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Preface

There are several combinatorial and geometric results whose proofs (the first
proofs and often the only known proofs) involve a surprising application of
algebraic topology. Lovdsz’s striking proof of Kneser’s conjecture from 1978
was among the first and most prominent examples, dealing with a problem
about finite sets with no apparent relation to topology.

During the last two decades, topological methods in combinatorics became
more elaborate. On the one hand, quite advanced parts of algebraic topology
have been successfully applied. On the other hand, many of the earlier results
can now be proved using only fairly elementary topological notions and tools,
and while the first topological proofs, like the Lovasz’ one, are masterpieces
of imagination and involve clever problem-specific constructions, reasonably
general recipes exist at present. For some types of problems, they suggest
how the desired result can be derived from the nonexistence of a certain map
(“test map”) between two topological spaces (the “configuration space” and the
“target space” ). Several standard approaches then become available for proving
the nonexistence of such a map. Still, the number of different combinatorial
results established topologically remains relatively small.

These lecture notes aim at making some of the elementary topological meth-
ods more easily accessible to non-specialists in topology. They cover a number
of substantial results proved by topological methods, and at the same time they
introduce the required material from algebraic topology. Background in under-
graduate mathematics is assumed, as well as a certain mathematical maturity,
but no prior knowledge of algebraic topology. (But learning more algebraic
topology from other sources is certainly encouraged—this text is no substitute
for proper foundations of that subject.)

We concentrate on one type of topological tools, namely the Borsuk—Ulam
theorem and generalizations. We develop a somewhat systematic theory as
far as our very restricted topological means suffice. Other directions, such as
applications of Brouwer’s fixed point theorem, are not considered here.

History and notes on teaching. These lecture notes started with a course I
taught in fall 1993 in Prague; the transcripts of the lectures by the participants
served as a basis of the first version, which was published as a technical report
(KAM Series 94-272, Charles University, Prague). Some years later, a course
partially based on that text was taught by Giinter M. Ziegler in Berlin. He made
a number of corrections and additions (in the present version, the treatment of
Bier spheres in Section 5.5 is based on his writing, and Chapters 1, 2, and 4
bear extensive marks of his improvements). Many discussions with him and his



insightful comments have also greatly influenced the present version.

This is a thoroughly rewritten version for a pre-doctoral course I taught in
Ziirich in fall 2001. Most of the material was covered in the course: Chapter 1
was assigned as an introductory reading text, and the other chapters were
presented in approximately 30 hours of teaching (by 45 minutes), with some
omissions throughout and only a sketchy presentation of the last chapter.

Sources. The 1994 version of this text was based on research papers, on a
thorough survey of topological methods in combinatorics by Bjorner [Bj695],
and on a survey of combinatorial applications of the Borsuk-Ulam theorem
by Bardny [B4r93]. The presentation in the current version benefited greatly
from the recent handbook chapter by Zivaljevié¢ [Ziv97] ([Ziv96] is an extended
version). The continuation [Ziv98] of that chapter deals with more advanced
methods beyond the scope of this text.

For learning algebraic topology, many textbooks are available (although in
this difficult subject it is probably much better to attend good courses). The
first steps can be made with Munkres [Mun00] (which includes preparation in
general topology) or Stillwell [Sti93]. A very good and reliable basic textbook
is Munkres [Mun84], and Hatcher [Hat01] is a vividly written modern book
reaching to quite advanced material in some directions.

Acknowledgments. As was already mentioned, a large contribution to
this text was made by Giinter M. Ziegler. For answers to my numerous ques-
tions I am indebted to Rade Zivaljevi¢, Imre Bérily, and Anders Bjorner. The
participants of the courses (in Prague and in Ziirich) provided a stimulating
teaching environment and many valuable comments. The end-of-proof symbol
(& is based on a photo of the European badger (“borsuk” in Polish) by Steve
Jackson, and it used with his kind permission.

Ziirich, November 2001 Juri Matousek



Preliminaries

This section summarizes rather standard mathematical notions and notation
and it serves mainly for reference. More special notions are introduced gradually
later on.

Sets. If S is a set, |S| denotes the number of elements (cardinality) of S. By
2% we denote the set of all subsets of S (the powerset), and (‘2) stands for the
set of all subsets of S of cardinality exactly k. We use [n] to denote the finite
set {1,2,...,n}.

The letters R, C, Q, and Z stand for the real numbers, the complex numbers,
the rational numbers, the integers, respectively.

Geometry. The symbol R? denotes the Euclidean space of dimension d.
Points in R? are typeset in boldface and they are understood as row vectors;
thus, we write @ = (21,...,24) € R<. The scalar product of two vectors @,y €
R is (@, y) = @y’ = v1y1 + v9y + -+ + 2qyq.- The Buclidean norm of @ is

||| = \/{®, &) = /23 4+ -+ -4 23. Occasionally we also encounter the {,-norm

lz|l, = (|z1|P +|z2P +- - -—|—|acd|p)1/p7 1 < p < o0, or the {y-norm (or maximum
norm) ||| = max{|z1], |z2|,.. ., |24}

A hyperplane in R%is a (d—1)-dimensional affine subspace, i.e. a set of the
form {&# € R?: (a,®) = b} for some nonzero a € R? and some b € R. A
(closed) halfspace has the form {@ € R?: {a,a) < b}, with a and b as before.

The unit ball {z € R?: ||z|| < 1} is denoted by B?, while S = {z ¢ R?:
||z|| = 1} is the (d—1)-dimensional unit sphere (note that S* lives in R?!).

A set C C R? is conver if for every @,y € C, the segment @y is contained
in C. The conver hull of a set X C R?is the intersection of all convex sets
containing X and it is denoted by conv(X). Each point @ € conv(X) can be
written as a convex combination of points of X : there are points &, ®5,...,®, €
X and real numbers aq,...,a, > 0 such that Y ; o, =land @ =) " | a;
(if X C R? we can always choose n < d+1).

A convez polytope is the convex hull of a finite point set in R Each convex
polytope can also be expressed as the intersection of finitely many halfspaces.
Conversely, if an intersection of finitely many halfspaces is bounded, then it
is a convex polytope. A face of a convex polytope P is either P itself or an
intersection P N h, where h is a hyperplane that does not dissect P (i.e. not
both of the open halfspaces defined by h may intersect P).

Graphs and hypergraphs. Graphs are considered simple and undirected
unless stated otherwise, so a graph G is a pair (V, E), where V is a set (the



vertex set) and E C (‘2/) is the edge set. For a given graph G, we write V(G)
for the vertex set and E(G) for the edge set. A complete graph has all possible
edges, i.e. it is of the form (V, (‘2/)) A complete graph on n vertices is denoted
by K,. A graph G is bipartite if the vertex set can be partitioned into two
disjoint subsets Vi and V3, the (color) classes, so that each edge connects a
vertex of Vj to a vertex of Vi. A complete bipartite graph K,, , has |[Vi| = m,
|Vo| = n, and E = {{vy,ve} : v1 € V1,03 € V3} (so |E| = mn).

A hypergraph is a pair (V, E), where V is a (usually finite) set and £ C 2" is
a system of subsets of V. The elements of E are called the edges or hyperedges.
A hypergraph is the same thing as a set system but calling it a hypergraph
emphasizes a “graph-theoretical” point of view; many notions concerning graphs
have natural analogues for hypergraphs.

A hypergraph is k-uniform if all of its edges have cardinality k. A hyper-
graph (V, E) is k-partite if there is a partition V = VjUVoU- - .UV}, such that
leNV;| <1 for every e € E and every ¢ € [k].

Miscellaneous. The notation «:= B means that the expression B defines
the symbol a.

For a real number z, |2 denotes the largest integer < z and [#] means the
smallest integer > z.



Simplicial Complexes

Here we introduce elementary concepts of algebraic topology indispensable for
the subsequent chapters, most notably geometric and abstract simplicial com-
plexes, homotopy, and homotopic equivalence of spaces.

Simplicial complexes provide a link from combinatorics to topology. Suppose
that we investigate some combinatorial object. Whenever we associate a hered-
itary set system to our object, we have also associated a topological space—the
polyhedron of the corresponding simplicial complex. This space can be stud-
ied by methods of algebraic topology, and often its topological properties are
linked to combinatorial properties of the original object in interesting ways. Of
course, creating simplicial complexes at every possible occasion is no panacea,
but sometimes it does lead to meaningful results.

Most of the material of this chapter is usually covered in introductory
courses of algebraic topology. But our presentation may deviate from oth-
ers in details of notation and terminology and it also includes some less com-
monly treated results, and so even experts in algebraic topology may want to
go through the chapter quickly.

1.1 Topological spaces

Although this may be unnecessary for most readers, we first review a few con-
cepts from general topology. We begin with recalling the definition of a topologi-
cal space, which is a mathematical structure capturing the notions of “nearness”
and “continuity” on a very general level.

1.1.1 Definition. A topological space is a pair (X, O), where X is a (typi-
cally infinite) ground set and O C 2X is a set system, whose members are called
the open sets, such @ € O, X € O, the intersection of finitely many open sets
is an open set, and so is the union of an arbitrary collection of open sets.

Every subset Y C X defines a subspace, namely the topological space
Y, {UnY :UeO}).

If (X1,01) and (X3, Oz) are topological spaces, a mapping f: X; — X3 is
called continuous if preimages of open sets are open, i.e. f~1(V) € Oy for every

Ve O,
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We implicitly assume that all the considered mappings between topological
spaces are continuous, although we do not always explicitly say so. More pre-
cisely, this applies for unspecified mappings in statements like “let f: S™ — R"
be a mapping. . .;” sometimes, after having constructed some mapping, we have
to verify its continuity.

What spaces are we going to encounter? The theory dealing with
topological spaces in general, point-set topology or general topology, often in-
vestigates fairly exotic examples. However, in our text, as well as in most of
algebraic topology, one deals only with topological spaces which are subspaces
of some R?, or at least can be identified with such subspaces.

As the reader certainly knows, a set U C R%is open if for every 2 € U there
is some ¢ > 0 such that the ball {y € R?: ||z —y|| < ¢} is contained in U. Now
let X C R? be an arbitrary set. What are the open sets in the topology of the
subspace defined by X? They are exactly the intersections of open sets in R¢
with X; note that they need not be open as subsets of R? (take X as a closed
segment in R? for example).

Let us remark that if X is a set and the topology on X is understood, say
when X C R? and X is considered with the subspace topology, one usually
does not mention the topology in the notation and writes “topological space
X7 even when formally X is only a set. We will also often say just “space”
instead of “topological space.”

The topology of RY, as well as of its subspaces, is induced by a metric,
namely by the usual Euclidean metric, which for many readers may be a notion
more familiar than topology. But in the considerations of algebraic topology,
the metric plays only auxiliary role: often it is a convenient tool but ultimately
it is only the topology of a space that really matters. Two spaces that look
metrically quite different can be topologically the same; an example are the
real line R and the open interval (0,1).

In the formulation of some topological definitions and theorems, it would
be artificial to restrict to subspaces of Euclidean spaces. But everywhere we
assume that the considered spaces are (at least) Hausdorff, meaning that for
every two distinct points z,y € X there are disjoint open sets U,V with x € U
and v € V.

Homeomorphism. The notion of “being the same” for topological spaces is
similar to many other mathematical structures, such as groups, rings, graphs,
and so on. For most mathematical structures, one speaks about isomorphism,
which is a bijective mapping preserving the considered structure (group or ring
operations, graph edges, etc.). For topological spaces, the corresponding notion
is traditionally called a homeomorphism.

1.1.2 Definition. A homeomorphism of topological spaces (X1,0;) and
(X2,04) is a bijection ¢: X1 — X3 such that for every U C Xy, p(U) € Oy if
and only if U € Oy. In other words, a bijection ¢: X1 — X, is a homeomor-
phism if and only if both ¢ and ¢~! are continuous.

(Warning: there are examples of continuous bijections for which the inverse
mapping is not continuous, so both conditions need checking in general.)
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If X and Y are topological spaces and there is a homeomorphism X — Y,
we write X &Y (read “X is homeomorphic to Y7).

Closure, boundary, interior. A set F in a topological space X is closed
ifft X\ F is open. The closure of a set ¥ C X, denoted by cl xY, is the
intersection of all closed sets in X containing Y (the subscript X is omitted if
X is understood). For Y C X = RY we have 1Y = {2 € R%dist(2,Y) = 0},
where dist(z,Y) = inf{||]z — y|| : y € Y'}. The boundary of Y is Y = {cl(Y) N
cl (X' \'Y)}and the interiorintY =Y \ Y.

Compactness. We conclude this nano-course of general topology by recalling
compactness. A space X C R?is compact if and only if X is a closed and
bounded set. (In general, a topological space X is compact if for every collection
U of open sets with [ JU = X, there exists a finite Uy C U with JUy = X.) In
a compact metric space, any infinite sequence has a convergent subsequence.
If X is a compact space and f: X — R is a continuous real function, then
f attains its minimum (and maximum); that is, there is an @ € X with f(z) <
f(y) for all y € X. Moreover, a continuous function on a compact metric space
is uniformly continuous; that is, for every £ > 0 there is a § > 0 such that any
two points at distance at most § are mapped to points at distance at most ¢.

Notes. Among many textbooks of topology, we mention Munkres
[Mun00] which deals both with general topology and with elements of
algebraic topology. A large menagerie of topological spaces is collected

in [SST78].

Exercises

1. Verify the following homeomorphisms:

(a) R=(0,1) = (ST\{(0, 1)});
(b) S =2 9([0,1]2).

2. (a) Let X and Y be topological spaces. Check that a mapping f: X — Y
is continuous if and only if f=!(F) is closed for every closed set F C Y.

(b) Let X be covered by finitely many closed sets Aj, Ay, ..., A, (i.e.
X =A;UAU---UA,), and let f: X — Y be a mapping whose restriction
to each A; is continuous. Verify that f is continuous.

1.2 Homotopy equivalence and homotopy

In algebraic topology, two spaces are considered “the same” under an equiva-
lence relation even coarser than homeomorphism. This notion is called homo-
topy equivalence. Similarly, continuous maps are classified into classes accord-
ing to so-called homotopy.

Before plunging into subtleties of homotopy equivalence, we introduce the
perhaps more intuitive notion of deformation retract. The horizontal figure 8
drawn by thick line is a deformation retract of the gray area with two holes:
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This means that the gray area can be continuously shrunk to the figure 8 while
keeping the points of the 8 fixed. The motion is indicated by arrows: each point
moves in the shown direction at uniform speed until it hits the 8, where it stops.
In general, if X is a space and Y C X a subspace of it, a deformation retraction
of X onto Y is a family { f; }+c[o,1] of continuous maps f;: X — X (we can think
of t as time), such that f, is the identity map on X, fi(y) =y for all y € Y and
all ¢ € [0,1] (Y remains stationary), and fi(X) =Y. Moreover, the mappings
should depend continuously on ¢. That is, if we define the mapping F: X x [0, 1]
by F(z,t) = fi(z), this mapping should be continuous. Explicitly, this means
that if we choose x € X, t € [0,1], and an arbitrarily small neighborhood V
of F(z,t), there are § > 0 and a neighborhood U of z such that F(z2/,t') € V
for all 2’ € U and all ¢ € (t406,t—3). In most of the literature, a deformation
retraction is formally viewed as the mapping F', rather than a family of maps;
we will use both these presentations interchangeably.

If a deformation retraction exists, Y is called a deformation retract of X.

If YV is a deformation retract of X, then X and Y are homotopy equivalent.
But, obviously, being a deformation retract is not an equivalence relation; for
example, the three black figures below are all deformation retracts of the same
gray area as above, but it can be proved that none of them is a deformation
retract of another:

Homotopy equivalence can be introduced as follows: spaces X and Y are ho-
motopy equivalent, in symbols X ~ Y, iff there exists a space Z such that both
X and Y are deformation retracts of Z.

The usual definition of homotopy equivalence is different; it is technically
more convenient but perhaps less intuitive. To state it, we first need to introduce
homotopy of maps.

1.2.1 Definition. Two continuous maps f,g: X — Y are homotopic (written
f ~ g) if there is a “continuous interpolation” between them; that is, a family
{fi}tejo) of maps fi: X — Y depending continuously on t (i.e. the associated
bivariate mapping F(z,t) := f;() Is a continuous map X x [0,1] — Y, similar
to deformation retraction above) such that fo = f and f; = g.

In particular, a map X — Y is called nullhomotopic if it is homotopic to a
constant map that maps all of X to a single point yo € Y (so “nullhomotopic” is
a misnomer; it would be more logical to say “constant-homotopic,” but we stick
to the traditional terminology). It is not hard to verify that “being homotopic”
is an equivalence on the set of all continuous maps X — Y.
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1.2.2 Definition (Homotopy equivalence). Two spaces X and Y are ho-
motopy equivalent (or have the same homotopy type) if there are continuous
maps f: X = Y and g:Y — X such that the composition fog:Y — Y is
homotopic to the identity map idy and go f ~idx.

The equivalence of this definition to the characterization above (homotopy
equivalent spaces are deformation retracts of the same space) is nontrivial; see
e.g. [Hat01, Chapter 0].

A space homotopy equivalent to a single point is called contractible. Some
spaces are “obviously” contractible, such as the ball B?, but for others, con-
tractibility is not easy to visualize. A beautiful example of this is “Bing’s
house;” see [Hat01, Chapter 0] for a nice presentation. It is tempting to think
that a contractible space can always be deformation-retracted to a point, but
this is false in general (it can happen that all points are forced to move during
any contraction; see Exercise 6).

The task of determining whether two given spaces are homotopy equivalent
or not is in general very difficult. Without a sophisticated technical apparatus,
it is quite hard to prove even “obvious” facts such as that the circle S' is not
contractible. But the spaces arising in many topological proofs of combinatorial
or geometric theorems happen to be relatively simple, and often they turn out
to be homotopy equivalent to a sphere.

Exercises

1. Show that the dumbbell ()~ and the letter 8 are homotopy equivalent,
using Definition 1.2.2 (exhibit suitable mappings f and g).

2. Take a 2-dimensional sphere (in R3) and connect the north and south poles
by a segment, obtaining a space X. Let Y be a 2-dimensional sphere with
a circle attached by one point to the north pole of the sphere. Show that
X ~ Y (using both the definitions of homotopy equivalence given in the
text).

3. Consider two embeddings f and g of the circle S! into R?, where f just
inserts the circle into R?® without changing its shape while ¢ maps it to

the trefoil knot
[

L/

Are f and ¢ homotopic or not? Substantiate your answer at least infor-
mally.

4. (a) Prove that homotopy is an equivalence on the set of all continuous
maps X — Y.
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(b) Prove that homotopy equivalence is indeed an equivalence on the class
of all topological spaces (check transitivity).

5. (a) Prove that a space X is contractible if and only if for every space ¥
and every continuous map f: X — Y, f is nullhomotopic.

(b) Prove that a space X is contractible if and only if for every space Y
and every continuous map f:Y — X, f is nullhomotopic.

6. The topologist’s comb is the subspace X := (Rx[0,1])U([0,1]x{0}) of RZ
where R denotes the set of all rational numbers in the interval [0, 1]. Let
Y be made of countably many copies of X arranged in a zigzag fashion
into a doubly infinite chain:

D

Show that Y is contractible.

It can be proved that no point is a deformation retract of ¥ (you may
want to try this as well). In R3 one can even construct a contractible
compact Y with this property; see the exercises to Chapter 0 in Hatcher
[Hat01].

1.3 Geometric simplicial complexes

Many topologically interesting subspaces of R? can be described as simplicial
complexes. This means that they are pasted together from simple building
blocks, called simplices and including segments, triangles, and tetrahedra, in
a way respecting simple rules. As we will see later, simplicial complexes have
a purely combinatorial description and they are particularly significant in the
interplay of topology and combinatorics.

First we need to introduce affine independence and simplices.

1.3.1 Definition. Let vy, v,...,v; be points in R%. We call them affinely
independent if there are no real numbers «g, oy, ..., o, not all of them 0,
such that Zf:o a;v; = 0 and Zf:o a; = 0.

For k = 2, affine independence simply means vy # vy, for k = 3 it means
that vg, v{, vy do not lie on a common line, for £ = 4 it means that vg, ..., v3
do not lie on a common plane, and so on.

Here are two further, simple but useful characterizations of affine indepen-
dence.

1.3.2 Lemma. Both of the following conditions are equivalent to affine inde-
pendence of points vy, vy, ..., v, € R%:

o The k vectors vy — vg, vy — Vg, ...,V — Vg are linearly independent.
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e The (d+1)-dimensional vectors (1,vo), (1,v1),...,(1,vx) € R are Iin-
early independent.

We leave the easy proof as a warm-up exercise. Also note that d+1 is the
largest size of an affinely independent set of points in R

Simplices. Here are examples of simplices: a point, a line segment, a triangle,
and a tetrahedron:

- L 4

These examples have dimensions 0,1,2, and 3, respectively.

1.3.3 Definition (Simplex). A simplex o is the convex hull of a finite
affinely independent set A in RY. The points of A are called the vertices of .
The dimension of ¢ is dim o :=|A|—1. Thus every k-simplex (k-dimensional
simplex) has k+1 vertices.

1.3.4 Definition. The convex hull of an arbitrary subset of the set of vertices
of a simplex o is a face of 0. Thus every face is itself a simplex (this is a special
case of the definition of a face of a convex polytope).

The relative interior of a simplex ¢ arises from o by removing all faces of
dimension smaller than dim o.

For illustration, we count the faces of a triangle: the whole triangle, three
edges, three vertices, and the empty set; altogether we have 8 faces.

Every simplex is a disjoint union of the relative interiors of its faces. Thus we
get a (closed) triangle as a union of its relative interior (i.e., an open triangle),
three open line segments (the edges without their endpoints), and three vertices.

Here are the simple rules of putting simplices together to form a simplicial
complex.

1.3.5 Definition. A nonempty family A of simplices is a simplicial complex
if the following two conditions hold:

(1) Each face of any simplex ¢ € A is also a simplex of A.

(2) The intersection o1 N oz of any two simplices 01,09 € A Is a face of both
oy and o9.
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The union of all simplices in a simplicial complex A is the polyhedron of A
and is denoted by ||A||. The dimension of a simplicial complex is the largest
dimension of a face: dim A := max{dimo : 0 € A}.

In particular, note that every simplicial complex contains the empty set as
a face (this is different from some other sources, such as [Mun84] or [Bjé95],
where the empty face is excluded!).

The simplicial complex that consists only of the empty simplex is defined to
have dimension —1. Zero-dimensional simplicial complexes are just configura-
tions of points, while 1-dimensional simplicial complexes correspond to graphs
(represented geometrically with straight edges that do not cross). The following
picture shows one 2-dimensional simplicial complex in the plane and two cases
of putting simplices together in ways forbidden by the definition of a simplicial

TR 4 &

good bad!!!

complex:

We are going to restrict ourselves exclusively to finite simplicial complexes
(with finitely many vertices). From the topological point of view, this is quite
a restrictive assumption, since then the polyhedra are only compact spaces and
we cannot express, e.g., the space R? as the polyhedron of a simplicial complex.
But finite simplicial complexes are sufficient for our combinatorial applications
and this assumption spares us some trouble (namely, of really discussing too
much point set topology).

Support. Just as in the case of a single simplex, the relative interiors of
all simplices of a simplicial complex A form a partition of ||A||: for each point
x € ||A|| there exists exactly one simplex ¢ € A containing @ in its relative
interior. This simplex is denoted by supp(«) and called the support of the
point .

It may seem obvious at this point that the set of all faces of a simplex forms
a simplicial complex—and in fact, this is strongly suggested by our set-up and
notation. Still, to be on the safe side, and for further use, we include a proof.

1.3.6 Lemma. The set of all faces of a simplex is a simplicial complex.

Proof. Let V C R? be affinely independent and let F,G C V. We have to
show that

conv(F) N conv(G) = conv(F N G),

where conv(F) N conv(G) D conv(F N G) is trivial. We write @ € conv(F) N

conv(G) as
T = Zauu: Zﬁvv,

ucklk veG
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with oy, 8y > 0 and Y, cpay =1 =) s By. By subtracting we get

Z AU — Z By + Z (aw_ﬁw)wZO-

ueF\G veEG\F weFNG

The points in F UG are affinely independent and thus all the coefficient at the
left hand side of this equation must be 0; in particular, o,, 3, can only be
nonzero for w € F NG, and thus @ € conv(F N G). &

A simplicial complex that is given by an arbitrary n-dimensional simplex
and all of its faces will from now on be denoted by ¢". The n-dimensional
simplex itself, as a geometric object, can thus be denoted by |[o"||.

The notion of subcomplex is defined as everyone would expect:

1.3.7 Definition. A subcomplex of a simplicial complex A is a subset of A
that is itself a simplicial complex (that is, it is closed under taking subsets).

An important example of a subcomplex is the k-skeletonof a simplicial com-
plex A. It consists of all simplices of A of dimension at most k£ and we denote
it by A<k,

We also use the notation V/(A) for the vertex set of A.

1.4 Triangulations

Let X be a topological space. A simplicial complex A such that X = ||A||, if
one exists, is called a triangulation of X. We give a few examples.

The simplest triangulation of the sphere S"~! is the subcomplex of o™ ob-
tained by deleting the single n-dimensional simplex (but retaining all of its
proper faces). Indeed, the boundary of an n-simplex is homeomorphic to S"~1,
as can be seen using the central projection:

Other triangulations of spheres are obtained from convex polytopes. A convex
polytope P C R% is called simplicial if all of its proper faces, (i.e. all faces
except possibly for P itself) are simplices. For the familiar 3-dimensional convex
polytopes, it means that all the 2-dimensional faces are triangles, as is the case
for the regular octahedron or icosahedron. It can be shown without much
difficulty that the set of all proper faces of any simplicial polytope P is a
simplicial complex. Since P = S for every d-dimensional convex polytope
P, we obtain various triangulations of the sphere in this way (although, for
d > 3, by far not all possible triangulations; see Section 5.5!).

Particularly nice and important symmetric triangulations of S¢~1 are pro-
vided by crosspolytopes.
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1.4.1 Definition. The d-dimensional crosspolytope is the convex hull conv{e;,—ey,...,eq, —eq}
of the vectors of the standard orthonormal basis and their negatives:

d=1 d=2 d=3

Alternatively, it is the unit ball of the {;-norm: {x € R?: |||/; < 1}.

It is not hard to show that a subset F' C {ey, —ey,...,eq, —e4} forms the
vertex set of a proper face of the crosspolytope if and only if there is no i € [d]
with both e; € F and —e, € F.

1.4.2 Example (Cube triangulation). The cube [0,1]? can be triangu-
lated as follows: Let Sy denote the set of all permutations of [d], and for every
™ € Sq, let ox = conv{0,e.(1), €x(1) T €r(2)s---s€x(1) T "+ €n(q) )} Each or is
a d-simplex, and all the o, together plus all of their faces form a triangulation
of [0,1]? (we leave the verification as Exercise 3).

Notes. To construct “suitable” triangulations of given geometric
shapes is a major topic in many fields of Applied Mathematics, such as
Numerical Analysis and Computer Aided Design (CAD).

In contemporary algebraic topology, simplicial complexes are often
considered old-fashioned. Spaces can be usually described much more
economically if we allow for more general ways of gluing the basic build-
ing blocks together than is permitted in simplicial complexes. For exam-
ple, the torus (the surface of a tire-tube) can be produced by a suitable
gluing of the edges of a single square in R3,

while a triangulation of the torus requires quite a number of simplices
(at least 14 triangles, in fact). Moreover, there are quite “reasonable”
spaces (4-dimensional manifolds) which cannot be triangulated at all,
while they can be obtained using more general ways of gluing.

However, these more general ways of building spaces, most notably
the CW-complexes (briefly discussed in Section 4.4), do not admit as
direct combinatorial interpretation as simplicial complexes do.

Exercises

1. Draw a triangulation of a torus. Use as few simplices as you can.
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2. (a) Prove the claim about the faces of the crosspolytope below Defini-
tion 1.4.1 (use the definition of a polytope face mentioned in the Prelim-
inaries).

(b) Count the number of faces of each dimension.

3. This refers to the cube triangulation in Example 1.4.2.

(a) Check that each simplex o, is d-dimensional and can be written as
or = {a& € [0,1] : Tn(d) < Trd—1) <+ < Ty}, Conclude that
Ures, or = [0,1]%

(b) Let < be a linear quasiordering of [d], i.e. a transitive relation in
which every two numbers are comparable, ¢ < 7 or j =< ¢ (but it may
happen that both ¢ < j and j < 4 even if ¢ # j). Define o< :={a €
[0,1]9: @; < 2; whenever ¢ < j}. Check that o is a simplex, determine
its dimension (in terms of <), and describe its vertices.

(c) Show that the intersection o<, No<, again of the form o< for a suitable
linear quasiordering <. How do we obtain < from =<; and <37

(d) What are the faces of 0,7 Verify that the o, and their faces form a
simplicial complex.

(e) Show that the copies of the triangulation in Example 1.4.2 translated
by each integer vector in {0,1,...,n—1} form a triangulation of [0, n]?.

1.5 Abstract simplicial complexes

We introduce a combinatorial notion which later on turns to be equivalent to
a geometric simplicial complex.

1.5.1 Definition. An abstract simplicial complex is a pair (V,K), where
V is a set and K C 2V is a hereditary system of subsets of V; that is, we require
that F € K and G C F imply G € K. The sets in K are called (abstract)
simplices. Further we define the dimension dim(K) := max{|F|-1: F € K}.

Usually we may assume that V' = | JK; thus it suffices to write K instead of
(V,K), where V is understood to equal |J K.

Each geometric simplicial complex A determines an abstract simplicial com-
plex. The points of the abstract simplicial complex are all vertices of the sim-
plices of A, so we set V:=V(A), and the sets in the abstract simplicial complex
are just the vertex sets of the simplices of A. The set system (V,K) obtained
in this way is clearly an abstract simplicial complex.

In this situation, we call A a geometric realization of K, and the polyhedron
of A is also referred to as a polyhedron of K (soon we will see that a polyhedron
of K is unique up to homeomorphism).

It is easy to see that any abstract simplicial complex (V,K) with V finite
(which we always assume) has a geometric realization. Let n:=|V|—1 and let
us identify V with the vertex set of an n-dimensional simplex ¢” C R™ We
define a subcomplex A of 6™: A = {conv(F) : F € K}. Quite obviously, this is



1.5 Abstract simplicial complexes 20

a geometric simplicial complex and its associated abstract simplicial complex
is just K. So every simplicial complex on n+1 vertices can be realized in R"
(later on, we will prove a much sharper result).

Now we show that the geometric realization is unique up to homeomorphism.
At this occasion, we also introduce the important notion of a simplicial mapping.

1.5.2 Definition. Let K and L be two abstract simplicial complexes. A sim-
plicial mapping of K into L is a mapping f: V(K) — V(L) that maps simplices
to simplices, i.e. such that f(F) € L whenever F € K.

A bijective simplicial mapping whose inverse mapping is also simplicial is
called an isomorphism of abstract simplicial complexes.

Isomorphic abstract simplicial complexes are thus “the same” set systems,
they only differ in the names of the vertices. In the sequel, we won’t usually
distinguish among isomorphic simplicial complexes.

We also note that for an arbitrary simplicial mapping, a k-simplex in K can
be mapped to a simplex of L of any dimension ¢ < k.

To each simplicial mapping f of simplicial complexes, we are going to as-
sociate a continuous mapping ||f|| of their polyhedra. Namely, we extend f
affinely on each simplex. To state this precisely, we first note that if o C R%is
a k-simplex with vertices vg, vy, ..., v, then each point @ € ¢ can be uniquely
written as a convex combination & = Zf:o o,;v;, where ag,...,ar > 0 and
Zf:o o; = 1. Indeed, at least one such convex combination exists because
@ € conv{vy,..., v}, and if there were two distinct convex combinations equal
to @, we would get a contradiction to the affine independence of vg,...,vg by
subtracting them.

1.5.3 Definition. Let Ay and Ay be geometric simplicial complexes, let Ky and
Ky be their associated abstract simplicial complexes, and let f:V(Ky) — V(Ky)
be a simplicial mapping of Ky into Ky,. We define the mapping ||f||: ||A1]] —
||Az|| by extending f affinely to the relative interiors of the simplices of Ay,
as follows: if 0 = supp(e) € Ay is the support of @, the vertices of o are

Vo, ..., U, and @ = Zf:o a;v;, we put || f]|(z) = Zf:o a; f(v;).

First we note that the mapping || f|| is well-defined, because { f(vo), ..., f(vk)}
is always the vertex set of a simplex in Ay as f is simplicial. With some more
effort, one can check the following proposition, whose proof we omit.

1.5.4 Proposition. For every simplicial mapping f as in Definition 1.5.3, || f||
is a continuous map ||Aq|| — ||Aq||. If f is injective or surjective, then || f|| has
the same property and if f is an isomorphism, then || f|| is a homeomorphism.

In particular, this proposition shows that each (finite) abstract simplicial
complex (V,K) defines a topological space uniquely up to homeomorphism.

Convention. In the sequel, a simplicial complex will formally be understood
as an abstract simplicial complex (i.e. it will be a set system as a mathemat-
ical object). But we will speak of a polyhedron ||K]| for an abstract simplicial
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complex K (which is well-defined up to homeomorphism in view of Proposi-
tion 1.5.4) and even use topological notions such as “K is contractible,” instead
of “||K|| is contractible.”

1.6 Dimension of geometric realizations

Here is the promised sharper result about realizability of d-dimensional simpli-
cial complexes.

1.6.1 Theorem (Geometric realization theorem). Every finite d-dimension-
al simplicial complex K has a geometric realization in R?4+1,

For d = 1, the theorem says that every graph can be represented in R?,
with edges being straight segments. The dimension 3 is the smallest possible in
general since there are non-planar graphs. We will later show that 2d+1 is the
smallest possible dimension for all d; see the Van Kampen—Flores theorem 5.5.2.
Of course, this applies only in the worst case, since there are many d-dimension-
al simplicial complexes which can be realized in dimensions lower than 2d+1
(say the d-simplex).

In the proof of Theorem 1.6.1, we use the following sufficient condition for
a geometric realization.

1.6.2 Lemma. If K is a simplicial complex and f:V(K) — R9 is an injective
map such that f(F UG) is affinely independent for all F,G € K, then the
assignment

F +—— op = conv(f(F))

provides a geometric realization of K in R,

Proof. If f(FUG) is affinely independent, then o and o¢ are two faces of the
simplex with the vertex set f(FUG), and we are done by Lemma 1.3.6. )

A suitable placement of vertices can be defined using the moment curve.
Later on, we will meet this useful curve several more times.

1.6.3 Definition. The curve {y(t) : t € R} given by v(t):= (t,t%,...,t) is
the moment curve in R

The following lemma expresses a key property of the moment curve (any
curve with this property would do in the sequel). It is a little stronger than
needed here.

1.6.4 Lemma. No hyperplane intersects the moment curve v in R¢ in more
than d points. Consequently, every set of d+1 distinct points on v is affinely
independent. Moreover, if 7y intersects a hyperplane h at d distinct points, then
it crosses h from one side to the other at each intersection.
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Proof. A hyperplane h has an equation (@, ) = b with a@ # 0. If a point v (¢)
lies in A, then we have a1t +aqt? +- - -4 agt? = b. This means that the values of
t corresponding to intersections with h are the roots of the nonzero polynomial
p(t) = (Zle a;t') — b of degree at most d. Such a p(t) has at most d roots, and
so there are no more than d intersections.

If there are d distinct intersections, then p(t) has d distinct roots, which
must be all simple. Therefore, p(t) changes sign at each root, and this means
that v passes from one open halfspace defined by & to the other at each inter-
section. aa

Proof of Theorem 1.6.1. We choose a map f:V(K) — R¥*! such that
the vertices of K are assigned distinct points on the moment curve in R24+1,
Then for F,G € K we have |F U G| < (d+1) + (d+1) = 2d+2, and thus by
Lemma 1.6.4 the corresponding points in f(F U G) are affinely independent.
Hence we are done by Lemma 1.6.2. aa

Exercises

1. The chessboard complex E,, , has the squares of the m X n chessboard as
vertices, and simplices are all subsets of squares such that no two squares
lie in the same row or column (so if we place rooks to these squares they
do not threaten one another). Describe the “geometric shape” of || &3 4]|.

1.7 Simplicial complexes and posets

We recall that a partially ordered set, or poset for short, is a pair (P, <), where
P is a set and < is a binary relation on P that is reflexive (2 < z), transitive
(z = y and y = z implies z < z), and weakly antisymmetric (z < y and y < @
implies « = y). Similar to topological spaces, < is sometimes omitted from the
notation.

As we will see, there is a correspondence between (finite) simplicial com-
plexes and (finite) posets. It is not quite one-to-one but each poset is assigned
a unique topological space, up to homeomorphism.

1.7.1 Definition. The order complex of a poset P is the simplicial complex
A(P), whose vertices are the elements of P and whose simplices are all chains
(i.e. linearly ordered subsets, of the form {x1,22,..., 2}, ¥1 < ¥ < -+ < Xf)
in P.

The face poset of a simplicial complex K is the poset P(K), which is the
set of all nonempty simplices of K, ordered by inclusion.

For example, the simplicial complex

KA
1 2
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has the face poset

{1,2,3}

1,2} @‘ (2,31 o {34}
<<

{1y {20 3 {4}

(this is the Hasse diagram of the poset, where each element is connected to its
immediate predecessors and immediate successors, with the predecessors lying
below it and the successors above it). Here is the order complex of this poset,
together with a Meadow Saffron (or also Autumn Crocus, Colchicum autumnale
L.) as an extra bonus:

The operation we just did on the original simplicial complex, namely passing
to the face poset and then to its order complex, is very important and has a
name:

1.7.2 Definition. For asimplicial complex K, the simplicial complex sd(K) := A(P(K))

is called the (first) barycentric subdivision of K.

More explicitly, the vertices of sd(K) are the nonempty simplices of K and
the simplices of sd(K) are chains of simplices of K ordered by inclusion.

Given a geometric realization of K, we can place the vertex of sd(K) corre-
sponding to a simplex o to the center of gravity (barycenter) of o, as we did in
the above picture. It turns out that, as the picture suggests, ||sd(K)|| is always
(canonically) homeomorphic to ||K||. It suffices to prove this for K being (the
simplicial complex of) a simplex; this is not very difficult and we leave it to
reader’s diligence.

In algebraic topology, mainly in the earlier days, iterated barycentric subdi-
vision was used for constructing arbitrarily fine triangulations of a given poly-
hedron. In the applications in this text, we will mainly encounter barycentric
subdivision in its combinatorial meaning, in connection with posets.

Monotone maps and simplicial maps. Let (P, <;) and (P, <32) be posets.
A mapping f: P — P, is called monotone if <y y implies f(z) <2 f(y). We
have the following simple but useful

1.7.3 Proposition. Every monotone mapping f: Py — Py between posets is
also a simplicial mapping A(P;) — A(P,) between their order complexes.
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We again leave the very easy verification to the reader.

1.7.4 Corollary. Let K; and K; be simplicial complexes. Consider an arbi-
trary mapping f which assigns to each simplex F € K; a simplex f(F) € K,
(f is not necessarily induced by a mapping of vertices!), and suppose that if
F' C F, then also f(F') C f(F). Then f can be regarded as a simplicial map-
ping f:sd(K;) — sd(Ky), and so it induces a continuous map || f||: ||Ki|| — ||Kz]|-

Notes. The order complex A(P) is an instance of a more general
construction of a classifying space; see e.g. [Hat01, Chapter 2].

Let us mention a result somewhat similar to the geometric realiza-
tion theorem (Theorem 1.6.1), which provides an upper bound on the
dimension necessary for embedding a given simplicial complex. First we
recall the notion of Dushnik—Miller dimension (or order dimension) of a
poset. As is easy to check, if (P, <) is a finite poset, there exist linear or-
derings <1, <g,..., < such that z < y iff 2 <; y for all ¢ € [k] (in other
words, <= ﬂle <;). The smallest possible k for such a representation
of < by linear orderings is the Dushnik-Miller dimension dim(P, <).
Ossona de Mendez [0ss99] proved, using so-called Scarf’s construction,
that every finite simplicial complex K can be geometrically realized in
R with d = dim(P(A)). For a proof, let <y,..., <4 be linear order-
ings of K witnessing dim(P(K)) = d. We restrict the orderings <; to
the set V:=V (K) (the vertices are also simplices of K) and let ¢; be the
injective map V' — [n], n = |V, that is monotone with respect to <;
(that is, u <; v iff ¢;(u) < ¢;(v) for every u,v € V). Define f: V — R4
by fo(v) = ((d4+1)91) (d41)9>®) .. (d+1)9¢) and finally let f(v)
be the projection of fo(v) from 0 on the hyperplane Zle x; = 1. Then
it can be shown that f satisfies the condition of Lemma 1.6.2 and thus
provides a realization of K in R4~1,

A converse of this theorem is known for d = 3: if we regard a graph
G as a 1-dimensional simplicial complex, then the dimension of the face
poset is at most 3 if and only if G is planar [Sch89]; also see [BT93],
[BT97] for related results.

Exercises

1. Prove that a simplex is homeomorphic to its barycentric subdivision (a
rigorous proof takes some work!).

2. Prove Proposition 1.7.3 and Corollary 1.7.4.
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The Borsuk—Ulam Theorem

The Borsuk—Ulam theorem is one of the most useful tools offered by elementary
algebraic topology to the outside world. Here are four reasons why this is such
a great theorem: there are

1) several different equivalent versions,

2) many different proofs,

3
4

(1)
(2)
(3) a host of extensions and generalizations, and
(4)

numerous interesting applications.

As for (1), below we give eight different but equivalent versions, all of them
very useful. They include all three versions from Borsuk’s original 1933 pa-
per [Bor33].

As for (2), there are several proofs of the Borsuk-Ulam theorem that can
be labeled as completely elementary, requiring just undergraduate mathemat-
ics and no algebraic topology. On the other hand, most of the textbooks on
algebraic topology, even the friendliest ones, usually place a proof of the Borsuk—
Ulam theorem well beyond page 100. Some of them use just basic homology
theory, others rely on properties of the cohomology ring, but in any case, signif-
icant apparatus has to be mastered for really understanding such proofs. From
a “higher” point of view, it can be argued that these proofs are more concep-
tual and go to the heart of the matter, and thus they are preferable to the
“ad hoc” elementary proofs. But this point of view can only be appreciated by
someone for whom the necessary machinery is as natural as breathing. Since
not everyone, especially in combinatorics and computer science, belongs to this
lucky group, we present two “old-fashioned” elementary proofs. The one in
Section 2.2, a so-called homotopy extension argument, is geometric and very
intuitive. The other, in Section 2.3, resembling the proof of Brouwer’s theorem
via the Sperner lemma, derives the Borsuk—Ulam theorem from a purely com-
binatorial statement called Tucker’s lemma.

As for (3), we will examine various generalizations and strengthenings later;
much more can be found in Steinlein’s surveys [Ste85], [Ste93] and in the sources
he quotes.

Finally, as for applications (4), just wait and see.
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2.1 The Borsuk-Ulam theorem in various guises

One of the versions of the Borsuk—Ulam theorem, the one that is perhaps the
easiest to remember, states that for any continuous mapping f: S™ — R", there
exists a point @ € S™ such that f(x) = f(—«). This is schematically indicated
below:

A popular interpretation found in almost every textbook says that at any given
time, there are two antipodal places on the Earth that have the same temper-
ature and, at the same time, identical air pressure (here n = 2).1

It is instructive to compare this with the Brouwer fixed point theorem, which
says that every continuous mapping f: B®™ — B" has a fixed point: f(x) = @
for some & € B™. The statement of the Borsuk—Ulam theorem sounds similar
(and, actually, it easily implies the Brouwer theorem), but it involves an extra
ingredient besides the topology of the considered spaces: certain symmetry of
these spaces, namely the symmetry given by the mapping @ — —a (which is
often called the antipodality on S™ and on R", respectively).

Here is Borsuk’s original version of the Borsuk—Ulam theorem:

Der Zweck dieser Arbeit ist, folgende drei Sktze zu beweisen:
Satz 19). Jede antipodentreue Abbildung von S, ist wesentlich.

Satz I17). Ist fe R™°n (d. h. bildet f die Sphire S, auf einen
Teil von R™ ab), so gibt es einen derartigen Punkt p e S,, dass f(p)=

= f(p*) ist.
Satz III. Sind A4,, A,,..., A, in sich kompakte Mengen von

denen keine 2wei antipodische Punkte der Sphire S, enthilt, so ent-

hilt die Swmme 3 A, die Sphire S, micht.

i==()
Here are the promised many equivalent versions, in English; the statements

most significant for us are those with boldface numbers.

2.1.1 Theorem (Borsuk—Ulam theorem). For all n > 0, the following
statements are equivalent, and true:

! Although anyone who has ever touched a griddle-hot stove knows that the temperature
need not be continuous.
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(1.1) (Borsuk [Bor33, Satz I1]?) For every continuous mapping f:S™ — R"
there exists a point @ € S™ with f(e) = f(—=).

(1.2) For every antipodal mapping f:S" — R" (that is, f is continuous and
f(®) = —f(—=) for all @ € S™) there exists a point @ € S™ satisfying
fla) = 0.

(1.3) Let g: B® — R" be a continuous map that satisfies g(—a) = —g(a) for all
@ € S"~!; that is, it is antipodal on the boundary. Then there is a point
x* € B" with g(x*) = 0.

(2.1) There is no antipodal mapping f: S™ — S"71,
(2.2) An antipodal map f: S"~! — S"7! cannot be nullhomotopic.

(2.3) (Borsuk [Bor33, Satz I]?) If f: S"~! — S"~! is antipodal, then every map
g:S"~1 — §7~1 that is homotopic to f is surjective.

(3.1) (Lusternik & Schnirelmann [LS30], Borsuk [Bor33, Satz III]) For any cover
By, ..., B,y of the sphere S™ by n+1 closed sets, there is at least one
set containing a pair of antipodal points (that is, B; N (—B;) # @).

(3.2) For any cover Ay, ..., Any1 of the sphere S™ by n+1 open sets, there is
at least one set containing a pair of antipodal points.

While proving any of the versions of the Borsuk—Ulam theorem is not easy,
at least without some technical apparatus, checking the equivalence of all the
statements is not so hard. Deriving at least some of the equivalences before
reading further is a very good way of getting a feeling for the theorem. Here
we begin with the boldface statements.

Equivalence of (1.1), (1.2), and (2.1).

(1.1) = (1.2) is clear.

(1.2) = (1.1) We convert f into an antipodal mapping by setting ¢ (@) := f(@)—
f-a).

(1.2) = (2.1) An antipodal map S™ — S"~! is also a nowhere zero antipodal
mapping S” — R".

(2.1) = (1.2) Assume that f: S™ — R"is a continuous nowhere zero antipodal
mapping. Then the antipodal mapping g: S™ — S™~! given by g (&) := f(2)/|| f(2)]|
contradicts (2.1). &

Equivalence of (1.3) with (1.2) is easy once we observe that the projection
(21, oy Tpg1) = (1,...,2,) is @ homeomorphism of the upper hemisphere

U of S™ with B™:

2Borsuk’s footnote at this theorem reads: “This theorem was posed as a conjecture by
St. Ulam.”

3Borsuk’s footnote at this point shows his suffering from the fact that there are many
proofs: “Mr. H. Hopf, whom I informed about Theorem I, noted for me in a letter three other
shorter proofs of this theorem. But since these proofs are founded on deep results in the
theory of the mapping degree and my proof is in essence completely elementary, I think that
its publication is not superfluous. [...]”
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An antipodal mapping f: S™ — R"asin (1.2) thus yields a mapping ¢: B — R"
antipodal on dB™ by g(z) = f(7~(«)). Conversely, for a g: B* — R" as in
(1.3) we can define f(@) = g(r(@)) and f(—x) = —g(7(«)) for « € U. This
specifies f on the whole S, it is consistent because ¢ is antipodal on the equator
of §™, and the resulting f is continuous since it is continuous on both the closed
hemispheres (see Exercise 1.1.2). o

Equivalence with the Lusternik—Schnirelmann theorem (3.1), (3.2).
(1.1) = (3.1) For a closed cover By, ..., B,41 we define a continuous mapping
f:8" — R" by f(e):=(dist(e, By),...,dist(e, B,)) and we consider a point
z € S" with f(#) = f(—«) = y, which exists by (1.1). If the ¢th coordinate
of the point y is 0, then both @ and —& are in B;. If all coordinates of y are
nonzero, then both @ and — lie in B, 4.

(3.1) = (2.1) We need an auziliary result: There exists a covering of S"~! by
closed sets By, ..., B,y1 such that no B; contains a pair of antipodal points (to
see this, we can use the projection of the faces of a simplex that has the origin
in its interior). Then if a continuous antipodal mapping f: 8% — S~ with
d > n existed, then the sets f~'(By),..., f7(Byt1) would contradict (3.1).
(3.1)=(3.2) follows from the fact that for every open cover Ay,..., Ap4q
there exists a closed cover By, ..., B,y satisfying B; C A; fori =1,...,n+1:
for each point @ of the sphere choose its open neighborhood U, whose closure
is contained in some A,;, and apply the compactness of the sphere.

(3.2) = (3.1) follows from the fact that each set of a closed cover By, ..., By4q
can be wrapped in an open set A = {@ € S" : dist(x, B;) <ec}. Welet ¢ -0
and we use the compactness of the sphere. Taking twice a suitable infinite
subsequence, we first obtain an infinite sequence of points ®°, 2!, ®2,...in S™
such that dist(z’, B;), dist(—«', B;) — 0 for ¢ — co some fized j, and then a
convergent subsequence. The limit point of this sequence is in Bj; since Bj; is
closed, and this provides the required antipodal pair in B;. &

Finally, we leave the equivalence with the “homotopic” statements (2.2) and
(2.3) to the exercises.

Proof of the Brouwer fixed point theorem from the Borsuk—Ulam
theorem (2.2). Suppose that f: B® — B™ is continuous and has no fixed
point. By a well-known construction, we show the existence of a continuous
map ¢: B — S"~! whose restriction to S"7! is the identity map (such a g is
called a retraction of B" to S™™!). We define g(z) as the point in which the
ray originating in f(@) and going through @ intersects S"~'. This g, considered
as a mapping B" — R", contradicts version (1.3) of the Borsuk-Ulam theo-

rerml. &
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Notes. The earliest reference for what is now commonly called
the Borsuk-Ulam theorem is probably Lusternik & Schnirelmann [LS30]
from 1930 (the covering version (3.1)). Borsuk’s paper [Bor33] is from
1933. Since then, hundreds of papers with various new proofs, variations
of old proofs, generalizations, and applications, have appeared; the most
comprehensive survey known to us, Steinlein [Ste85] from 1985, lists
nearly 500 items in the bibliography.

Types of proofs. In the numerous published proofs of the Borsuk—
Ulam theorem, one can distinguish several basic approaches (as is done
in [Ste85]). Some of these types will be treated in this text; for the
others, we outline the main ideas here and give references, mostly to
recent textbooks.

In degree-theoretical proofs, one shows that a continuous antipodal
mapping f: 5™ — 5™ has odd degree; this implies that it cannot be
nullhomotopic (version (2.1)) since a nullhomotopic map has degree 0.
Here the degree can be defined homologically, as the number d such that
the homomorphism f.: H,(S",Z) =2 Z — H,(S",Z) = Z induced by f
in the nth homology acts as the multiplication by d (see Dodson and
Parker [DP97, Sec. 4.3.2] for such a proof). Another, more universal,
definition of degree uses algebraic counting of the roots z of f(z) = y at
a “generic” image point y. In particular, for the purposes of the Borsuk—
Ulam theorem, it suffices to define the degree modulo 2, and then it is
congruent mod 2 to the number of preimages of a generic point y. A
proof using the degree of a smooth map is sketched in [Bre93, p. 253]. In
the degree-theoretical approach, one has to approximate the arbitrary
antipodal map by a suitable nice (simplicial, or smooth) map so that
the degree is well-defined. A related method uses the Lefschetz number;
see Section 6.2. A proof using rudimentary Smith theory can be found
in [Bre93, Sec. 20].

A proof using the cohomology ring considers the map ¢g: RP” — RP™
induced by an antipodal f:S™ — 5™, and shows that the correspond-
ing homomorphism ¢*: H*(RP™,Z;) — H*(RP", Z;) of the cohomol-
ogy rings carries a generator o of H'(RP™, Zj) to a generator (3 of
HY(RP",Z,). This is impossible if m + 1 < n, since then a™*! is triv-
ial while 5" is nontrivial. See, for example, [Mun84, p. 403] or [Bre93,
p. 362].

A proof by a homotopy extension argument will be discussed in Sec-
tion 2.2, and a representative of the family of combinatorial proofs in
Section 2.3. Algebraic proofs were given in [Kne82] and [AP83].

As for applications of the Borsuk—Ulam theorem, we will cover some
number in the subsequent sections. For a multitude of others, we refer
to the surveys [Ste85], [Ste93]. The papers [Bar93] and [Alo88] give nice
overviews of combinatorial applications; most of these are included in
this text.

A very broad field of applications, which we will neglect entirely, are
existence results for solutions of nonlinear partial differential equations
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and integral equations. Also in functional analysis and geometry of Ba-
nach spaces, Borsuk—Ulam type results play an important role.

Bourgin-Yang type theorems are generalizations of the Borsuk—Ulam
theorem of the following sort. For any continuous map f:S™ — R™, the
coincidence set {@ € S : f(«) = f(—«)} has to be not only nonempty
(as Borsuk-Ulam asserts), but even “large” if m < n; for example, it
has dimension at least n—m. Such results have been used in proving
various geometric statements. We will mention a little more about this
in the notes to Section 5.2.

A beautiful combinatorial application that we will not discuss in de-
tail (for space reasons, and also because the original account is nicely
readable) concern linkless embeddings of graphs in R3. Any finite graph G,
regarded as a 1-dimensional finite simplicial complex, can be realized in
R3. Such a realization is called linkless if any two vertex-disjoint circuits
in G form two unlinked closed curves in the realization. Here two curves
@, 3 C R? (each homeomorphic to S!) are unlinked if they are equivalent
to two isometric copies o, 3’ of ST in R? lying far from one another, and
the equivalence means that there is a homeomorphism ¢: R3 — R? such
that ¢(aU ) = o’ U 3’ (these are notions from knot theory; see e.g.
Rolfsen [Rol90] for more information).

linked linked unlinked

Lovédsz and Schrijver [LS98], building on previous work by Robertson,
Seymour, and Thomas, proved that graphs possessing a linkless embed-
ding into R? are exactly those for which a numerical parameter, called
the Colin de Verdiére number, is at most 4. The definition of this pa-
rameter, using spectra of certain matrices, is not very intuitive at first
sight (and we do not reproduce it; see, for instance, the book [Col99]).
The graph-theoretical significance of the Colin de Verdiere number looks
almost miraculous: besides the incredible result about linkless embed-
dings, it is known, for instance, that the class of graphs having this pa-
rameter at most 3 are exactly all planar graphs! In the Lovasz—Schrijver
proof, the Borsuk—Ulam theorem is used for establishing the following:
Given any “generic” embedding of the 1-skeleton of a 5-dimensional con-
vex polytope P into R3, there are two antipodal 2-dimensional faces of P
such that the images of the boundaries of these two faces are linked (in
fact, they have a nonzero linking number, which is stronger than being
linked—the curves in the left picture above satisfy this while those in
the middle picture do not). Thus, for example, the complete graph Kg
is not linklessly embeddable. (More generally, a generic embedding of
the (d—1)-skeleton of a (2d+1)-polytope into R? links the boundaries of
two antipodal d-faces.)
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The paper [Bor33] containing the Borsuk-Ulam theorem also states

the so-called Borsuk’s conjecture [Bor33]. The Lusternik-Schnirelmann
theorem (about covering S™ by n+1 closed sets) can be restated as
follows: For every closed cover of S"~! by at most n sets, one of the sets
has diameter 2, i.e. the same as the diameter of S™ itself. On the other
hand, there are n+1 sets of diameter < 2 covering S™. Borsuk asked
if any bounded set X C R™ can be split into n+41 parts, each having
diameter strictly smaller than X. This was resolved in the negative by
Kahn and Kalai [KK93]. Their spectacular combinatorial proof made
Borsuk’s conjecture quite popular in recent years ([Nil94] is a two-page
exposition and the proof has been reproduced in several books, such as

[AZ00)).

Exercises

1.

Show that the antipodality assumption in Theorem 2.1.1(2.1) can be re-
placed by “f(—x) # f(x) for all ® € S™.”

. Show that the statements (2.2) and (2.3) of the Borsuk—Ulam theorem 2.1.1

are equivalent.

. (a) Derive (1.3) from (2.2).

(b) Derive (2.2) from (1.3).

. Describe a surjective nullhomotopic map S™ — S? (at least for n = 1 and

n=2).

(Borsuk graph) For a positive real number o < 2, let B(n+1, @) be the
(infinite) Borsuk graph with S™ as the vertex set and with two points
connected by an edge iff their distance is at least . Prove that the
Borsuk—Ulam theorem is equivalent to the following statement: For every
a < 2, we have x(B(n+1,a)) > n+2 (here x denotes the usual chromatic
number).

. Prove that the following generalization of the Borsuk—Ulam theorem is

false (even though it appears in the literature, according to Bourgin [Bou63,
p. 337]): Whenever S™ is covered by n closed connected sets, one of them
must contain a nonempty closed connected subset that is symmetric (with
respect to the antipodal map).

. Let the torus be represented as T = S' x S'.

(a) Show that an analogue of the Borsuk-Ulam theorem (1.1) for maps
T — R? (formulate it!) is false.

(b) Show that it works for maps 7 — R™.

. Prove that the validity of (any of) the statements in the Borsuk-Ulam

theorem 2.1.1 for n implies the validity of all the statements for n—1.
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2.2 A geometric proof

We prove the version (1.2) of the Borsuk-Ulam theorem. Let f:S™ — R" be
a continuous antipodal map. We want to prove that it has a zero. First we
explain the idea of the proof, assuming that f is “sufficiently generic,” without
making the meaning of this quite precise. Then we supply a rigorous argument,
involving a suitable perturbation of f.

The intuition. Let ¢:S™ — R" denote the “north—south projection”
map; if §" = {@ e R"*t: 27 + ... 422, = 1}, then g is given by g(2) =
(z1,22,...,2,). This ¢ has exactly two zeros, namely the north pole and the

south pole: n = (0,0,...,0,1), s =(0,0,...,0,—1). (The important feature of
g is that, obviously, it has a finite number of zeros; more precisely, it has twice
an odd number of zeros.)

We consider the (n+1)-dimensional space X = 5™ x[0,1] (a “cylinder”) and
the mapping F: X — R"” given by F(@,t) = (1—t)g(«) + tf(2). Geometrically,
we take two copies of S™ (we can think of them as placed in R"*2), one of them
with the mapping g and the other one with f. We connect the corresponding
points of these two spheres by segments, and the mapping F is defined on each
segment by linear interpolation. For n = 1, we get a cylinder as in the picture:

f Zq top sphere (t = 1)

g \L/ bottom sphere (¢ = 0)
n

The antipodality @ — —a on S™ is extended to the map v on X by v: (x,t) —
(—@,t) (note that ¢ is unchanged). We will call v the antipodality on X .

For contradiction, let us suppose that f has no zeros. We investigate the
zero set Z = F~1(0). If f is sufficiently generic, then Z is a one-dimensional
compact manifold, and therefore its components are cycles and paths (this is
the part to be made precise later). Moreover, the endpoints of the paths lie on
the bottom or top S™ (t =0 or ¢ = 1) and are zeros of f or g, while the cycles
do not reach into the top and bottom spheres. Assuming that f has no zeros
and knowing that ¢ has only the two zeros at the poles, the only possibility is
that there is a single path v connecting n to s. But, at the same time, the set
Z is invariant under v. If we follow + from n on, the other part starting from s
must behave symmetrically. But then it is easy to see that the two ends cannot
meet: a symmetric path from n to s does not exist in X. We have reached a
contradiction.

Note that the argument actually shows that the number of zeros of a “gener-
ic” antipodal map is twice an odd number. Indeed, the zeros of f on the top
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sphere are paired up by paths in Z, except for two that are connected to the
zeros of ¢ on the bottom sphere.

The real thing. A rigorous proof follows the same ideas but uses a suitable
small perturbation of f. Recall that the {;-norm of a point @ € R" is ||z||; =
S |- Let S* = {& € R™!: ||@||; = 1} denote the unit sphere of the (;-
norm. This is the boundary of a cross-polytope (Definition 1.4.1); for example,
52 is the surface of a regular octahedron. This $" is homeomorphic to S”
and we will consider S” instead of S™ in the rest of the proof. The space
X = §"x[0,1] is a union of finitely many convex polytopes (simplicial prisms).
Let us call $” x {0} the bottom sphere and $™ x {1} the top sphere in X

We choose a sufficiently fine finite triangulation T of X (just how fine will
be specified later) that respects the symmetry of X given by v, in the following
sense: each simplex o € T is mapped bijectively onto the “opposite” simplex
v(c) € T,and o Nv(c) = @. Moreover, the triangulation T contains triangula-
tions T; and Ty of the top and bottom spheres, respectively, as subcomplexes,
and T; and Tj each refine the natural triangulation of S,

We let the mapping g be an orthogonal projection of S™ into R"™, but not
in a coordinate direction, but rather in a “generic” direction, such that the
two zeros m and s of ¢ lie in the interior of n-dimensional simplices of the
triangulation Tp, as is indicated in the drawing (where n = 2):

We again suppose that f: S —s R™ has no zeros. By compactness, there
is an ¢ > 0 such that ||f(2)|| > ¢ for all @ € S™. As in the informal outline,
let F(a,t) = tg(e) + (1-t) f(«), let T be a fine triangulation of X as above,
and let F: X — R" be the map that agrees with F on the vertex set V(T) of
T and is affine on each simplex of T (similar to Definition 1.5.3 of the affine
extension of a simplicial map). Since F' is uniformly continuous, we can assume
that |[F(y) — F(y)|| < 5 for all y € X, provided that T is sufficiently fine.
Thus,

F has no zeros on the top sphere. (2.1)

Since our g is already affine, F coincides with ¢ on the bottom sphere and we

have B
F has exactly two zeros on the bottom

sphere, lying in the interiors of n-dimensional (2.2)
(antipodal) simplices of Tp.
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Further, let F be a mapping arising by a sufficiently small antipodal per-
turbation of F. Namely, we choose a suitable antipodal perturbation map
Py:V(T) — R” satisfying Py(v(v)) = —Fo(v) for each v € V(T). Further
properties required of Py will be specified later. We extend Py affinely on each
simplex of T, obtaining a map P: X — R", and we set F = F 4+ P. We note
that if all values of P, lie sufficiently close to 0, then the perturbed map F still
has the two properties (2.1) and (2.2).

Let o be an (n+1)-dimensional simplex and % an affine map ¢ — R". We
say that h is generic if h=1(0) intersects no face of o of dimension smaller
than n. In such case, h=1(0) is either empty, or it is a segment lying in the
interior of o, with endpoints lying in the interior of two (distinct) n-faces of o:

If we represent an affine map h:o — R" by the (n+2)-tuple of values at the
vertices of o, all such maps constitute a real vector space of dimension n(n+2).
One can check that the set of mappings that are not generic is contained in a
proper algebraic subvariety of this space, and so in particular, has measure zero
by Sard’s theorem. (Alternatively, one can check that this set is nowhere dense
and use this in the sequel; see Exercise 1.)

Call a perturbed mapping F:X — R" generic if it is generic on each full-
dimensional simplex of T. If T has 2NV vertices, then the space of all possible
antipodal perturbation maps Py on V/(T) has dimension nN (the value can be
chosen freely on a set of N vertices containing no two antipodal vertices). The
mappings Py leading to F’s that are not generic on a particular full-dimensional
simplex o € T have measure zero in this space (here we need that v and v(v)
never lie in the same simplex of T). Therefore, arbitrarily small perturbations
P, exist such that F is generic.

Assuming that F is generic and that its zeros satisfy (2.1) and (2.2), it
follows that 1*:’_1(0) is a locally polygonal path (consisting of segments, with
no branchings). This is because each n-simplex 7 € T is a face of exactly two
(n+1)-simplices 0,0’ € T, unless 7 € T;UTy, in which case it is a face of exactly
one (n+1)-simplex ¢ € T. Hence the components of F~'(0) are zero or more
closed polygonal cycles (which do not intersect the top or bottom spheres) and
a polygonal path . This v consists of finitely many segments and it connects
7 to & (these are the zeros of F on the bottom sphere).

Choose the unit of length so that v has length 1, and let v(z) denote the
point of v at distance z from n (measured along v; z € [0,1]). Since v is
symmetric under v, we have v(y(z)) = 7(1-2), and in particular, v(y(3)) =
v(%). This is impossible since the antipodality v has no fixed points. The

2
Borsuk-Ulam theorem is proved. o

Notes.  We have learned this proof from Imre Barany, who published
it, in a slightly different form, in [Bar80]. Steinlein [Ste85] gives five
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references for proofs of this type, all of them published between the
years 1979 and 1981.

Exercises

1. (a) Let p(z1,22,...,2,) = p(®) be a nonzero polynomial in n variables.
Show that the zero set Z(p) = {® € R" : p(e) = 0} is nowhere dense,
meaning that any open ball B contains an open ball B’ with B'NZ(p) = @.

(b) Check that a finite union of nowhere dense sets is nowhere dense.

(c) Let o be an (n+1)-dimensional simplex; w.l.o.g. o = conv{0, eq,...€,11},
where the e; are the vectors of the orthonormal basis in R, Let
h:o — R™ be an affine map (i.e. a map of the form «# — Az + b,
where A is an n X (n+1) matrix and b € R"). If each h is represented
by (R(0), h(e1), ..., h(eny1)) € R(TD show that the maps that are not
generic in the sense defined in the text above form a nowhere dense set.
Hint: for each possible “cause” of non-genericity, write down a determi-
nant that becomes 0 for all maps that are non-generic for that cause.

2.3 A combinatorial proof

Here we prove the Borsuk—Ulam theorem by a simple reduction to a purely
combinatorial statement (resembling Sperner’s lemma). We will be proving
version (1.3), namely that a map f: B™ — R" that is antipodal on the boundary
of B" has a zero.

Similar to the previous section, we will replace the Euclidean ball B™ by an
n-dimensional polytope. This time we take the {,-norm unit ball B” = {& €
R"!: ||#]l < 1}, which is the regular n-dimensional cube B"™ = [—1,+1]".
Call a simplicial complex T a special triangulation of B™ if

e T triangulates the n-cube, ||T|| = B",

e T is a refinement of the subdivision of B" into 2" unit cubes by the n
coordinate hyperplanes (that is, each simplex of T is fully contained in
one of the 2" orthants), and

e T is antipodally symmetric with respect to the origin: we have o € T iff
—oeT.

2.3.1 Lemma (Tucker’s lemma). Let the vertices of an arbitrary special
triangulation T be denoted by labels A(u) € {+1,£2,...,+n} in such a way
that for the vertices w € OB™ (on the boundary) the labeling satisfies A(—u) =
—A(u). Then there exists a 1-simplex (an edge) in T that is complementary,
i.e. its two vertices are labeled by opposite numbers.
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Proof of the Borsuk—Ulam theorem (1.3) from Tucker’s Lemma. As-
sume that f: B” — R”is a map that is antipodal on the boundary and satisfies
f(x) # 0 everywhere. Then, from the compactness of the ball, there exists
e > 0 such that ||f(@)]|~x > ¢ for all . Further, a continuous function on
a compact set is uniformly continuous, and thus there exists a number ¢ > 0
such that if the distance of some two points @®,2’ does not exceed ¢, then
1f(@) — f(@) o < =

Let us choose a special triangulation T such that the diameter of each its
simplices is at most §. We define a labeling of the vertices of T. For @ € V/(T),
we let ¢(@) := min{i : |f(@);| > ¢}, and we set

A(@) = sign(f(@)i(a)) - i(@)-

Clearly, we have A(—x) = —A(2). So Tucker’s lemma applies and yields a
complementary edge vv’. Let A(v) = —A(v’) = ¢; then f(v); > ¢ and f(v'); <
—&, and hence ||f(v) — f(v')||o > 26—a contradiction. )

Proof of Tucker’s Lemma. Let T be a special triangulation of B™.
For a simplex 0 € T we set sign(o) = (sign(zy),sign(zs),...,sign(z,)) €
{+1,0,—1}", where @ is an arbitrary point of the relative interior of o. This
definition always makes sense, since a special triangulation refines orthants of
R™ and therefore the signs of the coordinates do not change on the relative
interior of o. Let us imagine that a simplex likes to have labels corresponding
to its nonzero signs: call a non-empty simplex o happy if the following holds
for each ¢ = 1,2,...,n: if (sign(o)); = 1, then at least one of the vertices of
o is labeled by the number 7, and if (sign(o)); = —1, then some vertex of ¢ is
labeled by —¢. The happy simplices are emphasized in the following picture:

-2 —1 2 1
9
1 v_ 1
- 1
-2 5 2
—1
5K 1 L
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If & has exactly k non-zero signs, that is its relative interior points have
exactly k non-zero coordinates, then o is contained in the linear span of k unit
vectors, and thus its dimension is at most k. At the same time, to be happy o
needs at least k vertices with distinct labels, so the dimension of ¢ is at least
k—1. Thus the dimension of a happy simplex o for which sign(o) has k non-zero
components must be either k or k—1.

We define a graph G whose vertices are all happy simplices, and in which
vertices o, 7 € T are connected by an edge if

(a) o, T C 8Bn == Sn—l and o = -7, 0r

(b) o is a k-simplex and 7 is a (k—1)-face of o, such that the labels of the
vertices of 7 alone already make o happy.

The simplex {0} has degree 1 in G, since it is connected exactly to the edge of
the triangulation that is made happy by A(0). Further we prove that any other
vertex o of the graph G has degree 2 except when ¢ contains a complementary
edge. Since a graph cannot contain only one vertex of odd degree, this will
establish Tucker’s lemma. (Verify in our sketch, or even better in your own
example, that the graph contains a path that connects 0 to some happy simplex
that contains a complementary edge!)

Let sign (o) have k nonzero components, so dim o is k or k—1. We distinguish
these two cases.

1. Suppose that o is a (k—1)-simplex. Here we have two subcases:

1.1 o does not lie on the boundary of B™. Then we claim that it is a
face of exactly two k-simplices that are made happy by the k oblig-
atory labels of ¢. Indeed, any k-simplex made happy by the labels
of ¢ must be contained in the k-dimensional coordinate subspace
L,:={x € R": z; = 0 for all ¢ with sign(o); = 0}. The intersec-
tion L, N B" is a k-cube and the simplices of T contained in L,
triangulate it. Now if ¢ is a non-boundary (k—1)-dimensional sim-
plex in a triangulation of a k-cube, it is adjacent to precisely two
k-simplices.

1.2 ¢ is on the boundary of B”. Then it has —o as one neighbor. Arguing
similar to the previous case, we get that o is a face of exactly one k-
simplex made happy by the labels of o, and this is the other neighbor.

2. If ¢ is a k-simplex, it has k obligatory labels and one extra label. Note
that in this case ¢ cannot lie on the boundary. The possible cases are

2.1 The extra label repeats one of the obligatory labels. Then o is ad-
jacent to two of its (k—1)-faces.

2.2 The extra label is the negative of some of the obligatory labels, but
then we have a complementary edge.

2.3 The extra label is a number 7 such that +7 does not occur among the
obligatory labels. Then one of the neighbors of o is the unique (k—1)-
face with the obligatory labels. Moreover, o is a face of exactly one
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(k+1)-dimensional simplex o’ made happy by the labels of 0. We
enter that o’ if we go from an interior point of ¢ in the direction of
the z);-axis, in the positive direction for ¢ > 0 and in the negative
direction for ¢ < 0. Thus, sign(o’) coincides with sign (o) everywhere
except position |i|, where o has 0 and ¢’ has sign (7).

So for each possibility we have exactly two neighbors, which yields a contradic-
tion.

25
~1 —7 =1
W1 !
-1 -2 1 2

Thus the graph that we defined leads us from the vertex in the origin to a
simplex with a complementary edge. o

Remark. Why is version (1.3) of the Borsuk-Ulam theorem especially suitable
for a parity-based argument as above? This is because a generic mapping f as in
(1.3) has an odd number of zeros (while in the “basic” version with an antipodal
map S™ — R”, the zeros come in pairs).

Notes. Tucker’s lemma is from [Tuc46] (this paper contains a 2-
dimensional version, and a version for arbitrary dimension appeared in
the book [Lef49]). The presented proof follows Freund & Todd [FT81].
Steinlein’s survey [Ste85] lists over 10 other references with combinatorial
proofs based on similar ideas.
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Direct Applications of Borsuk—Ulam

3.1 The ham sandwich theorem

This is a well-known geometric statement with many interesting consequences.
The informal statement that gave the ham sandwich theorem its name is: For
every sandwich made of ham, cheese, and bread, there is a straight cut that
simultaneously halves the ham, the cheese, and the bread. The mathematical
ham sandwich theorem says that any d distributions of mass in R? can be
simultaneously bisected by a hyperplane:

First we prove a statement about equipartitioning suitable finite Borel measures
[, .., g in RE A finite Borel measure 1 on R? is a measure on R? such that
all open subsets of R¢ are measurable and u(R?) < co. An example the reader
may want to think of is a measure given as the restriction of the usual Lebesgue
measure to a compact subset of R% Thatis, A C R%is compact with /\d(A) > 0,
where A? denotes the d-dimensional Lebesgue measure, and p(X) = A4(X N A)
for all (Lebesgue measurable) sets X C R

3.1.1 Theorem (Ham sandwich theorem for measures). Let juy, pig, ..., liq
be finite Borel measures on R? such that every hyperplane has measure 0 for
each of the y; (in the sequel, we refer to such measures as “mass distributions”).
Then there exists a hyperplane h such that

pih*) = $uRY) fori=1,2,....4,

where hT denotes one of the halfspaces defined by h.
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Proof. Let uw = (ug, u1, ..., uq) be a point of the sphere 5S4, If at least one of
the components uq, us, .. ., uq is nonzero, we assign to the point w the halfspace

Rt (u) == {(z1,...,2q) € R : wyay + -+ ugzq < uo}.

Obviously antipodal points of S¢ correspond to opposite halfspaces. For a u of
the form (uo,0,0,...,0) (where ug = £1), we have by the same formula

rt((1,0,...,0)) = R?
Rt ((~1,0,...,0)) = @.

We define a function f:S% — R? by
filw) = pi (" (w)).

It is easily checked that if we have f(ug) = f(—uo) for some ug € S%, then the
boundary of the halfspace h*(ug) is the desired hyperplane (clearly it cannot
happen that f((1,0,...,0)) = f((=1,0,...,0)), so ht(ug) is indeed a half-
space). For an application of the Borsuk-Ulam theorem it remains to show
that f is continuous. This is quite intuitive but a rigorous argument is perhaps
not so obvious.

Let (u,)2%, be a sequence of points of S converging to u; we need to show
that pi(ht(u,)) — pi(ht(w)). We note that if a point @ is not on the bound-
ary of h (u), then for all sufficiently large n, we have ® € h* (u,,) if and only
if @ € h(u). So if f denotes the characteristic function of A% (u) (f(x) =1
for € ht(u) and f(e) = 0 for © ¢ h™(u)) and f, is the characteristic func-
tion of ht(u,), we have f,(z) — f(e) for all @ ¢ Oh™(u). Since O™t (u) has
t;-measure 0 by the assumption, the f,, converge to f p;-almost everywhere.
By Lebesgue’s dominated convergence theorem (see e.g. Rudin [Rud74, Theo-
rem 1.34]), we thus have p;(ht(uy)) = [ fudp, — [ fdp; = pi(ht(u)), as all
the f,, are dominated by the constant 1, which is integrable since p; is finite.
(It is not difficult to prove the particular case of the dominated convergence
theorem needed here directly.) &

Sometimes we need to partition masses concentrated at finitely many points.
Then the following version of the ham sandwich theorem can be useful:

3.1.2 Theorem (Ham sandwich theorem for point sets).
Let Ay, Ay, ..., Aq C R? be finite point sets. Then there exists a hyperplane h
that bisects each A;.

Here “h bisects A;” means that both the open halfspaces defined by h con-
tain at most 3 |A;| points of A;.

Proof from Theorem 3.1.1. First suppose that each A; has odd cardinality
and that A;UAU. . .UAy is in general position, meaning that no two points of
different A; coincide and no d41 points lie on a common hyperplane. Let A
arise from A; by replacing each point by a solid ball of radius € centered at that
point, and choose £ > 0 so small that no d+1 balls of | JA; can be intersected
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by a common hyperplane. Let h be a hyperplane simultaneously bisecting the
sets A7. Since A} has an odd number of balls, 4 must intersect at least one of
them, and since at most d balls are intersected altogether, h intersects exactly
one ball of Af. Moreover, this ball is split in half by &, and so i passes through
its center. Thus h bisects each A,;.

Next, let the A, still have odd cardinality but their position can be arbitrary.
We use a perturbation argument. For every 7 > 0, let A;, arise from A; by
moving each point by at most 1 in such a way that Ule A;n is in general
position. Let h, bisect the A;,. If we write b, = {®# € R?: {(a,,2) = b,},
where a,, is a unit vector, then the b, lie in a bounded interval, and so by
compactness, there exists a cluster point (a,b) € Rt of the pairs (ay,by) as
1 — 0. Let h be the hyperplane determined by the equation {(a,#) =b. Let us
consider a sequence 7y > 7, > - - - converging to 0 such that (a,;,b,;) — (a,b).
If a point @ lies at distance & > 0 from h, then it also lies at distance at least
%5, say, from hy,; for all sufficiently large j. Therefore, if there are k points of
A; in one of the open halfspaces determined by h then, for all j large enough,
the corresponding open halfspace determined by %,; contains at least k points
of Ai7T]j‘ It follows that h bisects all the A,;.

Finally, if some of the A; has an even number of points, we delete one
arbitrarily chosen point from each even-size A; and bisect the resulting odd-
size sets. Adding the deleted points back cannot spoil the bisection, as is easy
to check from the definition of bisection. &

3.1.8 Corollary (Ham sandwich theorem, general position version).
Let Ay, Ay, ..., Aq C R? be disjoint finite point sets in general position (such
that no more than d points of AjU---UAy are contained in any hyperplane).

Then there exists a hyperplane h that bisects each A;, such that there are
exactly L% |A;|| points from A; in each of the open halfspaces defined by h,
and at most one point of A; on the hyperplane h (which happens if A; has odd
cardinality).

Proof. We start with an arbitrary ham sandwich cut hyperplane h according
to Theorem 3.1.2. We fix the coordinate system so that h is the horizontal
hyperplane z4 = 0. Let B:=hN(A; U---UA,); B consists of at most d affinely
independent points. We want to move h slightly so that it is as in the corollary
(i.e. only one point of each odd-size A; stays on it). Since the points of B are
affinely independent we can make each of them stay on k or go below or above
it, whatever we decide.

To see this, we add d — |B| new points to B so that we obtain a d-point
affinely independent C' C h. For each a € C, we choose a point a’: either
a’ = a (for the new points a and for those points of B that should stay on
h), or @’ = a +ceq, or @’ = a — ceq. We let b/ = h/(¢) be the hyperplane
determined by the d points a’, @ € C. For all sufficiently small ¢ > 0, the a’
remain affinely independent (so that h'(¢) is well-defined) and the motion of
I'(g) is continuous in . We can thus guarantee that for all sufficiently small
€ > 0, h' is as required in the corollary. aa
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Equipartition theorems. Using the 2-dimensional ham sandwich theorem,
it is easy to show that any mass distribution in the plane can be dissected into
4 equal parts by 2 lines:

As a natural generalization, one can ask whether any mass distribution in R?
can be partitioned into 23 = 8 equal pieces by 3 planes, or, more generally, if
any mass distribution in R? can be dissected into 2¢ pieces of equal measure
by d hyperplanes. For d = 3, this is possible (although not as simple as the
planar case; see Edelsbrunner [Ede87, Sect. 4.4]). But in dimension 5 and
higher, such an equipartition theorem fails: it is in general ¢mpossible to cut
a set in R® into 32 equal parts by 5 hyperplanes. For this, note that any
hyperplane cuts the moment curve in R® in at most 5 distinct points; hence
any set of b hyperplanes cuts the moment curve in at most 25 distinct points,
subdividing it into at most 26 parts. So if we take a piece of the moment
curve, it is disjoint with at least 6 of the 32 open orthants determined by
5 hyperplanes, and hence it cannot be equipartitioned. This example uses a
one-dimensional measure along the moment curve; an example obtained by
restricting the Lebesgue measure to suitable small balls requires a little more
work (Avis [Avi85]; also see Edelsbrunner [Ede87, Sect. 4.6].) It is not known
whether a dissection into 16 parts of the same size by 4 hyperplanes is possible in
R*, and it is a challenging open problem where many of the “usual” topological
approaches seem to fail.

There are numerous results on equipartitions of measures; some of them will
be mentioned in the remarks below and in the exercises.

Notes. According to [Ste85], the ham sandwich theorem was conjec-
tured by Steinhaus and proved by Banach.

The ham sandwich theorem in R? can be, and often is, proved
from the (d—1)-dimensional Borsuk-Ulam theorem. For every direc-
tion w € S?1, one chooses the hyperplane h(u) perpendicular to w that
bisects the dth measure, and defines the function to R%~! as the parts
of the 1st through (d—1)st measures contained in h(u)™. But, to guar-
antee uniqueness of h(u), and thus derive the existence of a continuous
function h, one needs a stronger assumption on the measures.

Dolnikov [Dol92] and, independently, Zivaljevié¢ & Vreéica [ZV90]
proved, by more advanced topological means, a nice generalization of
the ham sandwich theorem. For any k+1 mass distributions in R9 there
exists a k-flat f (i.e. a k-dimensional affine subspace of R%) such that
any hyperplane passing through f has at least ﬁ-l—l of the 7-th mass
on each side, for all + = 1,2,...,k+1. The ham sandwich theorem is
obtained for k = d—1. The case k = 0 is another classical result known

as the centerpoint theorem (see e.g. [Ede87]).
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Mass partition theorems. Results on partitioning of one or several
masses in R? into prescribed parts by given geometric objects are al-
most always proved by topological methods. Interest in such results
was stimulated by applications in computer science, for example in the
so-called geometric range searching; see [Mat95] [AE98]. (In this area,
though, approximate partitioning is usually sufficient, and the classical
mass partitioning results were eventually superseded by random sam-
pling and related methods.)

Concerning the problem of dissecting a measure in R* into 16 equal
parts by 4 hyperplanes, we remark that partitioning of 16 points placed
on the moment curve is always possible. This is equivalent to the ex-
istence of a uniform Gray code in the 4-dimensional cube: there is a
Hamiltonian circuit in the graph of the 4-cube that uses the same num-
ber of edges (4) from each parallel class. In fact, Robinson and Cohen
[RC81] showed that a uniform Gray code in C,, exists if and only if n is a
power of 2. Ramos [Ram96] gives several new results on partitioning of
m mass distributions in R¢ into 2% equal pieces by k hyperplanes. Also
see the survey by Zivaljevié [Ziv98] for a description of still newer results
of Petrovi¢ et al. in this direction, obtained using obstruction theory.

Recently, several results have been proved concerning partitions by
k-fans, i.e. by k semilines emanating from a common point in the plane
(the point may also be at infinity, i.e. we may have k parallel lines;
in this case, both the unbounded parts of the plane together form one
sector). Answering a question of Kaneko and Kano [KK99], several
authors [IUY00] [Sak] [BKS00] have shown that two mass distributions
in the plane can be simultaneously equipartitioned by a 3-fan, in such a
way that the resulting 3 sectors are convex. For example, a planar convex
body can be cut by a 3-fan so that both the area and the perimeter
are divided equitably (this special “cake cutting” case was shown in

[AKK™00]):

Several results on partitions of m measures by k-fans are proved
in [BMO1], including some cases where the partition is not into equal
parts; for example, any 2 measures can be simultaneously partitioned
in ratio 1 : 1 :1: 2 by a 4-fan (without any convexity requirements).
Later the possibility of equipartition of 2 measures by a 4-fan was shown
as well [BM], but challenging problems remain open; for instance, can
any 2 measures be partitioned by a 4-fan in any prescribed ratio? Fur-
ther progress on this question was recently announced by Zivaljevi¢ and
Vreéica.

Somewhat related results (dealing with a single measure), including
some higher-dimensional ones, were given earlier by Makeev [Mak88].
He established the existence of 6-partitions by suitable cones in R?; for
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example, for any mass distribution in R, there is a cube C such that the
six infinite cones with apex in the center of C' and with the facets of C' as
bases form an equipartition. Zivaljevi¢ and Vreéica [ZVOl] also proved
several higher-dimensional results, such as that given a simplex A in R?
and a point & € int A, any given mass distribution can be dissected into
d+1 parts with arbitrary prescribed ratios by a suitable translation of
the d+1 cones with apex x given by the facets of A.

Another interesting equipartitioning result is Schulman’s [Sch93] “cob-
web partition theorem”: every bounded set of finite measure in R? has
a partition into 8 equally large parts by a cobweb as in the figure.

Exercises

1. Consider 3 mass distributions in the plane which, moreover, assign mea-
sure 0 to each circle. Prove that they can be simultaneously halved by a
circle or by a straight line. (This is a special case of results of Stone &
Tukey; see [Bre93, p. 243].)

2. Show that 1 : 1 is the only ratio such that any two compact sets in the
plane can be simultaneously partitioned by a line in that ratio.

3. (a) Find 4 measures in the plane that cannot be simultaneously bisected
by a 2-fan.

(b) Find 3 measures in the plane that cannot be simultaneously equipar-
titioned by a 3-fan.

(c) Find 2 measures in the plane that cannot be simultaneously equipar-
titioned by a 5-fan.

See [BMO01] for a detailed solution.

3.2 On multicolored partitions and necklaces

Multicolored partitions. Here is one nice and simple consequence of the
(discrete) ham sandwich theorem:

3.2.1 Theorem (Akiyama & Alon [AA89]). Consider d n-point sets
A1, ..., Aq in general position in RY; imagine that the points of Ay are red, the
points of Ay blue, etc. (each A; has its own color). Then the points of the
union Ay U ---U Ay can be partitioned into “rainbow” d-tuples (each d-tuple
contains one point of each color) with pairwise disjoint convex hulls.
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J’&J@,

(In our drawing we didn’t quite manage to find a correct pairing.)

Proof. We proceed by induction on n. If n > 1 is odd, there is a hyperplane
h bisecting each A; and containing exactly one point of each color. We let
the points in h form one d-tuple and use induction for the subsets in the open
halfspaces. For n even, we invoke the general-position version of the ham-
sandwich theorem (Corollary 3.1.3), which guarantees a bisecting hyperplane
that avoids all the A;. )

Remark. For d = 2 the theorem can be proved directly (Exercise 1). No
direct (non-topological) proof is known in higher dimensions.

Division of a necklace.  Two thieves have stolen a precious necklace of
nearly immeasurable value, not only because of the precious stones (diamonds,
saphirs, rubies, etc.), but also because these are set in pure platinum. The
thieves do not know the values of the stones of various kinds, and so they want
to divide the stones each kind evenly. In order to waste as little platinum as
possible, they want to achieve this by as few cuts as possible (admittedly, this
mathematical model of thieves is not very realistic).

We assume that the necklace is open (with two ends) and that there are d
different kinds of stones, even number of each kind. It is easy to see that at
least d cuts may be necessary: place the stones of the first kind first, then the
stones of the second kind, and so on. The necklace theorem shows that this is
the worst what can happen.

3.2.2 Theorem (Necklace theorem). Every (open) necklace with d kinds
of stones can be divided between two thieves using no more than d cuts.

So for the necklace in our picture, 3 cuts should suffice:

Surprisingly, all known proofs of this theorem are topological.

First proof: by ham sandwich. We place the considered necklace into R¢
along the moment curve. Let v(t) = (t,t%,...,t?) be the parametric expression
of the moment curve . If the necklace has n stones, we define

A; = {y(k) : the kth stone is of the ¢th kind, k =1,2,...,n}.
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Let us also call the points of A; the stones of the ith kind. By the (general
position discrete) ham sandwich theorem 3.1.3, there exists a hyperplane h
simultaneously bisecting each A;. This h cuts the moment curve, and the
necklace lying along it, in at most d places. All the sets A; were assumed to
be of even size, so h contains no stones, and these cuts are as required in the
necklace problem.

Second proof. We reproduce another proof as well, whose clever encoding of
the divisions of the necklace by points of the sphere is of independent interest.

First we note that the result follows from a continuous version. By a con-
tinuous probability measure on [0, 1] we mean a probability measure p on [0, 1]
such that fox dy is continuous in z.

3.2.83 Theorem (Continuous necklace; Hobby—Rice theorem [HR65]).
Let py, pto, ..., g be continuous probability measures on [0,1]. Then there
exists a partition of [0,1] into d+1 intervals Iy, Iy, ..., I4 (using d cut points)
and signs ¢, 1, ...,64 € {—1,+1} with

d
D eiopiI)=0 fori=1,2,...,d
7=0

It should be clear that it suffices to prove this result in the special case
where ¢; = (—1)]47 since a cut point at which the sign doesn’t change may be
removed. However, the proof we give below does not have a natural restriction
to the special case.

We also note that the Hobby—Rice theorem can be derived from the contin-
uous ham sandwich theorem, by an argument similar to the above proof of the
necklace theorem.

Proof of the necklace theorem from the continuous version. Let us
have t; stones of the ¢-th kind, n:= Zd 1 ti. We imagine the necklace on the

1=
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k—1

interval [0,1]; the k-th stone corresponds to the segment [*~
1

[
define characteristic functions f;(z):[0,1] — {0,1} for = € [&=

(1 if the k-th stone of the necklace is of the i-th kind
fila) = {

0 otherwise.

Each function f; defines a measure y; on [0, 1], by u;(A4) == m J4 fi(z)dz. Thus
wi(A) denotes the fraction of stones of the i-th kind that is on the part A of
the necklace.

For these y;, we find a division as in the continuous necklace theorem (the
first thief gets the intervals with “4” signs and the second those with “—").
This division is fair but it can be nonintegral (i.e., some stones would have to
be cut). We use a rounding procedure. We proceed by induction on the number
of “nonintegral” cuts. If a cut subdivides a stone of the ¢-th type, then either
the cut is unnecessary, or there is another cut through a stone of type ¢, and
we move one cut to the right, and the other cut to the left, without changing
the balance. )

Proof of the continuous necklace theorem. With every point & =
(x1,22,..., %4, 2411) € S? we associate a division of the interval [0, 1] into d+1
parts, of lengths z% 22, .. '796(214-1: that is, with @ we associate the cuts at the
points z; ;= 2% +- - -+ 2%, where 0 = 29 < 21 < -+ < zg < 2441 = 1. The sign ¢;
for the interval I; = [z, zj41] is chosen as sign(z;). This defines a continuous
function ¢: ¢ — R%:

d+1

gi(@) := Y _sign(a;) - pi([zj-1, 7))

=1

In words, g;(#) is the amount of i-stone given to the first thief minus the amount
of +-stone allocated to the second thief. This function is clearly antipodal. Thus,
an @ € S? exists with g(z) = 0. This @ encodes a just division. &

For a solution of a similar problem with more than two thieves, the proof via
the ham sandwich theorem doesn’t seem to work anymore. The second proof
can be generalized but the Borsuk—Ulam theorem needs to be generalized as
well: instead of the sphere we have to use a different “configuration space” that
admits a symmetry of higher order. The necklace problem with several thieves
will be discussed in Section 6.4.

Notes.  The necklace theorem was first proved by Goldberg & West
[GWS85]. Alon & West [AWS86] found a new elegant proof, essentially
the second proof given above. The proof of the necklace theorem via the
ham sandwich theorem was noted by Alon (private communication) and
also by Ramos [Ram96]. The continuous necklace theorem was proved
by Hobby and Rice [HR65], earlier than the discrete version, and in a
completely different context—but the proof is also based on the Borsuk—
Ulam theorem.
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Exercises

1. Prove the planar case (d = 2) of Theorem 3.2.1 by considering a perfect
red-blue matching with the minimum possible total length of the edges.

3.3 Kneser’s conjecture

One of the earliest and most spectacular applications of topological methods in
combinatorics is Lovasz’ 1978 proof [Lov78] of the so-called Kneser conjecture.
Kneser posed the following problem in 1955:

Aufgabe 360: £ und # seien zwei natiirliche Zahlen, ¥ = »; N sei eine
Menge mit » Elementen, N die Menge derjenigen Teilmengen von N, die
genau k Elemente enthalten; f sei eine Abbildung von N}, auf eine Menge M,
mit der Eigenschaft, daB f(K,) = f(K,) ist falls der Durchschnitt K; ~ K,
leer ist; m(k, n, f) sei die Anzahl der Elemente von M und m(k, n) =
M}n m(k, n, f). Man beweise: Bei festem % gibt es Zahlen m, = m,(k) und

1y =N (k) derart, daBm (k, n) = n—myistfiirn = n,; dabei ist my (k) =2k — 2
und #,(k) = 2k— 1; in beiden Ungleichungen ist vermutlich das Gleich-
heitszeichen richtig.

Heidelberg. MARTIN KNESER.

Let & and n be two natural numbers, k < n; let N be a set with n
elements, Ny the set of all subsets of N with exactly k elements; let f
be a map from Ny, to a set M with the property that f(K1) # f(K2)
if the intersection K N K is empty; let m(k, n, f) be the number
of elements of M, and m(k,n) = mingm(k,n, f). Prove that: for
fixed k there are numbers mg = mg(k) and ng = ng(k) such that
m(k,n) = n—mg for n > ng; here mo(k) > 2k—2 and ng(k) > 2k—1;
both inequalities probably hold with equality.

We will use slightly different notation, and recast this in a graph-theoretical
language. We take N = [n], we write ([Z]) instead of Ny, for the collection of all

k-subsets of [n], we take ([Z]) as the vertex set of a graph, and we connect two
vertices by an edge if the corresponding k-sets are disjoint. Then the mapping
f becomes a coloring of the graph, where M is the set of colors, and Kneser
asks for the chromatic number of the graph!

We recall that a (proper) k-coloring of a graph G = (V, E) is a mapping
c: V' — [k] such that ¢(u) # ¢(v) whenever {u,v} € E is an edge. The chromatic
number of G, denoted by x(G), is the smallest k such that G has a k-coloring.

Let X be a finite ground set and let & C 2% be a set system. The Kneser
graph of §, denoted by KG(S), has S as the vertex set, and two sets S1,5; € S
are adjacent iff S; NSy = @. In symbols,

KG(S) = (57 {{51,52): 51,5, €8, 8 NS, = @}).

Let KGy, ; denote the Kneser graph of the system § = ([Z]) (all k-element

subsets of [n]). Then Kneser’s conjecture is x(KGy, ;) = n—2k+2 for n > 2k—1.
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3.3.1 Examples.
e KG, ; is the complete graph K, with x(K,) =n
o KGop_1x is a graph with no edges, and so y(KGar—1%) = 1.

o KGyg i is a matching (every set is adjacent only to its complement) and
X(KGag k) =2 for all k£ > 1.

e The first interesting example is KGs 5, which turns out to be the ubiqui-
tous Petersen graph:

{1,3}
{2,5} {2,4}
oy
{1,2}
{1,4} ¢ ¢ {3,5}

This graph serves as a “(counter)example for almost everything” in Graph
Theory (see [CW85], [CHW92], [HS93] and the references given there).

Check that 3 colors suffice and are necessary!

Kneser’s conjecture, which is a theorem since 1978, can be restated as fol-
lows:

3.3.2 Theorem (Kneser’s conjecture). For all k > 0 and n > 2k — 1, the
chromatic number of the Kneser graph KG,, 1, is Y(KG,, ) = n—2k+2.

The Kneser graphs KG,, ; are very interesting examples of graphs with high
chromatic number. For example, note that for n = 3k—1, they have no trian-
gles, and yet the chromatic number is k+1. One of the main reasons of their
importance, and also probably a reason why the proof of Kneser’s conjecture is
difficult, is that there is a large gap between the chromatic number and the frac-
tional chromatic number. (There are very few examples of such graphs known.)
The fractional chromatic number xf(G) of a graph G is defined as the infimum
(actually minimum) of the fractions § such that V(G) can be covered by a
independent sets in such a way that every vertex is covered at least b times. We
always have x;(G) < x(G), and many methods for estimating x(G) from below
actually estimate y¢(G)—which means that they don’t give good estimates for
graphs that have high chromatic number x(G), but low fractional chromatic
number x¢(G), as in the case of the Kneser graphs.
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For example, the well-known lower bound in terms of the maximal size of
independent sets, x(G) > |V (G)|/a(G), is just a part of the chain

% < (@) < x(G),
where a(G), the independence number of G, is the maximum size of an indepen-
dent set in G. But for the Kneser graph, we have x;(KGy 1) = 7 (Exercise 1).
So, for example, xf(KGsr_1%) < 3.

It is fairly easy to show that the chromatic number of KG, ; cannot be
larger than n—2k42.

Upper bound for the chromatic number. We color the vertices of the
Kneser graph by
X(F) := min{min(F), n—2k+2}.

This assigns a color x(F) € {1,2,...,n—2k+2} to each subset F' € ([Z]). If two
sets F, F' get the same color x(F) = x(F') = ¢ < n—2k+2, then they cannot
be disjoint since they both contain the element ¢. If the two k-sets both get the
color n—2k+2, then they are both contained in the set {n—2k+42,...,n}, which
has only (2k—1) elements, and hence they cannot be disjoint either. )

All known proofs of the tight lower bound for y(KG,x) are topological
or at least imitate the topological proofs. We begin with one of the simplest
known proofs, found by Bardny [Bar78] soon after the announcement of Lovdsz’
breakthrough. It is based on the following geometric lemma.

3.3.8 Lemma (Gale’s lemma [Gal56]). Foreveryd > 0 and every k > 1,
there exists a set V. C S of 2k+d points such that every open hemisphere of
S? contains at least k points of V.

First let us see how this implies Kneser’s conjecture.

First proof of Kneser’s conjecture. Let us consider the Kneser graph
KGy, ; and set d:=n—2k. Let V C 5S¢ be the set as in Gale’s lemma 3.3.3. Let

us suppose that the vertex set of KG,, j is (Z), rather than the usual ([Z]) (in
other words, we identify elements of [n] with points of V).

We proceed by contradiction. Suppose that there is a proper coloring of
KGy, 1 by at most n—2k+1 = d+1 colors. We fix one such proper coloring and
we define sets Ay, ..., Ay 1 C S¢ For a point @ € S¢, we have @ € A; iff there
is at least one k-tuple F € (Z) of color ¢ contained in the open hemisphere
centered at .

These sets Ay,..., Agy1 form an open cover of S?, since each open hemi-
sphere contains at least one k-tuple. By the Borsuk-Ulam theorem 2.1.1(3.2)
(Lusternik—Schnirelmann for open covers), there exist ¢ € [d+1] and ® € S?
such that @, —& € A;. In this way, we get two disjoint k-tuples colored by the
color 7, one in the open hemisphere centered at @ and one in the opposite open
hemisphere centered at —&. This means that the considered coloring is not a
proper coloring of the Kneser graph. aa
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Proof of Gale’s lemma. We prove the following version (equivalent to
the above formulation using the central projection to S%): there exist points
V1, V2, ..., Vopsq in RT! such that every open halfspace whose boundary hy-
perplane passes through O contains at least k of them.

The construction uses the moment curve (Definition 1.6.3) but we lift it one
dimension higher, into the hyperplane z; = 1. That is, let

o= {(1,t,t% ..t e Rt € R},

We take 2k+d arbitrary distinct points on ¥ and label them wq, wa, ..., wWak4q
in the order in which they occur along the curve. For example, we can take
w; :=7(¢) for 1 <i < 2k+4d. We call the points wg, w., . .. even and the points
wy, w3, ... odd. Further we define v; := (—1)'w;.

Let  be a hyperplane passing through 0 and let AT and 2~ be the two open
halfspaces determined by it. We want to argue that both AT and A~ contain at
least k& points among the v;; we formulate the argument for A™. Since v; = w;
for ¢ even and v; = —w, for ¢ odd, we need to prove that the number of even
points w; in ht plus the number of odd points w; in h™ is at least k.

Using Lemma 1.6.4, we see that every hyperplane h through the origin
intersects 4 at no more than d points. Moreover, if there are d intersections,
then 7 crosses h at each of the intersections.

Given an arbitrary h through the origin, we move it so that it contains
the origin and exactly d points of W :={wy, ..., wgy2r}, while no point of W
crosses from one side to the other during the motion. This is possible: having
already k < d points of W on h, we rotate h around the flat spanned by these
points and 0, until we hit another point of W. After this motion, & intersects
~ in exactly d points, which all lie in W.

Let Won be the subset of the d points of W lying on h, and let W g:=W \
Won be the remaining 2k points. At every point of Wy, 4 crosses from one
side of h to the other.

Color a w; € Wy black if either it is even and lies in AT or it is odd and
lies in A~. Otherwise, color w; white. It is easy to see that as we follow %,
black and while points of W g alternate:

Indeed, let w and w’ be two consecutive points of W g along ¥ with j points of
Won between them. For j even, both w and w’ are in the same halfspace and
one of them is odd and the other is even, so one is black and one white. If j is
odd, then w and w’ are in different halfspaces but they are both even or both
odd, and so again one is black and one white. So the number of black points is
at least | £|Wog|] > k. This proves Gale’s lemma. &
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Schrijver’s strengthening. Almost the same proof establishes a stronger
theorem, first proved by Schrijver [Sch78] soon after Kneser’s conjecture was
proved.

Let us call a subset S € ([Z]) stable if it does not contain any two adjacent
elements modulo n; that is, if it corresponds to an independent set in the
cycle C,,. We denote by <[Z]>stab the family of stable k-subsets of [n]. The
Schrigver graph SG,, i, is the induced subgraph of the Kneser graph KG,, 1 on
the stable k-sets. That is, the Schrijver graph SG, ; has the stable k-subsets
of [n] as its vertices, and two vertices are connected by an edge if and only if
they are disjoint k-sets.

Schrijver’s theorem states that x(SGn k) = X(KG, %) = n—2k+2. In fact,
Schrijver showed that SGy,  is a vertez-critical subgraph of the Kneser graph
KGy, k; that is, the chromatic number decreases by deleting any single vertex
(stable k-set) from SGy, i; see Exercise 2.

The proof of Schrijver’s theorem goes exactly as the one shown above for
Kneser’s conjecture, with the following strengthening of Gale’s lemma: there
exists a (2k-+d)-point set V C S such that, under a suitable identification of V
with [n], every open hemisphere contains a stable k-tuple. And this is exactly
what the above proof of Gale’s lemma provides: the black points form a stable
set, if the points of V are numbered along 7.

Notes. Later we are going to present several more proofs of Kneser’s
conjecture. A summary of references and generalizations is given in the
notes to Section 6.7.

Gale’s proof of Lemma 3.3.3 is different from the one shown; it is
more complicated and goes by induction on d and k. On the other
hand, our argument is also based on Gale’s work, namely on the investi-
gation of cyclic polytopes, which are convex hulls of finite point sets on
the moment curve. The possibility of proving both Gale’s lemma and
the stronger version needed for Schrijver’s graphs by the above simple
construction was observed by Ziegler.

Exercises

1. (a) Show that the fractional chromatic number of the Kneser graphs sat-
isfies

Xf(KGp ) < (n > 2k > 0).

>3

(b) Show that the inequality in (a) is actually an equality. Hint: (look up
and) use the Erdés—Ko-Rado theorem.

2. (a) Show that the graph SG,, j is vertex-critical (for chromatic number);
that is, for every k-tuple A € V(SG,, 1), there is a proper coloring of the
vertex set of SGy, ;; by n—2k+2 colors that uses the color n—2k4-2 only
at A.

(b) Show that not all SG,, 1 are edge-critical (an edge may be removed
without decreasing the chromatic number).
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3. Show that the Schrijver graph SG, j is not regular in general; that is, its
vertices need not all have the same degree. What can you say about the
symmetries of the Schrijver graphs?

4. Show KGy, ; has no odd cycles of length shorter than 1+ Q[n_kﬁ] What
about even cycles?

3.4 Kneser’s conjecture: second proof

The proof of Kneser’s conjecture presented in this section is very natural and
fairly simple. First we recall the important notion of the chromatic number of a
hypergraph (or of a set system). If S is a system of subsets of a set X, a coloring
c: X — [m]is a (proper) m-coloring of (X, §) if no edge is monochromatic under
¢ (|e(S)| > 1forall S € §). The chromatic number x(8§) is the smallest m such
that (X,S) is m-colorable. In this section, we will only be interested in two-
colorability.

Next, we define a less standard parameter of the set system S: let the m-
colorability defect, denoted by cd, (S), be the minimum size of a subset ¥ C X
such that the system of the sets of § that contain no points of Y is m-colorable.
In symboals,

cd, (S) = min{|Y| C(X\Y {SeS: SNY =g})is m—colorable}.

For example, for m = 2, we want to color each point of X red, blue, or white in
such a way that no set of § is completely red or completely blue (but it may be
completely white), and cd3(S) is the minimum required number of white points
for such a coloring.

We prove

3.4.1 Theorem (Dol'nikov’s theorem [Dol'81]). For any finite set system
(X,S8), we have
X(KG(S)) > cdq(S).

Here the Kneser graph KG(S) is defined as in the previous section and y is the
usual graph-theoretic chromatic number.

If S consists of all the k-points subsets of [n], n > 2k, then after deleting any
at most n—2k+1 points, we are left with the system of all k-element subsets of
a (2k—1)-element set. In any red-blue coloring of that set, one of the colors has
at least & points and contains a monochromatic k-element set. Thus cdy(S) >
n—2k+2, and we see that Theorem 3.4.1 implies Kneser’s conjecture.

For proving Theorem 3.4.1, we first need a geometric statement based on
the Borsuk—Ulam theorem, slightly resembling the ham sandwich theorem.

3.4.2 Proposition. Let Cy,Cy,...,Cq be families of nonempty compact convex
sets in RY, and suppose that foreachi =1,2,...,d, the system C; is intersecting;
that is, C N C" # @ for C,C" € C;. Then there is a hyperplane (transversal)
intersecting all the sets in Ule C;.
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Proof. For a direction vector v € S9!, let £, denote the line containing v
and passing through the origin, oriented from the origin towards v. Consider
the system of the orthogonal projections of the sets of C; on the line £,:

Each of these projections is a closed and bounded interval, and any two of them
intersect. It is easy to see (directly, or by the one-dimensional Helly theorem)
that the intersection of all these intervals is a nonempty interval, which we
denote by I;(v). Let m;(v) denote the midpoint of I;(v).

We define an antipodal mapping f: S¥' — R? by letting f(v); = (m;(v),v)
be the oriented distance of m;(v) from the origin. This is a continuous antipo-
dal map, and we claim that for any such map, there is a point v € S4 ! with

filv) = fa(v) = --- = fa(v). To see this, define a new antipodal map ¢, this
time into R, by letting ¢; = f; — f4, i = 1,2,...,d—1. This g has a zero by
the Borsuk-Ulam theorem, and if ¢(v) = 0, then fi(v) = fo(v) = --- = fi(v)

as required. For a v with this property, all the d midpoints m;(v) coincide, and
so the hyperplane passing through them and perpendicular to £, is the desired
transversal of all the sets in each C;. &

Proof of Theorem 3.4.1. Suppose that there is a d-coloring of the Kneser
graph KG(S). This means that § can be partitioned into set systems Sy, Sy, . .., Sq,
such that each two sets in §; have a common point, : = 1,2,...,d.

Place the points of the ground set X into R? in a general position, in such a
way that no d+1 of them lie on a common hyperplane (and otherwise arbitrarily;
for instance, they can be placed on the moment curve). Define the d families
of convex sets in R? by

Ci = {conv(S): S € S;}.

These C; satisfy the assumptions of Proposition 3.4.2 above, and so there is a
hyperplane h intersecting the convex hulls of all the S € §. Let Y = X N h be
the (at most d) points that lie on h:
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Color the points of X \'Y in one of the open halfspaces of h red, and those in
the other halfspace blue. Since none of the sets of S lies completely in one of
the open halfspaces defined by h, this red-blue coloring shows that cdy(S) < d.
Theorem 3.4.1 is proved. aa

Notes. Theorem 3.4.1 is a special case of results of Dol'nikov [Dol'81]
(also see [Dol92], [Dol'94]). We postpone the discussion of his results
and related material to the notes to Section 6.7. For another proof of
Dol’nikov’s theorem see Exercise 5.7.3.

Exercises

1. For set systems S with x(KG(S)) < 2, prove Dol'nikov’s theorem 3.4.1 by
a direct combinatorial argument.

2. Find 2-colorable set systems S with x(KG(S)) arbitrarily large.

3. Show that for n > 2k, the family ([Z]) is critical with respect to the 2-
colorability defect: If § is a proper subset of ([Z]), then

cda(S) < n—2k+2.

4. Show that the 2-colorability defect of the Schrijver hypergraphs ([Z])stab
is given by
cda((BY),,.,) = min{n,n— 4k +4}.
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A Topological Interlude

In this chapter we explain some further basic topological concepts and construc-
tions needed for the further development. We do it a little more thoroughly
than necessary for our concrete applications. Similar to Chapter 1, most of the
material should be well-known to readers fluent in elementary algebraic topol-

ogy.

4.1 Quotient spaces

Given a topological space X and a subset A C X, we can form a new space by
“shrinking A to a point.” Two spaces can be “glued together” to form another
space. A space can be factored using a group acting on it. All these important
constructions are special cases of forming quotient spaces.

4.1.1 Definition (Quotient space). Let X be a topological space and let
~ be an equivalence relation on its elements. We define a topology on the set
X/~ of equivalence classes as follows: A set U C X/ is open if and only if
q 1 (U) is open in X, where ¢: X — X/~ is the quotient map that maps each
x € X to the equivalence class [x]y containing it.

In constructions of quotient spaces, the equivalence ~ is often given by a
list of the nontrivial equivalence classes. That is, if (4; : ¢ € I) is some family
of disjoint subsets of X, we define an equivalence ~ on X corresponding to this
family as follows: z ~ y if and only if = y or there exists ¢+ € I with x,y € A;.
Then we write X/(A;, 7 € I) for X/~. The meaning is “the space X/(A;, ¢ € I)
is obtained from X by shrinking each A; to a single point.” If we have only one
A; = A, we simply write X/A.

4.1.2 Example. Let U = [0,1] X [0, 1] be the unit square. By gluing the two
vertical sides together, i.e. by taking U/({(0,y), (1,¥)}ye[o,1)) We obtain the
surface of a cylinder. The horizontal edges can be further glued either in a
“direct” way (that is, a point (z,0) is identified with (z,1) for each z € [0, 1]),
which produces a torus, or in a “twisted” way (i.e. a point (z,0) is identified
with (1 — 2,1)), which leads to the so-called Klein bottle (which cannot be
embedded in R? however).
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Here are two other simple but useful constructions.

4.1.3 Definition (Sum and wedge). Let X and Y be topological spaces.

The sum of X and Y, denoted by X UY, corresponds to just “putting X
and Y side by side.” The point set of X LY is the disjoint union of X and Y
(formally, we can take (X x{0})U (Y x{1}), say) and each open set U C X UY
is a (disjoint) union of an open set in X and an open set in Y.

Now let zg € X and yo € Y some points (called base points). The wedge
of X and Y, with respect to xg and yo, is X VY := (X UY)/({zo,y0}); that is,
we take the sum and then glue xq to yo.

Many commonly encountered spaces (such as connected manifolds) are ho-
mogeneous, in the sense that for any z,2’ € X, there is a homeomorphism
h: X — X with h(z) = 2’. For such X, the choice of the base point in the
wedge construction obviously doesn’t matter.

The wedge is a special case of another construction: attaching one topolog-
ical space to another by a given subspace, or gluing spaces.

4.1.4 Example (Gluing spaces). Let X and Y be topological subspaces
with closed subspaces A C X and B C Y that are homeomorphic, with h: A —
B being a given homeomorphism. The space obtained by gluing X and Y via h
is the quotient space X Ly Y obtained from the sum X LY as

XUpY = (X UY)/{{a, h(a)}: a € A}

Our most significant instance of quotient spaces are joins, discussed in the
next section. But first we mention a useful sufficient condition for homotopy
equivalence.

4.1.5 Proposition (Contracting a contractible subcomplex is a homo-
topy equivalence). Let X be the polyhedron of a simplicial complex K and
A C X the polyhedron of a subcomplex of K. Suppose that A is contractible.
Then the quotient map q: X — X /A has a homotopy inverse; that is, a contin-
uous map p: X/A — X such that gop ~ idx/4 and poq ~ idy. Therefore,
X ~ X/A.
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Many homotopy equivalences occurring “in practice” can be interpreted as
sequences of operations according to Proposition 4.1.5 and their inverses. The
conclusion holds for more general pairs (X, A) with A contractible; it is enough
that they satisfy the “homotopy extension property” introduced in the proof
below.

Proof. It is not entirely obvious how the required homotopy inverse p should
be constructed; the reader may want to consider the example with X = S' and
A C X being a half-circle.

Let (fi: A — A)sejo,1) be a homotopy of the identity map idy = fo to the
constant map f; with fi(a) = ap € A for all @ € A. Suppose that we manage to
extend this homotopy to a homotopy (ft)te[o,l] on the whole X, with fy =idy
(each f;: X — X coincides with f; on A). Then f; is a continuous map X — X
that is constant on A, and so we can consider it as a map p: X/A — X (formally,
p([z]) = fi(z) for z € X). We have p(q(z)) = p([z]) = fi(z), and s0 (fi)sefo,1]
is a homotopy witnessing po ¢ ~ idx. As for the other direction, we note that
if we set p;([z]) = [fi(z)], we obtain well-defined maps (since each f; maps A
into A), which provide a homotopy of pg = id x4 with p; = ¢ o p as required.

It remains to show that the homotopy can indeed be extended. This is a
special case of the following definition:

4.1.6 Definition. Let X be a topological space and A C X a subspace of it.
We say that the pair (X, A) has the homotopy extension property if every
continuous mapping F: (AX[0,1))U(X x{0}) = Y, where Y is some topological
space, can be extended to a continuous mapping F: X x [0,1] = Y :

Ax[0,1] extend here

A

~ In our case, we have the homotopy (fe: A — A)te[o,l] and an extension
fo: X = X of fy. So we set

| file) forzeAt#0
F(a,4) = { f;(w) forz e X,t=0.

For the proof of Proposition 4.1.5, it thus suffices to show that whenever X is
the polyhedron of a (finite) simplicial complex K and A is the polyhedron of a
subcomplex of K, then the pair (X, A) has the homotopy extension property.
(Here we do not need contractibility of A anymore; this was used for the exis-
tence of the homotopy id4 ~ const.)

To establish the homotopy extension property of a pair (X, A), it is enough
to verify that S := (Ax[0, 1])U(X x{0}) is a deformation retract of T := X x [0, 1].
Indeed, if (g¢)se[o,1) i a deformation retraction witnessing this, we simply set
F(z) = F(g1(2)), z = (2,t) € X x[0,1]. This works since g;(2) € Sforallz € T
and g1(2) =z on S.!

'We haven’t used the full power of deformation retraction, only the existence of a single
continuous map g1 with the two properties just stated. The existence of such g; defines the
weaker concept of S being a retract of T
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The deformation retraction of T on S is constructed gradually. First we note
that the deformation retraction exists if X is a simplex and A is its boundary,
as the picture indicates for a 1-dimensional simplex:

t=
""" t =0.3 7
"""""" I T —
A ¥ 4

(In Exercise 2, the reader is invited to construct such a “hollowing out” defor-
mation retraction explicitly.) Then we hollow out the simplices of X not lying
in A one by one, starting with those of the largest dimension and proceeding
to the smaller dimensions, until only the simplices of A remain “fat.” &

Exercises
1. Check that BY/(S9"1) = 59,

2. Let ¢ be a (geometric) simplex. Describe a deformation retraction of
ox[0,1] to (0o x [0,1]) U (6 x{0}), either geometrically or by an explicit
formula.

3. Let K be a simplicial complex and Ky, Ky C K subcomplexes that together
cover K (i.e. K = K; UKz). Assume that both K; and K; N Ky are
contractible. Using Proposition 4.1.5, prove that K ~ Ky; in particular, if
Ky is contractible, then K is contractible as well.

4. Consider a finite graph G as a 1-dimensional simplicial complex (the ver-
tices of the graph are the vertices of the simplicial complex and the edges
are the 1-dimensional simplices). Suppose that G is connected and has n
vertices and m edges. Show that GG is homotopy equivalent to a wedge of
m—n+1 circles (S'’s).

5. Let X be a space and let A C X be such that the pair (X, A) has the
homotopy extension property. Let Y be another space, let B,C' C Y, and
let h: A — B and ¢g: A — C' be homeomorphisms such that & and ¢ are
homotopic as maps X — Y. Prove that X LI Y and XU,Y are homotopy
equivalent.

4.2 Joins (and products)

For many mathematical structures, including topological spaces, we have a
notion of a Cartesian product X xY. For topological spaces, X XY has the set-
theoretical Cartesian product of X and Y as the set of points, and the topology
of X XY is the coarsest one making the projections maps 7x: X XY — X
and 7y: X XY — Y continuous. More explicitly, the topology on X X Y is
generated by the “open rectangles” U X V', where U C X and V C Y are open
sets.



61 4. A Topological Interlude

When working with simplicial complexes, a drawback of the Cartesian prod-
uct is that the product of two simplices is not a simplex, except for trivial cases:

c— - @

So if we want to regard a product of simplicial complexes as a simplicial complex,
we have to triangulate it. We now introduce another product-like operation on
topological spaces called join and denoted by *. The first advantage over the
Cartesian product is that the join of simplices is again a simplex:

== A

Other advantages are subtler and we will encounter some of them later.
The join has an extremely natural combinatorial definition for simplicial
complexes.

4.2.1 Definition (Join of simplicial complexes). Let K and L be simpli-
cial complexes. Assuming that V(K) NV (L) = @, the join K« L has vertex set
V(K)U V(L) and simplices F UG, for all F € K and all G € L.

If the vertex sets are not disjoint, we formally rename the vertices so that
they become disjoint. So we let V(K L) :=(V(K) x {0}) U (V(L) x {1}) and
the simplices are F « G:=(F x {0}) U (G x {1}) for all F € K and all G € L.

For simplices we have o% x ¢ = o**1 and (¢°)*" = ¢"!; here 0¥ is a
single point and K™ means the n-fold join K * K x --- % K. Note that K™ has
n|V(K)| vertices, with one copy of V(K) for each factor.

4.2.2 Example (important!). As a more interesting and challenging exam-
ple, we consider (S%)*", where S is the 0-dimensional sphere consisting of two
isolated vertices; call them @ and b. The n-fold join has 2n vertices ay, ao, .. ., @y,
and by, by, ..., b,. A subset of this vertex set is a simplex in (S°)*" if and only if
it does not contain both a; and b; for some ¢. Comparing with the description of
the proper faces of the crosspolytope below Definition 1.4.1, we get that (S%)*"
is the surface of the n-dimensional crosspolytope, i.e. a triangulation of S"~1.
We conclude

(5 = 57,

Since the join is obviously associative, we further get S* x §* 2 Sk¥+4+1 (consid-
ering the crosspolytope triangulations on both sides).

The join is also defined for arbitrary topological spaces:

4.2.3 Definition (Join of spaces). Let X andY be topological spaces. The
join X Y is the quotient space X xY x [0, 1]/ ~, where the equivalence relation
~ is given by (x,y,0) ~ (2',y,0) for all ;2" € X and all y € Y (“fort =0,
does not matter”) and (z,y,1) =~ (z,y',1) for all € X and all y,y' € Y (“for
t =1, y does not matter”).
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The drawing illustrates this definition for X and Y being line segments (1-

simplices):
e
o
oy &
/ %

X xY x[0,1]
Here is a helpful geometric interpretation of the join:

4.2.4 Proposition (Geometric join). Suppose that X andY are subspaces
of some Fuclidean space, and that X C U and Y C V, where U and V skew
affine suspaces of some R" (that is, UNV = @ and the affine hull of U UV
has dimension dim U+ dim V+41). Moreover, suppose that both X and Y are
bounded. Then the space

Z ={te+ (1-t)y: te[0,1],z€c X,y e Y} CR",

i.e. the union of all segments connecting a point of X to a point of Y, is
homeomorphic to the join X *Y .

Xy iV

Sketch of proof. There is an obvious continous map

XxYx[0,1]] > {te+ (1-t)y: t€[0,1]],ze X,y €Y}
that induces a homeomorphism
(X XY x[0,1])/~ = {te+ (1-t)y: t €[0,1],z € X,y € Y}.

First we observe that t'&’ + (1-t')y’ = t"&" + (1—t")y" implies ¢’ = t", and, if
t # 0, also ® = @’. From it follows that our map is a bijection. The continuity
at points with ¢ # 0 is fairly obvious. For ¢t € {0,1}, some care is needed, and
one needs to use the boundedness of X and Y (for unbounded X and Y, the
inverse mapping need not be continuous). &

With this interpretation, it is not hard to see the equivalence of the definition
of join for simplicial complexes with that for spaces; that is, ||K * L|| 2 ||K]|*||L]|
for any simplicial complexes K and L. Indeed, it suffices to check that if X is a
k-simplex and Y is an f-simplex, the geometric definition in Proposition 4.2.4
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yields a (k+(+1)-simplex. This follows since if A C U and B C V are affinely
independent sets, then A U B is affinely independent, too.

Yet another description of the join is presented in Exercise 3.

The join is commutative, in the sense X *Y =Y x X. It is also associative,
(X «Y)*xZ =2 X « (Y % Z), as is best seen from the definition for simplicial
complexes (at least for triangulable spaces).

Cone and suspension. Two other well-known topological constructions can
be seen as special cases of the join. The cone over a space X is the join with
a one-point space: cone(X):=X x {p}. Geometrically, the cone is the union of
all segments connecting the points of X to a new point. Another equivalent
definition is the quotient space cone(X) 2 (X x[0,1])/(X x{1}):

_y
R i

X X x[0,1] cone(X)

The join with a two-point space, X x S©, is called the suspension of X and

denoted by susp(X). It can be interpreted as erecting a double cone over X, or
as the quotient (X x[0,1])/(X x{0}, X x{1}).

Notation for points of a join. Let us consider an n-fold join X*". A point
in it can be conveniently written in the form (“formal convex combination”)
tixy +taxg + - - -+ thxy,, where t1,ts, ..., t, are nonnegative reals summing up
to 1 and 21, 4,...,2, are points of X. As the notation suggests, if t; = 0,
then the choice of z; does not matter, and we get the same point of X*" for
all z; € X. On the other hand, the analogy with convex combination should
not be pushed too far: this formal convex combination is not commutative; for
example, %a + %b, a # b, is a point of X*? different from %b + %a. This is
because of the “renaming convention” for joins: we should really think of z; as
coming from a different copy of X than 2z, and so on.

Join as a functor. Joins can be naturally defined not only for spaces but
also for (continuous) maps. Given maps f: X7 — X3 and ¢:Y7 — Y3, a map
frg: X1 xY] — Xo Yy is given by to 4+ (1-t)y — tf(z) + (1-t)g(y).

Joins and products. The Cartesian product X x Y can be embedded into
XY by (z,y) — %w + %y € X «Y. Similarly, the Cartesian power X™ embeds
into X*"* by (21,22,...,2,) — %xl + %xz 44 %wn Here is an illustration
for our usual example X =Y =o':

XxY



4.3 k-connectedness 64

Exercises

1.

4.3

Verify the following homeomorphisms and homotopy equivalences (X and
Y are triangulable spaces). If you cannot do the general case in (d)—(f),
try at least some special cases like X =Y = S'.

a) cone(S™) = BTl

b) cone(B") & Bt

c) susp(B") & B+,

4) susp(X VY = susp(X) v susp(¥),

e) susp(X UY) ~ susp(X) Vsusp(Y) vV S!,

f) susp((X VY) U {p}) =~ susp(X) V susp(Y) v S*.

Parts (d)—(f) may fail if X and Y are arbitrary topological spaces.

. Show that joins preserve homotopy equivalence; that is, if X ~ X', then

X+xY ~X'xY.

(Another interpretation of the join) Let X and Y be spaces. Verify that
X #Y is homeomorphic to the subspace (cone(X) x Y) U (X x cone(Y))
of the product cone(X) X cone(Y). (Equivalently, glue the two spaces
cone(X) XY and X x cone(Y') in the subspaces homeomorphic to X x Y
that are given by the inclusions of bases X C cone(X) and Y C cone(Y').)

. Let the topology on a space X be induced by a metric p and the topology

on Y by a metric ¢. Assume that both p and ¢ are bounded, i.e. no
two points have distance more than K for a suitable fixed number K.
Construct a metric 7 on the join X * Y inducing its topology (and check
that it indeed works). Warning: there are some quite tempting wrong
solutions.

. In Section 1.7, we associated the simplicial complex A(P) with every

[
*

(finite) poset P. What is the appropriate operation on posets, such

that A(P x Q) = A(P) + A(Q)?

k-connectedness

Informally, a topological space X is k-connected if it has no “holes” up to
dimension k. A hole in dimension ¢ is something that prevents some suitably
placed S¢ from continuously shrinking to a point:

50
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(To make a hole in a B® in dimension 0, slice it in two pieces; for dimension 1,
puncture a tunnel in it, and for dimension 2, make a void inside.) Of course,
things can be more complicated: a torus certainly has a hole in dimension 1 in
this sense, but what about dimension 27 Fortunately, we need not contemplate
such finesses here, since the formal definition is simple:

4.3.1 Definition (k-connected space). Let k > —1. A topological space
X is k-connected if for every £ = —1,0,1,..., k, each continuous map f:S* —
X can be extended to a continuous map f: B! — X, (Equivalently, each
f:S* — X is nullhomotopic.)

Here S~ is interpreted as @ and B° as a single point, and so (—1)-connected
means nonempty.

For k > 0, k-connectedness includes the condition (for £ = 0) that X has
to be arcwise connected. A space X satisfying the condition for £ = 1, i.e.
with every map S' — X nullhomotopic, is usually called simply connected. So
1-connected means arcwise connected and simply connected.

It is not hard to check that homotopy equivalence preserves k-connectedness
(Exercise 1). Another very believable result is

4.3.2 Theorem. The n-sphere S™ is (n—1)-connected and not n-connected.

Proof. By the Borsuk-Ulam Theorem 2.1.1 (1.3), S™ is not n-connected.

The fact that S™ is (n—1)-connected may seem almost obvious, but one has
to be careful, as already maps S! — S™ can be quite wild (think of a space-
filling curve!).

Let us consider a (uniformly) continuous map f: S* — S”. We show that
it is homotopic to another map ¢: S¥ — S” that is not surjective. Such a ¢ is
obviously nullhomotopic and hence f, too, is nullhomotopic.

To construct g, we find an ¢ > 0 such that ||f(2) — f(y)|| < 1 whenever
|2 — y|| < ¢, and a triangulation A of S*¥ such that every simplex in A has
diameter smaller than ¢ (think of Sk as the boundary of a simplex, for example).
Now we define g on each simplex ¢ € A by interpolating the values of f at the
vertices of ¢ suitably. Moreover, such a definition yields a homotopy of f and
g. Namely, we define F: Sk x T — S™ by

Y ANf() + (1) ()
Bl = 1S o) + (10 f()]

where vy, ..., v, are the vertices of supp(@) (the simplex of A containing @ in
its relative interior) and @ = Z:’;l A;v;. We need to show that the denominator
is never 0. All the f(v;), as well as f(«), have distance at most 1 from v; and
hence they all lie in a spherical cap of radius smaller than 1. So their convex
hull cannot contain the origin and F' is well-defined and continuous. We have
f = F(x,0) and we set g:= F(*,1). For every simplex o € A, the image ¢(o)
is contained in a hyperplane in R"*! passing through the origin. A finite union
of hyperplanes cannot cover the sphere and hence ¢ is not surjective. R
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In many topological proofs of geometric or combinatorial results, the prob-
lem is reduced to showing that certain spaces are highly connected. Num-
ber of tools are available for the latter task. We will soon explain a simple
trick (Sarkaria’s inequality) which will allow us to avoid explicit proofs of k-
connectedness in most of the applications. But for attacking other problems,
it can be useful to have tools for establishing k-connectedness at hand. In the
rest of this section, we state some such results without proof (since they use
a technical apparatus which we do not want to assume in this book). Later
we will add a few more, which we will be able to prove even with our meager
topological means.

Homology and k-connectedness. The following theorem refers to the
reduced singular homology groups. A reader not familiar with homology may
just want to know that they are parameters of a topological space, invariant
under homotopy equivalence and efficiently computable for simplicial complexes
(and for many other spaces).

4.3.3 Theorem. Let X be a nonempty topological space and let k > 1. Then
X is k-connected if and only if it is simply connected (i.e. the fundamental
group m(X)=0) and H{(X) =0 forall : =0,1,...,k.

This is a special case of a famous theorem of Hurewicz: for a simply con-
nected space, the first nonzero homotopy and homology groups occur in the
same dimension and they are isomorphic; see e.g. Hatcher [Hat01].

Since the kth homology group of a simplicial complex depends only on
simplices of dimension at most k+1, and the fundamental group depends only
on the 2-skeleton, we have

4.3.4 Proposition. A simplicial complex K is k-connected if and only if the
(k+1)-skeleton KSK+1 is k-connected.

This can also be proved directly, without resorting to homology. Another
consequence of Theorem 4.3.3 (and of formulas for the homology of a join),
which does not seem easy to prove directly, is

4.3.5 Proposition (Connectivity of join). Suppose that X is k-connected
and Y is (-connected, where X and Y are triangulable (or CW-complexes).
Then X «Y is (k4+(+42)-connected.

It may also be useful to know that if a k-dimensional simplicial complex is
k-connected, then it is contractible. This follows, for example, from a theorem
of Whitehead and Theorem 4.3.3. (For general spaces this need not be true!)
Moreover, finite k-dimensional (k—1)-connected simplicial complexes have a
special structure: they are homotopy equivalent to a point or to a wedge of
k-dimensional spheres.
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Exercises
1. Prove that if X is k-connected and Y ~ X, then Y is k-connected as well.

2. (a) Suppose that X is a space that is not k-connected. Show that X x Y
cannot be k-connected either, for any Y.

(b) Prove that if both X and Y are k-connected, then so is X X Y.

3. (a) Deduce from Theorem 4.3.2 that S™ % S™ unless m = n.
(b) Use (a) to derive R™ 2 R™ unless m = n.

4.4 Cell complexes

This section is optional: cell complexes are generally nice and very useful in
topology, they will be mentioned in the formulation of some of the subsequent
general theorems, but they will not be essential for any of our concrete appli-
cations.

In algebraic topology, cell complexes are usually called CW-complezes. The
meaning of the mysterious letters C and W will be explained soon, but right
now we note that they are significant only for complexes with infinitely many
cells. We will occasionally use the name cell complez for a finite CW-complex.

Informally, a CW-complex is a topological space that can be pasted together
from finite-dimensional balls, where a new k-ball is always glued by its boundary
to the part already made from balls of dimension < k. Thus, we start with a
discrete set of vertices, called the 0-cells in this context. Then we put in some
1-balls, called 1-cells. A 1-cell is just a closed interval, whose two endpoints are
glued to some vertices, possibly both to the same vertex. The spaces obtained
at this phase can be viewed as topological realizations of graphs, possibly with
loops and multiple edges:

Next, we can paste in some 2-dimensional discs (2-cells). The boundary of each
disc is glued to some of the edges, possibly in a complicated manner. Here are
a few examples of what can be obtained with a single 2-cell. We can make the
disc (as a topological space) with one 0-cell, one 1-cell, and one 2-cell:

>

With just one 0-cell, no 1-cell, and one 2-cell, we can manufacture an S?; note
that the whole boundary of the 2-cell is identified to a point:
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Of course, an S? can be made in many other ways, too; for example, using 2
cells of each dimension 0,1,2, as will be shown in a drawing in Section 5.2. If
we picture a 2-cell as a square and we paste the edges in the indicated manner
to two l-cells @ and b, we get a torus:

a

Y

Y

In fact, as is taught in basic courses of algebraic topology (such as [Mun00] or
[Sti93]), we can get any 2-dimensional manifold without boundary, including
non-orientable ones like the projective plane or the Klein bottle, from a regular
convex polygon by suitable boundary identifications.

A (geometric) simplicial complex is a special case of a CW-complex (each
simplex is homeomorphic to a ball). One obvious new thing in CW-complexes
is that, while simplices are “straight,” cells can be “curved.” But another,
perhaps less obvious difference is that a simplex must remain homeomorphic to
a ball in the simplicial complex, including the boundary, while the boundary of
a cell may become glued to itself and entangled in a complicated manner. For
example, it is legal to glue a 2-cell to the middle of a 1-cell:

Here is a formal definition of a CW-complex. A CW-complez is a Hausdorff
space X which is the union of a collection {e }qen of disjoint subspaces called
cells with the following properties.

e Each e, has some dimension dime, € {0,1,2,...}. The n-skeleton of X
is

XS”:U{ea: a €A, dime, < n}.

e Ifdim e, = n, then there is a continuous characteristic map (or attachment
map) Yo:B" — X, such that 9B™ = S"~! is mapped into the (n—1)-
skeleton X<"~! and int B” is mapped homeomorphically onto e,.

These conditions are sufficient to define a finite CW-complex (i.e. one with
finitely many cells); the topology on X is determined uniquely by the charac-
teristic maps. Note that a finite CW-complex is always compact. An infinite
CW-complex has to satisfy the following two additional conditions (which are
automatically satisfied by finite CW-complexes):

e (Weak topology) A set F' C X is closed if and only if F'Né, is closed for
each o € A, where é, denotes x,(B"), i.e. the cell e, together with its
boundary.
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e (Closure finiteness) The boundary of each cell e,, i.e. the image of B"
under Y., intersects only finitely many cells.

The “morphisms” of CW-complexes are called cellular maps. A map f: X —
Y of CW-complexes is cellular if, for each n > 0, the n-skeleton XS is mapped
into the n-skeleton Y<". If a cellular map is a homeomorphism, then any n-cell
is mapped homeomorphically onto an n-cell.

For many applications, a CW-complex structure for a space is as good as a
triangulation, or nearly as good. At the same time, the CW-complex structure
can have just a couple of cells where a triangulation would have to be quite
large. For instance, an S™ can be expressed as a cell complex with one 0-cell
and one n-cell (as we have seen for S?), while the smallest triangulation is the
boundary of an (n+1)-simplex, with 2"T! — 1 simplices!

Although there exist non-triangulable CW-complexes, it is known that every
CW-complex X is homotopy equivalent to a polyhedron of a simplicial complex
K. Moreover, one may assume dim K = dim X and if X is finite, then K can be
chosen finite as well.

A subcompler of a CW-complex X is a closed subspace A C X that is the
union of some of the cells of X (recall that the cells are relatively open). A
nice feature of CW-complexes, not shared by simplicial complexes, is that the
quotient X /A is again a CW-complex (Exercise 1).

If Ais a subcomplex of a CW-complex X, then the pair (X, A) has the
homotopy extension property; this is proved almost exactly as for simplicial

complexes. Proposition 4.1.5 also extends without any difficulty: if A4 is con-
tractible, then X/A ~ X.

Notes. There are several restricted classes of CW-complexes that lie
between general CW-complexes and simplicial complexes.

In a reqular (finite) cell complex, we require that each of the attach-
ment maps Yo be a homeomorphism (not only on the interior of B" but
also on the boundary). The intersection of the boundaries of two closed
cells can still be topologically nontrivial, but regular cell complexes ad-
mit a simple combinatorial description. Namely, if we define the partial
order on the set of closed cells by inclusion, then the order complex of
this poset is homeomorphic to the original cell complex (and it is natural
to call the resulting simplicial complex the first barycentric subdivision
of the regular cell complex).

A more special class of regular cell complexes are polyhedral com-
plexes. At least two different definitions appear in the literature. A
more strict definition is very similar to the definition of a simplicial
complex but the cells can be convex polytopes, instead of just simplices.
Every two cells intersect in a cell and a face of a cell is again a cell.
In a more permissive definition, it is only required that every cell be
homeomorphic to a convex polytope.

A special case of the latter definition are the A-complezes, used in
[Hat01]. The cells are simplices, they are still glued together face-to-
face, but for example gluing two triangles by just two sides is permitted:
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AA - &

A (geometric) A-complex is obtained from a family of disjoint simplices
by face identifications. More precisely, let (o, : o € A) be a family of
(geometric) simplices. We assume that for each o, some linear ordering
of the vertices has been fixed. Further let (Ff € B) be given, where
each Fg is a family of simplices, all simplices in F3 having the same
dimension kg and each of them being a face of some o,. The A-complex
specified by these data is obtained from the sum | |, 4 0o by identifying
all the faces in each Fj to a single kg-face. The identification is made

according to the canonical affine homeomorphisms among the faces in
Fp that extend the (unique) order-preserving bijections of the vertex
sets. Note that Fj may contain several faces of the same o,; so, for
example, the three edges of a triangle can all be identified as indicated
by the arrows:

(The resulting mind-boggling geometric object can be realized in R3
and it is known as the dunce cap.) Unlike general CW-complexes, the
specification of a A-complex is purely combinatorial, albeit formally
more complicated than for a simplicial complex. Let us remark that
modern homotopy theory uses yet another generalization of simplicial
complexes, called the simplicial sets; these are always infinite and at
present they do not seem relevant for combinatorial applications in the
spirit discussed here.

Exercises

1. Let X be a CW-complex and A a subcomplex of it. Define a cell structure
on X/A and check that it is a CW-complex (if you like, assume that X is
finite).
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Nonexistence of Zs-Maps

In the applications covered in Chapter 3, we always associated a continuous
map of the sphere with the considered problem, sometimes in a quite natural
way (for the ham sandwich cut theorem, say) and sometimes by a clever ad hoc
construction (in both the proofs of Kneser’s conjecture). The Borsuk-Ulam
theorem applied to this map then provided the desired object or a contradiction.

Here we first generalize the Borsuk-Ulam theorem from spheres to a much
wider class of spaces, which gives us more flexibility. We pursue just one among
many possible directions of generalizations, dealing with the Zy-index, which
proved very fruitful in combinatorial and geometric applications. Then we
introduce constructions, most notably deleted joins, which for many problems
lead to a suitable space with a continuous map in an almost canonical way. In
this connection, one speaks about a configuration space (encoding all possible
“configurations” in the considered problem) and a test map (distinguishing
configurations with some desired property from the others, say by mapping
them to zero).

5.1 Zo-spaces and Z,-maps

One of the versions of the Borsuk—Ulam theorem asserts that there is no an-
tipodal map S™T! — S", and this is the starting point of our generalizations.
We will view antipodal maps not only as maps between topological spaces, but
rather as maps between topological spaces with additional structure given by
the antipodality. Thus, here we regard S™ as the pair (S™,—), where “—” is
a shorthand for the mapping ® — —a. The antipodality “—”
morphism of the underlying space (S”, or also R"), and it gives the identity
if performed twice: —(—@) = @. These are the essential properties that are
reflected in the definition of a general “antipodality space.” Anticipating the
terminology of the subsequent generalizations, we begin to use brave new names
for old things, though: we start saying Zs-action instead of antipodality and

Zio-map instead of antipodal map.

is a homeo-

5.1.1 Definition (Zj-space and Zj-map). A Zs-space is a pair (X,v),
where X is a topological space and v: X — X is a homeomorphism, called the
Zo-action on X, such that v’ =vov =idy.
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The Zgy-action v is free if v(z) # « for all « € X; that is, if v has no fixed
point. In that case, the Zgy-space (X,v) is also called free.

If (X,v) and (Y,w) are Zgy-spaces, a ZLp-map f:(X,v) — (Y,w) Is a contin-
uous map X — Y that commutes with the Zy-actions: for all x € X, we have
f(v(z)) =w(f(x)), or, more briefly, for =wo f.

A Zo-map is also called an equivariant map, or an involution, or an antipo-
dal map. If the Zg-action on a Zg-space (X,v) is understood, we write just
“Zo-space X;” this is similar to the conventions for many other mathematical
structures.

Obvious examples of Zg-spaces are (S”, —) and (R", —). Here is one example
that, in reality, is not very different, but at least it looks different at first sight.

5.1.2 Example. Consider the boundary of the (n—1)-dimensional simplex as
an abstract simplicial complex K; i.e. K = 21\ {[n]}. Let L = sd(K) be the
first barycentric subdivision of K; thus, the vertex set of L consists of all proper
nonempty subsets of [n]. Define a simplicial map v: V(L) — V(L) by setting,
for a vertex F € V(L), v(F) = [n]\ F. A simplex in L is a chain of sets
under inclusion, and so v maps simplices to simplices (reversing the inclusion!).
Moreover, v is surjective (all chains are obtained) and v* =id. So (||L[], ||7]]) is
a (free) Zgyspace.

As we know, ||L|| = ||K]|| & S™"~2. For n = 3, the action v is depicted below:

It is essentially the same as the usual antipodality “—” on S1. (As we will see
later, all free Zy-actions on S™ are equivalent for our purposes.)

The L above is an example of a simplicial Zgy-complex. In general, a simpli-
cial Zy-complex is a simplicial complex K with a simplicial map v: V(K) — V(K)
such that ||v|| is a Zg-action on || K||. A cell Z-complex is defined analogously:
it is a finite CW-complex and the Zs-action is a cellular map.

5.1.3 Example (Join of Z,-spaces). If (X;,r1) and (X3, v2) are Zy-spaces,
the join Xy * X5 can be equipped with the Zs-action 1y * v9. The join of free
Ziy-spaces is clearly free.

The two-point space S° has an obvious free Zg-action that exchanges the
two points (in the standard embedding of S® into RY, it is precisely the usual
action & — —x). As we saw in Example 4.2.2, the n-fold join (S%)*" is an S,
namely the boundary of the n-dimensional crosspolytope. By considering this
join as a Zo-space, we recover the standard Zj-action ® — —a on the boundary
of the crosspolytope.
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The next examples look rather simple, but we will be encountering their
variations all the time.

5.1.4 Example (Zs-action on X X X). Let X be any space. The Cartesian
product X X X can be made into a Zgyspace by letting the Zy-action exchange
the two components; v: (z,y) — (y, z).

5.1.5 Example (Zs-action on X % X). Similarly, the join X x X becomes a
Zy-space if we define the Zyaction v by ta + (1-t)y — (1—t)y + ta (recall the
convention about writing the points in a join as formal convex combinations,
and visualize this action for X being a segment).

The Z,-spaces in the last two examples are not free. Later on, we will be
using constructions making them free by deleting suitable points from X x X
or from X x X.

Exercises

1. Verify that the Zy-action v in Example 5.1.2 is indeed free.

5.2 The Z,-index

Let (X,v) and (Y,w) be Zg-spaces. Let us write X 2,V if there exists a Zy-
map from X toY and X Y ifno Zymap exists. The Borsuk—Ulam theorem
tells us that S"+! =2+ S™. In the applications of the concepts developed in this
chapter, the crux is always in showing X 23 Y for some given X and Y. Of
course, the relation 2, is rather complicated and one should not expect to
be able to decide whether X —23Y for arbitrary given X and Y (in view of
the difficulty of both homeomorphism and homotopy equivalence, for exam-
ple). Nevertheless, with the tools introduced later one can succeed in many
interesting concrete cases.

The relation —2» is obviously transitive, and it is useful to think of it as a

partial ordering: if X £>Y, then Y is at least as big as X. To support this
ideology notationally, we also write

X<, Y if XY,

Strictly speaking, < is not a partial ordering but rather a partial quasiorder-
ing, since many spaces are equivalent under it (homeomorphic spaces with “the
same” Zg-actions, for example).

Before proceeding, we can observe that non-free Zy-spaces are uninteresting
from the point of view of <, . Namely, if (Y,w) is such that w(yo) = yo, then

X 257 for all X: simply send all of X' to yo. In the < relation, all non-free
Zy-spaces are equivalent and strictly larger than all free Zj-spaces.

The Zo-index. Spheres were useful in the Borsuk—Ulam theorem, and here
we are going to use them as a yardstick for measuring the “size” of Zj-spaces
with respect to <z, .
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5.2.1 Definition (Zs-index). Let (X,v) be a Zy-space. We set
indz, (X) := min{n € {0,1,2,...} : X 255"},
Here S™ is taken with the standard antipodal action.

The Zo-index can be a natural number or oo; the latter happens, for exam-
ple, for a non-free Zs-space.

5.2.2 Proposition (Properties of the Z,-index).

(i) f X <5 Y, then indz,(X) <indz,(Y). Therefore, indz,(X) > indg,(Y)
implies X Y.

indz,(S™) = n, for all n > 0 (with the standard Zsy-action on S™).
indZ2(X * Y) < indz2 (X) + indZ2(Y) + 1.
If X is (n—1)-connected, then indz,(X) > n.

If X is a free simplicial Zy-complex (or cell Zy-complex) of dimension n,
then indz,(X) < n.!

Part (i) follows trivially from the definition (right?) and it suggests how
the Zg-index can be used for establishing the nonexistence of a Zgymap. The
condition indz,(X) > indz,(Y) is only sufficient for X Y. If indz,(X) <
indz, (YY), both the possibilities X 2,V and X A Y are still open, although
examples of the second possibility are not obvious (see the notes and Exercise 4).

Part (ii) is essentially a version of the Borsuk-Ulam theorem.

Part (iii) follows immediately from S™ * S™ = S"Fm+l - As we will see, it
can sometimes be used to show that the Z»-index of some space is large, in the
form indz,(X) > indz, (X *Y)—indz,(Y)—1 for a suitable Y.

Finally, parts (iv) and (v) are a little more difficult and we prove them below.
The statement (iv), indz,(X) > n for (n—1)-connected X, is the basic tool for
bounding the Zgy-index below, while (v), indz,(X) < dim(X), is typically used
to bound it above.

Mapping the sphere: proof of (iv). To show that indz,(X) > n for an
(n—1)-connected X, it suffices to exhibit a Zymap ¢: S™ — X. We proceed

'With some more technical machinery, this claim can be shown for much more general
spaces X. Namely, if X is paracompact, then indz, (X) < dim(X). Paracompactness is a mild
topological condition satisfied by practically all the usually encountered topological spaces;
for example, by all metric spaces. A topological space X is paracompact if it is Hausdorff and
each open cover U of X has a locally finite open refinement V. Here a cover U is open if it
consists of open sets, a cover V is a refinement of a cover U if each set of V is contained in
some set of U, and V is locally finite if each point of X has an open neighborhood intersecting
only finitely many members of V.

The dimension is the usual covering dimension. For a metric space X, dim X < n if every
finite open cover of X has a finite open refinement such that each point of X is contained in
at most n+1 sets of the refinement. For a detailed treatment of both paracompactness and
topological dimensions see [Eng77]. For finite simplicial complexes and CW-complexes, the
covering dimension coincides with the maximum dimension of a simplex or cell, respectively.
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by induction, constructing Zo-maps gx: S* — X by induction on k. The cases
k= —1and k = 0 are clear. For the induction step, consider S¥~! as a subset of
Sk, by identifying it with the “equator” {@ € S*:2;,, = 0}. Furthermore, via
the projection map 7:R*¥*' — RF that deletes the last coordinate, the upper
hemisphere S¥ := {& € S*: 2541 > 0} is homeomorphic to the ball B¥. Now if a
Zo-map gr_1:S* 1 — X has been constructed, we can extend it to a continuous
map gr_1: B — X, since X is (k—1)-connected. Using = we can then define
gi, on Sff_, as

gk = Qr—1 0 T: Sf_ — B 5 X.

Setting gi () := v(gr(—x)) for # € S* (the lower hemisphere), we get a map
gr: S* — X. This map is well-defined since gy, is antipodal on the intersection
Sk=1 of the two hemispheres of S*. It is continuous since it is continuous on
both the closed hemispheres of S*, and it is a Zy-map by construction. &

It is instructive to unwrap this inductive proof; for concreteness, we do it for
n = 2. First we regard S° as two antipodal points Sg_ and S° in R3. We choose
the value at S§ as an arbitrary zg € X, and the value at S is enforced: v(zo).
Next, we extend to an arc S_ll_ connecting Sg_ and S, using the 0-connectedness
of X, and we again put the enforced values on the opposite arc St. The two
arcs combine to a full circle S', and from this circle, we extend to the upper
hemisphere S_ZI_ by the 1l-connectedness of X. We finish the construction by
assigning the antipodal values on the lower hemisphere.

5

st st

The proof implicitly used a suitable cell decomposition of S? (see Section 4.4).
This decomposition is equivariant, meaning that the interior of each k-di-
mensional cell is mapped bijectively onto the interior of another k-dimensional
cell by the Zy-action.

In order to stay in the realm of the perhaps more familiar simplicial com-
plexes, we can also do the proof using an antipodally symmetric triangulation
of S*. For example, in the usual octahedral triangulation of S2, we can choose
the values of gg at the three marked vertices,
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get the values at the other vertices by antipodality, extend on the marked edges,
and so on.

Mapping into the sphere: proof of (v). Here it suffices to construct
a Zgymap g:||K|| — S™ for every free simplicial Zy-complex with dimK < n.
We show that, more generally, a free n-dimensional simplicial Zg-complex can
be Zymapped into any (n—1)-connected Zy-space Y. The argument is almost
exactly as in the previous proof.

We construct Zg-maps g: ||K5k|| —Y by induction, k =0,1,...,n. Having
already constructed g¢i, we divide the (k41)-dimensional simplices in K into
equivalence classes—the orbits under the Zs-action; one can check that each
class consists of two disjoint simplices F' and v(F) (Exercise 1). We pick one
simplex from each class and for these simplices, we extend g; on the interior
using the k-connectedness of Y. We then define ggy; on the interiors of the
remaining simplices in the only possible way that makes ¢gx1q1 a Zy-map. The
same proof goes through for cell Zj-complexes. &

Other Zs-indices. There are various other sensible ways of defining a “Zo-
index;” the one we have used is technically quite simple but others may be more
powerful or easier to compute in some cases. In principle, any mapping from the
class of Zgo-spaces to some partially ordered set that is monotone with respect
to the ordering <; can serve as a “Zy-index.” But in order to get interesting
results, the mapping should satisfy some extra properties similar to (ii)—(v) in
Proposition 5.2.2. A little about other notions of index will be mentioned below
and in the notes to Section 6.2.

Notes. A parameter of a Zg-space X called the genus and equal, in
our notation, to 14+indz,(X), was introduced by Krasnoselskii [Kra52].

Another, similar (but not always equivalent) notion of index for Z4-
spaces was defined by Yang [Yan54]; his definition can be expressed using
a suitable equivariant homology theory with Z-coefficients. He proved
that if (X, ) is a Zgspace of index n (in particular, if (X,v) = (S", —))
and f: X — R™ is a continuous map, then (his) index of the coincidence
set Ay ={z € X : f(z) = f(v(z)} is at least n—m, and consequently,
dim(Ay) > n—m, too. He derived generalizations of several nice geo-
metric theorems listed below. Some of these results were obtained by
Bourgin [Boub55], too.

Kakutani-type results. Kakutani [Kak43] proved that for any compact
convex set in R3 there exists a cube circumscribed to it and touching it
by all the 6 facets. This is an easy consequence of the following: for any
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continuous f:S? — R, there are three mutually perpendicular vectors
@y, @2, @3 € S? with f(21) = f(®2) = f(e3). This was generalized to
dimension n (with n+1 mutually orthogonal vectors) by Yamabe and
Yujobo [YY50], and re-derived by Yang [Yan54| (in a greater general-
ity, with an arbitrary Zg-space of index n replacing S™, with a suitable
abstract notion of “orthogonality”). Yang [Yan54] and Bourgin [Bou63]
proved that for any continuous f:S5" — R, there are n mutually orthog-
onal @q,...,x, € S" with f(21) = f(—x1) = f(x2) = -+ = f(—2,),
generalizing such result for S? due to Dyson [Dys51]. Here is another
nice result of Yang of this type: if f: S™7T™+" 3 R™ is continuous, then
there exists an antipodally symmetric subset of S™"*™+" of index (and
dimension) at least n on which f is constant. Numerous results about
circumscribed geometric shapes and similar problems can be found in
the work of Makeev, such as [Mak96].

In this connection, we should also mention a conjecture of Knaster
[Kna47], stating that for any continuous f:S"™ — R™ and any configu-
ration K C S™ of n—m+2 points, there exists a rotation p of §™ such
that f(p(K)) is a single point. Although this was proved for some spe-
cial values of n and m and for some special configurations, the general
conjecture was eventually refuted by Makeev [Mak84]. Stronger coun-
terexamples were provided by Babenko and Bogatyi [BB89]; for example,
they showed that if n—2 < mt, then there is a mapping f: 5" — R™,
given by a polynomial of degree at most ¢, such that no configuration
of 2t+1 points on a great circle in S™ has the property required by
Knaster’s conjecture.

A CW-complex with S> s X £+ 8% The example we are going to
sketch was constructed with the help of R. Zivaljevié and P. Csorba; we
do not give a full proof. Let h:S® — S? be the Hopf map (see [Hat01]
or other topology textbooks). Construct X by attaching two 4-cells
(copies of B*) to the standard S?%, where the boundary of the first cell is
attached by h and the boundary of the other cell by —h. The Zs-action
v acts on the S? as the antipodality and it interchanges the two 4-cells.
If there were a Zo-map S — X, it could be deformed so that it remains
a Ziy-map and goes into the 3-skeleton of X. But the 3-skeleton is just
the S2, and so such map doesn’t exist. If f: S? — S%is a Zymap, it can
be shown that f o h:S? — 52 is not nullhomotopic (using the properties
of the Hopf invariant), and so it cannot be extended to a map B* — S2.
But a Zy-map X — S? would yield such an extension.

Exercises

1. Let K be a simplicial complex and let v be a free simplicial Zs-action on
K. Prove that FNv(F) = @ for every F € K.

2. Give examples of free Zy-spaces of index n that are not (n—1)-connected.

3. Give an example of a free Zy-space X with indz,(X) = occ.
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4. Define the following index-like quantity for a Zg-space X:
dni(X) := max{n >0: 85" 2 X}

(a) Formulate and prove analogues of Proposition 5.2.2(i)—(v) for dni(X),
and check that dni(X) <ind(X) for all Zy-spaces X.

(b) Call a free Zgy-space X tidy if dni(X) = indz,(X) < oo. Show that if
X and Y are tidy, then X —23 Y if and only if indz,(X) <indz,(Y).

(c) Construct an example of a free Zgspace X with dni(X) = 0 <
indz,(X) (in particular, X is not tidy).

5.3 The topological Radon theorem

Many proofs concerning geometric embeddability, coloring of Kneser-like graphs,
and other applications of topological methods have a common general scheme.
In this section we encounter it for the first time.

We begin with a result well-known in convex geometry.

5.3.1 Theorem (Radon’s theorem). Every set X = {@y,..., @442} of d+2
points in R¢ can be divided into two disjoint subsets whose convex hulls inter-
sect.

It may be good practice to visualize this for d < 2. For d = 1 we have three
points on the real line, x; < 29 < 3, say. Then {z3} intersects [z, x3]. For
d = 2, four points are given in the plane. Then either one point @; is contained
in the convex hull of the others, and then we have the partition into {@;} and
X\{@;}, or the four points form the vertices of a convex quadrilateral, and then
the diagonals are the two intersecting convex hulls.

Although the standard proof is simple and unrelated to topology, we outline it
for completeness.

Proof. Any d+2 points in R are affinely dependent. Let us fix an affine
dependence: ay@y 4+ ag®y + - -+ gro®gr2 = 0, 221;2 o; = 0. Then we define
Ii:={i € [d+2] : o; > 0} and I:=[d+2]\ I;. Further let S:=3 ..} a; =
> ien(—a;). Then the point @:= 3, , (F)zi = Zjeb(—%)wj is a convex
combination of points in Xy :={@,; : i € I} as well as a convex combination of
points in Xy = X \ Xj. )

An equivalent formulation of Radon’s theorem. For every affine map
fillodt|| — R? there exist two disjoint faces Fy, Fy of the (d+1)-simplex o¢+!
such that f(||F1]]) N f(||Fzl|) # 2.
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Proof of the equivalence. Each such f is determined by the images of the
d+2 vertices of the simplex. The image of a face is the convex hull of the images
of its vertices(Exercise 3). >

We prove a significant generalization of Radon’s theorem, which shows that
very little of the vector-space structure of R? is needed for the validity of
Radon’s theorem.

5.3.2 Theorem (Topological Radon’s theorem; Bajmoéczy & Barany
[BB79]). Let f:|jc™!]| — RY be a continuous map. Then there exist two
disjoint faces Fy, Fy of o™ such that f(||Fy|) N f(|| F2||) # @.

Since this is a prototype of several similar but more complicated statements
to come later, it is important to realize what it asserts. For example, for d = 1,
it says that if the triangle is mapped into the line, there are some two disjoint
faces, typically a side of the triangle and its opposite vertex, whose images
intersect. For d = 2, we have a tetrahedron mapped into the plane, and the
theorem tells us that again the images of some two disjoint faces intersect; in
this case, they can be a triangle and its opposite vertex or two opposite edges.

If we recall the notion of support of a point @ in a geometric simplicial complex
(the simplex containing @ in its relative interior), we can also express the the-
orem by saying that there are @, @, € ||e%+!|| with disjoint supports and such
that f(z1) = f(z2).

The first key idea in the proof is to pass to Cartesian products. Namely, let

for o) x |le™ | - R x RY

(@1, @) = (f(@1), f22)).

The theorem can now be reformulated as follows: there is a pair @ = (@1, ®2) €

||O‘d+1||2 such that supp (1) Nsupp(xy) = @ and fy(x) intersects the diagonal
in (R%2, i.e. the set {(y,y): v € R.

For contradiction, let us suppose that this is not the case. This means that
fo maps the set

2
X = {(ey,23) € ||Ud+1|| : supp(@1) Nsupp(ez) = T}

into the set
Y = {(y;,9,) € (Rd)z D YL F Yo )

The next crucial observation is that both X and Y are free Zy-spaces. In-
deed, if we define v: X — X by v((a1,22)) = (@2, ®1), then v is obviously a
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homeomorphism with v? = idy and, moreover, v((@y,®;)) # (@1, ®;) since X
contains no pairs (@1, @3) with @; = @3. Similarly, we define w:Y — Y by
w((y1,Y3)) = (Ys,¥1), and we check in exactly the same way that w is a free
Zy-action on Y. Finally, f; is a Zg-map (it was carefully constructed that way).
So, after these tricks, namely introducing the Cartesian products and delet-
ing suitable points from them, we are in the situation for which we have been
preparing in the previous sections: we have specific Zy-spaces X and Y and we
would like to prove X Y. If we manage to do so, we reach a contradiction
with the original assumption, namely that the images of disjoint faces of o¢+!
under f never intersect.

Deleted products. Before we start inspecting our specific X and Y, let us
mention a general terminology. If Z is a space, the (twofold) deleted product of
Z, denoted by Z3, is the space

Zi = (Zx )\ {(z,2): z € Z}.

So in our situation above, we have Y = (R%)%.

Our X is also a kind of deleted product, but this time we delete more: the
product of each simplex with itself. If A is a geometric simplicial complex, we
define its deleted product:

AZA = {0'1 X 09t 0'170'2€A7 UlmUZZQ}‘

It can be checked that this is a polyhedral cell complex. Moreover, its polyhe-
dron (i.e. the union of its cells) is determined by the underlying abstract simpli-
cial complex of A up to homeomorphism. So for an abstract simplicial complex
K, the topological space corresponding to its deleted product is well-defined, and
we denote it by ||K4 ||. (Note that ||K3 || is typically not homeomorphic to ||K||%,
although it can be shows that they are homotopy equivalent and have the same
Zy-index.) We can also write |[K4|| = { (21, ®2) € ||K||*: supp(@;) Nsupp(a@;) =

@}. In our case, we have X = [|(c@+1)2]].
Both Z% and ||K}|| can be made into free Zy-spaces as above, the actions

being the exchanges of coordinates.

What are our deleted products? Now that we have set the stage, for
concluding the proof of the topological Radon’s theorem it would suffice to show

X #+Y. To this end, as we know, it would be enough to prove indz,(X) >
indz, (Y).
It is not very difficult to see that indz,(Y) = indz,((R9)%) < d—1. Indeed,

there is a simple Zg-map g: (R)% — S¥! given by (@1, ®3) — ﬁ

The space X = (09+1)% is more complicated. If we work out the structure
of X for d =1, we get a hexagon, i.e. an S':
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{3x{1,2}
{1,31x{2} {2,31x{1}

() -
1 2/ A {2} x{1,3}

{1x{2,3}
{1, 2}x{3}

With some more effort, one can find out that for d = 2, X can be represented
as the boundary of a nice 3-dimensional polytope, as is sketched below:

A{L2)x{3.4)

e {17 27 3} X{4}

So in this case X = S2. In general, one can prove geometrically that X =2 §¢
for all d (Exercise 5). This is good, since S¢ is (d—1)-connected and therefore
indz,(X) > d by Proposition 5.2.2(iv).

As the above 3-dimensional picture for d = 2 indicates, the structure of the
deleted product (Ud+1)2A is not very simple. In more complicated cases, the
deleted products would be even harder to handle. Moreover, in some appli-
cations they are not sufficiently connected. In the next section, we introduce
another construction, the deleted join, which looks less natural but has sig-
nificant advantages over the deleted product. We then redo the proof of the
topological Radon theorem using deleted joins.

Notes. Surveys on Radon’s theorem and its relatives are Eckhoff
[Eck79] and [Eck93].

The original proof of the topological Radon theorem by Bajméczy &
Barany [BB79] is different from the one shown above. They construct a
continuous map g: S? — ||c@t1|| such that for every & € S% supp(g(z))N
supp(g(—=)) = @, and then they apply the Borsuk-Ulam theorem to
fog: 8% = R

Exercises
1. (a) Prove that indz,((R%)4) > d—1.
(b) Check that S?=! is a deformation retract of (R%)%.

2. Enumerate all the possible configurations for Radon’s theorem in dimen-
sions d = 3 and d = 4.

3. Let A C R" be a set and let f:R™ — R™ be an affine map. Show that
conv(f(A)) = f(conv(A)).

4. Let P and @ be convex polytopes in R% and let P+ Q ={x +y: @ €
P,y € } be their Minkowski sum.
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(a) Prove that P+ @ is a convex polytope.

(b) Prove that each face of P+ @ is of the form F' + G, where F is a face
of P and G is a face of Q).

5. Let S:=||¢?|| ¢ RY be a (geometric) d-dimensional simplex, and let
P=S+(-S)={e—y: x,ye S}
(a) Verify that P is a d-dimensional convex polytope.
(b) Show that each point @ € P has a unique representation in the form
x = x1 — @2, where @1, @, € S satisfy supp (@) Nsupp(xz) = 3.

(c) Prove that the deleted product ||(¢9)% || is homeomorphic to 9P and,
consequently, to S9!

5.4 Deleted joins

In this section we introduce deleted joins of simplicial complexes and of spaces
and we give another, simpler, proof of the topological Radon theorem 5.3.2.
While in the proof using deleted products we have delegated a nontrivial geo-
metric part to the exercises, here we give a full proof.

We begin with the deleted join of a simplicial complex, which is the simplicial
complex consisting of the joins of all ordered pairs of disjoint simplices:

5.4.1 Definition ((Twofold) deleted join of a simplicial complex). Let
K be a simplicial complex. The (twofold) deleted join of K is

K = {F+F: I, F[LeK,FiNF =g} C K™

(Recall our convention that Fy«F, denotes the disjoint union of Fy and Fy; Fy
comes from the first copy of K and F, from the second copy.) The polyhedron
of K32 can be written

IKZN = {ter + (1-t)@z : @1, 22 € K, supp(a1) Nsupp(x2) = @t € [0, 1]}

The Zgy-action v given by the exchange of coordinates, v:tay + (1—t)axg —
1—t)@y + teq, makes K32 into a free simplicial Z,-complex.
A

Let us have a few examples.

e The deleted join (0°)% of a single point (the 0-dimensional simplex) con-
sists of two disjoint points.

e The deleted join (S°)% of two points (a O-sphere S® = {&, {1},{2}}) is a
disjoint union of two edges. In fact, this can be seen from the next figure,
which shows, from left to right, the disjoint union of two copies of S° (four
points), their join (a circle consisting of four edges), and the deleted join.

A,
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The maximal simplices are {1}%{2'} and {2}*{1'}. The Zs-action v ex-
changes them.

e The deleted join (0')%% of an edge is the perimeter of a square. To illus-
trate this, our figure below shows, from left to right, the disjoint union
of two edges, their join (a solid tetrahedron), and the deleted join (as a
subcomplex of the tetrahedron).

2, 2/ 9/
=y 1/ ‘1/
| 1 2 1 2

The maximal (1-dimensional) simplices are @x{1’, 2"}, {1,2}x@, {1}+{2'}
and {2}x{1'}, where 1 and 2 denote the vertices of o'. The Zyaction v
is the symmetry around the center of the square.

In the proof of the topological Radon’s theorem, we will need to compute
the deleted join of a simplex. Unlike the deleted product, this is very easy.

5.4.2 Lemma. Let K and L be simplicial complexes. We have
(Kx )R = K2+ L.
Proof. Clear from the definition. )

5.4.3 Corollary. ||(c")3%]| = S".

Proof. We have 0" = (¢°)*("+1)| By Lemma 5.4.2 we obtain

((O_O)*(n-l—l))*AZ — ((O_O)*AZ)*(n-I—l) — (SO)*(n-I—l) o~ gn

The last homeomorphism is the homeomorphism of the boundary of the cross-
polytope in R"*! with the n-sphere. o

We will also need the deleted join of a space.

5.4.4 Definition ((Twofold) deleted join of a space). Let Z be a topo-
logical space. The (twofold) deleted join of X is

XZ =X*\{se+30:2€eX}

A free Zs-action v on X3 is given by vitzy + (1—t)ay — (1—t)ay + tay.

Warning. Note the distinction between the deleted join of a simplicial
complex and of a space (we had a similar distinction for deleted products). We
have ||K:2|| C ||K|[%2, but the inclusion is proper (except for trivial cases)! (On
the other hand, these two spaces are homotopy equivalent and have the same
Zyindex; see Exercise 1.) Perhaps one should distinguish these two notions
by different notation, but this would add further symbols to learn. Moreover,
we need the deleted join of a space exclusively for the case X = R and so
no confusion should arise; actually we only need to bound indz,((R%)3?) from
above.
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5.4.5 Lemma (Deleted join of R%). There is a Zy-map g: (RY)3Z — S9,
and consequently indz,((R%)32) < d. (It can actually be shown that the index
equals d.)

Proof. There are several ways of doing this. We exhibit a Zo-map h: (RY)32 —
(RHH2; a Zy-map (RTHL — S¢ was shown in the previous section.

We recall from Proposition 4.2.4 that the join X %Y can be represented
geometrically if X and Y are placed into some R" as bounded subsets of two
skew affine subspaces U and V. In our case, R? is unbounded, and so we first
map it homeomorphically into the ball B and consider the (larger) deleted join
(B4)? instead.

For the geometric representation, we need two skew d-dimensional sub-
spaces, and to preserve the Z, symmetry, we choose them in R??2 = (Rd+1)2.
Namely, we define the mappings 1, 12: R? — R2¢+2 by

le(w) = (17$17"'7$d70707"'70)7 ¢2(y) = (0707---70717917---7@/(1)-

Then U; := 1, (RY) and Uy := 13 (RY) are d-dimensional skew subspaces, and we
can insert the two copies of BY into them: X, :=1;(B%), i = 1,2. We define
h: (B2 — (RH2 by hete+ (1—t)y v tiby (2) + (1—t)¥2(y). This mapping is
continuous by Proposition 4.2.4, is obviously a Zy-map, and goes into (Rd‘"l)zA
since the equality (t,tz1,...,tag) = (1—t, (1—t)y1, ..., (1—t)yy) implies ¢t = %
and @ = y, which are exactly the points removed from the deleted join. )

Proof of the topological Radon theorem. Now we have everything
ready. As before, we assume for contradiction that there is a continuous map
f:le®tt| — R? where the images of vertex-disjoint faces never intersect. In-
stead of passing to the mapping f; of Cartesian products, we now pass to the
mapping of joins:

= fafe ot - RY
tey + (1—15)%2 — tf(azl) + (1—t)f(:132)
If we restrict f*? to the deleted join X := ||(¢9T1)%2||, the image surely contains
no point of the form %y + %y (since f never sends points @1, @y from disjoint
faces to the same point y € Rd). Therefore, f3? can be regarded as a Zymap
X =Y, where Y := (R9)32.
We have computed the indices in advance: indz,(X) = indg,((c9t1)32) =

d+1 (Corollary 5.4.3) and indz,(Y") < d by Lemma 5.4.5. Hence X #+Y and
we have a contradiction proving the topological Radon theorem. &

Exercises

1. (Deleted join of a simplicial complex and of its polyhedron)

(a) Construct a Zy-map of ||a"|| = ||(0")%2||; proceed by induction on n.

(b) Let K be a finite simplicial complex. Show that ||K||% 2, IKR2]-
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(c) Show that the spaces in (b) are homotopy equivalent; namely, a suit-
able Zgymap as in (b) is a homotopy inverse to the obvious insertion

2
KR = KIS

5.5 The Van Kampen—Flores theorem

In the proof of the topological Radon theorem in the previous section, we
showed that if indz,((c?t1)33) > indyz,((RY32) = d, then every continuous
map ||oc?t!|| — R identifies two points with disjoint supports. This part of the

proof works for any simplicial complex K in place of g@t!

, and gives

5.5.1 Proposition (Nonembeddability and index of the deleted join).
Let K be a simplicial complex. If indz,(K5?) > d, then for every continuous
mapping f:||K|| — R? the images of some two disjoint faces of K intersect. In
particular, R? contains no subspace homeomorphic to ||K]||.

To apply this proposition, one must bound above the index of the deleted
join. We begin with an important class of examples.

5.5.2 Theorem (The Van Kampen—Flores theorem; [vK32] [Flo34]).
For all d > 1, the simplicial complex K:=(a?t2)<d i e, the d-skeleton of
the (2d+2)-dimensional simplex, cannot be embedded into R?¢. In fact, for
any continuous map f: ||K|| — R?9, the images of some two disjoint faces of K
intersect.

In Theorem 1.6.1, we have embedded an arbitrary d-dimensional simplicial
complex into R24*! and the Van Kampen-Flores theorem shows that this di-
mension is best possible in general. The case d = 1 tells us that in any drawing
of the complete graph K5 in the plane, some two vertex-disjoint edges intersect.

This is well-known and can be proved in an elementary way (without the Jordan
curve theorem; see, for example, [Tho92]), although the proofs usually offered
in graph theory courses are not rigorous.

We present two proofs of the Van Kampen—Flores theorem. In both of them,
we show indz2(K*Az) > 2d and apply Proposition 5.5.1. The first proof, in this
section, analyzes K32 in detail and shows that it is actually homeomorphic to
S§%d+1 . On the way, we introduce an interesting class of triangulations of §24+1,
This part is optional and is not needed for the further development. The second
proof, given in the next section, contains important ideas which will be used in

several other applications.
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The Bier spheres. This first proof of the Van Kampen—Flores theorem is
similar to the original proof of Flores. To analyze the complex K3, we consider
a more general construction, due to Bier [Bie], which associates an (n—2)-di-
mensional triangulated sphere on 2n vertices with every simplicial complex on n
vertices. It is simple but ingenious, and we will also present another application
of it.

Recall that 2["l denotes the system of all subsets of [n] = {1,2,...,n}. A
simplicial complex with vertex set [n] is a nonempty subset K C 27 Strictly
speaking, a vertex of such K is not an element ¢ € [n] but rather the 0-dimension-
al simplex {¢}. Up until now, there was no need to distinguish this, since we
always tacitly assumed that all elements of the ground set are 0-dimensional
simplices. But now it does make some difference, since although we allow that
{i} ¢ K for some 7 € [n], we still want to speak of simplicial complexes with the
ground set [n]. In order to make the formulas shorter, let us write F for [n]\F,
where F' C [n].

5.5.3 Definition. Let K C 2I" be a simplicial complex on the ground set [n).
The Alexander dual of K is the simplicial complex B(K) C 2[nl that consists
of the complements of the non-simplices of K:

B(K) = {GCn]:G¢K} = {H:H e2"\K].
The Bier sphere associated with K is defined as the deleted join

Bier,(K) = Kxa B(K) = {FxG: FcK G ¢K, FNG =2}
={F+H: FcK H¢K, FC H}.

In this construction, neither K nor B(K) has to have all elements i € [n] as
vertices—we just assume that their vertex sets are contained in [n]. However,
if ¢ is not a vertex of K (that is, {i} ¢ K), then [n]\{j} is never a face of K
for j # ¢, and hence j is a vertex of B(K). It follows easily that Bier,(K) is
a simplicial complex with at least n vertices. You may also note that here we
form a deleted join of complexes that are different and may, in general, even
have distinct vertex sets, but they have the same ground set [n].

5.5.4 Theorem (Bier sphere is a sphere). For every simplicial complex
K c 2 the simplicial complex Bier, (K) is an (n—2)-sphere with at most 2n
vertices.

Before proving this theorem, let us check that it yields what we want for
the proof of the Van Kampen—Flores theorem.

5.5.5 Example (The Flores sphere). Take n = 2d43 and K = (<E;l_|]_1),
the d-skeleton of the (2d+2)-dimensional simplex. In this case B(K) = K, and
hence by Theorem 5.5.4, Bier,, (K) = K& is a (2d+1)-sphere.

For example, for d = 0 and n = 3, we have K = [3] (three disjoint points),

and the deleted join K% is a hexagon:



87 5. Nonexistence of Z.o-Maps

oy 3 Ay
>$< 1 O 3
5.5.6 Lemma. The facets (maximal simplices) of the Bier sphere Bier,, (K) are

FxH where FCH, FEK H¢K, and |H\F|=1.

In particular, Bier,, (K) is a pure complex of dimension n—2 (i. e. each simplex
is contained in a maximal (n—2)-dimensional simplex).

Proof. For any face FyxHy € Bier, (K) we can find F € K and H ¢ K with
We get FoxHy C F+H € Bier,,(K). The size of the face FxH, namely |[FUH|

|F| +n — |H| = n—1, is clearly maximal, since F C H and hence |H\F| >

5.5.7 Examples. The simplest complex to study is probably the empty one:
K = {@}. For this we get Bier, (K) = B(K) = 2["I\[n], the boundary complex
of an (n—1)-dimensional simplex, with n vertices. Thus ||Bier, ({@})]] = S"~2%.

If we take K = 2["=1] = 6"=2 then B(K) = K, and thus Bier, (K) = (¢"~%)%
is the deleted join of an (n—2)-simplex. This is the simplicial sphere given by
the boundary of an (n—1)-dimensional crosspolytope, with 2(n—1) vertices, by
Corollary 5.4.3.

Proof of Theorem 5.5.4. Let F ¢ K be any inclusion-minimal non-face
of K. Then KU {F} is a simplicial complex as well, and for the maximal (i. e.
(n—2)-dimensional) simplices of the Bier spheres we find

Bier,, (KU {F})"™? = Bier,(K)"* \ {(F\{i})*F: i€ F}
U{F«xFU{j}: j¢F}.
The vertex sets of the simplices affected by this operation (added or removed)
are all contained in Vp = {{i}»@ : i € F}U{@*{j}: j € F}. The subcomplex
L; of Bier, (K) induced by the vertex set Vi is
Li = (2"\{F}) «2"
while the corresponding subcomplex in Bier, (KU {F'}) is
Ly =25« (2F\{F}).
Their common part is
Lo = LiNLy = (2"\{F}) « 2"\ {F}).

This is the join of the boundary of a (k—1)-simplex, k& = |F'|, with the boundary
of an (n—k—1)-simplex, so ||Lo|| = S"73. Both L; and L, are triangulations of
an (n—2)-ball bounded by this S"~3. For example, for n = 4 and F = {1,2},
the geometric picture in R? is
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0 X LX

@*x{3}
Lo Ll L2

{2}

{1}+0

and another possibility, with F' = {1}, is
{2}

ox{4}

ox{3}
Lo Ll L2

Further we note that a simplex having a vertex outside of Vg never contains a
simplex in Ly \ Lo (orin Ly \ Ly). So both ||Ly]| and ||Ly|| are (n—2)-balls glued
to the rest of the Bier sphere by the (n—3)-sphere ||Lo||, and ||Bier, (K)|| and
||Bier,, (KU {F'})|| are homeomorphic.

The re-triangulation of the ball bounded by the sphere ||Lgl|| is called a bi-
stellar operation. It can be geometrically interpreted in R"~2: consider a (k—1)-
simplex Ay, k = |F|, and an (n—k—1)-simplex A, placed in R"™? so that they
intersect at a single point belonging to their relative interiors (this is a “Radon
configuration” as in Theorem 5.3.1). The bistellar operation corresponds to
switching between two triangulations of conv(A; U Ay). This convex polytope
is a projection of an (n—1)-simplex in R"~! into R"~2, and the triangulations
correspond to the “top” and “bottom” views of that simplex. For n = 4, the
possible operations are: switching the diagonal in a quadrilateral (k = 2), a
stellar subdivision of a triangle (adding a new vertex: k& = 1), and its inverse
operation, namely removing such a stellar subdivision (and thus deleting one

Y —~v

—~——

Note how this corresponds to the two 3-dimensional pictures above.

Since every simplicial complex K C 20"l can be generated from {@} by adding
minimal non-faces, we see that Bier, (K) is homeomorphic to Bier, ({@}). This
is an (n—2)-sphere by Example 5.5.7. &

Many PL-spheres. This proof establishes more. Bistellar operations pre-
serve the property of spheres to be piecewise-linear (PL); that is, to have a
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subdivision that is also a subdivision of a simplex boundary. In fact, by results
of Pachner [Pac86], a sphere is PL if and only if it can be generated from the
boundary of a simplex (such as Bier,({@})) using only bistellar operations.

We have produced many (n—2)-spheres with 2n vertices. Let n > 4 and
consider all simplicial complexes K C 2[" that contain all faces of dimension
|n/2]—2 and some of the (|n/2]—1)-dimensional faces:

(ctmiairs) €% € (ctay)

The number of such K is .
Q(an) > 92%/n

The Bier spheres Bier,(K) have exactly 2n vertices. For every Bier sphere
Bier,, (K), there are not more than (2n)!/n! < (2n)" < 2" different complexes
K that yield an isomorphic Bier sphere, and hence there are more than

24"/n—n2

non-isomorphic simplicial (n—2)-spheres with 2n vertices, a doubly exponential
number! This shows that most of the simplicial (n—2)-spheres on 2n vertices
cannot be realized as boundary complexes of (n—1)-dimensional convex poly-
topes; they cannot be made “straight.” This is because the number of different
combinatorial types of (n—1)-dimensional polytopes with 2n vertices is no larger
than

24n*
Such bound can be derived from the results of Oleinik and Petrovskii, Milnor,
and Thom on the topological complexity of algebraic varieties; see Goodman &
Pollack [GP86, last line of p. 222].

Notes.  The Van Kampen-Flores theorem was proved by Van Kam-
pen [vK32] and Flores [Flo34] independently, at the same time. An
exposition of Flores’ proof can be found in Griinbaum’s book on convex
polytopes [Grii67, Sect. 11.2], while our development in the next section
can be traced back to the Van Kampen’s proof.

Realizability of simplicial complexes in R? is a very interesting and
largely unexplored area. For d = 2, we have the well-developed theory of
planar graphs and of various measures of non-planarity of a graph (the
crossing number etc.), but even higher-dimensional analogues of very
basic theorems about planar graphs remain unclear. The behavior in
higher dimensions can also be very different from the planar case.

For example, as is well-known, any planar graph has a planar draw-
ing where all edges are straight segments. While every d-dimensional
simplicial complex embeds into R2¥t!, and even linearly, Brehm and
Sarkaria [BS92] proved that for each d > 2 and r > 1, there are d-di-
mensional simplicial complexes K realizable in R?? but such that the
rth barycentric subdivision sd(sd(...sd(K)...)) cannot be realized lin-
early in R?? (i. e. so that the embedding is affine on each simplex). So
a piecewise linear realization in R?? must have very many pieces. For
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d = 2%, there are even d-dimensional triangulations of manifolds with
boundary that embed in R?~! but not linearly (while all triangulations
of d-manifolds do embed linearly in R2%).

Necessary and sufficient topological conditions for realizability of a
d-dimensional simplicial complex in R?¥, d > 3, were stated by Van
Kampen in 1932 and by Flores in 1933, and proved in detail indepen-
dently by Shapiro [Sha57] and by Wu [Wu65]. (The case d = 2 is really
exceptional.) Interesting necessary conditions for linear realizability of
simplicial complexes were found by Novik [Nov00].

A planar graph on n vertices has at most 3n—6 edges. Is it true
that any simplicial complex on n vertices realizable in R? has at most
Cynl4/?1 simplices, for some Cy depending on d but not on n? If true,
this would be best possible, as is witnessed by the boundary complex of
a cyclic (d+1)-polytope with one d-simplex removed, but the problem
remains open. For d = 3, there is an elementary proof (Dey and Edels-
brunner [DE94]): assume that the embedding is piecewise linear, say,
and consider a tiny sphere around each vertex v; then the intersections
of the edges and triangles adjacent to v give a planar graph drawn on
the sphere, with O(n) edges. A study of some embedding questions for
higher-dimensional complexes by elementary methods is Dey and Pach
[DP9g].

The first construction of “many” simplicial spheres was given by
Kalai [Kal88]: for that, Kalai used the cyclic polytopes in the place
where here we (combinatorially) deal with the crosspolytopes.

5.6 Sarkaria’s inequality

In this section we give another proof of the Van Kampen—-Flores theorem 5.5.2,
in which we demonstrate a powerful trick for bounding the Zs-index.

Recall that we need to prove indz,(K%) > 2d, where K is the d-skeleton
of the (2d+2)-simplex. Our simplicial complex Lg:= K32 is a subcomplex of
L:= (029+2)32. We already know that indz,(L) = 2d+2 (Corollary 5.4.3). The
idea is to look at the complement of Ly within L, see that it is “small,” and
conclude that Ly must be “large.” One immediate problem is that the comple-
ment L\ Lp is not a simplicial complex. Yet it can be used to define a simplicial
complex, namely the order complex of the partially ordered set (L \ Lo, C).

In the following lemma, we consider a slightly more symmetric situation,
where the simplices of L are covered by two arbitrary subsets. For an arbitrary
family F of finite sets, let Ag(F) with C denote the order complex of the poset
(F\{@}, Q). If it is clear that @ ¢ F, we write just A(F).

5.6.1 Lemma. Let L be a simplicial complex and let L = L£oUL, be a partition
of the simplices of L into two subsets. Then there is a (canonical) simplicial
embedding

v sd(L) — Ao(Lo) * Ao(Ly).
If L is a simplicial Zo-complex and Ly and £ are both invariant under the
Zy-action, then Ag(Lo) and Ag(Ly) are simplicial Zy-complexes and ¢ provides
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a Zip-map
cIL — lAo(Lo)ll * | Ao (£1)]-

Let us have a geometric example first. Let L be the 2-simplex and let
L = £oUL; be the partition of its simplices indicated in the picture:

Geometrically, Ag(Lp) is the subcomplex of the first barycentric subdivision
sd(L) induced by the barycenters of the simplices in L. For our examples, we
have

Note that the vertex sets of Ag(Ly) and of Ag(L;) form a partition of the vertex
set of sd(L); this is just rephrasing of the assumption L = LoUL;.

Proof of Lemma 5.6.1. The vertex set V/(Ag(Lo) * Ag(£4)) is the union of
V(Ag(Ly)) and V(Ag(L1)) and it equals V(sd(L)). So, on the level of vertices,
we can just set ¢(F'):= F, F € L. This map is simplicial: if C = {Fy, F5,..., F,,}
is a chain of simplices of L, Fy C F, C --- C F,, it splits into the chains
Co:=CNLyand C;:=CnN Ly. The concatenation Cqy * C; of these chains is a
simplex of the join Ag(Lo) * Ag(Lq).

It remains to check the equivariance of ¢ if L is a simplicial Zs-complex and
Lo, £1 are invariant subsets of simplices. This is straightforward and is left to

the reader. )

If we let Lo = Lo be a subcomplex of L, then Ag(Lg) = sd(Lo) is homeomor-
phic to L. Together with Proposition 5.2.2(iii), about the Zy-index of a join,
Lemma 5.6.1 yields

5.6.2 Theorem (Sarkaria’s inequality). Let L be a finite simplicial Zo-
complex and let Ly be an invariant subcomplex of L. Then we have

indz, (Lo) > indz, (L) — indz, (A(L\ Lo)) — 1.

#{:%1

In combination with Proposition 5.5.1 about non-embeddability and Z,-
index of a deleted join, we obtain
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5.6.3 Corollary. Let K be a subcomplex of a simplicial complex J. If
indz,(A(L)) < indz,(JR) — d — 2,

where £:=J732 \ Ki2, then for any continuous map f:||K|| = R, the images of
some two disjoint faces of K intersect. In particular, for J = ¢, we require

indz,(A(L)) <n—d-2.

Second proof of the Van Kampen—Flores theorem.  We use Corol-
lary 5.6.3 for embedding into R?? with J:=02%*? and K being the d-skeleton
of J.

Here the vertices of A(L), which are the simplices of £, have the form Fy+Fj,
where Fy, F; C [2d+3] are disjoint sets and at least one of them has more than
d+1 vertices. The key observation is that they cannot both have more than d+1
vertices since there is not enough room; the ground set has only 2d+3 points.
So the vertices of A(L) naturally fall into two classes: those with |Fy| > d4-2
and those with |Fy| > d42. The Zs-action on A(L) swaps these two classes.

Let the two vertices of the 0-sphere be 1 and 2. We define a mapping
f:V(A(L)) = S° by

1 R >d+2
FlFEy) = { 2 if |Fy| > dt2.

We claim that f is a simplicial Zy-map of A(£) to S°. (This implies that A(L)
is disconnected.) It clearly commutes with the Zy-actions (on S, the Zy-action
exchanges 1 and 2). It is simplicial as well, since if |Fy| > d+2 and F] D Fi,
then |F{| > d+2 .

Therefore, indz,(A(L)) = 0 and

indz, (Kx2) > indz, ((0?23)32) —indz,(A(L)) — 1> 2d+2 — 0 — 1 > 2d.
The Van Kampen—Flores theorem is proved. aa

Notes. Theideas in the proof shown in this section are from Sarkaria’s
papers [Sar9la], [Sar90]. Our presentation owes much to Zivaljevié’s
survey [Ziv96], where he isolated “Sarkaria’s inequality” and expressed
it elegantly using the index.

Exercises

1. Find an example of a simplicial Zy-complex L and a Zgy-subcomplex Lg
where Sarkaria’s inequality 5.6.2 is strict.

5.7 Index, colorings, and another proof of Kneser’s conjec-
ture

Corollary 5.6.3 provides a method for showing that a given simplicial complex
K cannot be embedded into RY. To use it, we need to bound above indz, (A (L))
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with £:=J% \ K3, where J is a suitable simplicial complex containing K for
which we know indz,(J32). Here, surprisingly, we relate indz,(A(L)) to the
chromatic number of a certain Kneser graph.

For a set system S, let MIN(S) denote the system of all sets in S that are
minimal with respect to inclusion (no proper subset is in §). We further recall
that KG(S) denotes the Kneser graph of §, with vertex set S and with edges
connecting disjoint sets.

5.7.1 Lemma. LetK be asubcomplex of a simplicial complex J and let S := MIN (J\
K). Then
indz, (AJX \KX)) < x(KG(S)) - 1.

Proof. Let m:=x(KG(S)), and let ¢: S — [m] be a proper coloring of KG(S)
with m colors, i.e. ¢(Fy) # ¢(F;) whenever Fy N Fy, = @.

Let us write £:=J% \ KX. We would like to construct a Zy-map of A(L)
into S™~1.

The first trick is to represent the sphere S™~! as the first barycentric sub-
division of the deleted join (¢™~!)32 (which is correct by Corollary 5.4.3). The
required Zy-map is constructed as a simplicial map

g A(L) — sd((am_l)zz).

A vertex of the complex on the left-hand side has the form F;*Fy, where
Fy and F, are disjoint faces of J, at least one of them not belonging to K.
A vertex of the complex on the right-hand side is of the form Gi*xG5, where
G, and G are disjoint subsets of [m], not both of them empty. We define
g(F1+Fy) = h(Fy)xh(F3) for a suitable map h assigning subsets of [m] to sim-
plices of J; this automatically guarantees that ¢ is a Zy-map.

We define

WMF):={c(G): GeS,GCF}.

We need to verify that if Fy«F, € £, then h(F}) and h(F3) are disjoint subsets
of [m], not both empty. If F; N Fy, = &, then h(Fy) N h(Fy) = @ as well,
for otherwise we would have sets Gy C F} and Gy C Fy, G1,Gy € S, with
c(G1) = ¢(G3) and ¢ would not be a proper coloring of the Kneser graph. The
nonemptiness of h(Fy) U h(F,) also follows because we have h(F) # @ exactly
if F € J\ K. The map h is monotone with respect to inclusion and so g is a
simplicial Zy-map as claimed. aa

Putting this together with Corollary 5.6.3, we obtain the following amazing

connection between Kneser colorings and embeddability into R

5.7.2 Theorem (Sarkaria’s coloring/embedding theorem). Let K be a
subcomplex of a simplicial complex J and let §:=MIN(J\ K). Then

indz,(KX) > indz,(JX) — x(KG(S)),
and consequently, if

d < indz,(J3) — Y(KG(S)) — 1,
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then for any continuous mapping f:||K|| — RY, the images of some two disjoint
faces of K intersect. For J = ¢, the condition becomes

d<n—-x(KG(S)) -1

Let us first see a few examples of using this remarkable result in proofs of
nonrealizability of simplicial complexes.

5.7.3 Example. The Van Kampen-Flores theorem is the special case with
J = 0%*2 and K = (029+2)<d_ Here § are all simplices of dimension d+1, and
the Kneser graph KG(S) has no edges at all, since no two sets in § are disjoint.
So x(KG(S)) = 1 and Theorem 5.7.2 gives nonrealizability of K in R?? as it
should.

5.7.4 Example. Let us prove, by this heavy machinery, that the complete
bipartite graph K33 is not planar.

We let the vertex set be {1,2,3,1/,2.3'}, J is the 5-simplex on this set, and the
maximal simplices of K are {i,j'}, i,7 = 1,2,3. Then S consists of the pairs
that are not edges of K, i. e. the pairs {¢,j} or {¢,j'}. We can color the pairs
on {1,2,3} red and the pairs on {1’,2,3'} blue, and so y(KG(S)) = 2. Thus
K3 3 cannot be realized in R¢ for d <h—-2-1=2,

The index of K% can easily be computed directly here: observing that
K = [3][3], we have K32 = ([3]32)*2. Since [3]:2 is a cycle (of length 6), ||K|| =
SlxSl >~ 63,

5.7.5 Example (Non-realizability of RP? in 3-space; Brehm & Sarkaria
[BS92]). Let K C 20% be the pure, 2-dimensional complex whose maximal
faces are given by the list

124 125 134 136 156 235 236 246 345 456

This is a remarkable complex. We note four things:

(i) K corresponds to the triangulation of a hexagon drawn below, where op-
posite vertices and edges on the boundary are identified.
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Thus, K triangulates the real projective plane RP?. (Another interpreta-
tion is that K is the complex obtained by identifying all opposite faces on
the boundary of a regular icosahedron. The icosahedron has 12 vertices,
20 edges and 10 triangles, and so the complex K we are looking at has
exactly half of these face numbers.)

(ii) K has a complete 1-skeleton: we have ([g) C K.

(iii) For triples F € ([g]) we find that F' € K if and only if [6]\F ¢ K. From
this we derive that B(K) = K, and thus Bierg(K) = Ki2. Therefore,
ind(K3%) = 4, and Proposition 5.5.1 gives non-realizability in R3.

(iv) The system & of minimal non-faces is ([g])\K7 and the Kneser graph is
again trivial, since & has no disjoint simplices. Thus, from Theorem 5.7.2
we obtain another proof of non-realizability of ||K|| in R>.

Since embeddability is independent of the triangulation, we have proved that
the real projective plane RP? has no embedding into R3.

Third proof of Kneser’s conjecture. Sarkaria’s theorem can be used
not only for proving the impossibility of an embedding from the existence of a
Kneser coloring, but also the other way round.

Let §:= ([Z]) be given, and choose the simplicial complex K accordingly
to consist of all proper subsets of the sets in §. That is, K is the (k—2)-
skeleton of ™! and in particular, dim(K) = k—2. By the geometric realization
theorem 1.6.1, ||K|| can be realized in R2*=2)+1 = R?¥=3_ Theorem 5.7.2 gives
X(KG(S)) > n—2k+2, as it should be.

Alternatively, we can avoid speaking about an embedding and use the first
inequality in Theorem 5.7.2 directly. It gives y(KG(S)) > indz,((¢" 1)32) —
indz, (K) = n—1—indz,(K3) > n—1—dim(K3) = n—2k+4-2. &

Notes.  The main results of this section are due to Sarkaria [Sar9la]
and [Sar90] (who formulated them for concrete examples rather than as
general statements).

Similar to Example 5.7.5, one can prove that the complex projective
plane CP? cannot be realized in R®. There is a 9-vertex triangulation
K C 209 of CP2. It is a pure, 4-dimensional simplicial complex with 9
vertices such that B(K) = K; consequently, the deleted join is a Bier
sphere. Again we get that there are no disjoint non-faces, which implies
that there is no embedding of this complex, and thus of CP?, into R¢ for
d<8-1-1=6. (See Kiihnel & Banchoff [KB83] and Kiihnel [Kiih95,

Thm. 4.13] for more information.)

Exercises

1. Prove the following “generalized Van Kampen-Flores theorem” (Sarkaria
[Sar91b]): the simplicial complex

T(ki,...,km) = (052]“)5]“_1 * (052k2)5k2_1 Kook (USka)Skm_l
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does not embed into R%, for any partition ki+ko+---+kn = k+1.
Similarly (indeed: equivalently!), the complexes 0" «T'(ky, ..., kn,) do not
embed into RY for d = 2(k1tko+ - - - +kp—1) 4+ (r+1).

(Sarkaria calls these complexes the Kuratowski complexes; they include
both the Kuratowski minimal nonplanar graphs K33 and Ks.)

. Consider a graph G as a 1-dimensional simplicial complex. Prove that G
is planar if and only if indz,(G32) < 2; that is, Proposition 5.5.1 works
perfectly for 1-dimensional simplicial complexes.

. (Dol'nikov’s theorem revisited) Let Py(n):={(A,B) : A,B C [n],AN
B = @}, and define a partial ordering < on Py by inclusion in both
components: (4,B) < (4’,B’) if and only if A C A’ and B C B’. Let
P(n,l) ={(A,B) € Po(n) : |AUB| > n—(}, and let K(n, () be the order
complex of (P(n, (), <). A simplicial Zy-action on K(n, () is given by the
exchange of the components.

(a) Check that K(n,n—1) is isomprphic to sd((c"~1)32).
(b) Show that indgz,(K(n,()) < L.

(c) Express K(n,n—1) as the join of K(n,{) with another suitable simpli-
cial complex, and use Proposition 5.2.2(iii) to verify that indyz,(K(n,()) >
0,1 <0< m.

(d) Let S be a set system on [n] and suppose that ¢: S — [m] is a proper
coloring of the Kneser graph KG(S). For A C [n], define h(A4) :={c(5) :
S € 8,5 C A}. Assuming that c¢dy(S) > m, show that the map-
ping ¢: (A, B) — (h(A),h(B)) is a simplicial Zymap of K(n,m) into
K(m, m—1). Derive Dolnikov’s theorem 3.4.1.

This proof follows [Mat01b] and the basic idea is due to Kiiz [Kri92],
[Kri00].
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Multiple points of coincidence

Up until now, we have been considering spaces with Zg-actions and theorems
saying that under suitable conditions, there exist points @ and y with disjoint
supports that are mapped to the same point. Here we generalize these consider-
ations on spaces with actions of other groups, most notably the groups Z,. We
will obtain theorems in which images of some p points with disjoint supports
are guaranteed to coincide.

6.1 G-spaces

Some spaces posses symmetries other than antipodality: they have groups other
than Z, acting on them.

For a finite group G, a G-action on a topological space X is a collection
® = (¢g)gec of homeomorphisms ¢4: X — X. The homeomorphism ¢, corre-
sponding to the unit element e of GG is the identity idx, and the composition
of these homeomorphisms respects the group operation: ¢4 0 ¢, = @4, for all
g,h € G. (Thus, g — ¢4 is a homomorphism of G into the group of homeomor-
phisms of X; if X is a topological vector space and all the ¢, are linear maps,
we have a representation of G in the usual sense.) In the literature, one often
writes just gz for pg4(z).

How does our earlier definition of a Zs-action fit into this general definition?
For G = Zj, the cyclic group {0,1} with addition modulo 2, the homeomor-
phism assigned to 0 must be the identity, and the homeomorphism assigned to
1 is what was earlier called the Zy-action v.

Similarly, let us consider a cyclic group Z,,, which we think of as {0,1, ..., n—
1} with addition modulo n. A Z,-action ® is fully specified by the single home-
omorphism ¢y, as @; = (gol)i. In this sense, we will mostly write “a Z,-space
(X,v),” with the action denoted by a lowercase Greek letter, meaning that v
is the homeomorphism corresponding to 1.

We will work exclusively with actions of finite groups, but we can as well
state the general definition. For infinite topological groups,! we moreover re-
quire that ¢4(2) depend continuously on both ¢ and z.

' A topological group is a group and, at the same time, a Hausdorff topological space, such
that the group operation and the inverse are continuous maps G x G — G and G — G,
respectively.
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6.1.1 Definition (G-spaces and G-maps). Let G be a topological
group and X a topological space. A G-action on X is a collection ® = (¢g4)geq
of homeomorphisms X — X, such that (g,z) — @g4(2) is a continuous map
GxX — X, pe =idyx, and ¢4 0 ¢, = @gp for all g,h € G. The pair (X, ®) is
a G-space.

If (X, ®) and (Y, ¥) are G-spaces, a continuous map f: X — Y is a G-map
(or equivariant map) if fo g, =140 f forall g € G.

For € X, the set {p4(z) : ¢ € G} is called the orbit of z under the
G-action @, and similarly for a subset A C X. A set A C X is invariant if
pg(A)=Aforall g € G.

Free actions. For Zgy-spaces, we have seen the important distinction between
free and non-free spaces. We recall that a free Zg-spaces is one where the
single homeomorphism corresponding to 1 has no fixed points. Two ways of
generalizing this to actions of larger groups suggest itself: we can require that
none of ¢, with g # e have a fixed point, or only require that no point be fixed
by all 4. Both ways lead to interesting notions. We will mostly encounter the
former:

6.1.2 Definition. A G-space (X, ®) is called free if no g, g # e, has a fixed
point. Equivalently, for each « € X, the mapping g — @4(z) is injective; that
is, the orbit of each point is a copy of G.

The second notion is a fized-point free G-action, where the orbit of each
x € X has at least two points. Our moderate topological means won’t allow
us to make use of fixed-point free actions that are not free. But in some more
advanced applications, they have been employed successfully.

6.1.3 Observation. Let p be a prime number. Then a Zy-space (X,v) is free
if and only if v has no fixed point.

Indeed, for every k with 1 < k < p, there is some ¢ with k¢ = 1 (mod p),
and hence v*(z) = 2 would imply that v(z) = v*(2) = .

Examples of group actions. Some of the examples below, especially those
with infinite groups, serve just as illustrations, but others (marked by boldface
labels) will be important later for combinatorial and geometric applications.

6.1.4 Examples (Group actions).

(a) Let S! be the unit circle in the plane and v the rotation by %’T. Then
(S',v) is a (free) Z space, for any integer ¢ > 1.

(b) The group SO(2) of all rotations of the plane around the origin also acts
on S', and we have an example of a (free) SO(2)-space.

(c) More generally, the group O(n) of all isometries of R™ fixing the origin
(corresponding to all orthogonal nxn matrices with determinant £1) acts
on S""!in the obvious way. The action is fixed-point free but not free
for n > 2. Of course, O(n) acts on R"™ as well, and here the origin is a
fixed point.
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()

(f)

(8)

(h)

Since O(n) acts on S™71, its subgroups G C O(n) do as well. Such actions
are usually called orthogonal representations of G, and they have been
much studied in the literature. For a slightly exotic example, consider the
regular icosahedron

centered at the origin. It is known that the group of symmetries of the
icosahedron is A5 (the noncommutative alternating group, consisting of
all even permutations of five elements, with composition of permutations
as the group operation). Thus, A5 acts on the icosahedron, and also on
its boundary. The latter action is fixed-point free but not free.

In the complex plane, the unit circle S' consists of the unit complex
numbers: {z € C: |z| = 1}. In this way, S! is given a group structure,
with complex multiplication as the group operation. Then St is a (free)
Sl-space, where the homeomorphism ¢, is given by multiplication by z.
Geometrically, multiplication by z = €l® acts as the rotation of S* by the
angle o (radians). Thus, this is just a different view of the example (b)
with the group of all rotations of the plane around the origin acting on

St

Any topological group G acts freely on itself by the left multiplication;
i.e. p4(h) = gh. The previous example was a special case of this.

New G-spaces can be produced from old ones by joins. If (X, ®) and
(Y, ¥) are G-spaces, then a G-action © = ® « ¥ on X Y is defined by
0y = pgx1pg. If both & and ¥ are free, then the join @+ ¥ is free, too. You
may want to check that joins of G-maps produce G-maps (Exercise 1).
A similar construction can be made for Cartesian products of G-spaces.

The previous abstract example is more clever than it might seem. As
we know, the sphere S3 can be represented as the join S! * S'. Taking
2

the rotation by 7 as in (a) on both copies of S! and using the join

construction in (g), we get a free Zg action on S®. Such an example is
by no means obvious. If we consider S' as the simplicial complex formed
by the perimeter of a regular g-gon, we obtain a triangulated S®, and
the Zg-action is a simplicial map. Here is an attempt at visualization of
the join in R3. Two hexagons are placed in perpendicular planes, and
only the simplex {3,4}+{1’,2'} is shown. Its image under the Zg-action
is {4,5}+{2’,3'} (indicated by dashed lines).
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Of course, if we added more simplices to the picture, they would start to
intersect; S® cannot be embedded in R3,

(i) In the same way, we get a free Zg-action on each odd-dimensional sphere
S2n=1 using S?n—! = (S1)*n. Here is another way of representing the
same Zgaction: regard S*"~! as the unit sphere in C", i.e. the set
{(21,--y2n) € C* ¢ |z1]* + -+ -+ |24|* = 1}, and define the action by
(21, ..y 2n) = (W21,...,wzy,), where w = ¢2m/4 is a gth root of unity.

(J) It is useful to remember, some negative results, too: the only nontrivial
group with a free action on an even-dimensional sphere S?" is Z,.2 Fur-
ther, it is known that any group G acting freely on some S™ has at most
one element of order 2 and every Abelian subgroup of such G is cyclic
(equivalently, there is no subgroup Z,XZ, with prime p); see e.g. [Hat01,
Sec. 1.3] for a part of the proof and references.

(k) For any space X, the symmetric group S,, (all permutations of [n]) acts
on the nth Cartesian power X" by permuting the coordinates. Explicitly,
for # € Sy, the action is wr (21,22, ..., ) = (Tr(1), Tr(2), -+ ) Tr(n))- The
subgroups of S,,, such as Z,, thus act on X" as well. The same applies
to the n-fold joint X*". These actions are not free but they become free
by deleting all fixed points; we will discuss this further when considering
deleted joins (and products).

Notes. Actions of groups other than Z; on spheres, and the corre-
sponding Borsuk—Ulam type results, appeared soon after Borsuk’s paper;
Steinlein [Ste85] gives Eilenberg [Eil40] and Hirsch [Hir37], [Hir43] as the
earliest such references. They use degree-theoretic considerations or the
Lefschetz number. Smith [Smi42], [Smi41], [Smi38] also considered ac-
tions of finite groups, but his results mainly concern the structure of
the set of fixed points. Many subsequent generalizations asserting the
nonexistence of an equivariant map X — Y relax the conditions on
X and Y. For example, since the degree of a map can be defined in
(co)homological terms, it suffices that X has the Z, (co)homology of S™
and Y that of S"~!. We refer to Steinlein [Ste85] for a detailed bibliog-
raphy.

2This is because the order of a group G having a free action on X must divide the Euler
characteristic of X, and the Euler characteristic of S%™ is 2.
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A basic book on group actions on topological spaces is Bredon [Bre72].

***  mention tom Dieck book???

Exercises

1. If (X1, 1), (X2, ®2), (Y1, ¥1), and (Y3, ¥y) are G-spaces and f1: (X1, $1) —
(Y1,%4) and fy: (Xg, ¥3) — (Y2, ¥y) are G-maps, check that fi x fa: (X7
Xz, q)l * q)z) — (Yl * Yz, \:[11 * \1/2) is a G—map.

6.2 F,G spaces and the G-index

Much of the theory we have developed for Zgs-spaces, concerning the Zs-index
and the nonexistence of equivariant maps, can be imitated for G-spaces. A
large part of this goes through almost without change; we will mainly point out
the modifications needed for G-spaces.

As expected, we write X HYor X <@ Y if thereis a G-map X — Y. For
introducing a G-index, though, we need suitable “yardstick” spaces analogous
to the spheres; these are called E,,G spaces.

6.2.1 Definition. Let G be a finite group and n > 0. An E,G space is a
G-space that is

a finite simplicial G-complex (or a finite cell G-complex),

e n-dimensional,

(n—1)-connected,

and free.

(Here, similar to the Z; case, a simplicial G-complex is a simplicial complex
made into a G-space so that all the homeomorphisms ¢, are simplicial maps,
and similarly for cell G-complexes.)

A concrete example of an E,G space that we will use most often is the
(n+1)-fold join G*"t1). As a topological space, this is the join [m]*("+1),
where m :=|G| and [m] denotes the m-point discrete space. For example, for
n = 1, G** is the complete bipartite graph K, . Clearly, G*"™! is an n-
dimensional simplicial complex. As in Example 6.1.4(f), G acts on itself freely
by the left multiplication, and so G*"*! is a free simplicial G-complex. Finally,
the (n—1)-connectedness follows immediately from Proposition 4.3.5 about the
connectivity of joins. With some more work, one can also show by induction
that G*"*! is homotopy equivalent to a wedge of a suitable number of n-spheres,
from which the (n—1)-connectedness follows as well.

We describe other, perhaps simpler, E,,G spaces for the most often consid-
ered case G = Zj;,. As we know from Example 6.1.4(i), odd-dimensional spheres
can be equipped with free Z,actions (Example 6.1.4(i)), and so S?"~! with
such a Z,-action can serve as another Ey,_1Z,. For even dimensions, we can
take the join of a sphere of dimension one less with one copy of Z,, (such spaces
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were used in the first proof of the topological Tverberg theorem by Barany,
Shlosman, and Sziics [BSS81]). We can picture this space as p “tipis” of differ-
ent heights erected over the sphere S?"~!. As the following picture indicates,
this space is homotopy equivalent to a wedge of (p—1) spheres S?" and thus
(2n—1)-connected.

A (e

The following lemma shows, among others, that all E,,G spaces are equiva-
lent for our purposes:

6.2.2 Lemma. Let X be an (n—1)-connected G-space and let K be a free finite
simplicial G-complex (or a free finite cell G-complex) of dimension at most n.

Then ||K|| - X.

Sketch of proof. The proofis very similar to the proof of Proposition 5.2.2(v):
the required G-map is built face-by-face, by induction on the dimension. Hav-
ing constructed the mapping on the k-skeleton of K, we partition the (k+1)-
simplices into orbits, we extend the mapping on one simplex in each orbit using
k-connectedness, and we transfer this extension to the remaining simplices via
the G-action. Here we need that the simplices in each orbit have disjoint rel-
ative interiors, but if the relative interior of ¢4(int o) intersected the relative
interior of o, then we would have ¢4(0) = o (as ¢4 is simplicial and bijective)
and o would contain a point fixed by ¢,. )

6.2.3 Definition (G-index). For a G-space X, we define
indg(X) := min{n: X = E,G}.
(Here E,,G can be any E,G space, since any of them G-maps into any other.)

The properties of the Zyindex listed in Proposition 5.2.2 generalize with-
out change. For convenience, we list them again here; we also add Sarkaria’s
inequality.

6.2.4 Proposition (Properties of the G-index). Let G be a nontrivial
finite group (|G| > 1).

(i) indg(X) > indg(Y) implies X 45 Y.
(ii) indg(E,G) = n (for any E,G space).

(i) indg(X *Y) < indg(X) + indg(Y) + 1.
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(iv) If X is (n—1)-connected, then indg(X) > n.

(v) If X is a free simplicial G-complex (or free cell G-complex) of dimension
n, then indg(X) < n.?

(vi) (Sarkaria’s inequality) If L is a finite simplicial G-complex and Lg is an
invariant subcomplex of it, then indg(Lo) > indg (L) —indg(A(L\Lo)) —1.

Part (i) is obvious, (iii) follows from the fact that G*"*! is an E,,G space,
(iv) and (v) are consequences of Lemma 6.2.2 (of course, (iv) also needs (ii)),
and (vi) is proved exactly like Theorem 5.6.2. The hardest part is the innocent-
looking (ii), which requires a new theorem of a Borsuk-Ulam type.

6.2.5 Theorem (A “Borsuk—Ulam” theorem for G-spaces). There is
no G-map of an F,G space into an E,,_1G space.

We postpone the proof a little, and we comment on the role of the groups
Z,. First, we observe that if H is a subgroup of G, then any G-space can also
be regarded as an H-space (and a G-map as an H-map). By inspecting the
above proposition, we see that it never makes any reference to the properties of
G (except for the nontriviality), and so, if we use only these tools for bounding
the index, we lose nothing by restricting ourselves to a nontrivial subgroup. In
fact, sometimes we might gain, since it can happen that a G-action is not free
but the action of some subgroup H is free. It is not hard to show that every
(nontrivial) finite group contains a subgroup isomorphic to Z, for a prime p.
Therefore, when considering free actions, it is usually sufficient to consider only
Z,-actions. This happens, for instance, in the following proof.

Sketch of proof of Theorem 6.2.5. (Specialized to G = Zg, this is also
another proof of the Borsuk-Ulam theorem.) Exceptionally, in this proof we
have to assume familiarity with the basics of simplicial homology.

As was just noted above, it is sufficient to consider the case G = Z, with
prime p.

For concreteness, let us work with the E,Z, space (Z,)*"*1. Let K:= (Z,)**!
and let L:=(Z,)™. This L can be identified with a subcomplex of K (corre-
sponding to the first n factors in the (n+41)-fold join); let i:L — K be the
inclusion map.

For contradiction, we suppose that there is a Z,map f:K — L. First we
need to make f into a simplicial map; more precisely, we need that there is a
sufficiently fine subdivision K of K and a simplicial Z-map f:K — L. This is
done using a standard procedure (simplicial approximation theorem; see e.g.
[Hat01, Theorem 2C.1]); one has to be a little careful so that the simplicial
approximation remains a Z,-map, but this is not a problem.

The composed map g:=1i0 f: K — K is a simplicial Z,map. We analyze its
Lefschetz number in two ways and reach a contradiction.

First we consider the level of chain groups. The simplicial map g¢: K— Kin-

duces maps gu: Cr(K) = Ci(K), where C(K) = Ci(K, Q) is the k-dimensional

8 As in Proposition 5.2.2, this holds for all paracompact Y of dimension at most n.
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chain group with rational coefficients (g goes into K but every k-simplex in K
is written as the sum of the k-simplices in K subdividing it). The Lefschetz
number on the level of chain maps is

Alg) =D (=1)* trace(gyr)-
k>0
Since we are working with rational coefficients, the C(K) are vector spaces and
the g4k are linear endomorphisms, and so trace is the trace of a linear map in
the usual sense.

We consider the usual basis of Cj(K) made of all chains e,, where o € K
has dimension k and e, is 1 on ¢ and 0 elsewhere. Expressing trace(gur) with
respect to this basis, we see that since g is a Zy-map, o gives the same contri-
bution as the other p—1 simplices in its orbit (here we use that the simplices
in each orbit are all distinct). Therefore, trace(g4x) is divisible by p, and so is
A(g).

Now we consider A(g) on the level of homology groups. The map g induces
maps g.: Hi(K, Q) — H(K, Q) in homology, and by the Hopf trace formula,
the Lefschetz number equals

Alg) =D _(=1)F trace(g.r).

k>0

Since K is (n—1)-connected, we have Hi(K,Q) = 0 for 1 < k < n—1, and
so the only contribution to A(g) may come from dimensions 0 and n. But
Gsp is trivial, since it is the composition i, o fun, and so it goes through the
homology group H,, (L, Q) which is 0 because L is (n—1)-dimensional. It follows
that A(g) = 1, which contradicts the previous calculation and shows that the
Zymap f:|| K| — ||L|| is impossible. (From the first part of the proof, we can
actually learn something about actual (existing) Z,-maps of a (triangulable) Z,-
space into itself: any such map has Lefschetz number divisible by p.) aa

The following consequence of Proposition 6.2.4, which does not mention the
G-index, has been often quoted and used in the literature:

6.2.6 Theorem (Dold’s theorem [Dol83]). Let X be an n-connected G-
space and let Y be a free G-space of dimension at most n (it may be a simplicial
G-complex, a cell G-complex, or even an arbitrary paracompact space). Then

X -5y,

Notes.  Krasnoselskii’s notion of genus (equivalent to our Zg-index)
was extended to actions of more general groups by Svarc [Sva57], [Sva62].

There are more advanced results, whose proofs or even reasonably
general formulation are beyond our scope, which can establish X Y
with the G-action on Y being fixed-point free but not necessarily free.
One useful result, which can be formulated easily, is the following theo-

rem of Volovikov [Vol96]:
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Let G:=7%Z, X Zy X - -+ X Zy, be the product of finitely many copies
of Zy, with p prime. Let X and Y be fixed-point free G-spaces such
that .T-iT"(X7 Zyp) = 0 for all i < n (reduced cohomology groups with
Z-coefficients) and Y is finite-dimensional and an n-dimensional co-
homology sphere over Z,, (the cohomology ring with Z, coefficients is

isomorphic to that of ™). Then X =Y.

In particular, there is no G-map of an n-connected X into S", pro-
vided that the actions are fixed-point free. Similar results have been
obtained, in varying degrees of generality, by Ozaydin [Oza] (in an un-
published manuscript) and later independently by Sarkaria [Sar00]. A
detailed completion and exposition of Sarkaria’s argument was given by
de Longueville [dL99]. The proofs rely on advanced topological methods
(cohomology and characteristic classes of vector bundles).

Cohomological ideal-valued indez. Production of results similar to
the just mentioned theorem can be “mechanized” using a cohomolog-
ical ideal-valued index of Fadell & Husseini [FH88]. This index theory
appears very useful for combinatorial and geometric applications. It can
be seen as a generalization of the idea of the cohomological proof of the
Borsuk-Ulam theorem mentioned in the notes to Section 2.1. The in-
dex Indg(X) of a G-space (X, ®) is not a single number, but rather an
ideal in a ring R¢g. This ring is the cohomology ring of a certain space
constructed from G and, for finite G, it can usually be represented as
a polynomial ring. A G-map (X, ®) — (Y, ¥) implies the containment
Indg(X) C Indg(Y), and so the existence of a G-map can be excluded
whenever this inclusion doesn’t hold. This index is finer than the nu-
merical G-index considered in this chapter, and it also gives results for
fixed-point free actions. On the other hand, its computation requires the
knowledge of certain cohomology rings and their maps, which may not be
easy to obtain. A short introduction to this theory with several impres-
sive applications and a few ready-made recipes for computing Indg(X)
in some common cases was provided by Zivaljevié [Ziv98].

Finally, the equivariant obstruction theory is another powerful tool
(again requiring more advanced knowledge of algebraic topology) for at-
tacking the question whether X —5Y or not. Sometimes it yields the
nonexistence of a G-map and sometimes, unlike the index theories, it
allows one to prove the ezistence of a G-map X — Y (without explic-
itly constructing it). For an application, the existence of a G-map is
usually disappointing but at least it identifies a dead end. Equivariant
obstruction theory deals with the following question: Given an equivari-
ant map f defined on the n-skeleton of a simplicial G-complex (or cell
G-complex), is there an equivariant map defined on the (n+1)-skeleton
that agrees with f on the (n—1)-skeleton? (In other words, we want
to extend f from the (n—1)-skeleton to the (n+1)-skeleton, knowing
that extension to the n-skeleton is possible.) The answer is yes if and
only if certain cohomology class (the “obstruction”) is zero. Since there
can be many choices for the extension in each step, the method does-
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n’t seem to provide a generally efficient algorithm for deciding whether
X -5V, even if we can evaluate the required cohomology classes. In
many concrete cases it works nicely, though. For a first impression of
the method, one can consult [Ziv98], which also provides references for
a deeper study.

Exercises

1. Prove by induction on n that [m]*” is homotopy equivalent to a wedge of
(n—1)-dimensional spheres. How many spheres are there?

6.3 Deleted joins and deleted products

In the subsequent applications, which are mostly generalizations of problems we
have encountered earlier, we construct G-spaces X and Y and then use the G-
index for showing X —+5Y. Here X and Y are usually suitable p-fold deleted
joins or deleted products, and in this section we discuss these constructions.
Unlike for twofold joins and products, for p-fold ones there are various possibil-
ities as to which points should be deleted. For example, from the product X3,
we can delete all points (z,,z), where all the three components coincide, or
alternatively the points where at least two coordinates coincide. What needs to
be deleted is usually dictated by the application. Here is the general definition,
of which we will actually use only a few special cases.

6.3.1 Definition. Let n > k > 2 be given integers (we will mostly encounter
the cases k = n and k = 2). Call an n-tuple (z1, %2, ...,%,) k-wise distinct if
no k among the z; are equal.

The n-fold k-wise deleted product of a space X is

XAy = X" \{(z1,22,...,2,) € X" (21,...,2,) not k-wise distinct}.
The n-fold k-wise deleted join of X is
XXy =X\ {Tay+Lag+ -+ L, (21,...,2,) not k-wise distinct}.
For a simplicial complex K, the n-fold k-wise deleted join of K is
KRy = {F1eFox - xF, € K™ 2 (B, By, ..o Fy) k-wise disjoint},

where an n-tuple (Fy, Fy, ..., F,) of sets is k-wise disjoint if every k among
the F; have empty intersection.
For k = n, we write only X} for Xg(n), X} for XZ’(ln), and K* for K*A”(n).

So the 2-wise deleted joins and products are the “most deleted” (smallest)
while the n-wise deleted ones are the “least deleted” (largest).

On all these deleted joins and products, the symmetric group .S, acts by
permuting the coordinates. We will consider the action of the cyclic subgroup
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7., generated by the cyclic shift to the left, namely by the permutation v: 1 — 2,
2—3,...,n—1—n, n— 1. Explicitly, on the deleted product, v acts by

vi (21,22,...,2,) — (22,23,...,2Zn,21),
and on the deleted join, it acts by

v: tiey +taxg + -+t —— toxy +itzxs+ -+ tpa, 2.

Free actions. For 2-wise deleted joins and products, where no two coordinates
of points coincide, the whole S,-action is free.

On the other hand, for n-wise deleted n-fold products and joins, the S,,-
action is not free and the Z,-action v is free if (and only if) n = p is a prime.
Indeed, if p is a prime, then by Observation 6.1.3, it suffices to verify that v has
no fixed point, and this is obvious since if (g, 23, ..., Zn, 21) = (21, T2, ..., Tn),
then zy = 29 = - - - = 2,,. Moreover, as is not difficult to check, this is the only
case (up to a renumbering of the coordinates) when a nontrivial subgroup of S,
acts freely on an n-wise deleted n-fold product or join of a space or simplicial
complex with at least two points (Exercise 1).

We need deleted joins and products of spaces only for the case X = R? and
k =n. Now we calculate the Z,-indices in that case.

6.3.2 Proposition (Deleted products and deleted joins of RY). Let p
be a prime and let d > 1. Then

indz, ((RY)}) < d(p-1)-1

and

indz, (RY) < (d+1)(p-1)-1.

Proof.  We construct a Z,map g: (Rd)i — §HP=1)-1 where S4P-1)-1 ig
equipped with a suitable free Z,-action.

Let us interpret R = (RY)" as the space of matrices (Qcij)?zl b, with
d rows and p columns. The Z,-action is the cyclic shift of the columns. The
elements of (RY)X are all matrices of this form except for those with all columns
being equal. For instance, for d = 1 and p = 3 we get the 3-dimensional Eu-
clidean space with the diagonal line {21 = 29 = 23} removed. First we consider
the orthogonal projection g; of R*P on the d(p—1)-dimensional subspace L
perpendicular to the diagonal. In coordinates, L is the subspace consisting of
all dxp matrices with zero row sums, and g; maps a matrix X = (z;;) to the

matrix
12
g1(X) = (wi]‘ - —szk) ;
p k=1

1y
that is, the average of all columns is subtracted from each column. We see that

g1(X) is the zero matrix O if and only if each column of X equals the average
of all columns; i.e. if all columns of X are equal. Therefore, g; provides a
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(surjective) Z,map (Rd)i — L\{O}. For instance, for d = 1 and p = 3, the
map ¢ is the orthogonal projection onto the plane zy + 25 4+ 23 = 0.

We set g(X) = Higgn. The range of ¢ is the unit sphere S(L) in L, which

can be identified with S¥P=1)~1_ Here is a geometric illustration for p = 3 and

d=1:

T3

T2

Tl

L

Clearly, g is a Z,-map, and we have proved the first part of the proposition. As
for the deleted join, we construct a Z,map h: (R — (R¥HHX | generalizing
the proof of Lemma 5.4.5 in a straightforward manner. As in that proof, we
consider the deleted join of a bounded set, say B¢, instead of R%. Then we
place the copies of B? into (R(d"'l))p using the embeddings 4, ..., 1¥,, where
¥i(@) has (1,21,22,...,24) in the ith block of coordinates and Os elsewhere.
The mapping h: (B")3F — (R4HE is given by

ey +tame + - tpe, — tih (@) +tade(xg) + - -+ tpdp(a)).

It is clearly a Z,map, it goes into the deleted product as it should, and con-
tinuity follows by a slight generalization of the considerations in the proof of
Proposition 4.2.4 about a geometric representation of joins. o

With a little more work, it can be shown that (R%)2 ~ S¥P=D=1 and so
indz, ((RYR) actually equals d(p—1)—1 (Exercise 2). Similarly, indz, (RY)?) =
(d+T)(p-1)-1.

Warning. For general n and k, the topology of the deleted product (Rd)z(k)
can be quite complicated. Based on some special cases and on an analogy with
the deleted join of a simplex, (%) *An(k) (which is homotopy equivalent to a wedge
of ((d41)(k—1)—1)-spheres; see Exercise 6.7.1), one might be tempted to believe
that (Rd)z(k) is homotopy equivalent to a wedge of (d(k—1)—1)-spheres (as is
asserted [Sar91la]). The truth is much subtler, though: while it can be shown
that (Rd)z(k) is (d(k—1)—2)-connected, it can also have nonzero homology in
various higher dimensions.

We conclude this section with generalization of version (1.1) of the Borsuk—-
Ulam theorem; we recall that (1.1) asserts the existence of an @ with f(@) =
f(—) for any continuous f:S" — R".
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6.3.3 Theorem (On p-fold coincidence points). Let (X,v) be a Z,-space
with indz (X) > d(p—1), where p is a prime. Then for any continuous map
f: X — RY there exists € X such that f(z) = f(v(z)) = f(v*(2)) = - =
fFwP=Hz)).

Proof. Suppose that there is no such z € X. Then the map
e (F@), f(@),. s f07 @)

is a Zymap of X into the deleted product (Rd)i, which yields indz (X) <
indz, ((RY2) < d(p—1)1. &

Notes. The space XZ(z) is sometimes called the nth (ordered)
configuration space of X, since it models configurations of n distinct
(and distinguishable) particles in X, and it is a classical object of study.
For X = C = R?, CR(,) is known as the pure braid space. Lot of work
has been devoted to the topological properties of the complement of
the zero set of various systems of polynomials; see Vassiliev [Vas92] for
interesting and advanced results.
**%*  mention Fadell-Husseni book

The topology of the deleted products (Rd)z(k) ford=1and d =2
has been investigated by Bjorner and Welker [BW95] (for d = 1, (R)Z(k)
is known as the k-equal manifold). Their method generalizes easily to
arbitrary d and allows one to describe the cohomology in concrete cases,
although obtaining general formulas seems very complicated.

Exercises

1. Let X be a topological space with at least two points.

(a) Show that if n is not a prime then the Z,-action on X} generated by
the cyclic shift by one position left is not free.

(b) More generally, show that if G is a nontrivial subgroup of S,, whose
action on X} is free then n = p is a prime and G is a cyclic group
isomorphic to Z,, generated by a cyclic shift, after a suitable renumbering
of the coordinates.

2. Show that (Rd)]i and S4P=1-1 4re homotopy equivalent. (Use the map
¢ in the proof of Proposition 6.3.2.)

3. For p =3 and d = 1, the sphere S(L) in the proof of Proposition 6.3.2 is
isometric to S!. Is it true that the cyclic shift action » on S(L) inherited
from R? is equal to the rotation of S(L) by 4%?

4. (A Lusternik-Schnirelmann-type theorem for Z,-actions) Let (X,v) be a
Zspace (assume that X is a metric space if it helps) with indz (X) >
d(p—1), where p is a prime, and let Ay, Ay, ..., Agy1 be closed sets cov-
ering X. Show that there is an index ¢ and a point z € X such that
{z,v(z),...,vP71(2)} C A,.
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6.4 Necklace for many thieves

We consider the necklace problem from Section 3.2 but with ¢ thieves. We
only deal with the continuous version here (the discrete version is proved from
the continuous version by a simple combinatorial argument). The following
theorem formally states that ¢(d—1) cuts suffice for ¢ thieves.

6.4.1 Theorem (Continuous necklace with many thieves; Alon [Alo87]).
Let py, pg, ..., pa be continuous probability measures on [0,1], let ¢ > 2, and
set N = d(q—1). Then there exists a partition of [0,1] into N+1 intervals
I, I, ..., I+ by N cuts and a partition of the index set [N+1] into subsets
Ty,Ts,...,T, such that

Z/‘i([j)zé fori=1,2,...,dand g=1,2,...,q.
JET,

Proof. In the subsequent topological argument, we will need to assume that
the number of thieves ¢ is a prime. Unlike the topological Tverberg theorem,
say, the non-prime cases follow from the result for all prime ¢ by a simple direct
argument; see Exercise 1.

From now on, ¢ is a prime. Consider an arbitrary division of [0, 1] among ¢
thieves: let Iy, I3, ..., In41 be a partition of the interval [0, 1]into N+1 intervals
(numbered from left to right), and let Ty, Ty, ..., T, be a partition of [N+41].
We encode such division by a point of the deleted join ||(UN)X1(2)||; this is the
key step.

Let us regard oV as the “standard simplex” in RN+

UN:{:EERN+1: ;>0 29 +22+ -+ ang =1}

Each of the N-+1 vertices of ¢V lies on one of the coordinate axes, and so the
vertex set can be identified with [N+1].

A point of the deleted join ||(UN)X1(2 || has the form ty @1 +to@o+- - -+t 2,
First we determine the coefficients ¢y from the given division: tj is the total
length of intervals assigned to the kth thief, i.e.

ty = Z length(I;).

JETY

Next, we define @,. If t; = 0, then @ does not matter in the join, so assume
tr > 0. We set
1 .
(ah); = 7 length(1;) fOI’]. €Ty
0 for j & Tk.

In other words, we consider the intervals going to the kth thief and we blow
them up, all in the same ratio, so that they fill up the whole interval [0, 1], while
the other intervals shrink to zero length. Here is an example for N = 6, ¢ = 3,
and ¢ = 2:
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B thief | B thief 2 thief 3
I 1 I 2 I 3 1 4 I 5 1 6 I 7
| 1 s
(®2)2 (®2)4 (®2)7

Note that V (supp(@x)) C Tk, and so the a; have pairwise disjoint supports.

Conversely, given any point z = tj@; + -+ tyz, € ||(UN)X1(2)||7 we can
determine the lengths of the intervals Iy, ..., Iy41 uniquely, and we can also find
the assignments of the intervals of nonzero lengths to the thieves: T} consists of
the indices of the vertices of supp(#y). The assignment of the intervals of zero
length is not unique. But what ¢s unique is the function f: ||(UN)X1(2)|| — (R%)4
expressing the gains of the thieves. Namely, we put

FEik = malIy).

JETY

It can be verified that f is continuous, and obviously it is a Z,map. If there
were no division as claimed in the theorem, f would miss the diagonal in (]Rd)q7
and so we would get an equivariant map

£ @™l — (Y4,

This is impossible, since the Zgindex of the left-hand side is N while that of
the right-hand side is (d+1)(¢—1)-1= N — 1. s )

Notes. Alon’s proof [Alo87] of the necklace theorem for many thieves
uses a different encoding of the divisions and relies on the Borsuk-
Ulam type result of Birdny, Shlosman, and Sziics [BSS81] mentioned
in the notes to Section 6.5. The presented proof basically follows Vuéié
and Zivaljevi¢ [VZ93] (they assume, w.l.o.g., that one of the y; is the
Lebesgue measure on [0, 1], and they construct a Z,-map into the deleted
join (R4~1) instead of deleted product). They also give a lower bound
for the number of fair divisions for “generic” necklaces (where no fair
splitting is possible with fewer than d(¢—1) cuts), by the method shown
in Section 6.6 below for Tverberg partitions.

Exercises

1. Suppose that the statement of Theorem 6.4.1 holds with ¢ = ¢; and also
with ¢ = go. Show that it holds for ¢ = ¢ 43, too.
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6.5 The topological Tverberg theorem

Radon’s theorem 5.3.1 states that any d+2 points in R¢ can be divided into two
parts with intersecting convex hulls. Tverberg’s theorem is a generalization of
this statement, where we want not only two disjoint subsets with intersecting
convex hulls but r of them.

It is not too difficult to show that for every d and r, thereexists a T = T'(d, r)
such that for any set A of T points in R? can be divided into r pairwise disjoint
subsets Ay, Ay, ..., A, with (;_, conv(A;) # 0 (Exercise 1). It is much harder
to establish the tight bound for T'(r, d), as stated in the next theorem.

6.5.1 Theorem (Tverberg’s theorem [Tve66]). For any d > 1 and r > 2,
any set of (d+1)(r—1)+1 points in R? can be partitioned into r pairwise disjoint
subsets Ay, ..., A, in such a way that conv(A4;)N---Nconv(A,) # @ (call such
a partition a Tverberg partition).

Let us examine some special cases first. As was remarked above, the case
r = 2 is Radon’s theorem. For d = 1, we have 2r—1 points on the real line, say
21 < a3 < -+ < @29,—1. Then we can choose A; := {a;, x9,_;} for 1 <i < r—1,
and A, = {,}. In fact, if the points x; are all distinct, then this is the only
suitable partition! Here is an example for d = 2 and r = 3, showing two possible
Tverberg partitions of a 7-point set (can you find other partitions?):

The reader is invited to check that of N+1 points with N = (d+1)(r—1) is the
best possible (for all r and d); see Exercise 2.

We will not prove Tverberg’s theorem here—instead, we prove a topological
version which implies Tverberg’s theorem in the case where r is a prime.

6.5.2 Theorem (Topological Tverberg theorem; Bardny, Shlosman &
Sziics [BSS81]). Let p be a prime, let d > 1 be arbitrary, and put N =
(d+1)(p—1). For every continuous map

follo™)| — RY

there exist p pairwise disjoint faces Fy,...,F, C oV whose images under f
intersect:

FAED N fAIED N -0 fIE]) # 2.

It seems likely that this theorem remains true for all p, not only primes,
but so far nobody has managed to prove this. It has been verified for all prime
powers, though.

Proof. This is very similar to the proof of the topological Radon theorem;
the only difference is that we work with p-fold joins.



113 6. Multiple points of coincidence

Suppose that there is an f violating the theorem; that is, there are no
pairwise disjoint faces Fy, Fy, ..., F, with all f(||F;||) intersecting. We consider
the p-fold join f*P, and we regard it as a map from the p-fold 2-wise deleted
join:

fr ||(UN)XJ(2)|| — (Rd)f-
The fact that this map indeed goes into the deleted join exactly translates the
condition on f above.

Note how the problem itself determines what kind of deleted joins we should
use: we deal with pairwise disjoint faces, and so we use the 2-wise deleted join
on the left-hand side. We assume that no p images coincide, and so the join on
the right-hand side is p-wise deleted (only the points with all components equal
are removed).

Automatically, f*P is a continuous Z,-map. We know that indzp((Rd)Xj) <
(d4+1)(p—1) — 1 (Proposition 6.3.2), and so it remains to calculate the Z,-
index of the left-hand side. This is again similar to the case p = 2 handled in
connection with the topological Radon theorem. Analogous to Lemma 5.4.2,
we have

6.5.3 Lemma. Let K and L be simplicial complexes. Then

(K * L)Xj(z) = KXQ(Z) * LXQ(Z).

Proof. Clear! A

6.5.4 Corollary. We have indzp((an)f(z)) = n.

Proof. This time we have

(a”)f(z) = ((UO)*(nH))Xv@) — ((o‘o)zp(z))*(n"‘l) = [p** ).
Tn Section 6.2, we saw that [p]*("*1) is (n—1)-connected—in fact, it is an E,Z,
space (if we identify [p] with Z,). &

This also concludes the proof of the topological Tverberg theorem. Vi)

The space Lp]*(”"'l) is quite important; we used it as an F,,Z, space, here
it turned up as the deleted join of a simplex, and we will meet it several more
times. From a combinatorial point of view, the maximal simplices can be re-
garded as the edges of the complete (n+1)-partite hypergraph on n+1 classes
of size p each. In the picture, n = 2, p = 4, and only 3 edges are drawn as a
sample:
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The isomorphism of the complex [p]*"t1) with the deleted join (U”)Xj(z) is quite
intuitive in this drawing. Each row consists of p copies of the same vertex of
o"”, one for each factor in the deleted join, and since the join is 2-wise deleted,
a simplex can use only one of the copies in each row.

Alternatively, we can also consider the maximal simplices as functions [n+1] —

[]-

Notes.  The original proof of Tverberg’s theorem [Tve66] is compli-
cated. The idea is simple, though: start with some point configuration
for which the theorem is valid, and convert it to a given configuration
by moving one point at a time. During the movement, the current par-
tition may stop working at some point, and it must be shown that it can
be replaced by another suitable partition. Later on, Tverberg found a
simpler proof [Tve81]. Sarkaria [Sar92] invented another, very nice, and
reasonably simple proof, based on a geometric lemma due to Bdrdny,
and his proof was further streamlined by Onn (see [BO97]). Still an-
other proof, also due to Tverberg and inspired by Barany’s proof, was
published in Tverberg and Vreéica [TV93]. A similar proof, technically
somewhat simpler, is due to Roudneff [Rou01].

Tverberg’s theorem is quite important and has numerous applica-
tions, as well as extensions and generalizations; see e.g. Eckhoff [Eck93].
Some interesting aspects are briefly discussed in Kalai’s lively survey

[Kal01].

The topological Tverberg theorem. Barany et al. [BSS81] proved The-
orem 6.5.2 using deleted products. By an ingenious argument, they
showed that the p-fold 2-wise deleted product of ¢V is (N —p)-connected.
Then they established and used apparently the first theorem of Borsuk—
Ulam type dealing with Z-actions that has appeared in a combinatorial-
geometric application. In our terminology, that result can be phrased as
follows. For a prime p and integer d > 1, consider the sphere §4(P—1)-1
with the Z,-action obtained as in the proof of Proposition 6.3.2, and let
Xg,p = S84P=1)=14 [p] (the action on [p] is a cyclic permutation of the p
points). Then for any continuous f: Xg4, — R9 there is a point = € Xap
whose whole orbit under the Z-action is mapped to a single point in R¢
(this is a special case of Theorem 6.3.3, and, in fact, it is equivalent to
it). Their proof proceeds by reduction to a lemma from Krasnosel'skii
and Zabrejko [KZ75], claiming that, given a free Z,action on S", any
Zjymap S™ — S" has degree 1 modulo p.

The technique of deleted joins for such problems was developed by
Sarkaria [Sar90], [Sar91a].

The validity of the topological Tverberg theorem for arbitrary (non-
prime) p is one of the most challenging problems in this field. For p
being a prime power, the theorem was proved by Ozaydin [(jza] in an
unpublished manuscript, and much later by Volovikov [Vol96] (and also
by Sarkaria [Sar00]). Assuming the theorem of Volovikov mentioned in
the notes to Section 6.2 about maps of fixed-point free (Z,x - - - XZy)-
spaces, the proof is a relatively straightforward generalization of the
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proof in this section.

Exercises

1. Prove (directly, without using Tverberg’s Theorem) that for any inte-
gers d,ry,rg > 2, we have T'(d,rirp) < T(d,r1)T(d,rz). (Together with
Radon’s theorem, this implies that T'(d, r) is finite for all d and r.)

2. Let vq,...,v441 be vertices of a simplex in R? and let B; be a set of
r—1 points lying very close to v;. Prove that there is no partition of
B:=DBy U ---U Byyy into r disjoint parts whose convex hulls have a
nonempty intersection.

6.6 Many Tverberg partitions

A conjecture of Sierksma, still unresolved at the time of writing, states that the
number of Tverberg partitions for a set of (r—1)(d+1)+1 points in R?in general
position is at least ((r—1)!)%. This number is attained for the configuration of
d+1 tight clusters, with r—1 points each, placed at the vertices of a simplex, and
one point in the middle (Exercise 1). (We count wnordered partitions, where
the order of the sets A;,..., A, does not matter.)

For a prime r, one can prove a quite good lower bound by cleverly extending
the topological proof (while no non-topological method is known to yield a good
lower bound).

6.6.1 Theorem (Many Tverberg partitions; Vuéi¢ and Zivaljevié¢ [VZ93]).
Let p be a prime. For any continuous map f:||oV| — RY where N =
(d+1)(p—1), the number of unordered p-tuples {Fy, Fy, ..., F,} of pairwise dis-
joint faces of o™ with (Y_, f(||Fi||) # @ is at least
1 p\ [d+D)(p—1)/2
(p—1)! (5) '
We note that for d and p large, this bound is roughly the square root of the
bound conjectured by Sierksma.
N)*p
A2)
maximal simplices of K are the edges of the complete (N+1)-partite hypergraph;
if the vertex set of K is identified with [N+1] x [p], then such a maximal simplex
Sis {(1,41),(2,42), ..., (N+1,in41)}, t1,- - -5 tn41 € [p]. Such an S encodes the
ordered partition (Fy, Fy, ..., F,) with F; = {j € [N+1] : ¢; = i}. For example,
with d = 2 and p = 3, the indicated S in the picture encodes the ordered
Tverberg partition of the N4+1 = 7 points drawn on the right:

Proof. Let K denote the simplicial complex (o As we know, the

2 3

14

=IO O N
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Call S good whenever it encodes a Tverberg partition; that is, whenever (\_, f(||F]|) #
@. An S is good exactly if it contains a point mapped to the diagonal in (R%)*P

by f*P, where f*P is the p-fold join of f as in the preceding proof. If we prove

that K has at least M good maximal simplices, we obtain that there are at least

M/p! (unordered) Tverberg partitions.

Here is the strategy of further progress. We define a suitable family £ of
subcomplexes L C K. Each L is closed under the Z,-action (cyclic shift on the
rows of the hypergraph), and indz,(L) > N so that f*P restricted to ||L|| maps
some point to the diagonal. Consequently, each L € £ contains a good maximal
simplex (actually at least p of them). Finally, we count the number Q of L € £
containing any given maximal simplex of K, and estimate M > p-|L]/Q.

Since in the case p = 2 the theorem is already proved, we may now assume
p > 2,50 pis odd, and N = (p+1)(d—1) is even. To describe a member L
of the family £, we first divide the N+1 rows in the hypergraph into % pairs
plus one remaining row; let II be the number of ways of accomplishing this
(we do not need its value since it will cancel out later). Next, we look at the
two rows in one of the pairs; the simplices of K living on these rows are the
edges of the complete bipartite graph between the rows. We choose a cycle C
in this complete bipartite graph that is invariant under the cyclic shift action.
Some thought reveals that such a cycle is uniquely determined by choosing two
distinct edges emanating from the first vertex of the top row into the bottom
row, as in the drawing (for p = 5):

All the other edges are given as shifts of the chosen two. (Yes, we always get
just one cycle—right?) Thus, there are (]23) choices for C'. Such a cycle is chosen
for each pair of rows, so we obtain invariant cycles C7,...,Cy/y. For a fixed
pairing of the rows, the number of choices of the Cj is <g>N/2
simplices of the subcomplex L corresponding to a given choice of the row pairing
and of the C; are the maximal simplices of K that contain an edge of each Cj,

such as is drawn below:

. The maximal

Ch
Ca
Cs
. Se
We have |£| = II - (123>N/2‘ We leave it as an exercise to show that the

number ) of complexes L € £ that contain a given maximal simplex S € K is
- (p—1)N/2



117 6. Multiple points of coincidence

Each L can be interpreted as the join of its N/2 cycles C4,...,Cyy; and of
the remaining p points. Thus, topologically,

ILJ| = (SN [p] =2 SN [,

and so indz, (L) > N as required. Theorem 6.6.1 follows by the calculation
indicated above. aa

Notes. The presented proof of the lower bound for the number
of Tverberg partitions is a simplification of the argument of Vuéi¢ and
Zivaljevié [VZ93] (instead of the invariant subcomplexes L, they consider
non-invariant cones over invariant spheres in K and use an argument
about mapping degrees).

Exercises

1. Show that the number of (unordered) Tverberg r-partitions for the con-
figuration described in the text (d+1 clusters by r—1 points near the
vertices of a simplex in R¢ and one point in the center of the simplex)
equals ((r—1)1e.

6.7 Z,-index, Kneser colorings, and p-fold points

In this part, we more or less repeat the considerations about index and Kneser
colorings from Section 5.7 in a p-fold setting. No new ideas are needed; one just
has to get the definitions right and verify that the proofs work. As a reward,
we then prove quite quickly some theorems which were generally considered
reasonably hard,

Counsidering the proof of the topological Tverberg theorem in Section 6.5
and replacing ¢V with an arbitrary simplicial complex K, we obtain
6.7.1 Proposition (Index and p-fold points). Let p be a prime and let K
be a simplicial complex such that

indz, (K1) > (d+1)(p-1).

Then for any continuous mapping f: ||K|| — R? there are points @1, @y, ..., ®, €
|IK|| with pairwise disjoint supports such that f(@1) = f(x2) = --- = f(@,). &

By Sarkaria’s inequality (Proposition 6.2.4(vi)), if K is a subcomplex of a

larger simplicial complex J for which we know inde(JXj(z))7 we can estimate

indz, (KY,,)) > indz, () — indz, (AT \ KEy)) = 1.

So we want to bound above the Z,-index of A(JXQ(Z) \ KXj(z))v and this can be
done using Kneser-like colorings.
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Kneser hypergraphs. Let § be a set system. Generalizing the notion of
Kneser graph, we define the Kneser r-hypergraph KG, (S): the vertex set is S
and the edges are all r-tuples of pairwise disjoint sets as edges; that is,

{{51752,...75,«}:Sl,...,STE&SiﬁSj:@for1§i<j§r}.

We recall that a proper m-coloring of a hypergraph H is a mapping ¢: V(H) —
[m] such that no edge of H is monochromatic. For the Kneser r-hypergraph
KG,(S), we color the sets in § and we want that no r pairwise disjoint sets get
the same color. Or, phrased differently, we want a coloring of the vertices of
the usual Kneser graph KG(S) such that no clique (complete subgraph) of size
r is monochromatic.

The following lemma gives a whole family of bounds for the Z,-index:

6.7.2 Lemma (Index bound from coloring KG,.). Let p be a prime, let K
be an invariant subcomplex of a simplicial Z,-complex J, and let § := MIN(J\K)
be the system of the inclusion-minimal simplices in J \ K. Then, for any r =
2,3,...,p, we have

indzp(A(JXj(z) \ KXj(z))) < (r=1) - x(KG,(5)) - 1.

We will actually use only the case r = p (which tends to give the strongest
bound, although it need not always be the case; see Exercise 3.

We remark that the restriction on p being prime is only needed to guarantee
that the deleted join (Um_l)zj(r) is a free Z,-space. For r = 2, for example, any
group of permutations of [p], including Z, represented by the cyclic shift, acts
freely even if p is composite.

Proof of Lemma 6.7.2.  As in the proof of Lemma 5.7.1, we define the
labeling h of the simplices in J by subsets of [m]:

h(F)={c(G): GeS,GCF}.

Note that simplices in K receive @ while those in J\ K receive a nonempty set.
For asimplex Fy*---*F), € JXQ(Z)\KXQ(Z)7 we put g(Fys---+F,) = h(Fy)*---+h(F},).
Since ¢ is a proper coloring of KG, (S), each r sets among h(F}), ..., h(F),) have
an empty intersection, and so ¢ is a simplicial Z,map into sd((am_l)zj(r)).

It remains to show that the index of the latter space is (at most) m(r—1)—1.
This is left as Exercise 1. &

Together with Proposition 6.7.1, Lemma 6.7.2 yields

6.7.83 Theorem (Sarkaria’s theorem on coloring and p-fold points).
Let p be a prime. Let K be a subcomplex of a simplicial complex J, and
suppose that for some r € {2,3,...,p},

1
d < ——indz, (J}F

p—1 )~ %X(KGT(MIN(J \K))) — 1.
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Then for any continuous map f: ||K|| — RY there are p points @1, ..., 2, € ||K||
with pairwise disjoint supports such that f(@,) = f(®2) = --- = f(@,). For
J=0" and r = p, the condition is
d< —— — \(KG,(S)) — 1
< o~ V(EG, :

L

6.7.4 Example (Tverberg’s theorem with restricted dimensions). In
Tverberg’s theorem, (d+1)(r—1)—1 points in RY suffice to get r disjoint subsets
with intersecting convex hulls. What happens if we consider N+1 points and
want r disjoint subsets with intersecting convex hulls, but each of the sets should
have at most k+1 < d points? For example, for r = 3, d = 3, and k = 2, we
would like to find 3 vertex-disjoint triangles in R® with a common point.

It turns out that such triangles always exist, even with the smallest conceivable
number of points, i.e. 9. On the other hand, no matter how many points
in suitable general position in R® we have, we cannot find 4 vertex-disjoint
intersecting triangles. More generally, if the sum of codimensions of the r
convex hulls, i. e. r(d—Fk), is greater than d, no N will do.

For r being a prime and such that the codimension condition r(d—k) < d
holds, one can show the existence of a suitable N using Theorem 6.7.3; see
Exercise 4.

Notes. This section is again based on [Sar91la] and [Sar90].

Sarkaria also considers the k-wise deleted joins sz(k) (with K being
the (k—1)-skeleton of an n-simplex) and uses Kneser-like colorings for
determining the index of such deleted joins.

Example 6.7.4 is inspired by Vreéica and Zivaljevié [ZV94].

**%  Tverberg—Vredica project, some results?

Kneser’s conjecture.  Here we briefly summarize refences concerning
the chromatic number of Kneser graphs and hypergraphs. As was men-
tioned in Section 3.3, Kneser’s conjecture [Kne55] was first proved by
Lovasz [Lov78]. (Previously Garey & Johnson [GJ76] had established
the case k = 3 by elementary means; also see Stahl [Sta76].)

Lovasz’ proof is not included in our text (it may appear in a future
version). With every graph G, Lovész associated a simplicial complex
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N(G), whose vertex set is V' = V(G) and the simplices are the sub-
sets vertices having a common neighbor in G. He then proved that if
N(G) is k-connected, then x(G) > k+3, and analyzed the connectivity
of the neighborhood complex of the Kneser graph. This approach was
further developed in Alon, Frankl & Lovasz [AFL86] (who generalized
the results to hypergraphs, and defined the technically somewhat more
convenient box complexr associated with a graph or hypergraph; also see
Kiiz [Kri92]). Walker [Wal83] showed that graph homomorphisms in-
duce Zymaps of suitably modified neighborhood complexes (according
to Bj6rner [Bj695], it was also independently noted by Lovasz in unpub-
lished lecture notes). For another application of neighborhood complexes
see Lovasz [Lov83].

Alon, Frankl & Lovasz [AFLS86] established Erdds’ generalization
of Kneser’s conjecture for hypergraphs: if n > (m—1)(r—1)+rk, then
NG () > m.

By the method shown in Section 3.4, Dol'nikov estimated y(KG;(S))
from below by the minimum cardinality of a set Y C X (where X is the
ground set of &) such that X \ Y can be colored by two colors so that

no color class contains [ 5] pairwise disjoint sets of S. He then re-proves

result of [AFL86] on X(KGT(<[Z]>)) for all even r; for odd r he needs
an additional condition on the parameters r, k, n. Yet another proof of
a statement generalizing the Erdds’ conjecture was given by Sarkaria
[Sar90]; see Exercise 2.

Kiiz [Kri92, Kri00] proved the following generalization of Dolnikov’s
theorem: for any set system S,

1
r—1
where cd, (S) is the r-colorability defect introduced in Section 3.4. This
theorem, too, easily implies the results of Alon et al. on X(KGT(<[Z]>))‘
The proof in [Kri92] does not work in the generality stated there (as was
pointed out by Zivaljevié) but the result for the Kneser hypergraphs
remains valid [Kri00]. A simplified version of Kiiz’s proof, emplyoing a
Sarkaria-style inequality for estimating the index of a certain space, was
given in [Mat01b] (see Exercise 5.7.3 for the special case of this proof
with r = 2).

In [Mat0Ola], using the ideas from the just mentioned proof, Kne-
ser’s conjecture was derived from Tucker’s lemma by a direct combina-
torial argument, without using a continuous result of Borsuk—Ulam type.
Since the required instance of Tucker’s lemma also has a combinatorial
proof, the resulting proof of Kneser’s conjecture is purely combinato-
rial, although the topological inspiration remains notable, of course. An
extensive generalization of this method was obtained by Ziegler [Zie01].
He formulated a Z,-analogue of the required special instance of Tucker’s
lemma, and derived many generalizations of Kneser’s conjecture from it
(including Schrijver’s theorem, the Dol'nikov-KF#iz theorem, and Sarkari-
a’s results).

X(KG(5)) > cd,(S),
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Exercises
1. (a) Prove that the Z,-index of the p-fold k-wise deleted join (U”)Xj(k) is
at most (n+1)(k-1)—-1,2 <k < p.
(b) Show that the index in (a) is actually equal to (n+1)(k—1)—1.
2. (a) Find a coloring of the Kneser r-hypergraph KGT(([Z])) by [%]
colors.
(b) Use Theorem 6.7.3 to prove that this number of colors is the smallest

possible.

3. (a) Prove that for r > 3 and any finite set system S, we have

MG

(G, (8)) < | 1B

(b) More generally, check that for » > ¢ > 2, we have

V(KG,(8)) < {X(Lq_(«?l)q |

qg—1

4. (a) Let p be a prime and let f be a continuous map of the k-skeleton of the
N-simplex into R%. Supposing that p(d—k) < d and N = (d+2)(p—1),
use Theorem 6.7.3 to show that there are p points with pairwise disjoint
supports that are mapped to the same point by f.

(b) Derive the claim of Example 6.7.4 from (a): for any prime p, any
d > 1, and any k, 0 < k < d—1, such that p(d—Fk) < d, there exists N
such that among any N points in R% one can select p disjoint groups of
size k+1 each whose convex hulls have a nonempty intersection.

(c) Show that the conclusion of (b) need not be true for any N if the
codimension condition p(d—Fk) < d is not satisfied.

6.8 The colored Tverberg theorem

If we have 7 points in the plane, by Tverberg’s theorem we can divide them into
3 groups whose convex hulls have a common intersection. The colored version
of this statement is: given 3 red, 3 blue, and 3 white points in the plane, we
can always partition them into 3 “tricolores” with intersecting convex hulls:
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6.8.1 Theorem (The colored Tverberg theorem). For any integers r > 2
and d > 1 there exists an integer t = t(d,r), such that for any d+1 pairwise
disjoint t-point sets Cq,Csq,...,Cqqq, we can find disjoint sets Ay, Ay, ..., A,
with |[A; N Cj| = 1 for all i = 1,2,...,r and j = 1,2,...,d+1 such that
Mi_; conv(A;) # @. If we think of the points of C; as having color j, then
each A; is required to use all colors (to be a “rainbow” set).

This may look like an innocent (and not too exciting) variation of Tver-
berg’s theorem, but in fact, this theorem attracted great interest. It was a key
ingredient in obtaining a nontrivial upper bound in the so-called k-set problem:
what is the maximum number of distinct k-element subsets of an n-point set
A C R? that can be cut off by a halfspace, i. e. what is

max |[{ANh:|ANh|=Fk, h ahalfspace}|.
ACR4,|A|=n

This problem seems to be very hard even in the plane. Here we will not explain
the connection to the colored Tverberg theorem (see, e.g., [ABFK92]).

While the Tverberg theorem can be proved in an elementary way, all known
proofs for the colored version are topological.

We prove the following topological version, which implies the colored Tver-
berg theorem with t = 4r—1. We use “Bertrand’s postulate,” which states that
for any r > 1 there is a prime p with » < p < 2r. (This was first proved by
Chebyshev, and Erdds found the first simple and elementary proof as a first-
year undergraduate at age 17 [Erd32] [AZ00].)

6.8.2 Theorem (Topological colored Tverberg theorem [ZV92]). Let
d be a positive integer and let p be a prime. Let C7,C5,...,Cqy1 be disjoint
sets of cardinality 2p—1 each, and let K be the simplicial complex with vertex
set C1UCU - - -UCqy 1, whose simplices are all subsets using at most one point
from each C;. (In other words, K = [2p—1]*%t1).) Then for any continuous
map f:||K|| — R, there are p pairwise disjoint faces Fy, Fy, ..., F, of K whose
images intersect: (i, f(||F;||) # @.

Proof. With the powerful Theorem 6.7.3 on coloring and p-fold points, the
proof is routine.

We take J:=o where N = |V(K)| -1 = (d+1)(2p—1)—1. The system S of
minimal non-faces of K consists of all edges connecting two points in the same
C;. We work with r = p, i. e. we look for a coloring of the Kneser p-hypergraph
KG,(S). Having p disjoint edges of S, they together cover 2p points, and so
they cannot all live on the same class C;. Thus, coloring all the edges on C; by
the color 7 shows y(KG,(S)) < d+1. The right-hand side in the condition in

Theorem 6.7.3 comes out as d - 1% > d, and we are done. &

Notes. The colored Tverberg theorem was proved for d = 2
and conjectured to hold for arbitrary d by Béarany, Fiiredi & Lovész
[BFL90]. The general d-dimensional case was proved, with ¢t < 4r—1,
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by Zivaljevi¢ & Vreéica [ZV92]. A simpler proof was found by Bjorner,
Lovész, Vredica & Zivaljevié [BLZV94] (also see [ZV94] for a similar ar-
gument and Ziegler [Zie94] for yet another approach). The proof of the
colored Tverberg theorem by Sarkaria’s method was noted in [Mat96].

Barany et al. actually conjectured that ¢ = r should suffice in the
colored Tverberg theorem. This is known for d = 2 (Bardny & Lar-
man [BL92]) and for r = 2 (Lovasz; also published in [BL92]—the
Borsuk-Ulam theorem is applied in a beautiful way). For r a prime,
the Zivaljevié-Vreéica approach gives ¢ < 2r—1. This was extended to
all prime powers r by Zivaljevi¢ [Ziv98] (similar to the proofs of the topo-
logical Tverberg theorem for prime powers, as mentioned in the notes
to Section 6.5).

Exercises

1. (Vreéica & Zivaljevié [ZV94]) This is a colored version of Example 6.7.4.

(a) Given 5 red, 5 blue, and 5 red points in R?, prove that there are 3
vertex-disjoint tricolored triangles having a common point.

(b) Let Cy,...,Cry1 C R? be sets of cardinality 2p—1 each, where p
is a prime satisfying p(d—k) < d. Prove that there are p pairwise dis-
joint rainbow sets Ay, ..., A, (with |[4;NC;| = 1 for all 7, ) such that

NY_, conv(4;) # @.
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Fadell-Husseini index, 105

k-fan, 43

fixed-point free action, 98

— nonexistence of equivariant
maps, 104

Flores sphere, 86(5.5.5)

fractional chromatic number, 49

free action, 71(5.1.1), 98(6.1.2)

— on a sphere, 100

— on deleted joins and products,
107

G-action, 98(6.1.1)
G-index, 102(6.2.3)

G-map, 98(6.1.1)

G-space, 98(6.1.1)

Gale’s lemma, 50(3.3.3)

genus, 76

geometric realization, 19

— dimension, 21(1.6.1)

— linear, 89

— maximum number of simplices,

90

graph, 7
— bipartite, 8
— Borsuk, 31

— complete, 8

— Petersen, 49

— Schrijver, 52

Gray code, 43

group

— acting on itself, 99
— alternating, 99

— topological, 97
group action, 98(6.1.1)

halfspace, 7

ham sandwich theorem, 39(3.1.1)

— discrete, 40(3.1.2)

— for circles, 44(Ex.1)

— generalized, 42
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Kakutani’s theorem, 76
k-connectedness, 65(4.3.1)
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k-equal manifold, 109

k-fan, 43
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KG(S) (Kneser graph), 48
Knaster’s conjecture, 77

Kneser hypergraph, 118

Kneser’s conjecture, 49(3.3.2)
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— proof, 50-55, 95

k-partite hypergraph, 8

k-set problem, 122
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Kiiz’s theorem, 120

Lefschetz number, 103
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— Gale’s, 50(3.3.3)

— Tucker’s, 35(2.3.1)

linkless embedding, 30

Lusternik—Schnirelmann theorem,
27(2.1.1)

— for Z-action, 109(Ex. 4)

manifold, k-equal, 109

mapping

— antipodal, 27(2.1.1)
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— cellular, 69

— characteristic, 68

— continuous, 9

— equivariant, 72, 98(6.1.1)

— G-, 98(6.1.1)
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— nullhomotopic, 12

— quotient, 57(4.1.1)

— simplicial, 20(1.5.2)

— uniformly continuous, 11

— Zy, 72(5.1.1)

mappings, homotopy, 12(1.2.1)
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in §), 93

moment curve, 21(1.6.3), 42, 51

monotone mapping, 23

necklace theorem

— ¢ thieves, 110(6.4.1)

— two thieves, 45(3.2.2)
nowhere dense, 35(Ex. 1)
nullhomotopic mapping, 12
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— chromatic, 48

— — of a hypergraph, 53
— fractional chromatic, 49
— Lefschetz, 103

obstruction theory, 43, 105
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operation, bistellar, 88
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orthogonal representation, 99

P(K) (face poset), 22

paracompact space, 74
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— into rainbow d-tuples, 44(3.2.1)

— Tverberg, 112(6.5.1)

— — number of, 115-117

Petersen graph, 49

PL-sphere, 88

polyhedral complex, 69

polyhedron, 16(1.3.5)

— of abstract simplicial complex,
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polytope, convex, 7

— simplicial, 17

problem, k-set, 122

product

— deleted, 80, 106(6.3.1)

— — of a simplex, 81

— — of RY, 80, 107(6.3.2)

— — of RY, structure, 108

— of spaces, 60

— scalar, 7

projective plane, nonembeddability
into RY, 94, 95(5.7.5)

Q (rational numbers), 7
quotient space, 57(4.1.1)

R (real numbers), 7

Radon’s theorem, 78(5.3.1)

realization, geometric, 19

— dimension, 21(1.6.1)

— linear, 89

— maximum number of simplices,
90

regular cell complex, 69

relative interior, 15(1.3.4)

representation, orthogonal, 99

retract, 59

— deformation, 12

S™ (unit sphere), 7

Sarkaria’s coloring/embedding
theorem, 93(5.7.2), 118(6.7.3)
Sarkaria’s inequality, 91(5.6.2), 103

(6.2.4)
scalar product, 7
Schrijver graph, 52
sd(K) (barycentric subdivision), 23

(1.7.2)
set
— closed, 11
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— invariant, 98
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SGy,k (Schrijver graph), 52

Sierksma’s conjecture, 115

simplex, 15(1.3.3)

simplicial complex (abstract), 19
(1.5.1)

simplicial complex (geometric), 15
(1.3.5)

simplicial G-complex, 101

simplicial mapping, 20(1.5.2)
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space

— antipodality, see Zsy-space
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— configuration (ordered), 109
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— FE,G, 101

— G-, 98(6.1.1)

— Hausdorff, 10
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— quotient, 57(4.1.1)
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— topological, 9(1.1.1)
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— Bier, 86-89

— Flores, 86(5.5.5)
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theorem

— Akiyama—Alon, 44(3.2.1)
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— — generalized , 42
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— — proofs, 114
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