io shows that

vol(V ) ≤
2 n
√
vol(V )
εio

voln−1(∂V ),

that is the isoperimetric inequality with an albeit depending only on n, but an
comfortably large constant,

[isop ∶ Co] vol(V )n−1/n ≤ Covoln−1(∂V ) for C0 = 2/εio .

Here is a justification of ∎ and [isop ∶ Co].
??? Proposition. There

Let ◻n = ⨉ni=1[0, ai] be the rectangular solid and
V ⊂ ◻n be an open subset. and let the (topological) boundary of V in ◻n is

bounded by
voln−1(∂V ) ≤ εvoln(V ), for some ε > 0.

Then V contains a product subset

V◻ =
n

⨉
i=1

Si, Si ⊂ [0, ai],

such that the volume of V◻ is bounded from below by

voln(V◻) ≥ (1 − nε)voln(V )

62



Let V̂i ⊂ V , i = 1, ..., n, be the union of [0, ai]-segments which are fully
contained in V ,

V̂i = {x1, ..., xi, .., xn}, such that (x1, ..., x
′
i, .., xn) ∈ V , for all x′i ∈ [0, ai].

If the (n − 1)-volume of the boundary of V in ◻N is ε-small compare to the
volume of V voln−1(∂V ) ≤ εvoln(V ), ε > 0

————————————————————————–
Second Isoperimetric Application of [LW]

Let A,B ⊂ Y = ⨉k∈KXk, k ∈ K, where Xk = (Xk, µk) are be probability43

measure spaces, be measurable subsets, such that the images. of A and B under
the projections

πk ∶ Y → Yk = ⨉
j∈K∖{k}

do not intersect YK for all k ∈K.
Lemma. If the (product probability) measure of the union of A and B in

Y is bounded from below by

µ(A ∪B) ≥ 1 + δ

then
min(µ(A), µ(B))

max((µ(A), µ(B))
≤ Cnδ

where Cn,≤???, n = card(K).
Proof.???
Corollary. Let U ⊂ [0,1]n be a subset in the unit cube with vol(U ≤ δ.

Then there exits a connected subset in the complement of U , say V ⊂ [0,1]n∖U ,
with volume

V ≥ 1 −Dnδ,

where Dn =??? Proof.???
Rewrite ... be disjoint as well Γ1-disjoint subsets, i.e. there is no edge in

Γ1 between their points. Let µ×1(M>) ≥ µ×1(M<) and let µ×1(M>∪M<) ≥ 1δ Then

µ×1(M<) ≤ Cnδ,

where Cn,≤???
let the pullbacks of points by the natural maps (projections) Y → Yk =

⨉j∈K∖{k}Xj , be called Xk-"lines" or just "lines", and where the set of Xk-
"lines" is naturally identified with Yk.

Let ΓL be be the (naturally K-colored) graph. of "lines" with the vertex set

L = ⊔
k∈K

Yk, k ∈K,

where the pairs of intersecting lines in Y are taken for the edges.
PreIsometric Lemma Let K = {1, ....n}, let (Xk, µk) be probability44 measure

spaces, i.e. µk(Xk) = 1, let the product spaces Yk be given the. corresponding
43This is just to simplify notation.
44This is just to simplify notation.
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product measures, denoted µ×k , and let Mk ⊂ Yk be measurable subsets with
measures

µ×k(Mk) > 1 − εk ≥ 0

Then there exists a connected subgraph in ΓL with the vertex set M ′
1 ⊂ M1,

where
µ×1(M ′

1) ≥ 1 −An ∑
k∈K

εk

for An ≤???
Proof. Let is introduce another ({2, ..., n}-colored) graph Γ1 now on the

vertex set Yk where two points are joint by an k-colored edge if they lie on the
projection of an Xk-"line" to Yk.

Sublemma. Let M>,M< ⊂ Y1 be disjoint as well Γ1-disjoint subsets, i.e.
there is no edge in Γ1 between their points. Let µ×1(M>) ≥ µ×1(M<) and let
µ×1(M> ∪M<) ≥ 1δ Then

µ×1(M<) ≤ Cnδ,

where Cn,≤???
Proof. Let

π1,k ∶ Y1 → Y1,k ⨉
j∈K∖1,k

Xj , k = 2, ..., n

be the natural maps (projections) and let a>k and a<k be the measures of the
images of M> and of M< under these maps.

Γ1-disjointnes of M> and of M< says that these images are disjont and the
[LW]-inequality shows that

⎛
⎝
n

√
∏
k≠1

a>k
⎞
⎠

n/n−1

+
⎛
⎝
n

√
∏
k≠1

a<k
⎞
⎠

n/n−1

≥ 1 + δ.

Since
n

√
∏
k≠1

a>k + n

√
∏
k≠1

a<k ≤ 1

by the geometric.arithmetic mean inequality, and since (1−t)n/n−1 ≥ 1−tn/n−1,
0 ≤ t ≤ 1,

µk(M,) ≤
⎛
⎝
n

√
∏
k≠1

a<k
⎞
⎠

n/n−1

≤ (n − 1)δ.

QED.

Let Γ be a finite edge colored graph on a set V , where the set of colors k is
denoted K ∋ k of a finite set K, let Vk ⊂ V be the sets of ends of k-colored edges
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and Vk̂ be the sets of connected components of Vk. and let πk̂ ∶ V → Vk̂ be the
natural (quotient) maps.

Let V and Vk̂ be endowed with measures µ and µk̂ structures, such that the
subsets VksubsetV are measurable (e.g. Vk = V )) and the maps πk̂ ∶ V → Vk̂ are
measure preserving.

Let c⊥ = c⊥(Γ is the infimum of the numbers c ≥ 0 with the following property;
Given measurable subsets Uk̂ ⊂ Vk̂ there exists a connected subgraph in Γ on

a measurable vertex subset U⊥ such that
● the πk̂-images of U⊥ lie in the complements to Uk̂,

πk̂(Vk̂) ⊂ Vk̂ ∖Uk̂;

●

µ(V ∖U⊥) ≤ c ∑
k∈K

µk̂(Uk̂)

Cubical Example. Let K = {1, ..., n}, let V = [0,1]n, let pk̂ be the projections
of the cube to its coordinate faces Vk̂,

pk̂ ∶ (x1, ..., xk−1, xk, xk+1, ..., xn) ↦ (x1, ..., xk−1, xk+1, ..., xn),

such that the edges of the graphΓ are pair of vertices (v1, v2) on same coordinate
lines in the cube, i.e. pk̂(v1) = pk̂(v2 for some k.

Then, given Uk ⊂ Vk, let U⊥ be the union of all lines which meet through the
intersection ∩kπ−1

k̂
(Vhatk ∖Uk).

Thus,
µ(U⊥) ≥ µ( ⋂

k∈K
π−1
k̂

(Vk̂ ∖Uk)) ≥ ∑
k∈K

µ(Uk)

and all lines in µ(U⊥) meet other lines in the remaining (n − 1) directions.
The latter implies the connectednes of the subset U⊥; thus, the inequality

c⊥ ≤ 1 for this Γ.
Isoperimetric Corollary. (Compare with ??? in section 3.3.) Let Y ⊂ [0,1]n

be a hypersurface, which divides the cube into two parts, sayW1 andW2. Then

min(vol(W1), vol(W2)) ≤ n ⋅ voln−1(Y ).

Proof. Apply the above to the projections Uk = πk̂ ⊂ Vk̂ and show that

max(vol(W1), vol(V2)) ≥ 1 − nvoln−1Y.

7.5.2 Combinatorial Shannon and Harper Inequalities.

7.5.3 Linearized Loomis-Whitney-Shearer Inequality

Let
Y ⊂XK = ⨉

k∈K
Xk, K = {1, ..., n},

be a finite set let Lk be the linear spaces of functions on Xk, let L0 = LY be the
space of functions on Y and let

Φ(l0, l1, ..., lk) = ∑
y∈Y

l0(y) ⋅ l1(x1) ⋅ ... ⋅ ln(xk).
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be an (n + 1)-linear form in the varIables li, i = 0,1, ..., n, where every subset
J ⊂ K = {1, ..., n} turns this Φ into a bilinear form ΦJ between tensor product
spaces, LJ and LJ⊥ ,

LJ =⊗
i∈J

Li and LJ⊥ = L0 ⊗ ( ⊗
i∈K∖J

Li).

Since rank(ΦJ) = card(YJ), where YJ ⊂ XJ = ×i∈JXj is the projection of Y to
XJ (check it!) the [LWS] inequality (for functions constant on their supports
YJ) says in this terms that

(P⊗) ∏
Ji⊂K,i∈I

(rank(ΦJi))βi ≥ rank(Y )

for all partitions of unity (Ji, βi), i ∈ I on K.
Linearized [LWS] claims that this inequality holds true for all (n+1)-linear

forms Φ(l0, l1, ..., lN).
This can be reduced (this is easy) to the original combinatorial [LWS] by

using a suitable basis in LK or proven by the Bernoulli approximation argument
applied to L⊗NK . with N →∞ (see ???[strfucure]. [action]).

Example: The linearized Loomis-Whitney 3D-isoperimetric inequality for
ranks of bilinear forms associated with a 4-linear form Φ = Φ(l0, l1, l2, l3, ) reads

∣Φ0,123∣2 ≤ ∣Φ01,23∣ ⋅ ∣Φ02,13∣ ⋅ ∣Φ03,12∣

where ∣...∣ stands for rank(...).
Remark. Probably, the linear [LWS]-inequalities are the only universal rela-

tions between the ranks of ΦJ , but there are further inequalities of this type for
particular polylinear forms, e.g. defined by the ⌣-product in the cohomology
algebras of certain manifolds (see [expanders, singularities]) and also in spaces of
sections and (cohomologies in general) of holomorphic vector bundles such e.g.
as in the Khovanski-Teissier theorem and in the Esnault-Viehweg proof of the
heneralized Dyson-Roth lemma, but a direct link. between all such inequalities
is yet to be found.

7.6 Isoperimetry in the Exterior Algebras

7.7 Strong Subadditivity of the von Neumann Quantum
Entropy

=================================

8 Fixed Points, Amenability, T-property and Isoperime-
try in Groups and Algebras

von-Neumann
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8.1 "Parallel" Mass Transport in Groups and Saloff-Coste
bound on the Fölner-Vershik function

8.2 Kazhdan’s T -Property, Margulis’ Expanders, Spec-
tral Logic, Garland theorem, High dimensional Ex-
panders

X ⊂ BN(R) Ô⇒ V ol(X) ≤ 1/nvol(∂X) In fact,
vol(X) = ∫Y =Pν(X−x0) dy Pν is the projection to the normal line to Y at y.

(This integral doesn’t depend on x0.)
Average intersection of Y with the (n − 1) faces of an ε-cubilation of Rn

9 Measure Concentration

9.1 Talagran Inequality

9.2 Poincare Concentration Inequalities for Mapping to
Wirtinger and other Spaces

9.3 Stability of Matter

10 Waist Inequalities

11 Isoperimetry Settings and Directions of Gen-
eralizations

1. Given Euclidean vector bundles over a Riemannian manifold

V0, V1, ...Vk →X,

and linear differential operators on spaces of sections X → Vi.

Di ∶ C∞(V0) → C∞(Vi), i = 1, ..., k

evaluate (the size of) the set of values of the Lpi-norms of these sections for
given pi,

F = {(∫
X
Dif(x)pidx)

1/pi
}
f∈C∞(V0)

⊂ Rk+

For instance, decide when F ≠ Rk+.
More generally, study possibilities for the joint distribution of ∥Dif∥ re-

garded as random variables on X.
Example

67



12 Isoperimetry for Families, Spectra and Morse

13 Poincare-Hahn Banach duality

14 Isoperimety Problems Inspired by Biology

14.1 Micella, Nash Blow up and and Higher Order Soap
Bubbles

14.2 Viral Isoperimetry: Minimization of Information for
Building the Wall around the Carrier of this Infor-
mation

15 Appendices

15.1 Basics on Curvature
§2 https://link.springer.com/article/10.1007/BF02925201

§2 https://arxiv.org/pdf/1908.10612.pdf
We enlist in this section several classical formulas of Riemannian geometry

and indicate their (more or less) immediate applications.

15.2 Variation of the Metrics and Volumes in Families of
Equidistant Hypersurfaces

(2.1. A) Riemannian Variation Formula. Let ht, t ∈ [0, ε], be a family of
Riemannian metric on an (n−1)-dimensional manifold Y and let us incorporate
ht to the metric g = ht + dt2 on Y × [0, ε].

Notice that an arbitrary Riemannian metric on an n-manifold X admits such
a representation in normal geodesic coordinates in a small (normal) neighbour-
hood of any given compact hypersurface Y ⊂X.

The t-derivative of ht is equal to twice the second fundamental form of the
hypersurface Yt = Y × {t} ⊂ Y × [0, ε], denoted and regarded as a quadratic
differential form on Y = Yt, denoted

A∗
t = A∗(Yt)

and regarded as a quadratic differential form on Y = Yt.
In writing,

∂νh =
dht
dt

= 2A∗
t ,

or, for brevity,
∂νh = 2A∗,

where
ν is the unit normal field to Y defined as ν = d

dt
.

In fact, if you wish, you can take this formula for the definition of the second
fundamental form of Y n−1 ⊂Xn.

Recall, that the principal values α∗i (y), i = 1, ..., n − 1, of the quadratic
form A∗

t on the tangent space Ty(Y ), that are the values of this form on the
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orthonormal vectors τ∗i ∈ Ti(Y ), which diagonalize A∗, are called the principal
curvatures of Y , and that the sum of these is called the mean curvature of Y ,

mean.curv(Y, y) = ∑
i

α∗i (y),

where, in fact ,
∑
i

α∗i (y) = trace(A∗) = ∑
i

A∗(τi)

for all orthonormal tangent frames τi in Ty(Y ) by the Pythagorean theorem.
Sign Convention. The first derivative of h changes sign under reversion

of the t-direction. Accordingly the sign of the quadratic form A∗(Y ) of a hyper-
surface Y ⊂X depends on the coorientation of Y in X, where our convention is
such that

the boundaries of convex domains have positive (semi)definite second funda-
mental forms A∗, also denoted IIY , hence, positive mean curvatures, with respect
to the outward normal vector fields.45

(2.1.B) First Variation Formula. This concerns the t-derivatives of the
(n − 1)-volumes of domains Ut = U × {t} ⊂ Yt, which are computed by tracing
the above (I) and which are related to the mean curvatures as follows.

[○U] ∂νvoln−1(U) = dht
dt
voln−1(Ut) = ∫

Ut
mean.curv(Ut)dyt46

where dyt is the volume element in Yt ⊃ Ut.
This can be equivalently expressed with the fields ψν = ψ ⋅ ν for C1-smooth

functions ψ = ψ(y) as follows

[○ψ] ∂ψνvoln−1(Yt) = ∫
Yt
ψ(y)mean.curv(Yt)dyt47

Now comes the first formula with the Riemannian curvature in it.

15.3 Gauss’ Theorema Egregium
Let Y ⊂ X be a smooth hypersurface in a Riemannian manifold X. Then the
sectional curvatures of Y and X on a tangent 2-plane τ ⊂ Ty(Y ) ⊂ T )y(X)
y ∈ Y , satisfy

κ(Y, τ) = κ(X,τ) + ∧2A∗(τ ),

where ∧2A∗(τ) stands for the product of the two principal values of the second
fundamental form form A∗ = A∗(Y ) ⊂X restricted to the plane τ ,

∧2A∗(τ) = α∗1(τ) ⋅ α∗2(τ).
45At some point, I found out to my dismay, that this is opposite to the standard convention

in the differential geometry. I apologise to the readers who are used to the commonly accepted
sign.

46This come with the minus sign in most (all?) textbooks, see e.g. [White(minimal) 2016],
[Cal(minimal( 2019].

47This remains true for Lipschitz functions but if ψ is (badly) non-differentiable, e.g. it is
equal to the characteristic function of a domain U ⊂ Y , then the derivative ∂ψνvoln−1(Yt)
may become (much) larger than this integral.
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This, with the definition the scalar curvature by the formula Sc = ∑κij ,
implies that

Sc(Y, y) = Sc(X,y) +∑
i≠j
α∗i (y)α∗j (y) −∑

i

κν,i,

where:
● α∗i (y), i = 1, ..., n − 1 are the (principal) values of the second fundamental

form on the diagonalising orthonormal frame of vectors τi in Ty(Y );
● α∗-sum is taken over all ordered pairs (i, j) with j ≠ i;
● κν,i are the sectional curvatures of X on the bivectors (ν, τi) for ν being a

unit (defined up to ±-sign) normal vector to Y ;
● the sum of κν,i is equal to the value of the Ricci curvature of X at ν,

∑
i

κν,i = RicciX(ν, ν).

(Actually, Ricci can be defined as this sum.)
Observe that both sums are independent of coorientation of Y and that in the

case of Y = Sn−1 ⊂ Rn =X this gives the correct value Sc(Sn−1) = (n−1)(n−2).
Also observe that

∑
i≠j
αiαj = (∑

i

αi)
2

−∑
i

α2
i ,

which shows that

Sc(Y ) = Sc(X) + (mean.curv(Y ))2 − ∣∣A∗(Y )∣∣2 −Ricci(ν, ν).

In particular, if Sc(X) ≥ 0 and Y is minimal, that is mean.curv(Y ) = 0,
then

(Sc ≥ −2Ric) Sc(Y ) ≥ −2Ricci(ν, ν).

Example. The scalar curvature of a hypersurface Y ⊂ Rn is expressed in
terms of the mean curvature of Y , the (point-wise) L2-norm of the second
fundamental form of Y as follows.

Sc(Y ) = (mean.curv(Y ))2 − ∣∣A∗(Y )∣∣2

for ∣∣A∗(Y )∣∣2 = ∑i(α∗i )2, while Y ⊂ Sn satisfy

Sc(Y ) = (mean.curv(Y ))2−∣∣A∗(Y )∣∣2+(n−1)(n−2) ≥ (n−1)(n−2)−nmax
i

(c∗i )2.

It follows that minimal hypersurfaces Y in Rn, i.e. these with mean.curv(Y ) =
0, have negative scalar curvatures, while hypersurfaces in the n-spheres with all
principal values ≤

√
n − 2 have Sc(Y ) > 0.

Let A = A(Y ) denote the shape that is the symmetric on T (Y ) associated
with A∗ via the Riemannian scalar product g restricted from T (X) to T (Y ),

A∗(τ, τ) = ⟨A(τ), τ⟩g for all τ ∈ T (Y ).
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15.4 Variation of the Curvature of Equidistant Hypersur-
faces and Weyl’s Tube Formula

(2.3.A) Second Main Formula of Riemannian Geometry.48 Let Yt be a
family of hypersurfaces t-equidistant to a given Y = Y0 ⊂ X. Then the shape s
At = A(Yt) satisfy:

∂νA = dAt
dt

= −A2(Yt) −Bt,

where Bt is the symmetric associated with the quadratic differential form B∗ on
Yt, the values of which on the tangent unit vectors τ ∈ Ty,t(Yt) are equal to the
values of the sectional curvature of g at (the 2-planes spanned by) the bivectors
(τ, ν = d

dt
).

Remark. Taking this formula for the definition of the sectional curvature, or
just systematically using it, delivers fast clean proofs of the basic Riemannian
comparison theorems along with their standard corollaries, by far more efficiently
than what is allowed by the cumbersome language of Jacobi fields lingering on
the pages of most textbooks on Riemannian geometry. 49

Tracing this formula yields
(2.3.B) Hermann Weyl’s Tube Formula.

trace(dAt
dt

) = −∣∣A∗∣∣2 −Riccig (
d

dt
,
d

dt
) ,

or
trace(∂νA) = ∂νtrace(A) = −∣∣A∗∣∣2 −Ricci(ν, ν),

where
∣∣A∗∣∣2 = ∣∣A∣∣2 = trace(A2),

where, observe,

trace(A) = trace(A∗) =mean.curv = ∑
i

α∗i

and where Ricci is the quadratic form on T (X) the value of which on a unit
vector ν ∈ Tx(X) is equal to the trace of the above B∗-form (or of the B) on
the normal hyperplane ν⊥ ⊂ Tx(X) (where ν⊥ = Tx(Y ) in the present case).

Also observe – this follows from the definition of the scalar curvature as ∑κij
– that

Sc(X) = trace(Ricci)

and that the above formula Sc(Y, y) = Sc(X,y) + ∑i≠j α∗i α∗j − ∑i κν,i can be
rewritten as

Ricci(ν, ν) = 1

2

⎛
⎝
Sc(X) − Sc(Y ) −∑

i≠j
α∗i ⋅ α∗j

⎞
⎠
=

48The first main formula is Gauss’ Theorema Egregium.
49Thibault Damur pointed out to me that this formula, along with the rest displayed on

the pages in this section, are systematically used by physicists in books and in articles on
relativity. For instance, what we present under heading of "Hermann Weyl’s Tube Formula",
appears in [Darmos(Gravitation einsteinienne) 1927] with the reference to Darboux’ textbook
of 1897.
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= 1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))2 + ∣∣A∗∣∣2)

where, recall, α∗i = α∗i (y), y ∈ Y , i = 1, ..., n − 1, are the principal curvatures of
Y ⊂X, where mean.curv(Y ) = ∑i α∗i and where ∣∣A∗∣∣2 = ∑i(α∗i )2.

15.5 Umbilic Hypersurfaces and Warped Product Metrics
A hypersurface Y ⊂ X is called umbilic if all principal curvatures of Y are
mutually equal at all points in Y .

For instance, spheres in the standard (i.e. complete simply connected) spaces
with constant curvatures (spheres Snκ>0, Euclidean spaces Rn and hyperbolic
spaces Hn

κ<0) are umbilic.
In fact these are special case of the following class of spaces .
Warped Products. Let Y = (Y,h) be a smooth Riemannian (n-1)-manifold

and ϕ = ϕ(t) > 0, t ∈ [0, ε] be a smooth positive function. Let g = ht + dt2 =
ϕ2h + dt2 be the corresponding metric on X = Y × [0, ε].

Then the hypersurfaces Yt = Y × {t} ⊂ X are umbilic with the principal
curvatures of Yt equal to α∗i (t) =

ϕ′(t)
ϕ(t) , i = 1, ..., n − 1 for

A∗
t =

ϕ′(t)
ϕ(t) ht for ϕ

′ = dϕ(t)
dt

and At being multiplication by ϕ′

ϕ
.

The Weyl formula reads in this case as follows.

(n − 1)(ϕ
′

ϕ
)
′

= −(n − 1)2 (ϕ
′

ϕ
)

2

− 1

2

⎛
⎝
Sc(g) − Sc(ht) − (n − 1)(n − 2)(ϕ

′

ϕ
)

2⎞
⎠
.

Therefore,

Sc(g) = 1

ϕ2
Sc(h) − 2(n − 1)(ϕ

′

ϕ
)
′

− n(n − 1)(ϕ
′

ϕ
)

2

=

(⋆) = 1

ϕ2
Sc(h) − 2(n − 1)ϕ

′′

ϕ
− (n − 1)(n − 2)(ϕ

′

ϕ
)

2

,

where, recall, n = dim(X) = dim(Y ) + 1 and the mean curvature of Yt is

mean.curv(Yt ⊂X) = (n − 1)ϕ
′(t)
ϕ(t)

.

Examples. (a) If Y = (Y,h) = Sn−1 is the unit sphere, then

Scg =
(n − 1)(n − 2)

ϕ2
− 2(n − 1)ϕ

′′

ϕ
− (n − 1)(n − 2)(ϕ

′

ϕ
)

2

,

which for ϕ = t2 makes the expected Sc(g) = 0, since g = dt2 + t2h, t ≥ 0, is the
Euclidean metric in the polar coordinates.

If g = dt2 + sin t2h, −π/2 ≤ t ≤ π/2, then Sc(g) = n(n − 1) where this g is the
spherical metric on Sn.
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(b) If h is the (flat) Euclidean metric on Rn−1 and ϕ = exp t, then

Sc(g) = −n(n − 1) = Sc(Hn
−1).

(c) What is slightly less obvious, is that if

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, − π

n
< t < π

n
,

then the scalar curvature of the metric ϕ2h + dt2, where h is flat, is constant
positive, namely Sc(g) = n(n − 1) = Sc(Sn), by elementary calculation50

Cylindrical Extension Exercise. Let Y be a smooth manifold, X = Y ×R+, let
g0 be a Riemannian metric in a neighbourhood of the boundary Y = Y × {0} =
∂X, let h denote the Riemannian metric in Y induced from g0 and let Y has
constant mean curvature in X with respect to g0.

Let X ′ be a (convex if you wish) ball in the standard (i.e complete simply
connected) space with constant sectional curvature and of the same dimension
n as X, let Y ′ = ∂X ′ be its boundary sphere, let, let Sc(h) > 0 and let the mean
and the scalar curvatures of Y and Y ′ are related by the following (comparison)
inequality.

[<]
∣mean.curvg0(Y )∣2

Sc(h, y)
< ∣mean.curv(Y ′)∣2

Sc(Y ′)
for all y ∈ Y.

Show that
if Y is compact, there exists a smooth positive function ϕ(t), 0 ≤ t < ∞, which

is constant at infinity and such that the the warped product metric g = ϕ2h+dt2
has

the same Bartnik data as g0, i.e.

g∣Y = h0 and mean.curvg(Y ) =mean.curvg0(Y ),

Then show that
one can’t make Sc(g) ≥ Sc(X ′) in general, if [<] is relaxed to the corresponding

non-strict inequality, where an example is provided by the Bartnik data of Y ′ ∈X ′

itself.51

Vague Question. What are "simple natural" Riemannian metrics g on X =
Y ×R+ with given Bartnik data (Sc(Y ),mean, curv(Y )), where Y ⊂X is allowed
variable mean curvature, and what are possibilities for lower bound on the scalar
curvatures of such g granted ∣mean.curv(Y, y)∣2/Sc(Y, y) < C, e..g. for C =
∣mean.curv(Y ′)∣2/Sc(Y ′) for Y ′ being a sphere in a space of constant curvature.

Curvature Formulas for Manifolds and Submanifolds.
50See §12 in [GL(complete) 1983].
51It follows from [Brendle-Marques(balls in Sn)N 2011] that the the cylinder Sn−1 × R+

admits a complete Riemannian metric g cylindrical at infinity which has Sc(g) > n(n−1), and
which has the same Bartnik data as the boundary sphere X′

0 in the hemisphere X′ in the unit
n-sphere. But the non-deformation result from [Brendle-Marques(balls in Sn) 2011], suggests
that this might be impossible for the Bartnik data of small balls in the round sphere.
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15.5.1 Comparison Inequalities

15.6 Carno-Caratheodory Spaces

16 Amenability and Isoperimetry in Groups and
Algebras

17 references
???See 612 Gro 1996]???

https://maa.org/sites/default/files/pdf/upload_library/22/Ford/
blasjo526.pdf
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