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PrefaceThere are several combinatorial and geometric results whose proofs (the �rstproofs and often the only known proofs) involve a surprising application ofalgebraic topology. Lov�asz's striking proof of Kneser's conjecture from 1978was among the �rst and most prominent examples, dealing with a problemabout �nite sets with no apparent relation to topology.During the last two decades, topological methods in combinatorics becamemore elaborate. On the one hand, quite advanced parts of algebraic topologyhave been successfully applied. On the other hand, many of the earlier resultscan now be proved using only fairly elementary topological notions and tools,and while the �rst topological proofs, like the Lov�asz' one, are masterpiecesof imagination and involve clever problem-speci�c constructions, reasonablygeneral recipes exist at present. For some types of problems, they suggesthow the desired result can be derived from the nonexistence of a certain map(\test map") between two topological spaces (the \con�guration space" and the\target space"). Several standard approaches then become available for provingthe nonexistence of such a map. Still, the number of di�erent combinatorialresults established topologically remains relatively small.These lecture notes aim at making some of the elementary topological meth-ods more easily accessible to non-specialists in topology. They cover a numberof substantial results proved by topological methods, and at the same time theyintroduce the required material from algebraic topology. Background in under-graduate mathematics is assumed, as well as a certain mathematical maturity,but no prior knowledge of algebraic topology. (But learning more algebraictopology from other sources is certainly encouraged|this text is no substitutefor proper foundations of that subject.)We concentrate on one type of topological tools, namely the Borsuk{Ulamtheorem and generalizations. We develop a somewhat systematic theory asfar as our very restricted topological means su�ce. Other directions, such asapplications of Brouwer's �xed point theorem, are not considered here.History and notes on teaching. These lecture notes started with a course Itaught in fall 1993 in Prague; the transcripts of the lectures by the participantsserved as a basis of the �rst version, which was published as a technical report(KAM Series 94{272, Charles University, Prague). Some years later, a coursepartially based on that text was taught by G�unter M. Ziegler in Berlin. He madea number of corrections and additions (in the present version, the treatment ofBier spheres in Section 5.5 is based on his writing, and Chapters 1, 2, and 4bear extensive marks of his improvements). Many discussions with him and his



6insightful comments have also greatly in
uenced the present version.This is a thoroughly rewritten version for a pre-doctoral course I taught inZ�urich in fall 2001. Most of the material was covered in the course: Chapter 1was assigned as an introductory reading text, and the other chapters werepresented in approximately 30 hours of teaching (by 45 minutes), with someomissions throughout and only a sketchy presentation of the last chapter.Sources. The 1994 version of this text was based on research papers, on athorough survey of topological methods in combinatorics by Bj�orner [Bj�o95],and on a survey of combinatorial applications of the Borsuk{Ulam theoremby B�ar�any [B�ar93]. The presentation in the current version bene�ted greatlyfrom the recent handbook chapter by �Zivaljevi�c [�Ziv97] ([�Ziv96] is an extendedversion). The continuation [�Ziv98] of that chapter deals with more advancedmethods beyond the scope of this text.For learning algebraic topology, many textbooks are available (although inthis di�cult subject it is probably much better to attend good courses). The�rst steps can be made with Munkres [Mun00] (which includes preparation ingeneral topology) or Stillwell [Sti93]. A very good and reliable basic textbookis Munkres [Mun84], and Hatcher [Hat01] is a vividly written modern bookreaching to quite advanced material in some directions.Acknowledgments. As was already mentioned, a large contribution tothis text was made by G�unter M. Ziegler. For answers to my numerous ques-tions I am indebted to Rade �Zivaljevi�c, Imre B�ar�ny, and Anders Bj�orner. Theparticipants of the courses (in Prague and in Z�urich) provided a stimulatingteaching environment and many valuable comments. The end-of-proof symbolis based on a photo of the European badger (\borsuk" in Polish) by SteveJackson, and it used with his kind permission.Z�urich, November 2001 Ji�r�� Matou�sek



PreliminariesThis section summarizes rather standard mathematical notions and notationand it serves mainly for reference. More special notions are introduced graduallylater on.Sets. If S is a set, jSj denotes the number of elements (cardinality) of S. By2S we denote the set of all subsets of S (the powerset), and �Sk� stands for theset of all subsets of S of cardinality exactly k. We use [n] to denote the �niteset f1; 2; : : : ; ng.The lettersR, C , Q, andZstand for the real numbers, the complex numbers,the rational numbers, the integers, respectively.Geometry. The symbol Rd denotes the Euclidean space of dimension d.Points in Rd are typeset in boldface and they are understood as row vectors;thus, we write x = (x1; : : : ; xd) 2 Rd. The scalar product of two vectors x;y 2Rd is hx;yi = xyT = x1y1 + x2y2 + � � �+ xdyd. The Euclidean norm of x iskxk =phx;xi =qx21 + � � �+ x2d. Occasionally we also encounter the `p-normkxkp = (jx1jp+ jx2jp+ � � �+ jxdjp)1=p, 1 � p <1, or the `1-norm (or maximumnorm) kxk1 = maxfjx1j; jx2j; : : : ; jxdjg.A hyperplane in Rd is a (d�1)-dimensional a�ne subspace, i.e. a set of theform fx 2 Rd : ha;xi = bg for some nonzero a 2 Rd and some b 2 R. A(closed) halfspace has the form fx 2 Rd : ha;xi � bg, with a and b as before.The unit ball fx 2 Rd : kxk � 1g is denoted by Bd, while Sd�1 = fx 2 Rd :kxk = 1g is the (d�1)-dimensional unit sphere (note that S2 lives in R3!).A set C � Rd is convex if for every x;y 2 C, the segment xy is containedin C. The convex hull of a set X � Rd is the intersection of all convex setscontaining X and it is denoted by conv(X). Each point x 2 conv(X) can bewritten as a convex combination of points ofX : there are points x1;x2; : : : ;xn 2X and real numbers �1; : : : ; �n � 0 such that Pni=1 �i = 1 and x =Pni=1 �ixi(if X � Rd we can always choose n � d+1).A convex polytope is the convex hull of a �nite point set in Rd. Each convexpolytope can also be expressed as the intersection of �nitely many halfspaces.Conversely, if an intersection of �nitely many halfspaces is bounded, then itis a convex polytope. A face of a convex polytope P is either P itself or anintersection P \ h, where h is a hyperplane that does not dissect P (i.e. notboth of the open halfspaces de�ned by h may intersect P ).Graphs and hypergraphs. Graphs are considered simple and undirectedunless stated otherwise, so a graph G is a pair (V;E), where V is a set (the



8vertex set) and E � �V2� is the edge set. For a given graph G, we write V (G)for the vertex set and E(G) for the edge set. A complete graph has all possibleedges, i.e. it is of the form (V; �V2�). A complete graph on n vertices is denotedby Kn. A graph G is bipartite if the vertex set can be partitioned into twodisjoint subsets V1 and V2, the (color) classes, so that each edge connects avertex of V1 to a vertex of V2. A complete bipartite graph Km;n has jV1j = m,jV2j = n, and E = ffv1; v2g : v1 2 V1; v2 2 V2g (so jEj = mn).A hypergraph is a pair (V;E), where V is a (usually �nite) set and E � 2V isa system of subsets of V . The elements of E are called the edges or hyperedges.A hypergraph is the same thing as a set system but calling it a hypergraphemphasizes a \graph-theoretical" point of view; many notions concerning graphshave natural analogues for hypergraphs.A hypergraph is k-uniform if all of its edges have cardinality k. A hyper-graph (V;E) is k-partite if there is a partition V = V1 _[V2 _[ � � � _[Vk such thatje \ Vij � 1 for every e 2 E and every i 2 [k].Miscellaneous. The notation a :=B means that the expression B de�nesthe symbol a.For a real number x, bxc denotes the largest integer � x and dxe means thesmallest integer � x.



1Simplicial ComplexesHere we introduce elementary concepts of algebraic topology indispensable forthe subsequent chapters, most notably geometric and abstract simplicial com-plexes, homotopy, and homotopic equivalence of spaces.Simplicial complexes provide a link from combinatorics to topology. Supposethat we investigate some combinatorial object. Whenever we associate a hered-itary set system to our object, we have also associated a topological space|thepolyhedron of the corresponding simplicial complex. This space can be stud-ied by methods of algebraic topology, and often its topological properties arelinked to combinatorial properties of the original object in interesting ways. Ofcourse, creating simplicial complexes at every possible occasion is no panacea,but sometimes it does lead to meaningful results.Most of the material of this chapter is usually covered in introductorycourses of algebraic topology. But our presentation may deviate from oth-ers in details of notation and terminology and it also includes some less com-monly treated results, and so even experts in algebraic topology may want togo through the chapter quickly.1.1 Topological spacesAlthough this may be unnecessary for most readers, we �rst review a few con-cepts from general topology. We begin with recalling the de�nition of a topologi-cal space, which is a mathematical structure capturing the notions of \nearness"and \continuity" on a very general level.1.1.1 De�nition. A topological space is a pair (X;O), where X is a (typi-cally in�nite) ground set and O � 2X is a set system, whose members are calledthe open sets, such ? 2 O, X 2 O, the intersection of �nitely many open setsis an open set, and so is the union of an arbitrary collection of open sets.Every subset Y � X de�nes a subspace, namely the topological space(Y; fU \ Y : U 2 Og).If (X1;O1) and (X2;O2) are topological spaces, a mapping f :X1 ! X2 iscalled continuous if preimages of open sets are open, i.e. f�1(V ) 2 O1 for everyV 2 O2.



1.1 Topological spaces 10We implicitly assume that all the considered mappings between topologicalspaces are continuous, although we do not always explicitly say so. More pre-cisely, this applies for unspeci�ed mappings in statements like \let f :Sn ! Rnbe a mapping. . . ;" sometimes, after having constructed some mapping, we haveto verify its continuity.What spaces are we going to encounter? The theory dealing withtopological spaces in general, point-set topology or general topology, often in-vestigates fairly exotic examples. However, in our text, as well as in most ofalgebraic topology, one deals only with topological spaces which are subspacesof some Rd, or at least can be identi�ed with such subspaces.As the reader certainly knows, a set U � Rd is open if for every x 2 U thereis some " > 0 such that the ball fy 2 Rd : kx� yk < "g is contained in U . Nowlet X � Rd be an arbitrary set. What are the open sets in the topology of thesubspace de�ned by X? They are exactly the intersections of open sets in Rdwith X ; note that they need not be open as subsets of Rd (take X as a closedsegment in R2, for example).Let us remark that if X is a set and the topology on X is understood, saywhen X � Rd and X is considered with the subspace topology, one usuallydoes not mention the topology in the notation and writes \topological spaceX" even when formally X is only a set. We will also often say just \space"instead of \topological space."The topology of Rd, as well as of its subspaces, is induced by a metric,namely by the usual Euclidean metric, which for many readers may be a notionmore familiar than topology. But in the considerations of algebraic topology,the metric plays only auxiliary role: often it is a convenient tool but ultimatelyit is only the topology of a space that really matters. Two spaces that lookmetrically quite di�erent can be topologically the same; an example are thereal line R and the open interval (0; 1).In the formulation of some topological de�nitions and theorems, it wouldbe arti�cial to restrict to subspaces of Euclidean spaces. But everywhere weassume that the considered spaces are (at least) Hausdor�, meaning that forevery two distinct points x; y 2 X there are disjoint open sets U; V with x 2 Uand v 2 V .Homeomorphism. The notion of \being the same" for topological spaces issimilar to many other mathematical structures, such as groups, rings, graphs,and so on. For most mathematical structures, one speaks about isomorphism,which is a bijective mapping preserving the considered structure (group or ringoperations, graph edges, etc.). For topological spaces, the corresponding notionis traditionally called a homeomorphism.1.1.2 De�nition. A homeomorphism of topological spaces (X1;O1) and(X2;O2) is a bijection ':X1 ! X2 such that for every U � X1, '(U) 2 O2 ifand only if U 2 O1. In other words, a bijection ':X1 ! X2 is a homeomor-phism if and only if both ' and '�1 are continuous.(Warning: there are examples of continuous bijections for which the inversemapping is not continuous, so both conditions need checking in general.)



11 1. Simplicial ComplexesIf X and Y are topological spaces and there is a homeomorphism X ! Y ,we write X �= Y (read \X is homeomorphic to Y ").Closure, boundary, interior. A set F in a topological space X is closedi� X n F is open. The closure of a set Y � X , denoted by clXY , is theintersection of all closed sets in X containing Y (the subscript X is omitted ifX is understood). For Y � X = Rd, we have cl Y = fx 2 Rd: dist(x; Y ) = 0g,where dist(x; Y ) = inffkx� yk : y 2 Y g. The boundary of Y is @Y = fcl (Y )\cl (X n Y )gand the interior int Y = Y n @Y .Compactness. We conclude this nano-course of general topology by recallingcompactness. A space X � Rd is compact if and only if X is a closed andbounded set. (In general, a topological spaceX is compact if for every collectionU of open sets with SU = X , there exists a �nite U0 � U with SU0 = X .) Ina compact metric space, any in�nite sequence has a convergent subsequence.If X is a compact space and f :X ! R is a continuous real function, thenf attains its minimum (and maximum); that is, there is an x 2 X with f(x) �f(y) for all y 2 X . Moreover, a continuous function on a compact metric spaceis uniformly continuous ; that is, for every " > 0 there is a � > 0 such that anytwo points at distance at most � are mapped to points at distance at most ".Notes. Among many textbooks of topology, we mention Munkres[Mun00] which deals both with general topology and with elements ofalgebraic topology. A large menagerie of topological spaces is collectedin [SS78].Exercises1. Verify the following homeomorphisms:(a) R�= (0; 1) �= (S1 n f(0; 1)g);(b) S1 �= @([0; 1]2).2. (a) Let X and Y be topological spaces. Check that a mapping f :X ! Yis continuous if and only if f�1(F ) is closed for every closed set F � Y .(b) Let X be covered by �nitely many closed sets A1; A2; : : : ; An (i.e.X = A1[A2[� � �[An), and let f :X ! Y be a mapping whose restrictionto each Ai is continuous. Verify that f is continuous.1.2 Homotopy equivalence and homotopyIn algebraic topology, two spaces are considered \the same" under an equiva-lence relation even coarser than homeomorphism. This notion is called homo-topy equivalence. Similarly, continuous maps are classi�ed into classes accord-ing to so-called homotopy.Before plunging into subtleties of homotopy equivalence, we introduce theperhaps more intuitive notion of deformation retract. The horizontal �gure 8drawn by thick line is a deformation retract of the gray area with two holes:



1.2 Homotopy equivalence and homotopy 12This means that the gray area can be continuously shrunk to the �gure 8 whilekeeping the points of the 8 �xed. The motion is indicated by arrows: each pointmoves in the shown direction at uniform speed until it hits the 8, where it stops.In general, if X is a space and Y � X a subspace of it, a deformation retractionof X onto Y is a family fftgt2[0;1] of continuous maps ft:X ! X (we can thinkof t as time), such that f0 is the identity map on X , ft(y) = y for all y 2 Y andall t 2 [0; 1] (Y remains stationary), and f1(X) = Y . Moreover, the mappingsshould depend continuously on t. That is, if we de�ne the mapping F :X� [0; 1]by F (x; t) = ft(x), this mapping should be continuous. Explicitly, this meansthat if we choose x 2 X , t 2 [0; 1], and an arbitrarily small neighborhood Vof F (x; t), there are � > 0 and a neighborhood U of x such that F (x0; t0) 2 Vfor all x0 2 U and all t0 2 (t+�; t��). In most of the literature, a deformationretraction is formally viewed as the mapping F , rather than a family of maps;we will use both these presentations interchangeably.If a deformation retraction exists, Y is called a deformation retract of X .If Y is a deformation retract of X , then X and Y are homotopy equivalent.But, obviously, being a deformation retract is not an equivalence relation; forexample, the three black �gures below are all deformation retracts of the samegray area as above, but it can be proved that none of them is a deformationretract of another:Homotopy equivalence can be introduced as follows: spaces X and Y are ho-motopy equivalent, in symbols X ' Y , i� there exists a space Z such that bothX and Y are deformation retracts of Z.The usual de�nition of homotopy equivalence is di�erent; it is technicallymore convenient but perhaps less intuitive. To state it, we �rst need to introducehomotopy of maps.1.2.1 De�nition. Two continuous maps f; g:X ! Y are homotopic (writtenf � g) if there is a \continuous interpolation" between them; that is, a familyfftgt2[0;1] of maps ft:X ! Y depending continuously on t (i.e. the associatedbivariate mapping F (x; t) := ft(x) is a continuous map X � [0; 1]! Y , similarto deformation retraction above) such that f0 = f and f1 = g.In particular, a map X ! Y is called nullhomotopic if it is homotopic to aconstant map that maps all ofX to a single point y0 2 Y (so \nullhomotopic" isa misnomer; it would be more logical to say \constant-homotopic," but we stickto the traditional terminology). It is not hard to verify that \being homotopic"is an equivalence on the set of all continuous maps X ! Y .



13 1. Simplicial Complexes1.2.2 De�nition (Homotopy equivalence). Two spaces X and Y are ho-motopy equivalent (or have the same homotopy type) if there are continuousmaps f :X ! Y and g: Y ! X such that the composition f � g: Y ! Y ishomotopic to the identity map idY and g � f � idX .The equivalence of this de�nition to the characterization above (homotopyequivalent spaces are deformation retracts of the same space) is nontrivial; seee.g. [Hat01, Chapter 0].A space homotopy equivalent to a single point is called contractible. Somespaces are \obviously" contractible, such as the ball Bd, but for others, con-tractibility is not easy to visualize. A beautiful example of this is \Bing'shouse;" see [Hat01, Chapter 0] for a nice presentation. It is tempting to thinkthat a contractible space can always be deformation-retracted to a point, butthis is false in general (it can happen that all points are forced to move duringany contraction; see Exercise 6).The task of determining whether two given spaces are homotopy equivalentor not is in general very di�cult. Without a sophisticated technical apparatus,it is quite hard to prove even \obvious" facts such as that the circle S1 is notcontractible. But the spaces arising in many topological proofs of combinatorialor geometric theorems happen to be relatively simple, and often they turn outto be homotopy equivalent to a sphere.Exercises1. Show that the dumbbell 
�
 and the letter � are homotopy equivalent,using De�nition 1.2.2 (exhibit suitable mappings f and g).2. Take a 2-dimensional sphere (inR3) and connect the north and south polesby a segment, obtaining a space X . Let Y be a 2-dimensional sphere witha circle attached by one point to the north pole of the sphere. Show thatX ' Y (using both the de�nitions of homotopy equivalence given in thetext).3. Consider two embeddings f and g of the circle S1 into R3, where f justinserts the circle into R3 without changing its shape while g maps it tothe trefoil knotAre f and g homotopic or not? Substantiate your answer at least infor-mally.4. (a) Prove that homotopy is an equivalence on the set of all continuousmaps X ! Y .



1.3 Geometric simplicial complexes 14(b) Prove that homotopy equivalence is indeed an equivalence on the classof all topological spaces (check transitivity).5. (a) Prove that a space X is contractible if and only if for every space Yand every continuous map f :X ! Y , f is nullhomotopic.(b) Prove that a space X is contractible if and only if for every space Yand every continuous map f : Y ! X , f is nullhomotopic.6. The topologist's comb is the subspace X := (R�[0; 1])[([0; 1]�f0g) of R2,where R denotes the set of all rational numbers in the interval [0; 1]. LetY be made of countably many copies of X arranged in a zigzag fashioninto a doubly in�nite chain:. . . . . .Show that Y is contractible.It can be proved that no point is a deformation retract of Y (you maywant to try this as well). In R3, one can even construct a contractiblecompact Y with this property; see the exercises to Chapter 0 in Hatcher[Hat01].1.3 Geometric simplicial complexesMany topologically interesting subspaces of Rd can be described as simplicialcomplexes. This means that they are pasted together from simple buildingblocks, called simplices and including segments, triangles, and tetrahedra, ina way respecting simple rules. As we will see later, simplicial complexes havea purely combinatorial description and they are particularly signi�cant in theinterplay of topology and combinatorics.First we need to introduce a�ne independence and simplices.1.3.1 De�nition. Let v0; v1; : : : ; vk be points in Rd. We call them a�nelyindependent if there are no real numbers �0; �1; : : : ; �k, not all of them 0,such thatPki=0 �ivi = 0 and Pki=0 �i = 0.For k = 2, a�ne independence simply means v0 6= v1, for k = 3 it meansthat v0; v1; v2 do not lie on a common line, for k = 4 it means that v0; : : : ; v3do not lie on a common plane, and so on.Here are two further, simple but useful characterizations of a�ne indepen-dence.1.3.2 Lemma. Both of the following conditions are equivalent to a�ne inde-pendence of points v0; v1; : : : ; vk 2 Rd:� The k vectors v1 � v0; v2 � v0; : : : ; vk � v0 are linearly independent.



15 1. Simplicial Complexes� The (d+1)-dimensional vectors (1; v0); (1; v1); : : : ; (1; vk) 2 Rd+1 are lin-early independent.We leave the easy proof as a warm-up exercise. Also note that d+1 is thelargest size of an a�nely independent set of points in Rd.Simplices. Here are examples of simplices: a point, a line segment, a triangle,and a tetrahedron:These examples have dimensions 0,1,2, and 3, respectively.1.3.3 De�nition (Simplex). A simplex � is the convex hull of a �nitea�nely independent set A in Rd. The points of A are called the vertices of �.The dimension of � is dim � := jAj�1. Thus every k-simplex (k-dimensionalsimplex) has k+1 vertices.1.3.4 De�nition. The convex hull of an arbitrary subset of the set of verticesof a simplex � is a face of �. Thus every face is itself a simplex (this is a specialcase of the de�nition of a face of a convex polytope).The relative interior of a simplex � arises from � by removing all faces ofdimension smaller than dim �.For illustration, we count the faces of a triangle: the whole triangle, threeedges, three vertices, and the empty set; altogether we have 8 faces.Every simplex is a disjoint union of the relative interiors of its faces. Thus weget a (closed) triangle as a union of its relative interior (i.e., an open triangle),three open line segments (the edges without their endpoints), and three vertices.
Here are the simple rules of putting simplices together to form a simplicialcomplex.1.3.5 De�nition. A nonempty family � of simplices is a simplicial complexif the following two conditions hold:(1) Each face of any simplex � 2 � is also a simplex of �.(2) The intersection �1 \ �2 of any two simplices �1; �2 2 � is a face of both�1 and �2.



1.3 Geometric simplicial complexes 16The union of all simplices in a simplicial complex � is the polyhedron of �and is denoted by k�k. The dimension of a simplicial complex is the largestdimension of a face: dim� := maxfdim � : � 2 �g.In particular, note that every simplicial complex contains the empty set asa face (this is di�erent from some other sources, such as [Mun84] or [Bj�o95],where the empty face is excluded!).The simplicial complex that consists only of the empty simplex is de�ned tohave dimension �1. Zero-dimensional simplicial complexes are just con�gura-tions of points, while 1-dimensional simplicial complexes correspond to graphs(represented geometrically with straight edges that do not cross). The followingpicture shows one 2-dimensional simplicial complex in the plane and two casesof putting simplices together in ways forbidden by the de�nition of a simplicialcomplex: good bad!!!We are going to restrict ourselves exclusively to �nite simplicial complexes(with �nitely many vertices). From the topological point of view, this is quitea restrictive assumption, since then the polyhedra are only compact spaces andwe cannot express, e.g., the space Rd as the polyhedron of a simplicial complex.But �nite simplicial complexes are su�cient for our combinatorial applicationsand this assumption spares us some trouble (namely, of really discussing toomuch point set topology).Support. Just as in the case of a single simplex, the relative interiors ofall simplices of a simplicial complex � form a partition of k�k: for each pointx 2 k�k there exists exactly one simplex � 2 � containing x in its relativeinterior. This simplex is denoted by supp(x) and called the support of thepoint x.It may seem obvious at this point that the set of all faces of a simplex formsa simplicial complex|and in fact, this is strongly suggested by our set-up andnotation. Still, to be on the safe side, and for further use, we include a proof.1.3.6 Lemma. The set of all faces of a simplex is a simplicial complex.Proof. Let V � Rd be a�nely independent and let F;G � V . We have toshow that conv(F ) \ conv(G) = conv(F \ G);where conv(F ) \ conv(G) � conv(F \ G) is trivial. We write x 2 conv(F ) \conv(G) as x = Xu2F �uu = Xv2G �vv;



17 1. Simplicial Complexeswith �u; �v � 0 and Pu2F �u = 1 =Pv2G �v. By subtracting we getXu2FnG�uu� Xv2GnF �vv + Xw2F\G(�w � �w)w = 0:The points in F [G are a�nely independent and thus all the coe�cient at theleft hand side of this equation must be 0; in particular, �w ; �w can only benonzero for w 2 F \ G, and thus x 2 conv(F \ G).A simplicial complex that is given by an arbitrary n-dimensional simplexand all of its faces will from now on be denoted by �n. The n-dimensionalsimplex itself, as a geometric object, can thus be denoted by k�nk.The notion of subcomplex is de�ned as everyone would expect:1.3.7 De�nition. A subcomplex of a simplicial complex � is a subset of �that is itself a simplicial complex (that is, it is closed under taking subsets).An important example of a subcomplex is the k-skeletonof a simplicial com-plex �. It consists of all simplices of � of dimension at most k and we denoteit by ��k.We also use the notation V (�) for the vertex set of �.1.4 TriangulationsLet X be a topological space. A simplicial complex � such that X �= k�k, ifone exists, is called a triangulation of X . We give a few examples.The simplest triangulation of the sphere Sn�1 is the subcomplex of �n ob-tained by deleting the single n-dimensional simplex (but retaining all of itsproper faces). Indeed, the boundary of an n-simplex is homeomorphic to Sn�1,as can be seen using the central projection:Other triangulations of spheres are obtained from convex polytopes. A convexpolytope P � Rd is called simplicial if all of its proper faces, (i.e. all facesexcept possibly for P itself) are simplices. For the familiar 3-dimensional convexpolytopes, it means that all the 2-dimensional faces are triangles, as is the casefor the regular octahedron or icosahedron. It can be shown without muchdi�culty that the set of all proper faces of any simplicial polytope P is asimplicial complex. Since @P �= Sd�1 for every d-dimensional convex polytopeP , we obtain various triangulations of the sphere in this way (although, ford > 3, by far not all possible triangulations; see Section 5.5!).Particularly nice and important symmetric triangulations of Sd�1 are pro-vided by crosspolytopes.



1.4 Triangulations 181.4.1 De�nition. The d-dimensional crosspolytope is the convex hull convfe1;�e1; : : : ; ed;�edgof the vectors of the standard orthonormal basis and their negatives:d = 1 d = 2 d = 3Alternatively, it is the unit ball of the `1-norm: fx 2 Rd : kxk1 � 1g.It is not hard to show that a subset F � fe1;�e1; : : : ; ed;�edg forms thevertex set of a proper face of the crosspolytope if and only if there is no i 2 [d]with both ei 2 F and �ei 2 F .1.4.2 Example (Cube triangulation). The cube [0; 1]d can be triangu-lated as follows: Let Sd denote the set of all permutations of [d], and for every� 2 Sd, let �� = convf0; e�(1); e�(1) + e�(2); : : : ; e�(1)+ � � �+ e�(d)g. Each �� isa d-simplex, and all the �� together plus all of their faces form a triangulationof [0; 1]d (we leave the veri�cation as Exercise 3).Notes. To construct \suitable" triangulations of given geometricshapes is a major topic in many �elds of Applied Mathematics, such asNumerical Analysis and Computer Aided Design (CAD).In contemporary algebraic topology, simplicial complexes are oftenconsidered old-fashioned. Spaces can be usually described much moreeconomically if we allow for more general ways of gluing the basic build-ing blocks together than is permitted in simplicial complexes. For exam-ple, the torus (the surface of a tire-tube) can be produced by a suitablegluing of the edges of a single square in R3,while a triangulation of the torus requires quite a number of simplices(at least 14 triangles, in fact). Moreover, there are quite \reasonable"spaces (4-dimensional manifolds) which cannot be triangulated at all,while they can be obtained using more general ways of gluing.However, these more general ways of building spaces, most notablythe CW-complexes (brie
y discussed in Section 4.4), do not admit asdirect combinatorial interpretation as simplicial complexes do.Exercises1. Draw a triangulation of a torus. Use as few simplices as you can.



19 1. Simplicial Complexes2. (a) Prove the claim about the faces of the crosspolytope below De�ni-tion 1.4.1 (use the de�nition of a polytope face mentioned in the Prelim-inaries).(b) Count the number of faces of each dimension.3. This refers to the cube triangulation in Example 1.4.2.(a) Check that each simplex �� is d-dimensional and can be written as�� = fx 2 [0; 1]d : x�(d) � x�(d�1) � � � � � x�(1)g. Conclude thatS�2Sn �� = [0; 1]d.(b) Let � be a linear quasiordering of [d], i.e. a transitive relation inwhich every two numbers are comparable, i � j or j � i (but it mayhappen that both i � j and j � i even if i 6= j). De�ne �� := fx 2[0; 1]d : xi � xj whenever i � jg. Check that �� is a simplex, determineits dimension (in terms of �), and describe its vertices.(c) Show that the intersection ��1\��2 again of the form �� for a suitablelinear quasiordering �. How do we obtain � from �1 and �2?(d) What are the faces of ��? Verify that the �� and their faces form asimplicial complex.(e) Show that the copies of the triangulation in Example 1.4.2 translatedby each integer vector in f0; 1; : : : ; n�1g form a triangulation of [0; n]d.1.5 Abstract simplicial complexesWe introduce a combinatorial notion which later on turns to be equivalent toa geometric simplicial complex.1.5.1 De�nition. An abstract simplicial complex is a pair (V;K), whereV is a set and K � 2V is a hereditary system of subsets of V ; that is, we requirethat F 2 K and G � F imply G 2 K. The sets in K are called (abstract)simplices. Further we de�ne the dimension dim(K) := maxfjF j�1 : F 2 Kg.Usually we may assume that V = SK; thus it su�ces to write K instead of(V;K), where V is understood to equal SK.Each geometric simplicial complex � determines an abstract simplicial com-plex. The points of the abstract simplicial complex are all vertices of the sim-plices of �, so we set V :=V (�), and the sets in the abstract simplicial complexare just the vertex sets of the simplices of �. The set system (V;K) obtainedin this way is clearly an abstract simplicial complex.In this situation, we call � a geometric realization of K, and the polyhedronof � is also referred to as a polyhedron of K (soon we will see that a polyhedronof K is unique up to homeomorphism).It is easy to see that any abstract simplicial complex (V;K) with V �nite(which we always assume) has a geometric realization. Let n := jV j�1 and letus identify V with the vertex set of an n-dimensional simplex �n � Rn. Wede�ne a subcomplex � of �n: � = fconv(F ) : F 2 Kg. Quite obviously, this is



1.5 Abstract simplicial complexes 20a geometric simplicial complex and its associated abstract simplicial complexis just K. So every simplicial complex on n+1 vertices can be realized in Rn(later on, we will prove a much sharper result).Nowwe show that the geometric realization is unique up to homeomorphism.At this occasion, we also introduce the important notion of a simplicial mapping.1.5.2 De�nition. Let K and L be two abstract simplicial complexes. A sim-plicial mapping of K into L is a mapping f :V (K)! V (L) that maps simplicesto simplices, i.e. such that f(F ) 2 L whenever F 2 K.A bijective simplicial mapping whose inverse mapping is also simplicial iscalled an isomorphism of abstract simplicial complexes.Isomorphic abstract simplicial complexes are thus \the same" set systems,they only di�er in the names of the vertices. In the sequel, we won't usuallydistinguish among isomorphic simplicial complexes.We also note that for an arbitrary simplicial mapping, a k-simplex in K canbe mapped to a simplex of L of any dimension ` � k.To each simplicial mapping f of simplicial complexes, we are going to as-sociate a continuous mapping kfk of their polyhedra. Namely, we extend fa�nely on each simplex. To state this precisely, we �rst note that if � � Rd isa k-simplex with vertices v0; v1; : : : ; vk, then each point x 2 � can be uniquelywritten as a convex combination x = Pki=0 �ivi, where �0; : : : ; �k � 0 andPki=0 �i = 1. Indeed, at least one such convex combination exists becausex 2 convfv0; : : : ; vkg, and if there were two distinct convex combinations equalto x, we would get a contradiction to the a�ne independence of v0; : : : ; vk bysubtracting them.1.5.3 De�nition. Let�1 and�2 be geometric simplicial complexes, let K1 andK2 be their associated abstract simplicial complexes, and let f :V (K1)! V (K2)be a simplicial mapping of K1 into K2. We de�ne the mapping kfk: k�1k !k�2k by extending f a�nely to the relative interiors of the simplices of �1,as follows: if � = supp(x) 2 �1 is the support of x, the vertices of � arev0; : : : ; vk, and x =Pki=0 �ivi, we put kfk(x) =Pki=0 �if(vi).First we note that the mapping kfk is well-de�ned, because ff(v0); : : : ; f(vk)gis always the vertex set of a simplex in �2 as f is simplicial. With some moree�ort, one can check the following proposition, whose proof we omit.1.5.4 Proposition. For every simplicial mapping f as in De�nition 1.5.3, kfkis a continuous map k�1k ! k�2k. If f is injective or surjective, then kfk hasthe same property and if f is an isomorphism, then kfk is a homeomorphism.In particular, this proposition shows that each (�nite) abstract simplicialcomplex (V;K) de�nes a topological space uniquely up to homeomorphism.Convention. In the sequel, a simplicial complex will formally be understoodas an abstract simplicial complex (i.e. it will be a set system as a mathemat-ical object). But we will speak of a polyhedron kKk for an abstract simplicial



21 1. Simplicial Complexescomplex K (which is well-de�ned up to homeomorphism in view of Proposi-tion 1.5.4) and even use topological notions such as \K is contractible," insteadof \kKk is contractible."1.6 Dimension of geometric realizationsHere is the promised sharper result about realizability of d-dimensional simpli-cial complexes.1.6.1 Theorem (Geometric realization theorem). Every �nite d-dimension-al simplicial complex K has a geometric realization in R2d+1.For d = 1, the theorem says that every graph can be represented in R3,with edges being straight segments. The dimension 3 is the smallest possible ingeneral since there are non-planar graphs. We will later show that 2d+1 is thesmallest possible dimension for all d; see the Van Kampen{Flores theorem 5.5.2.Of course, this applies only in the worst case, since there are many d-dimension-al simplicial complexes which can be realized in dimensions lower than 2d+1(say the d-simplex).In the proof of Theorem 1.6.1, we use the following su�cient condition fora geometric realization.1.6.2 Lemma. If K is a simplicial complex and f :V (K) ! Rd is an injectivemap such that f(F [ G) is a�nely independent for all F;G 2 K, then theassignment F 7�! �F := conv(f(F ))provides a geometric realization of K in Rd.Proof. If f(F [G) is a�nely independent, then �F and �G are two faces of thesimplex with the vertex set f(F [G), and we are done by Lemma 1.3.6.A suitable placement of vertices can be de�ned using the moment curve.Later on, we will meet this useful curve several more times.1.6.3 De�nition. The curve f
(t) : t 2 Rg given by 
(t) := (t; t2; : : : ; td) isthe moment curve in Rd.The following lemma expresses a key property of the moment curve (anycurve with this property would do in the sequel). It is a little stronger thanneeded here.1.6.4 Lemma. No hyperplane intersects the moment curve 
 in Rd in morethan d points. Consequently, every set of d+1 distinct points on 
 is a�nelyindependent. Moreover, if 
 intersects a hyperplane h at d distinct points, thenit crosses h from one side to the other at each intersection.



1.7 Simplicial complexes and posets 22Proof. A hyperplane h has an equation ha;xi = b with a 6= 0. If a point 
(t)lies in h, then we have a1t+a2t2+ � � �+adtd = b. This means that the values oft corresponding to intersections with h are the roots of the nonzero polynomialp(t) = (Pdi=1 aiti)� b of degree at most d. Such a p(t) has at most d roots, andso there are no more than d intersections.If there are d distinct intersections, then p(t) has d distinct roots, whichmust be all simple. Therefore, p(t) changes sign at each root, and this meansthat 
 passes from one open halfspace de�ned by h to the other at each inter-section.Proof of Theorem 1.6.1. We choose a map f :V (K) ! R2d+1 such thatthe vertices of K are assigned distinct points on the moment curve in R2d+1.Then for F;G 2 K we have jF [ Gj � (d+1) + (d+1) = 2d+2, and thus byLemma 1.6.4 the corresponding points in f(F [ G) are a�nely independent.Hence we are done by Lemma 1.6.2.Exercises1. The chessboard complex Rm;n has the squares of the m�n chessboard asvertices, and simplices are all subsets of squares such that no two squareslie in the same row or column (so if we place rooks to these squares theydo not threaten one another). Describe the \geometric shape" of kR3;4k.1.7 Simplicial complexes and posetsWe recall that a partially ordered set, or poset for short, is a pair (P;�), whereP is a set and � is a binary relation on P that is re
exive (x � x), transitive(x � y and y � z implies x � z), and weakly antisymmetric (x � y and y � ximplies x = y). Similar to topological spaces, � is sometimes omitted from thenotation.As we will see, there is a correspondence between (�nite) simplicial com-plexes and (�nite) posets. It is not quite one-to-one but each poset is assigneda unique topological space, up to homeomorphism.1.7.1 De�nition. The order complex of a poset P is the simplicial complex�(P ), whose vertices are the elements of P and whose simplices are all chains(i.e. linearly ordered subsets, of the form fx1; x2; : : : ; xkg, x1 � x2 � � � � � xk)in P .The face poset of a simplicial complex K is the poset P (K), which is theset of all nonempty simplices of K, ordered by inclusion.For example, the simplicial complex1 23 4



23 1. Simplicial Complexeshas the face poset f1g f1; 2; 3g f3; 4gf2g f3g f4gf2; 3gf1; 2g f1; 3g(this is the Hasse diagram of the poset, where each element is connected to itsimmediate predecessors and immediate successors, with the predecessors lyingbelow it and the successors above it). Here is the order complex of this poset,together with a Meadow Sa�ron (or also Autumn Crocus, Colchicum autumnaleL.) as an extra bonus:f1gf1; 2; 3g f3; 4g f2gf3g f4gf2; 3gf1; 2gf1; 3gThe operation we just did on the original simplicial complex, namely passingto the face poset and then to its order complex, is very important and has aname:1.7.2 De�nition. For a simplicial complex K, the simplicial complex sd(K) :=�(P (K))is called the (�rst) barycentric subdivision of K.More explicitly, the vertices of sd(K) are the nonempty simplices of K andthe simplices of sd(K) are chains of simplices of K ordered by inclusion.Given a geometric realization of K, we can place the vertex of sd(K) corre-sponding to a simplex � to the center of gravity (barycenter) of �, as we did inthe above picture. It turns out that, as the picture suggests, ksd(K)k is always(canonically) homeomorphic to kKk. It su�ces to prove this for K being (thesimplicial complex of) a simplex; this is not very di�cult and we leave it toreader's diligence.In algebraic topology, mainly in the earlier days, iterated barycentric subdi-vision was used for constructing arbitrarily �ne triangulations of a given poly-hedron. In the applications in this text, we will mainly encounter barycentricsubdivision in its combinatorial meaning, in connection with posets.Monotone maps and simplicial maps. Let (P1;�1) and (P2;�2) be posets.A mapping f :P1 ! P2 is called monotone if x �1 y implies f(x) �2 f(y). Wehave the following simple but useful1.7.3 Proposition. Every monotone mapping f :P1 ! P2 between posets isalso a simplicial mapping �(P1)! �(P2) between their order complexes.



1.7 Simplicial complexes and posets 24We again leave the very easy veri�cation to the reader.1.7.4 Corollary. Let K1 and K2 be simplicial complexes. Consider an arbi-trary mapping f which assigns to each simplex F 2 K1 a simplex f(F ) 2 K2(f is not necessarily induced by a mapping of vertices!), and suppose that ifF 0 � F , then also f(F 0) � f(F ). Then f can be regarded as a simplicial map-ping f : sd(K1)! sd(K2), and so it induces a continuous map kfk: kK1k ! kK2k.Notes. The order complex �(P ) is an instance of a more generalconstruction of a classifying space; see e.g. [Hat01, Chapter 2].Let us mention a result somewhat similar to the geometric realiza-tion theorem (Theorem 1.6.1), which provides an upper bound on thedimension necessary for embedding a given simplicial complex. First werecall the notion of Dushnik{Miller dimension (or order dimension) of aposet. As is easy to check, if (P;�) is a �nite poset, there exist linear or-derings �1;�2; : : : ;�k such that x � y i� x �i y for all i 2 [k] (in otherwords, �= Tki=1�i). The smallest possible k for such a representationof � by linear orderings is the Dushnik{Miller dimension dim(P;�).Ossona de Mendez [Oss99] proved, using so-called Scarf's construction,that every �nite simplicial complex K can be geometrically realized inRd�1 with d = dim(P (�)). For a proof, let �1; : : : ;�d be linear order-ings of K witnessing dim(P (K)) = d. We restrict the orderings �i tothe set V :=V (K) (the vertices are also simplices of K) and let 'i be theinjective map V ! [n], n = jV j, that is monotone with respect to �i(that is, u <i v i� 'i(u) < 'i(v) for every u; v 2 V ). De�ne f0:V ! Rdby f0(v) = ((d+1)'1(v); (d+1)'2(v); : : : ; (d+1)'d(v)) and �nally let f(v)be the projection of f0(v) from 0 on the hyperplane Pdi=1 xi = 1. Thenit can be shown that f satis�es the condition of Lemma 1.6.2 and thusprovides a realization of K in Rd�1.A converse of this theorem is known for d = 3: if we regard a graphG as a 1-dimensional simplicial complex, then the dimension of the faceposet is at most 3 if and only if G is planar [Sch89]; also see [BT93],[BT97] for related results.Exercises1. Prove that a simplex is homeomorphic to its barycentric subdivision (arigorous proof takes some work!).2. Prove Proposition 1.7.3 and Corollary 1.7.4.



2The Borsuk{Ulam TheoremThe Borsuk{Ulam theorem is one of the most useful tools o�ered by elementaryalgebraic topology to the outside world. Here are four reasons why this is sucha great theorem: there are(1) several di�erent equivalent versions,(2) many di�erent proofs,(3) a host of extensions and generalizations, and(4) numerous interesting applications.As for (1), below we give eight di�erent but equivalent versions, all of themvery useful. They include all three versions from Borsuk's original 1933 pa-per [Bor33].As for (2), there are several proofs of the Borsuk{Ulam theorem that canbe labeled as completely elementary, requiring just undergraduate mathemat-ics and no algebraic topology. On the other hand, most of the textbooks onalgebraic topology, even the friendliest ones, usually place a proof of the Borsuk{Ulam theorem well beyond page 100. Some of them use just basic homologytheory, others rely on properties of the cohomology ring, but in any case, signif-icant apparatus has to be mastered for really understanding such proofs. Froma \higher" point of view, it can be argued that these proofs are more concep-tual and go to the heart of the matter, and thus they are preferable to the\ad hoc" elementary proofs. But this point of view can only be appreciated bysomeone for whom the necessary machinery is as natural as breathing. Sincenot everyone, especially in combinatorics and computer science, belongs to thislucky group, we present two \old-fashioned" elementary proofs. The one inSection 2.2, a so-called homotopy extension argument, is geometric and veryintuitive. The other, in Section 2.3, resembling the proof of Brouwer's theoremvia the Sperner lemma, derives the Borsuk{Ulam theorem from a purely com-binatorial statement called Tucker's lemma.As for (3), we will examine various generalizations and strengthenings later;much more can be found in Steinlein's surveys [Ste85], [Ste93] and in the sourceshe quotes.Finally, as for applications (4), just wait and see.



2.1 The Borsuk{Ulam theorem in various guises 262.1 The Borsuk{Ulam theorem in various guisesOne of the versions of the Borsuk{Ulam theorem, the one that is perhaps theeasiest to remember, states that for any continuous mapping f :Sn ! Rn, thereexists a point x 2 Sn such that f(x) = f(�x). This is schematically indicatedbelow:
A popular interpretation found in almost every textbook says that at any giventime, there are two antipodal places on the Earth that have the same temper-ature and, at the same time, identical air pressure (here n = 2).1It is instructive to compare this with the Brouwer �xed point theorem, whichsays that every continuous mapping f :Bn ! Bn has a �xed point: f(x) = xfor some x 2 Bn. The statement of the Borsuk{Ulam theorem sounds similar(and, actually, it easily implies the Brouwer theorem), but it involves an extraingredient besides the topology of the considered spaces: certain symmetry ofthese spaces, namely the symmetry given by the mapping x 7! �x (which isoften called the antipodality on Sn and on Rn, respectively).Here is Borsuk's original version of the Borsuk{Ulam theorem:
Here are the promised many equivalent versions, in English; the statementsmost signi�cant for us are those with boldface numbers.2.1.1 Theorem (Borsuk{Ulam theorem). For all n � 0, the followingstatements are equivalent, and true:1Although anyone who has ever touched a griddle-hot stove knows that the temperatureneed not be continuous.



27 2. The Borsuk{Ulam Theorem(1.1) (Borsuk [Bor33, Satz II]2) For every continuous mapping f :Sn ! Rnthere exists a point x 2 Sn with f(x) = f(�x).(1.2) For every antipodal mapping f :Sn ! Rn (that is, f is continuous andf(x) = �f(�x) for all x 2 Sn) there exists a point x 2 Sn satisfyingf(x) = 0.(1.3) Let g:Bn ! Rn be a continuous map that satis�es g(�x) = �g(x) for allx 2 Sn�1; that is, it is antipodal on the boundary. Then there is a pointx� 2 Bn with g(x�) = 0.(2.1) There is no antipodal mapping f :Sn ! Sn�1.(2.2) An antipodal map f :Sn�1 ! Sn�1 cannot be nullhomotopic.(2.3) (Borsuk [Bor33, Satz I]3) If f :Sn�1 ! Sn�1 is antipodal, then every mapg:Sn�1 ! Sn�1 that is homotopic to f is surjective.(3.1) (Lusternik & Schnirelmann [LS30], Borsuk [Bor33, Satz III]) For any coverB1; : : : ; Bn+1 of the sphere Sn by n+1 closed sets, there is at least oneset containing a pair of antipodal points (that is, Bi \ (�Bi) 6= ?).(3.2) For any cover A1; : : : ; An+1 of the sphere Sn by n+1 open sets, there isat least one set containing a pair of antipodal points.While proving any of the versions of the Borsuk{Ulam theorem is not easy,at least without some technical apparatus, checking the equivalence of all thestatements is not so hard. Deriving at least some of the equivalences beforereading further is a very good way of getting a feeling for the theorem. Herewe begin with the boldface statements.Equivalence of (1.1), (1.2), and (2.1).(1.1)=) (1.2) is clear.(1.2)=) (1.1) We convert f into an antipodal mapping by setting g(x) := f(x)�f(�x).(1.2)=) (2.1) An antipodal map Sn ! Sn�1 is also a nowhere zero antipodalmapping Sn ! Rn.(2.1)=) (1.2) Assume that f :Sn ! Rn is a continuous nowhere zero antipodalmapping. Then the antipodal mapping g:Sn ! Sn�1 given by g(x) := f(x)=kf(x)kcontradicts (2.1).Equivalence of (1.3) with (1.2) is easy once we observe that the projection�: (x1; : : : ; xn+1) 7! (x1; : : : ; xn) is a homeomorphism of the upper hemisphereU of Sn with Bn:2Borsuk's footnote at this theorem reads: \This theorem was posed as a conjecture bySt. Ulam."3Borsuk's footnote at this point shows his su�ering from the fact that there are manyproofs: \Mr. H. Hopf, whom I informed about Theorem I, noted for me in a letter three othershorter proofs of this theorem. But since these proofs are founded on deep results in thetheory of the mapping degree and my proof is in essence completely elementary, I think thatits publication is not super
uous. [...]"



2.1 The Borsuk{Ulam theorem in various guises 28Bn U�An antipodal mapping f :Sn ! Rn as in (1.2) thus yields a mapping g:Bn ! Rnantipodal on @Bn by g(x) = f(��1(x)). Conversely, for a g:Bn ! Rn as in(1.3) we can de�ne f(x) = g(�(x)) and f(�x) = �g(�(x)) for x 2 U . Thisspeci�es f on the whole Sn, it is consistent because g is antipodal on the equatorof Sn, and the resulting f is continuous since it is continuous on both the closedhemispheres (see Exercise 1.1.2).Equivalence with the Lusternik{Schnirelmann theorem (3.1), (3.2).(1.1)=) (3.1) For a closed cover B1; : : : ; Bn+1 we de�ne a continuous mappingf :Sn ! Rn by f(x) := (dist(x; B1); : : : ; dist(x; Bn)) and we consider a pointx 2 Sn with f(x) = f(�x) = y, which exists by (1.1). If the ith coordinateof the point y is 0, then both x and �x are in Bi. If all coordinates of y arenonzero, then both x and �x lie in Bn+1.(3.1)=) (2.1) We need an auxiliary result: There exists a covering of Sn�1 byclosed sets B1; : : : ; Bn+1 such that no Bi contains a pair of antipodal points (tosee this, we can use the projection of the faces of a simplex that has the originin its interior). Then if a continuous antipodal mapping f :Sd ! Sn�1 withd � n existed, then the sets f�1(B1); : : : ; f�1(Bn+1) would contradict (3.1).(3.1)=) (3.2) follows from the fact that for every open cover A1; : : : ; An+1there exists a closed cover B1; : : : ; Bn+1 satisfying Bi � Ai for i = 1; : : : ; n+1:for each point x of the sphere choose its open neighborhood Ux whose closureis contained in some Ai, and apply the compactness of the sphere.(3.2)=) (3.1) follows from the fact that each set of a closed cover B1; : : : ; Bn+1can be wrapped in an open set A"i = fx 2 Sn : dist(x; Bi) < "g. We let " ! 0and we use the compactness of the sphere. Taking twice a suitable in�nitesubsequence, we �rst obtain an in�nite sequence of points x0;x1;x2; : : : in Snsuch that dist(xi; Bj); dist(�xi; Bj) ! 0 for i ! 1 some �xed j, and then aconvergent subsequence. The limit point of this sequence is in Bj since Bj isclosed, and this provides the required antipodal pair in Bj .Finally, we leave the equivalence with the \homotopic" statements (2.2) and(2.3) to the exercises.Proof of the Brouwer �xed point theorem from the Borsuk{Ulamtheorem (2.2). Suppose that f :Bn ! Bn is continuous and has no �xedpoint. By a well-known construction, we show the existence of a continuousmap g:Bn ! Sn�1 whose restriction to Sn�1 is the identity map (such a g iscalled a retraction of Bn to Sn�1). We de�ne g(x) as the point in which theray originating in f(x) and going through x intersects Sn�1. This g, consideredas a mapping Bn ! Rn, contradicts version (1.3) of the Borsuk{Ulam theo-rem.



29 2. The Borsuk{Ulam TheoremNotes. The earliest reference for what is now commonly calledthe Borsuk{Ulam theorem is probably Lusternik & Schnirelmann [LS30]from 1930 (the covering version (3.1)). Borsuk's paper [Bor33] is from1933. Since then, hundreds of papers with various new proofs, variationsof old proofs, generalizations, and applications, have appeared; the mostcomprehensive survey known to us, Steinlein [Ste85] from 1985, listsnearly 500 items in the bibliography.Types of proofs. In the numerous published proofs of the Borsuk{Ulam theorem, one can distinguish several basic approaches (as is donein [Ste85]). Some of these types will be treated in this text; for theothers, we outline the main ideas here and give references, mostly torecent textbooks.In degree-theoretical proofs , one shows that a continuous antipodalmapping f :Sn ! Sn has odd degree; this implies that it cannot benullhomotopic (version (2.1)) since a nullhomotopic map has degree 0.Here the degree can be de�ned homologically, as the number d such thatthe homomorphism f�:Hn(Sn;Z) �= Z! Hn(Sn;Z) �= Zinduced by fin the nth homology acts as the multiplication by d (see Dodson andParker [DP97, Sec. 4.3.2] for such a proof). Another, more universal,de�nition of degree uses algebraic counting of the roots x of f(x) = y ata \generic" image point y. In particular, for the purposes of the Borsuk{Ulam theorem, it su�ces to de�ne the degree modulo 2, and then it iscongruent mod 2 to the number of preimages of a generic point y. Aproof using the degree of a smooth map is sketched in [Bre93, p. 253]. Inthe degree-theoretical approach, one has to approximate the arbitraryantipodal map by a suitable nice (simplicial, or smooth) map so thatthe degree is well-de�ned. A related method uses the Lefschetz number;see Section 6.2. A proof using rudimentary Smith theory can be foundin [Bre93, Sec. 20].A proof using the cohomology ring considers the map g:RPn! RPminduced by an antipodal f :Sn ! Sm, and shows that the correspond-ing homomorphism g�:H�(RPm;Z2) ! H�(RPn;Z2) of the cohomol-ogy rings carries a generator � of H1(RPm;Z2) to a generator � ofH1(RPn;Z2). This is impossible if m + 1 � n, since then �m+1 is triv-ial while �n is nontrivial. See, for example, [Mun84, p. 403] or [Bre93,p. 362].A proof by a homotopy extension argument will be discussed in Sec-tion 2.2, and a representative of the family of combinatorial proofs inSection 2.3. Algebraic proofs were given in [Kne82] and [AP83].As for applications of the Borsuk{Ulam theorem, we will cover somenumber in the subsequent sections. For a multitude of others, we referto the surveys [Ste85], [Ste93]. The papers [B�ar93] and [Alo88] give niceoverviews of combinatorial applications; most of these are included inthis text.A very broad �eld of applications, which we will neglect entirely, areexistence results for solutions of nonlinear partial di�erential equations



2.1 The Borsuk{Ulam theorem in various guises 30and integral equations . Also in functional analysis and geometry of Ba-nach spaces , Borsuk{Ulam type results play an important role.Bourgin{Yang type theorems are generalizations of the Borsuk{Ulamtheorem of the following sort. For any continuous map f :Sn ! Rm, thecoincidence set fx 2 Sn : f(x) = f(�x)g has to be not only nonempty(as Borsuk{Ulam asserts), but even \large" if m < n; for example, ithas dimension at least n�m. Such results have been used in provingvarious geometric statements. We will mention a little more about thisin the notes to Section 5.2.A beautiful combinatorial application that we will not discuss in de-tail (for space reasons, and also because the original account is nicelyreadable) concern linkless embeddings of graphs inR3. Any �nite graphG,regarded as a 1-dimensional �nite simplicial complex, can be realized inR3. Such a realization is called linkless if any two vertex-disjoint circuitsin G form two unlinked closed curves in the realization. Here two curves�; � � R3 (each homeomorphic to S1) are unlinked if they are equivalentto two isometric copies �0; �0 of S1 in R3 lying far from one another, andthe equivalence means that there is a homeomorphism ':R3! R3 suchthat '(� [ �) = �0 [ �0 (these are notions from knot theory; see e.g.Rolfsen [Rol90] for more information).linked linked unlinkedLov�asz and Schrijver [LS98], building on previous work by Robertson,Seymour, and Thomas, proved that graphs possessing a linkless embed-ding into R3 are exactly those for which a numerical parameter, calledthe Colin de Verdi�ere number , is at most 4. The de�nition of this pa-rameter, using spectra of certain matrices, is not very intuitive at �rstsight (and we do not reproduce it; see, for instance, the book [Col99]).The graph-theoretical signi�cance of the Colin de Verdi�ere number looksalmost miraculous: besides the incredible result about linkless embed-dings, it is known, for instance, that the class of graphs having this pa-rameter at most 3 are exactly all planar graphs! In the Lov�asz{Schrijverproof, the Borsuk{Ulam theorem is used for establishing the following:Given any \generic" embedding of the 1-skeleton of a 5-dimensional con-vex polytope P into R3, there are two antipodal 2-dimensional faces of Psuch that the images of the boundaries of these two faces are linked (infact, they have a nonzero linking number, which is stronger than beinglinked|the curves in the left picture above satisfy this while those inthe middle picture do not). Thus, for example, the complete graph K6is not linklessly embeddable. (More generally, a generic embedding ofthe (d�1)-skeleton of a (2d+1)-polytope into Rd links the boundaries oftwo antipodal d-faces.)



31 2. The Borsuk{Ulam TheoremThe paper [Bor33] containing the Borsuk{Ulam theorem also statesthe so-called Borsuk's conjecture [Bor33]. The Lusternik{Schnirelmanntheorem (about covering Sn by n+1 closed sets) can be restated asfollows: For every closed cover of Sn�1 by at most n sets, one of the setshas diameter 2, i.e. the same as the diameter of Sn itself. On the otherhand, there are n+1 sets of diameter < 2 covering Sn. Borsuk askedif any bounded set X � Rn can be split into n+1 parts, each havingdiameter strictly smaller than X . This was resolved in the negative byKahn and Kalai [KK93]. Their spectacular combinatorial proof madeBorsuk's conjecture quite popular in recent years ([Nil94] is a two-pageexposition and the proof has been reproduced in several books, such as[AZ00]).Exercises1. Show that the antipodality assumption in Theorem 2.1.1(2.1) can be re-placed by \f(�x) 6= f(x) for all x 2 Sn."2. Show that the statements (2.2) and (2.3) of the Borsuk{Ulam theorem 2.1.1are equivalent.3. (a) Derive (1.3) from (2.2).(b) Derive (2.2) from (1.3).4. Describe a surjective nullhomotopic map Sn ! S2 (at least for n = 1 andn = 2).5. (Borsuk graph) For a positive real number � < 2, let B(n+1; �) be the(in�nite) Borsuk graph with Sn as the vertex set and with two pointsconnected by an edge i� their distance is at least �. Prove that theBorsuk{Ulam theorem is equivalent to the following statement: For every� < 2, we have �(B(n+1; �)) � n+2 (here � denotes the usual chromaticnumber).6. Prove that the following generalization of the Borsuk{Ulam theorem isfalse (even though it appears in the literature, according to Bourgin [Bou63,p. 337]): Whenever Sn is covered by n closed connected sets, one of themmust contain a nonempty closed connected subset that is symmetric (withrespect to the antipodal map).7. Let the torus be represented as T = S1 � S1.(a) Show that an analogue of the Borsuk{Ulam theorem (1.1) for mapsT ! R2 (formulate it!) is false.(b) Show that it works for maps T ! R1.8. Prove that the validity of (any of) the statements in the Borsuk{Ulamtheorem 2.1.1 for n implies the validity of all the statements for n�1.



2.2 A geometric proof 322.2 A geometric proofWe prove the version (1.2) of the Borsuk{Ulam theorem. Let f :Sn ! Rn bea continuous antipodal map. We want to prove that it has a zero. First weexplain the idea of the proof, assuming that f is \su�ciently generic," withoutmaking the meaning of this quite precise. Then we supply a rigorous argument,involving a suitable perturbation of f .The intuition. Let g:Sn ! Rn denote the \north{south projection"map; if Sn = fx 2 Rn+1 : x21 + � � � + x2n+1 = 1g, then g is given by g(x) =(x1; x2; : : : ; xn). This g has exactly two zeros, namely the north pole and thesouth pole: n = (0; 0; : : : ; 0; 1), s = (0; 0; : : : ; 0;�1). (The important feature ofg is that, obviously, it has a �nite number of zeros; more precisely, it has twicean odd number of zeros.)We consider the (n+1)-dimensional space X = Sn� [0; 1] (a \cylinder") andthe mapping F :X ! Rn given by F (x; t) = (1�t)g(x) + tf(x). Geometrically,we take two copies of Sn (we can think of them as placed in Rn+2), one of themwith the mapping g and the other one with f . We connect the correspondingpoints of these two spheres by segments, and the mapping F is de�ned on eachsegment by linear interpolation. For n = 1, we get a cylinder as in the picture:
bottom sphere (t = 0)top sphere (t = 1)X n sgf ZZ 
 
The antipodality x 7! �x on Sn is extended to the map � on X by �: (x; t) 7!(�x; t) (note that t is unchanged). We will call � the antipodality on X .For contradiction, let us suppose that f has no zeros. We investigate thezero set Z = F�1(0). If f is su�ciently generic, then Z is a one-dimensionalcompact manifold, and therefore its components are cycles and paths (this isthe part to be made precise later). Moreover, the endpoints of the paths lie onthe bottom or top Sn (t = 0 or t = 1) and are zeros of f or g, while the cyclesdo not reach into the top and bottom spheres. Assuming that f has no zerosand knowing that g has only the two zeros at the poles, the only possibility isthat there is a single path 
 connecting n to s. But, at the same time, the setZ is invariant under �. If we follow 
 from n on, the other part starting from smust behave symmetrically. But then it is easy to see that the two ends cannotmeet: a symmetric path from n to s does not exist in X . We have reached acontradiction.Note that the argument actually shows that the number of zeros of a \gener-ic" antipodal map is twice an odd number. Indeed, the zeros of f on the top



33 2. The Borsuk{Ulam Theoremsphere are paired up by paths in Z, except for two that are connected to thezeros of g on the bottom sphere.The real thing. A rigorous proof follows the same ideas but uses a suitablesmall perturbation of f . Recall that the `1-norm of a point x 2 Rn is kxk1 =Pni=1 jxij. Let Ŝn = fx 2 Rn+1 : kxk1 = 1g denote the unit sphere of the `1-norm. This is the boundary of a cross-polytope (De�nition 1.4.1); for example,Ŝ2 is the surface of a regular octahedron. This Ŝn is homeomorphic to Snand we will consider Ŝn instead of Sn in the rest of the proof. The spaceX = Ŝn� [0; 1] is a union of �nitely many convex polytopes (simplicial prisms).Let us call Ŝn � f0g the bottom sphere and Ŝn � f1g the top sphere in X .We choose a su�ciently �ne �nite triangulation T of X (just how �ne willbe speci�ed later) that respects the symmetry of X given by �, in the followingsense: each simplex � 2 T is mapped bijectively onto the \opposite" simplex�(�) 2 T, and � \ �(�) = ?. Moreover, the triangulation T contains triangula-tions Tt and Tb of the top and bottom spheres, respectively, as subcomplexes,and Tt and Tb each re�ne the natural triangulation of Ŝn.We let the mapping g be an orthogonal projection of Ŝn into Rn, but notin a coordinate direction, but rather in a \generic" direction, such that thetwo zeros n and s of g lie in the interior of n-dimensional simplices of thetriangulation Tb, as is indicated in the drawing (where n = 2):0 RnTb
We again suppose that f : Ŝn ! Rn has no zeros. By compactness, thereis an " > 0 such that kf(x)k � " for all x 2 Ŝn. As in the informal outline,let F (x; t) = tg(x) + (1�t)f(x), let T be a �ne triangulation of X as above,and let �F :X ! Rn be the map that agrees with F on the vertex set V (T) ofT and is a�ne on each simplex of T (similar to De�nition 1.5.3 of the a�neextension of a simplicial map). Since F is uniformly continuous, we can assumethat kF (y) � �F (y)k � "2 for all y 2 X , provided that T is su�ciently �ne.Thus, �F has no zeros on the top sphere. (2.1)Since our g is already a�ne, �F coincides with g on the bottom sphere and wehave �F has exactly two zeros on the bottomsphere, lying in the interiors of n-dimensional(antipodal) simplices of Tb. (2.2)



2.2 A geometric proof 34Further, let ~F be a mapping arising by a su�ciently small antipodal per-turbation of �F . Namely, we choose a suitable antipodal perturbation mapP0:V (T) ! Rn satisfying P0(�(v)) = �P0(v) for each v 2 V (T). Furtherproperties required of P0 will be speci�ed later. We extend P0 a�nely on eachsimplex of T, obtaining a map P :X ! Rn, and we set ~F = �F + P . We notethat if all values of P0 lie su�ciently close to 0, then the perturbed map ~F stillhas the two properties (2.1) and (2.2).Let � be an (n+1)-dimensional simplex and h an a�ne map � ! Rn. Wesay that h is generic if h�1(0) intersects no face of � of dimension smallerthan n. In such case, h�1(0) is either empty, or it is a segment lying in theinterior of �, with endpoints lying in the interior of two (distinct) n-faces of �:h�1(0)�If we represent an a�ne map h: � ! Rn by the (n+2)-tuple of values at thevertices of �, all such maps constitute a real vector space of dimension n(n+2).One can check that the set of mappings that are not generic is contained in aproper algebraic subvariety of this space, and so in particular, has measure zeroby Sard's theorem. (Alternatively, one can check that this set is nowhere denseand use this in the sequel; see Exercise 1.)Call a perturbed mapping ~F :X ! Rn generic if it is generic on each full-dimensional simplex of T. If T has 2N vertices, then the space of all possibleantipodal perturbation maps P0 on V (T) has dimension nN (the value can bechosen freely on a set of N vertices containing no two antipodal vertices). Themappings P0 leading to ~F 's that are not generic on a particular full-dimensionalsimplex � 2 T have measure zero in this space (here we need that v and �(v)never lie in the same simplex of T). Therefore, arbitrarily small perturbationsP0 exist such that ~F is generic.Assuming that ~F is generic and that its zeros satisfy (2.1) and (2.2), itfollows that ~F�1(0) is a locally polygonal path (consisting of segments, withno branchings). This is because each n-simplex � 2 T is a face of exactly two(n+1)-simplices �; �0 2 T, unless � 2 Tt[Tb, in which case it is a face of exactlyone (n+1)-simplex � 2 T. Hence the components of ~F�1(0) are zero or moreclosed polygonal cycles (which do not intersect the top or bottom spheres) anda polygonal path 
. This 
 consists of �nitely many segments and it connects~n to ~s (these are the zeros of ~F on the bottom sphere).Choose the unit of length so that 
 has length 1, and let 
(z) denote thepoint of 
 at distance z from ~n (measured along 
; z 2 [0; 1]). Since 
 issymmetric under �, we have �(
(z)) = 
(1�z), and in particular, �(
(12)) =
(12). This is impossible since the antipodality � has no �xed points. TheBorsuk{Ulam theorem is proved.Notes. We have learned this proof from Imre B�ar�any, who publishedit, in a slightly di�erent form, in [B�ar80]. Steinlein [Ste85] gives �ve



35 2. The Borsuk{Ulam Theoremreferences for proofs of this type, all of them published between theyears 1979 and 1981.Exercises1. (a) Let p(x1; x2; : : : ; xn) = p(x) be a nonzero polynomial in n variables.Show that the zero set Z(p) = fx 2 Rn : p(x) = 0g is nowhere dense,meaning that any open ball B contains an open ball B0 with B0\Z(p) = ?.(b) Check that a �nite union of nowhere dense sets is nowhere dense.(c) Let � be an (n+1)-dimensional simplex; w.l.o.g. � = convf0; e1; : : :en+1g,where the ei are the vectors of the orthonormal basis in Rn+1. Leth: � ! Rn be an a�ne map (i.e. a map of the form x 7! Ax + b,where A is an n � (n+1) matrix and b 2 Rn). If each h is representedby (h(0); h(e1); : : : ; h(en+1)) 2 R(n+2)n, show that the maps that are notgeneric in the sense de�ned in the text above form a nowhere dense set.Hint: for each possible \cause" of non-genericity, write down a determi-nant that becomes 0 for all maps that are non-generic for that cause.2.3 A combinatorial proofHere we prove the Borsuk{Ulam theorem by a simple reduction to a purelycombinatorial statement (resembling Sperner's lemma). We will be provingversion (1.3), namely that a map f :Bn ! Rn that is antipodal on the boundaryof Bn has a zero.Similar to the previous section, we will replace the Euclidean ball Bn by ann-dimensional polytope. This time we take the `1-norm unit ball �Bn = fx 2Rn+1 : kxk1 � 1g, which is the regular n-dimensional cube �Bn = [�1;+1]n.Call a simplicial complex T a special triangulation of �Bn if� T triangulates the n-cube, kTk = �Bn,� T is a re�nement of the subdivision of �Bn into 2n unit cubes by the ncoordinate hyperplanes (that is, each simplex of T is fully contained inone of the 2n orthants), and� T is antipodally symmetric with respect to the origin: we have � 2 T i��� 2 T.2.3.1 Lemma (Tucker's lemma). Let the vertices of an arbitrary specialtriangulation T be denoted by labels �(u) 2 f�1;�2; : : : ;�ng in such a waythat for the vertices u 2 @ �Bn (on the boundary) the labeling satis�es �(�u) =��(u). Then there exists a 1-simplex (an edge) in T that is complementary,i.e. its two vertices are labeled by opposite numbers.



2.3 A combinatorial proof 36
�1 �2 1 21212�1�2�1�2�1 2�1 �1 121 12Proof of the Borsuk{Ulam theorem (1.3) from Tucker's Lemma. As-sume that f : �Bn ! Rn is a map that is antipodal on the boundary and satis�esf(x) 6= 0 everywhere. Then, from the compactness of the ball, there exists" > 0 such that kf(x)k1 � " for all x. Further, a continuous function ona compact set is uniformly continuous, and thus there exists a number � > 0such that if the distance of some two points x;x0 does not exceed �, thenkf(x)� f(x0)k1 < ".Let us choose a special triangulation T such that the diameter of each itssimplices is at most �. We de�ne a labeling of the vertices of T. For x 2 V (T),we let i(x) := minfi : jf(x)ij � "g, and we set�(x) := sign(f(x)i(x)) � i(x):Clearly, we have �(�x) = ��(x). So Tucker's lemma applies and yields acomplementary edge vv0. Let �(v) = ��(v0) = i; then f(v)i � " and f(v0)i ��", and hence kf(v)� f(v0)k1 � 2"|a contradiction.Proof of Tucker's Lemma. Let T be a special triangulation of �Bn.For a simplex � 2 T we set sign(�) = (sign(x1); sign(x2); : : : ; sign(xn)) 2f+1; 0;�1gn, where x is an arbitrary point of the relative interior of �. Thisde�nition always makes sense, since a special triangulation re�nes orthants ofRn and therefore the signs of the coordinates do not change on the relativeinterior of �. Let us imagine that a simplex likes to have labels correspondingto its nonzero signs: call a non-empty simplex � happy if the following holdsfor each i = 1; 2; : : : ; n: if (sign(�))i = 1, then at least one of the vertices of� is labeled by the number i, and if (sign(�))i = �1, then some vertex of � islabeled by �i. The happy simplices are emphasized in the following picture:
�1 �2 1 21212�1�2�1�2�1 2�1 �1 121 12



37 2. The Borsuk{Ulam TheoremIf � has exactly k non-zero signs, that is its relative interior points haveexactly k non-zero coordinates, then � is contained in the linear span of k unitvectors, and thus its dimension is at most k. At the same time, to be happy �needs at least k vertices with distinct labels, so the dimension of � is at leastk�1. Thus the dimension of a happy simplex � for which sign(�) has k non-zerocomponents must be either k or k�1.We de�ne a graph G whose vertices are all happy simplices, and in whichvertices �; � 2 T are connected by an edge if(a) �; � � @ �Bn = �Sn�1 and � = �� , or(b) � is a k-simplex and � is a (k�1)-face of �, such that the labels of thevertices of � alone already make � happy.The simplex f0g has degree 1 in G, since it is connected exactly to the edge ofthe triangulation that is made happy by �(0). Further we prove that any othervertex � of the graph G has degree 2 except when � contains a complementaryedge. Since a graph cannot contain only one vertex of odd degree, this willestablish Tucker's lemma. (Verify in our sketch, or even better in your ownexample, that the graph contains a path that connects 0 to some happy simplexthat contains a complementary edge!)Let sign(�) have k nonzero components, so dim � is k or k�1. We distinguishthese two cases.1. Suppose that � is a (k�1)-simplex. Here we have two subcases:1.1 � does not lie on the boundary of �Bn. Then we claim that it is aface of exactly two k-simplices that are made happy by the k oblig-atory labels of �. Indeed, any k-simplex made happy by the labelsof � must be contained in the k-dimensional coordinate subspaceL� := fx 2 Rn : xi = 0 for all i with sign(�)i = 0g. The intersec-tion L� \ �Bn is a k-cube and the simplices of T contained in L�triangulate it. Now if � is a non-boundary (k�1)-dimensional sim-plex in a triangulation of a k-cube, it is adjacent to precisely twok-simplices.1.2 � is on the boundary of �Bn. Then it has �� as one neighbor. Arguingsimilar to the previous case, we get that � is a face of exactly one k-simplex made happy by the labels of �, and this is the other neighbor.2. If � is a k-simplex, it has k obligatory labels and one extra label. Notethat in this case � cannot lie on the boundary. The possible cases are2.1 The extra label repeats one of the obligatory labels. Then � is ad-jacent to two of its (k�1)-faces.2.2 The extra label is the negative of some of the obligatory labels, butthen we have a complementary edge.2.3 The extra label is a number i such that �i does not occur among theobligatory labels. Then one of the neighbors of � is the unique (k�1)-face with the obligatory labels. Moreover, � is a face of exactly one



2.3 A combinatorial proof 38(k+1)-dimensional simplex �0 made happy by the labels of �. Weenter that �0 if we go from an interior point of � in the direction ofthe xjij-axis, in the positive direction for i > 0 and in the negativedirection for i < 0. Thus, sign(�0) coincides with sign(�) everywhereexcept position jij, where � has 0 and �0 has sign(i).So for each possibility we have exactly two neighbors, which yields a contradic-tion.
�1 �2 1 21212�1�2�1�2�1 2�1 �1 121 12Thus the graph that we de�ned leads us from the vertex in the origin to asimplex with a complementary edge.Remark. Why is version (1.3) of the Borsuk{Ulam theorem especially suitablefor a parity-based argument as above? This is because a generic mapping f as in(1.3) has an odd number of zeros (while in the \basic" version with an antipodalmap Sn ! Rn, the zeros come in pairs).Notes. Tucker's lemma is from [Tuc46] (this paper contains a 2-dimensional version, and a version for arbitrary dimension appeared inthe book [Lef49]). The presented proof follows Freund & Todd [FT81].Steinlein's survey [Ste85] lists over 10 other references with combinatorialproofs based on similar ideas.



3Direct Applications of Borsuk{Ulam3.1 The ham sandwich theoremThis is a well-known geometric statement with many interesting consequences.The informal statement that gave the ham sandwich theorem its name is: Forevery sandwich made of ham, cheese, and bread, there is a straight cut thatsimultaneously halves the ham, the cheese, and the bread. The mathematicalham sandwich theorem says that any d distributions of mass in Rd can besimultaneously bisected by a hyperplane:
First we prove a statement about equipartitioning suitable �nite Borel measures�1; : : : ; �d in Rd. A �nite Borel measure � on Rd is a measure on Rd such thatall open subsets of Rd are measurable and �(Rd) <1. An example the readermay want to think of is a measure given as the restriction of the usual Lebesguemeasure to a compact subset ofRd. That is, A � Rd is compact with �d(A) > 0,where �d denotes the d-dimensional Lebesgue measure, and �(X) = �d(X \A)for all (Lebesgue measurable) sets X � Rd.3.1.1 Theorem (Ham sandwich theorem for measures). Let �1; �2; : : : ; �dbe �nite Borel measures on Rd such that every hyperplane has measure 0 foreach of the �i (in the sequel, we refer to such measures as \mass distributions").Then there exists a hyperplane h such that�i(h+) = 12 �i(Rd) for i = 1; 2; : : : ; d,where h+ denotes one of the halfspaces de�ned by h.



3.1 The ham sandwich theorem 40Proof. Let u = (u0; u1; : : : ; ud) be a point of the sphere Sd. If at least one ofthe components u1; u2; : : : ; ud is nonzero, we assign to the point u the halfspaceh+(u) := f(x1; : : : ; xd) 2 Rd : u1x1 + � � �+ udxd � u0g:Obviously antipodal points of Sd correspond to opposite halfspaces. For a u ofthe form (u0; 0; 0; : : : ; 0) (where u0 = �1), we have by the same formulah+((1; 0; : : : ; 0)) = Rdh+((�1; 0; : : : ; 0)) = ?:We de�ne a function f :Sd ! Rd byfi(u) = �i(h+(u)):It is easily checked that if we have f(u0) = f(�u0) for some u0 2 Sd, then theboundary of the halfspace h+(u0) is the desired hyperplane (clearly it cannothappen that f((1; 0; : : : ; 0)) = f((�1; 0; : : : ; 0)), so h+(u0) is indeed a half-space). For an application of the Borsuk{Ulam theorem it remains to showthat f is continuous. This is quite intuitive but a rigorous argument is perhapsnot so obvious.Let (un)1n=1 be a sequence of points of Sd converging to u; we need to showthat �i(h+(un))! �i(h+(u)). We note that if a point x is not on the bound-ary of h+(u), then for all su�ciently large n, we have x 2 h+(un) if and onlyif x 2 h+(u). So if f denotes the characteristic function of h+(u) (f(x) = 1for x 2 h+(u) and f(x) = 0 for x 62 h+(u)) and fn is the characteristic func-tion of h+(un), we have fn(x) ! f(x) for all x 62 @h+(u). Since @h+(u) has�i-measure 0 by the assumption, the fn converge to f �i-almost everywhere.By Lebesgue's dominated convergence theorem (see e.g. Rudin [Rud74, Theo-rem 1.34]), we thus have �i(h+(un)) = R fnd�i ! R fd�i = �i(h+(u)), as allthe fn are dominated by the constant 1, which is integrable since �i is �nite.(It is not di�cult to prove the particular case of the dominated convergencetheorem needed here directly.)Sometimes we need to partition masses concentrated at �nitely many points.Then the following version of the ham sandwich theorem can be useful:3.1.2 Theorem (Ham sandwich theorem for point sets).Let A1; A2; : : : ; Ad � Rd be �nite point sets. Then there exists a hyperplane hthat bisects each Ai.Here \h bisects Ai" means that both the open halfspaces de�ned by h con-tain at most 12 jAij points of Ai.Proof from Theorem 3.1.1. First suppose that each Ai has odd cardinalityand that A1 _[A2 _[ : : : _[Ad is in general position, meaning that no two points ofdi�erent Ai coincide and no d+1 points lie on a common hyperplane. Let A"iarise from Ai by replacing each point by a solid ball of radius " centered at thatpoint, and choose " > 0 so small that no d+1 balls of SA"i can be intersected



41 3. Direct Applications of Borsuk{Ulamby a common hyperplane. Let h be a hyperplane simultaneously bisecting thesets A"i . Since A"i has an odd number of balls, h must intersect at least one ofthem, and since at most d balls are intersected altogether, h intersects exactlyone ball of A"i . Moreover, this ball is split in half by h, and so h passes throughits center. Thus h bisects each Ai.Next, let the Ai still have odd cardinality but their position can be arbitrary.We use a perturbation argument. For every � > 0, let Ai;� arise from Ai bymoving each point by at most � in such a way that Sdi=1Ai;� is in generalposition. Let h� bisect the Ai;�. If we write h� = fx 2 Rd : ha�;xi = b�g,where a� is a unit vector, then the b� lie in a bounded interval, and so bycompactness, there exists a cluster point (a; b) 2 Rd+1 of the pairs (a�; b�) as� ! 0. Let h be the hyperplane determined by the equation ha;xi = b. Let usconsider a sequence �1 > �2 > � � � converging to 0 such that (a�j ; b�j)! (a; b).If a point x lies at distance � > 0 from h, then it also lies at distance at least12�, say, from h�j for all su�ciently large j. Therefore, if there are k points ofAi in one of the open halfspaces determined by h then, for all j large enough,the corresponding open halfspace determined by h�j contains at least k pointsof Ai;�j . It follows that h bisects all the Ai.Finally, if some of the Ai has an even number of points, we delete onearbitrarily chosen point from each even-size Ai and bisect the resulting odd-size sets. Adding the deleted points back cannot spoil the bisection, as is easyto check from the de�nition of bisection.3.1.3 Corollary (Ham sandwich theorem, general position version).Let A1; A2; : : : ; Ad � Rd be disjoint �nite point sets in general position (suchthat no more than d points of A1 _[ � � � _[Ad are contained in any hyperplane).Then there exists a hyperplane h that bisects each Ai, such that there areexactly b12 jAijc points from Ai in each of the open halfspaces de�ned by h,and at most one point of Ai on the hyperplane h (which happens if Ai has oddcardinality).Proof. We start with an arbitrary ham sandwich cut hyperplane h accordingto Theorem 3.1.2. We �x the coordinate system so that h is the horizontalhyperplane xd = 0. Let B := h\ (A1[� � �[Ad); B consists of at most d a�nelyindependent points. We want to move h slightly so that it is as in the corollary(i.e. only one point of each odd-size Ai stays on it). Since the points of B area�nely independent we can make each of them stay on h or go below or aboveit, whatever we decide.To see this, we add d � jBj new points to B so that we obtain a d-pointa�nely independent C � h. For each a 2 C, we choose a point a0: eithera0 = a (for the new points a and for those points of B that should stay onh), or a0 = a + "ed, or a0 = a � "ed. We let h0 = h0(") be the hyperplanedetermined by the d points a0, a 2 C. For all su�ciently small " > 0, the a0remain a�nely independent (so that h0(") is well-de�ned) and the motion ofh0(") is continuous in ". We can thus guarantee that for all su�ciently small" > 0, h0 is as required in the corollary.



3.1 The ham sandwich theorem 42Equipartition theorems. Using the 2-dimensional ham sandwich theorem,it is easy to show that any mass distribution in the plane can be dissected into4 equal parts by 2 lines:As a natural generalization, one can ask whether any mass distribution in R3can be partitioned into 23 = 8 equal pieces by 3 planes, or, more generally, ifany mass distribution in Rd can be dissected into 2d pieces of equal measureby d hyperplanes. For d = 3, this is possible (although not as simple as theplanar case; see Edelsbrunner [Ede87, Sect. 4.4]). But in dimension 5 andhigher, such an equipartition theorem fails: it is in general impossible to cuta set in R5 into 32 equal parts by 5 hyperplanes. For this, note that anyhyperplane cuts the moment curve in R5 in at most 5 distinct points; henceany set of 5 hyperplanes cuts the moment curve in at most 25 distinct points,subdividing it into at most 26 parts. So if we take a piece of the momentcurve, it is disjoint with at least 6 of the 32 open orthants determined by5 hyperplanes, and hence it cannot be equipartitioned. This example uses aone-dimensional measure along the moment curve; an example obtained byrestricting the Lebesgue measure to suitable small balls requires a little morework (Avis [Avi85]; also see Edelsbrunner [Ede87, Sect. 4.6].) It is not knownwhether a dissection into 16 parts of the same size by 4 hyperplanes is possible inR4, and it is a challenging open problem where many of the \usual" topologicalapproaches seem to fail.There are numerous results on equipartitions of measures; some of them willbe mentioned in the remarks below and in the exercises.Notes. According to [Ste85], the ham sandwich theorem was conjec-tured by Steinhaus and proved by Banach.The ham sandwich theorem in Rd can be, and often is, provedfrom the (d�1)-dimensional Borsuk{Ulam theorem. For every direc-tion u 2 Sd�1, one chooses the hyperplane h(u) perpendicular to u thatbisects the dth measure, and de�nes the function to Rd�1 as the partsof the 1st through (d�1)st measures contained in h(u)+. But, to guar-antee uniqueness of h(u), and thus derive the existence of a continuousfunction h, one needs a stronger assumption on the measures.Dol'nikov [Dol'92] and, independently, �Zivaljevi�c & Vre�cica [�ZV90]proved, by more advanced topological means, a nice generalization ofthe ham sandwich theorem. For any k+1 mass distributions in Rd thereexists a k-
at f (i.e. a k-dimensional a�ne subspace of Rd) such thatany hyperplane passing through f has at least 1d�k+1 of the i-th masson each side, for all i = 1; 2; : : : ; k+1. The ham sandwich theorem isobtained for k = d�1. The case k = 0 is another classical result knownas the centerpoint theorem (see e.g. [Ede87]).



43 3. Direct Applications of Borsuk{UlamMass partition theorems. Results on partitioning of one or severalmasses in Rd into prescribed parts by given geometric objects are al-most always proved by topological methods. Interest in such resultswas stimulated by applications in computer science, for example in theso-called geometric range searching ; see [Mat95] [AE98]. (In this area,though, approximate partitioning is usually su�cient, and the classicalmass partitioning results were eventually superseded by random sam-pling and related methods.)Concerning the problem of dissecting a measure in R4 into 16 equalparts by 4 hyperplanes, we remark that partitioning of 16 points placedon the moment curve is always possible. This is equivalent to the ex-istence of a uniform Gray code in the 4-dimensional cube: there is aHamiltonian circuit in the graph of the 4-cube that uses the same num-ber of edges (4) from each parallel class. In fact, Robinson and Cohen[RC81] showed that a uniform Gray code in Cn exists if and only if n is apower of 2. Ramos [Ram96] gives several new results on partitioning ofm mass distributions in Rd into 2k equal pieces by k hyperplanes. Alsosee the survey by �Zivaljevi�c [�Ziv98] for a description of still newer resultsof Petrovi�c et al. in this direction, obtained using obstruction theory.Recently, several results have been proved concerning partitions byk-fans, i.e. by k semilines emanating from a common point in the plane(the point may also be at in�nity, i.e. we may have k parallel lines;in this case, both the unbounded parts of the plane together form onesector). Answering a question of Kaneko and Kano [KK99], severalauthors [IUY00] [Sak] [BKS00] have shown that two mass distributionsin the plane can be simultaneously equipartitioned by a 3-fan, in such away that the resulting 3 sectors are convex. For example, a planar convexbody can be cut by a 3-fan so that both the area and the perimeterare divided equitably (this special \cake cutting" case was shown in[AKK+00]):Several results on partitions of m measures by k-fans are provedin [BM01], including some cases where the partition is not into equalparts; for example, any 2 measures can be simultaneously partitionedin ratio 1 : 1 : 1 : 2 by a 4-fan (without any convexity requirements).Later the possibility of equipartition of 2 measures by a 4-fan was shownas well [BM], but challenging problems remain open; for instance, canany 2 measures be partitioned by a 4-fan in any prescribed ratio? Fur-ther progress on this question was recently announced by �Zivaljevi�c andVre�cica.Somewhat related results (dealing with a single measure), includingsome higher-dimensional ones, were given earlier by Makeev [Mak88].He established the existence of 6-partitions by suitable cones in R3; for



3.2 On multicolored partitions and necklaces 44example, for any mass distribution in R3, there is a cube C such that thesix in�nite cones with apex in the center of C and with the facets of C asbases form an equipartition. �Zivaljevi�c and Vre�cica [�ZV01] also provedseveral higher-dimensional results, such as that given a simplex � in Rdand a point x 2 int�, any given mass distribution can be dissected intod+1 parts with arbitrary prescribed ratios by a suitable translation ofthe d+1 cones with apex x given by the facets of �.Another interesting equipartitioning result is Schulman's [Sch93] \cob-web partition theorem": every bounded set of �nite measure in R2 hasa partition into 8 equally large parts by a cobweb as in the �gure.
Exercises1. Consider 3 mass distributions in the plane which, moreover, assign mea-sure 0 to each circle. Prove that they can be simultaneously halved by acircle or by a straight line. (This is a special case of results of Stone &Tukey; see [Bre93, p. 243].)2. Show that 1 : 1 is the only ratio such that any two compact sets in theplane can be simultaneously partitioned by a line in that ratio.3. (a) Find 4 measures in the plane that cannot be simultaneously bisectedby a 2-fan.(b) Find 3 measures in the plane that cannot be simultaneously equipar-titioned by a 3-fan.(c) Find 2 measures in the plane that cannot be simultaneously equipar-titioned by a 5-fan.See [BM01] for a detailed solution.3.2 On multicolored partitions and necklacesMulticolored partitions. Here is one nice and simple consequence of the(discrete) ham sandwich theorem:3.2.1 Theorem (Akiyama & Alon [AA89]). Consider d n-point setsA1; : : : ; Ad in general position in Rd; imagine that the points of A1 are red, thepoints of A2 blue, etc. (each Ai has its own color). Then the points of theunion A1 [ � � � [ Ad can be partitioned into \rainbow" d-tuples (each d-tuplecontains one point of each color) with pairwise disjoint convex hulls.



45 3. Direct Applications of Borsuk{Ulam
(In our drawing we didn't quite manage to �nd a correct pairing.)Proof. We proceed by induction on n. If n > 1 is odd, there is a hyperplaneh bisecting each Ai and containing exactly one point of each color. We letthe points in h form one d-tuple and use induction for the subsets in the openhalfspaces. For n even, we invoke the general-position version of the ham-sandwich theorem (Corollary 3.1.3), which guarantees a bisecting hyperplanethat avoids all the Ai.Remark. For d = 2 the theorem can be proved directly (Exercise 1). Nodirect (non-topological) proof is known in higher dimensions.Division of a necklace. Two thieves have stolen a precious necklace ofnearly immeasurable value, not only because of the precious stones (diamonds,saphirs, rubies, etc.), but also because these are set in pure platinum. Thethieves do not know the values of the stones of various kinds, and so they wantto divide the stones each kind evenly. In order to waste as little platinum aspossible, they want to achieve this by as few cuts as possible (admittedly, thismathematical model of thieves is not very realistic).We assume that the necklace is open (with two ends) and that there are ddi�erent kinds of stones, even number of each kind. It is easy to see that atleast d cuts may be necessary: place the stones of the �rst kind �rst, then thestones of the second kind, and so on. The necklace theorem shows that this isthe worst what can happen.3.2.2 Theorem (Necklace theorem). Every (open) necklace with d kindsof stones can be divided between two thieves using no more than d cuts.So for the necklace in our picture, 3 cuts should su�ce:Surprisingly, all known proofs of this theorem are topological.First proof: by ham sandwich. We place the considered necklace into Rdalong the moment curve. Let 
(t) = (t; t2; : : : ; td) be the parametric expressionof the moment curve 
. If the necklace has n stones, we de�neAi = f
(k) : the kth stone is of the ith kind, k = 1; 2; : : : ; ng:



3.2 On multicolored partitions and necklaces 46Let us also call the points of Ai the stones of the ith kind. By the (generalposition discrete) ham sandwich theorem 3.1.3, there exists a hyperplane hsimultaneously bisecting each Ai. This h cuts the moment curve, and thenecklace lying along it, in at most d places. All the sets Ai were assumed tobe of even size, so h contains no stones, and these cuts are as required in thenecklace problem. h
Second proof. We reproduce another proof as well, whose clever encoding ofthe divisions of the necklace by points of the sphere is of independent interest.First we note that the result follows from a continuous version. By a con-tinuous probability measure on [0; 1] we mean a probability measure � on [0; 1]such that R x0 d� is continuous in x.3.2.3 Theorem (Continuous necklace; Hobby{Rice theorem [HR65]).Let �1; �2; : : : ; �d be continuous probability measures on [0; 1]. Then thereexists a partition of [0; 1] into d+1 intervals I0; I1; : : : ; Id (using d cut points)and signs "0; "1; : : : ; "d 2 f�1;+1g withdXj=0 "j � �i(Ij) = 0 for i = 1; 2; : : : ; d:It should be clear that it su�ces to prove this result in the special casewhere "j = (�1)j, since a cut point at which the sign doesn't change may beremoved. However, the proof we give below does not have a natural restrictionto the special case.We also note that the Hobby{Rice theorem can be derived from the contin-uous ham sandwich theorem, by an argument similar to the above proof of thenecklace theorem.Proof of the necklace theorem from the continuous version. Let ushave ti stones of the i-th kind, n := Pdi=1 ti. We imagine the necklace on the



47 3. Direct Applications of Borsuk{Ulaminterval [0; 1]; the k-th stone corresponds to the segment [k�1n ; kn). First wede�ne characteristic functions fi(x): [0; 1]! f0; 1g for x 2 [k�1n ; kn), byfi(x) = n 1 if the k-th stone of the necklace is of the i-th kind0 otherwise.Each function fi de�nes a measure �i on [0; 1], by �i(A) := nti RA fi(x) dx. Thus�i(A) denotes the fraction of stones of the i-th kind that is on the part A ofthe necklace.For these �i, we �nd a division as in the continuous necklace theorem (the�rst thief gets the intervals with \+" signs and the second those with \�").This division is fair but it can be nonintegral (i.e., some stones would have tobe cut). We use a rounding procedure. We proceed by induction on the numberof \nonintegral" cuts. If a cut subdivides a stone of the i-th type, then eitherthe cut is unnecessary, or there is another cut through a stone of type i, andwe move one cut to the right, and the other cut to the left, without changingthe balance.Proof of the continuous necklace theorem. With every point x =(x1; x2; : : : ; xd; xd+1) 2 Sd we associate a division of the interval [0; 1] into d+1parts, of lengths x21; x22; : : : ; x2d+1: that is, with x we associate the cuts at thepoints zi := x21+ � � �+x2i , where 0 = z0 � z1 � � � � � zd � zd+1 = 1. The sign "jfor the interval Ij = [zj ; zj+1] is chosen as sign(xj). This de�nes a continuousfunction g:Sd ! Rd: gi(x) := d+1Xj=1 sign(xj) � �i([zj�1; zj ]):In words, gi(x) is the amount of i-stone given to the �rst thief minus the amountof i-stone allocated to the second thief. This function is clearly antipodal. Thus,an x 2 Sd exists with g(x) = 0. This x encodes a just division.For a solution of a similar problem with more than two thieves, the proof viathe ham sandwich theorem doesn't seem to work anymore. The second proofcan be generalized but the Borsuk{Ulam theorem needs to be generalized aswell: instead of the sphere we have to use a di�erent \con�guration space" thatadmits a symmetry of higher order. The necklace problem with several thieveswill be discussed in Section 6.4.Notes. The necklace theorem was �rst proved by Goldberg & West[GW85]. Alon & West [AW86] found a new elegant proof, essentiallythe second proof given above. The proof of the necklace theorem via theham sandwich theorem was noted by Alon (private communication) andalso by Ramos [Ram96]. The continuous necklace theorem was provedby Hobby and Rice [HR65], earlier than the discrete version, and in acompletely di�erent context|but the proof is also based on the Borsuk{Ulam theorem.



3.3 Kneser's conjecture 48Exercises1. Prove the planar case (d = 2) of Theorem 3.2.1 by considering a perfectred-blue matching with the minimum possible total length of the edges.3.3 Kneser's conjectureOne of the earliest and most spectacular applications of topological methods incombinatorics is Lov�asz' 1978 proof [Lov78] of the so-called Kneser conjecture.Kneser posed the following problem in 1955:
Let k and n be two natural numbers, k � n; letN be a set with nelements, Nk the set of all subsets ofN with exactly k elements; let fbe a map fromNk to a setM with the property that f(K1) 6= f(K2)if the intersection K1 \ K2 is empty; let m(k; n; f) be the numberof elements of M , and m(k; n) = minf m(k; n; f). Prove that: for�xed k there are numbers m0 = m0(k) and n0 = n0(k) such thatm(k; n) = n�m0 for n � n0; herem0(k) � 2k�2 and n0(k) � 2k�1;both inequalities probably hold with equality.We will use slightly di�erent notation, and recast this in a graph-theoreticallanguage. We take N = [n], we write �[n]k � instead of Nk for the collection of allk-subsets of [n], we take �[n]k � as the vertex set of a graph, and we connect twovertices by an edge if the corresponding k-sets are disjoint. Then the mappingf becomes a coloring of the graph, where M is the set of colors, and Kneserasks for the chromatic number of the graph!We recall that a (proper) k-coloring of a graph G = (V;E) is a mappingc:V ! [k] such that c(u) 6= c(v) whenever fu; vg 2 E is an edge. The chromaticnumber of G, denoted by �(G), is the smallest k such that G has a k-coloring.Let X be a �nite ground set and let S � 2X be a set system. The Knesergraph of S, denoted by KG(S), has S as the vertex set, and two sets S1; S2 2 Sare adjacent i� S1 \ S2 = ?. In symbols,KG(S) = �S; ffS1; S2g : S1; S2 2 S; S1 \ S2 = ?g�:Let KGn;k denote the Kneser graph of the system S = �[n]k � (all k-elementsubsets of [n]). Then Kneser's conjecture is �(KGn;k) = n�2k+2 for n � 2k�1.



49 3. Direct Applications of Borsuk{Ulam3.3.1 Examples.� KGn;1 is the complete graph Kn with �(Kn) = n.� KG2k�1;k is a graph with no edges, and so �(KG2k�1;k) = 1.� KG2k;k is a matching (every set is adjacent only to its complement) and�(KG2k;k) = 2 for all k � 1.� The �rst interesting example is KG5;2, which turns out to be the ubiqui-tous Petersen graph:
f1; 2g f3; 5gf3; 4gf2; 5g f2; 4gf1; 4g

f1; 3gf2; 3g f4; 5gf1; 5gThis graph serves as a \(counter)example for almost everything" in GraphTheory (see [CW85], [CHW92], [HS93] and the references given there).Check that 3 colors su�ce and are necessary!Kneser's conjecture, which is a theorem since 1978, can be restated as fol-lows:3.3.2 Theorem (Kneser's conjecture). For all k > 0 and n � 2k � 1, thechromatic number of the Kneser graph KGn;k is �(KGn;k) = n�2k+2.The Kneser graphs KGn;k are very interesting examples of graphs with highchromatic number. For example, note that for n = 3k�1, they have no trian-gles, and yet the chromatic number is k+1. One of the main reasons of theirimportance, and also probably a reason why the proof of Kneser's conjecture isdi�cult, is that there is a large gap between the chromatic number and the frac-tional chromatic number. (There are very few examples of such graphs known.)The fractional chromatic number �f (G) of a graph G is de�ned as the in�mum(actually minimum) of the fractions ab such that V (G) can be covered by aindependent sets in such a way that every vertex is covered at least b times. Wealways have �f (G) � �(G), and many methods for estimating �(G) from belowactually estimate �f (G)|which means that they don't give good estimates forgraphs that have high chromatic number �(G), but low fractional chromaticnumber �f (G), as in the case of the Kneser graphs.



3.3 Kneser's conjecture 50For example, the well-known lower bound in terms of the maximal size ofindependent sets, �(G) � jV (G)j=�(G), is just a part of the chainjV j�(G) � �f (G) � �(G);where �(G), the independence number of G, is the maximum size of an indepen-dent set in G. But for the Kneser graph, we have �f (KGn;k) = nk (Exercise 1).So, for example, �f (KG3k�1;k) < 3.It is fairly easy to show that the chromatic number of KGn;k cannot belarger than n�2k+2.Upper bound for the chromatic number. We color the vertices of theKneser graph by �(F ) := minfmin(F ); n�2k+2g:This assigns a color �(F ) 2 f1; 2; : : : ; n�2k+2g to each subset F 2 �[n]k �. If twosets F; F 0 get the same color �(F ) = �(F 0) = i < n�2k+2, then they cannotbe disjoint since they both contain the element i. If the two k-sets both get thecolor n�2k+2, then they are both contained in the set fn�2k+2; : : : ; ng, whichhas only (2k�1) elements, and hence they cannot be disjoint either.All known proofs of the tight lower bound for �(KGn;k) are topologicalor at least imitate the topological proofs. We begin with one of the simplestknown proofs, found by B�ar�any [B�ar78] soon after the announcement of Lov�asz'breakthrough. It is based on the following geometric lemma.3.3.3 Lemma (Gale's lemma [Gal56]). For every d � 0 and every k � 1,there exists a set V � Sd of 2k+d points such that every open hemisphere ofSd contains at least k points of V .First let us see how this implies Kneser's conjecture.First proof of Kneser's conjecture. Let us consider the Kneser graphKGn;k and set d :=n�2k. Let V � Sd be the set as in Gale's lemma 3.3.3. Letus suppose that the vertex set of KGn;k is �Vk�, rather than the usual �[n]k � (inother words, we identify elements of [n] with points of V ).We proceed by contradiction. Suppose that there is a proper coloring ofKGn;k by at most n�2k+1 = d+1 colors. We �x one such proper coloring andwe de�ne sets A1; : : : ; Ad+1 � Sd: For a point x 2 Sd, we have x 2 Ai i� thereis at least one k-tuple F 2 �Vk� of color i contained in the open hemispherecentered at x.These sets A1; : : : ; Ad+1 form an open cover of Sd, since each open hemi-sphere contains at least one k-tuple. By the Borsuk{Ulam theorem 2.1.1(3.2)(Lusternik{Schnirelmann for open covers), there exist i 2 [d+1] and x 2 Sdsuch that x;�x 2 Ai. In this way, we get two disjoint k-tuples colored by thecolor i, one in the open hemisphere centered at x and one in the opposite openhemisphere centered at �x. This means that the considered coloring is not aproper coloring of the Kneser graph.



51 3. Direct Applications of Borsuk{UlamProof of Gale's lemma. We prove the following version (equivalent tothe above formulation using the central projection to Sd): there exist pointsv1; v2; : : : ; v2k+d in Rd+1 such that every open halfspace whose boundary hy-perplane passes through 0 contains at least k of them.The construction uses the moment curve (De�nition 1.6.3) but we lift it onedimension higher, into the hyperplane x1 = 1. That is, let�
 := f(1; t; t2; : : : ; td) 2 Rd+1 : t 2 Rg:We take 2k+d arbitrary distinct points on �
 and label them w1;w2; : : : ;w2k+din the order in which they occur along the curve. For example, we can takewi := �
(i) for 1 � i � 2k+d. We call the points w2;w4; : : : even and the pointsw1;w3; : : : odd. Further we de�ne vi := (�1)iwi.Let h be a hyperplane passing through 0 and let h+ and h� be the two openhalfspaces determined by it. We want to argue that both h+ and h� contain atleast k points among the vi; we formulate the argument for h+. Since vi = wifor i even and vi = �wi for i odd, we need to prove that the number of evenpoints wi in h+ plus the number of odd points wi in h� is at least k.Using Lemma 1.6.4, we see that every hyperplane h through the originintersects �
 at no more than d points. Moreover, if there are d intersections,then �
 crosses h at each of the intersections.Given an arbitrary h through the origin, we move it so that it containsthe origin and exactly d points of W := fw1; : : : ;wd+2kg, while no point of Wcrosses from one side to the other during the motion. This is possible: havingalready k < d points of W on h, we rotate h around the 
at spanned by thesepoints and 0, until we hit another point of W . After this motion, h intersects�
 in exactly d points, which all lie in W .Let Won be the subset of the d points of W lying on h, and let Wo� :=W nWon be the remaining 2k points. At every point of Won, �
 crosses from oneside of h to the other.Color a wi 2 Wo� black if either it is even and lies in h+ or it is odd andlies in h�. Otherwise, color wi white. It is easy to see that as we follow �
,black and while points of Wo� alternate: h�
Indeed, let w and w0 be two consecutive points of Wo� along �
 with j points ofWon between them. For j even, both w and w0 are in the same halfspace andone of them is odd and the other is even, so one is black and one white. If j isodd, then w and w0 are in di�erent halfspaces but they are both even or bothodd, and so again one is black and one white. So the number of black points isat least b12 jWo�jc � k. This proves Gale's lemma.



3.3 Kneser's conjecture 52Schrijver's strengthening. Almost the same proof establishes a strongertheorem, �rst proved by Schrijver [Sch78] soon after Kneser's conjecture wasproved.Let us call a subset S 2 �[n]k � stable if it does not contain any two adjacentelements modulo n; that is, if it corresponds to an independent set in thecycle Cn. We denote by �[n]k �stab the family of stable k-subsets of [n]. TheSchrijver graph SGn;k is the induced subgraph of the Kneser graph KGn;k onthe stable k-sets. That is, the Schrijver graph SGn;k has the stable k-subsetsof [n] as its vertices, and two vertices are connected by an edge if and only ifthey are disjoint k-sets.Schrijver's theorem states that �(SGn;k) = �(KGn;k) = n�2k+2. In fact,Schrijver showed that SGn;k is a vertex-critical subgraph of the Kneser graphKGn;k; that is, the chromatic number decreases by deleting any single vertex(stable k-set) from SGn;k ; see Exercise 2.The proof of Schrijver's theorem goes exactly as the one shown above forKneser's conjecture, with the following strengthening of Gale's lemma: thereexists a (2k+d)-point set V � Sd such that, under a suitable identi�cation of Vwith [n], every open hemisphere contains a stable k-tuple. And this is exactlywhat the above proof of Gale's lemma provides: the black points form a stableset if the points of V are numbered along �
.Notes. Later we are going to present several more proofs of Kneser'sconjecture. A summary of references and generalizations is given in thenotes to Section 6.7.Gale's proof of Lemma 3.3.3 is di�erent from the one shown; it ismore complicated and goes by induction on d and k. On the otherhand, our argument is also based on Gale's work, namely on the investi-gation of cyclic polytopes, which are convex hulls of �nite point sets onthe moment curve. The possibility of proving both Gale's lemma andthe stronger version needed for Schrijver's graphs by the above simpleconstruction was observed by Ziegler.Exercises1. (a) Show that the fractional chromatic number of the Kneser graphs sat-is�es �f (KGn;k) � nk (n � 2k > 0):(b) Show that the inequality in (a) is actually an equality. Hint: (look upand) use the Erd}os{Ko{Rado theorem.2. (a) Show that the graph SGn;k is vertex-critical (for chromatic number);that is, for every k-tuple A 2 V (SGn;k), there is a proper coloring of thevertex set of SGn;k by n�2k+2 colors that uses the color n�2k+2 onlyat A.(b) Show that not all SGn;k are edge-critical (an edge may be removedwithout decreasing the chromatic number).



53 3. Direct Applications of Borsuk{Ulam3. Show that the Schrijver graph SGn;k is not regular in general; that is, itsvertices need not all have the same degree. What can you say about thesymmetries of the Schrijver graphs?4. Show KGn;k has no odd cycles of length shorter than 1 + 2d kn�2k e. Whatabout even cycles?3.4 Kneser's conjecture: second proofThe proof of Kneser's conjecture presented in this section is very natural andfairly simple. First we recall the important notion of the chromatic number of ahypergraph (or of a set system). If S is a system of subsets of a set X , a coloringc:X ! [m] is a (proper)m-coloring of (X;S) if no edge is monochromatic underc (jc(S)j> 1 for all S 2 S). The chromatic number �(S) is the smallest m suchthat (X;S) is m-colorable. In this section, we will only be interested in two-colorability.Next, we de�ne a less standard parameter of the set system S: let the m-colorability defect, denoted by cdm(S), be the minimum size of a subset Y � Xsuch that the system of the sets of S that contain no points of Y is m-colorable.In symbols,cdm(S) = minnjY j : (X n Y; fS 2 S : S \ Y = ?g) is m-colorableo:For example, for m = 2, we want to color each point of X red, blue, or white insuch a way that no set of S is completely red or completely blue (but it may becompletely white), and cd2(S) is the minimum required number of white pointsfor such a coloring.We prove3.4.1 Theorem (Dol'nikov's theorem [Dol'81]). For any �nite set system(X;S), we have �(KG(S)) � cd2(S):Here the Kneser graph KG(S) is de�ned as in the previous section and � is theusual graph-theoretic chromatic number.If S consists of all the k-points subsets of [n], n � 2k, then after deleting anyat most n�2k+1 points, we are left with the system of all k-element subsets ofa (2k�1)-element set. In any red-blue coloring of that set, one of the colors hasat least k points and contains a monochromatic k-element set. Thus cd2(S) �n�2k+2, and we see that Theorem 3.4.1 implies Kneser's conjecture.For proving Theorem 3.4.1, we �rst need a geometric statement based onthe Borsuk{Ulam theorem, slightly resembling the ham sandwich theorem.3.4.2 Proposition. Let C1; C2; : : : ; Cd be families of nonempty compact convexsets in Rd, and suppose that for each i = 1; 2; : : : ; d, the system Ci is intersecting;that is, C \ C 0 6= ? for C;C 0 2 Ci. Then there is a hyperplane (transversal)intersecting all the sets in Sdi=1 Ci.



3.4 Kneser's conjecture: second proof 54Proof. For a direction vector v 2 Sd�1, let `v denote the line containing vand passing through the origin, oriented from the origin towards v. Considerthe system of the orthogonal projections of the sets of Ci on the line `v:0 v `vIi(v) CiEach of these projections is a closed and bounded interval, and any two of themintersect. It is easy to see (directly, or by the one-dimensional Helly theorem)that the intersection of all these intervals is a nonempty interval, which wedenote by Ii(v). Let mi(v) denote the midpoint of Ii(v).We de�ne an antipodal mapping f :Sd�1 ! Rd, by letting f(v)i = hmi(v); vibe the oriented distance ofmi(v) from the origin. This is a continuous antipo-dal map, and we claim that for any such map, there is a point v 2 Sd�1 withf1(v) = f2(v) = � � � = fd(v). To see this, de�ne a new antipodal map g, thistime into Rd�1, by letting gi = fi � fd, i = 1; 2; : : : ; d�1. This g has a zero bythe Borsuk{Ulam theorem, and if g(v) = 0, then f1(v) = f2(v) = � � � = fd(v)as required. For a v with this property, all the d midpointsmi(v) coincide, andso the hyperplane passing through them and perpendicular to `v is the desiredtransversal of all the sets in each Ci.Proof of Theorem 3.4.1. Suppose that there is a d-coloring of the Knesergraph KG(S). This means that S can be partitioned into set systems S1;S2; : : : ;Sd,such that each two sets in Si have a common point, i = 1; 2; : : : ; d.Place the points of the ground set X into Rd in a general position, in such away that no d+1 of them lie on a common hyperplane (and otherwise arbitrarily;for instance, they can be placed on the moment curve). De�ne the d familiesof convex sets in Rd by Ci = fconv(S) : S 2 Sig:These Ci satisfy the assumptions of Proposition 3.4.2 above, and so there is ahyperplane h intersecting the convex hulls of all the S 2 S. Let Y = X \ h bethe (at most d) points that lie on h: hred blue



55 3. Direct Applications of Borsuk{UlamColor the points of X n Y in one of the open halfspaces of h red, and those inthe other halfspace blue. Since none of the sets of S lies completely in one ofthe open halfspaces de�ned by h, this red-blue coloring shows that cd2(S) � d.Theorem 3.4.1 is proved.Notes. Theorem 3.4.1 is a special case of results of Dol'nikov [Dol'81](also see [Dol'92], [Dol'94]). We postpone the discussion of his resultsand related material to the notes to Section 6.7. For another proof ofDol'nikov's theorem see Exercise 5.7.3.Exercises1. For set systems S with �(KG(S)) � 2, prove Dol'nikov's theorem 3.4.1 bya direct combinatorial argument.2. Find 2-colorable set systems S with �(KG(S)) arbitrarily large.3. Show that for n � 2k, the family �[n]k � is critical with respect to the 2-colorability defect: If S is a proper subset of �[n]k �, thencd2(S) < n � 2k + 2:4. Show that the 2-colorability defect of the Schrijver hypergraphs �[n]k �stabis given by cd2(�[n]k �stab) = minfn; n� 4k + 4g:





4A Topological InterludeIn this chapter we explain some further basic topological concepts and construc-tions needed for the further development. We do it a little more thoroughlythan necessary for our concrete applications. Similar to Chapter 1, most of thematerial should be well-known to readers 
uent in elementary algebraic topol-ogy.4.1 Quotient spacesGiven a topological space X and a subset A � X , we can form a new space by\shrinking A to a point." Two spaces can be \glued together" to form anotherspace. A space can be factored using a group acting on it. All these importantconstructions are special cases of forming quotient spaces.4.1.1 De�nition (Quotient space). Let X be a topological space and let� be an equivalence relation on its elements. We de�ne a topology on the setX=� of equivalence classes as follows: A set U � X=� is open if and only ifq�1(U) is open in X , where q:X ! X=� is the quotient map that maps eachx 2 X to the equivalence class [x]� containing it.In constructions of quotient spaces, the equivalence � is often given by alist of the nontrivial equivalence classes. That is, if (Ai : i 2 I) is some familyof disjoint subsets of X , we de�ne an equivalence � on X corresponding to thisfamily as follows: x � y if and only if x = y or there exists i 2 I with x; y 2 Ai.Then we write X=(Ai; i 2 I) for X=�. The meaning is \the space X=(Ai; i 2 I)is obtained from X by shrinking each Ai to a single point." If we have only oneAi = A, we simply write X=A.4.1.2 Example. Let U = [0; 1]� [0; 1] be the unit square. By gluing the twovertical sides together, i.e. by taking U=(f(0; y); (1; y)gy2[0;1]) we obtain thesurface of a cylinder. The horizontal edges can be further glued either in a\direct" way (that is, a point (x; 0) is identi�ed with (x; 1) for each x 2 [0; 1]),which produces a torus, or in a \twisted" way (i.e. a point (x; 0) is identi�edwith (1 � x; 1)), which leads to the so-called Klein bottle (which cannot beembedded in R3, however).



4.1 Quotient spaces 58Here are two other simple but useful constructions.4.1.3 De�nition (Sum and wedge). Let X and Y be topological spaces.The sum of X and Y , denoted by X t Y , corresponds to just \putting Xand Y side by side." The point set of X t Y is the disjoint union of X and Y(formally, we can take (X�f0g)[ (Y�f1g), say) and each open set U � X t Yis a (disjoint) union of an open set in X and an open set in Y .Now let x0 2 X and y0 2 Y some points (called base points). The wedgeof X and Y , with respect to x0 and y0, is X _ Y := (X t Y )=(fx0; y0g); that is,we take the sum and then glue x0 to y0.Many commonly encountered spaces (such as connected manifolds) are ho-mogeneous, in the sense that for any x; x0 2 X , there is a homeomorphismh:X ! X with h(x) = x0. For such X , the choice of the base point in thewedge construction obviously doesn't matter.The wedge is a special case of another construction: attaching one topolog-ical space to another by a given subspace, or gluing spaces.4.1.4 Example (Gluing spaces). Let X and Y be topological subspaceswith closed subspaces A � X and B � Y that are homeomorphic, with h:A!B being a given homeomorphism. The space obtained by gluing X and Y via his the quotient space X th Y obtained from the sum X t Y asX th Y := (X t Y )=ffa; h(a)g : a 2 Ag:A Bh
Our most signi�cant instance of quotient spaces are joins, discussed in thenext section. But �rst we mention a useful su�cient condition for homotopyequivalence.4.1.5 Proposition (Contracting a contractible subcomplex is a homo-topy equivalence). Let X be the polyhedron of a simplicial complex K andA � X the polyhedron of a subcomplex of K. Suppose that A is contractible.Then the quotient map q:X ! X=A has a homotopy inverse; that is, a contin-uous map p:X=A ! X such that q � p � idX=A and p � q � idX . Therefore,X ' X=A.



59 4. A Topological InterludeMany homotopy equivalences occurring \in practice" can be interpreted assequences of operations according to Proposition 4.1.5 and their inverses. Theconclusion holds for more general pairs (X;A) with A contractible; it is enoughthat they satisfy the \homotopy extension property" introduced in the proofbelow.Proof. It is not entirely obvious how the required homotopy inverse p shouldbe constructed; the reader may want to consider the example with X = S1 andA � X being a half-circle.Let (ft:A ! A)t2[0;1] be a homotopy of the identity map idA = f0 to theconstant map f1 with f1(a) = a0 2 A for all a 2 A. Suppose that we manage toextend this homotopy to a homotopy ( �ft)t2[0;1] on the whole X , with �f0 = idX(each �ft:X ! X coincides with ft on A). Then �f1 is a continuous map X ! Xthat is constant on A, and so we can consider it as a map p:X=A! X (formally,p([x]) = �f1(x) for x 2 X). We have p(q(x)) = p([x]) = �f1(x), and so ( �ft)t2[0;1]is a homotopy witnessing p � q � idX . As for the other direction, we note thatif we set pt([x]) = [ �ft(x)], we obtain well-de�ned maps (since each �ft maps Ainto A), which provide a homotopy of p0 = idX=A with p1 = q � p as required.It remains to show that the homotopy can indeed be extended. This is aspecial case of the following de�nition:4.1.6 De�nition. Let X be a topological space and A � X a subspace of it.We say that the pair (X;A) has the homotopy extension property if everycontinuous mapping F : (A�[0; 1])[(X�f0g)! Y , where Y is some topologicalspace, can be extended to a continuous mapping �F :X � [0; 1]! Y :A XA�[0; 1] extend heret = 0t = 1In our case, we have the homotopy (ft:A ! A)t2[0;1] and an extension�f0:X ! X of f0. So we setF (x; t) := � ft(x) for x 2 A; t 6= 0�f0(x) for x 2 X; t = 0:For the proof of Proposition 4.1.5, it thus su�ces to show that whenever X isthe polyhedron of a (�nite) simplicial complex K and A is the polyhedron of asubcomplex of K, then the pair (X;A) has the homotopy extension property.(Here we do not need contractibility of A anymore; this was used for the exis-tence of the homotopy idA � const.)To establish the homotopy extension property of a pair (X;A), it is enoughto verify that S := (A�[0; 1])[(X�f0g) is a deformation retract of T :=X�[0; 1].Indeed, if (gt)t2[0;1] is a deformation retraction witnessing this, we simply set�F (z) = F (g1(z)), z = (x; t) 2 X�[0; 1]. This works since g1(z) 2 S for all z 2 Tand g1(z) = z on S.11We haven't used the full power of deformation retraction, only the existence of a singlecontinuous map g1 with the two properties just stated. The existence of such g1 de�nes theweaker concept of S being a retract of T .



4.2 Joins (and products) 60The deformation retraction of T on S is constructed gradually. First we notethat the deformation retraction exists if X is a simplex and A is its boundary,as the picture indicates for a 1-dimensional simplex:A AXt = 0t = 0:3t = 0:7(In Exercise 2, the reader is invited to construct such a \hollowing out" defor-mation retraction explicitly.) Then we hollow out the simplices of X not lyingin A one by one, starting with those of the largest dimension and proceedingto the smaller dimensions, until only the simplices of A remain \fat."Exercises1. Check that Bd=(Sd�1) �= Sd.2. Let � be a (geometric) simplex. Describe a deformation retraction of��[0; 1] to (@� � [0; 1])[ (��f0g), either geometrically or by an explicitformula.3. Let K be a simplicial complex and K1;K2 � K subcomplexes that togethercover K (i.e. K = K1 [ K2). Assume that both K2 and K1 \ K2 arecontractible. Using Proposition 4.1.5, prove that K ' K1; in particular, ifK1 is contractible, then K is contractible as well.4. Consider a �nite graph G as a 1-dimensional simplicial complex (the ver-tices of the graph are the vertices of the simplicial complex and the edgesare the 1-dimensional simplices). Suppose that G is connected and has nvertices and m edges. Show that G is homotopy equivalent to a wedge ofm�n+1 circles (S1's).5. Let X be a space and let A � X be such that the pair (X;A) has thehomotopy extension property. Let Y be another space, let B;C � Y , andlet h:A ! B and g:A ! C be homeomorphisms such that h and g arehomotopic as maps X ! Y . Prove that XthY and Xtg Y are homotopyequivalent.4.2 Joins (and products)For many mathematical structures, including topological spaces, we have anotion of a Cartesian product X�Y . For topological spaces, X�Y has the set-theoretical Cartesian product of X and Y as the set of points, and the topologyof X � Y is the coarsest one making the projections maps �X :X � Y ! Xand �Y :X � Y ! Y continuous. More explicitly, the topology on X � Y isgenerated by the \open rectangles" U � V , where U � X and V � Y are opensets.



61 4. A Topological InterludeWhen working with simplicial complexes, a drawback of the Cartesian prod-uct is that the product of two simplices is not a simplex, except for trivial cases:� =So if we want to regard a product of simplicial complexes as a simplicial complex,we have to triangulate it. We now introduce another product-like operation ontopological spaces called join and denoted by �. The �rst advantage over theCartesian product is that the join of simplices is again a simplex:� =Other advantages are subtler and we will encounter some of them later.The join has an extremely natural combinatorial de�nition for simplicialcomplexes.4.2.1 De�nition (Join of simplicial complexes). Let K and L be simpli-cial complexes. Assuming that V (K) \ V (L) = ?, the join K � L has vertex setV (K) [ V (L) and simplices F [ G, for all F 2 K and all G 2 L.If the vertex sets are not disjoint, we formally rename the vertices so thatthey become disjoint. So we let V (K � L) := (V (K) � f0g) [ (V (L) � f1g) andthe simplices are F �G := (F � f0g)[ (G� f1g) for all F 2 K and all G 2 L.For simplices we have �k � �` = �k+`+1 and (�0)�n = �n�1; here �0 is asingle point and K�n means the n-fold join K � K � � � � � K. Note that K�n hasnjV (K)j vertices, with one copy of V (K) for each factor.4.2.2 Example (important!). As a more interesting and challenging exam-ple, we consider (S0)�n, where S0 is the 0-dimensional sphere consisting of twoisolated vertices; call them a and b. The n-fold join has 2n vertices a1; a2; : : : ; anand b1; b2; : : : ; bn. A subset of this vertex set is a simplex in (S0)�n if and only ifit does not contain both ai and bi for some i. Comparing with the description ofthe proper faces of the crosspolytope below De�nition 1.4.1, we get that (S0)�nis the surface of the n-dimensional crosspolytope, i.e. a triangulation of Sn�1.We conclude k(S0)�nk �= Sn�1:Since the join is obviously associative, we further get Sk �S` �= Sk+`+1 (consid-ering the crosspolytope triangulations on both sides).The join is also de�ned for arbitrary topological spaces:4.2.3 De�nition (Join of spaces). Let X and Y be topological spaces. Thejoin X �Y is the quotient space X�Y � [0; 1]= �, where the equivalence relation� is given by (x; y; 0) � (x0; y; 0) for all x; x0 2 X and all y 2 Y (\for t = 0, xdoes not matter") and (x; y; 1) � (x; y0; 1) for all x 2 X and all y; y0 2 Y (\fort = 1, y does not matter").



4.2 Joins (and products) 62The drawing illustrates this de�nition for X and Y being line segments (1-simplices): X � Y � [0; 1]X Y t = 0 t = 1 X � YHere is a helpful geometric interpretation of the join:4.2.4 Proposition (Geometric join). Suppose thatX and Y are subspacesof some Euclidean space, and that X � U and Y � V , where U and V skewa�ne suspaces of some Rn (that is, U \ V = ? and the a�ne hull of U [ Vhas dimension dimU+dimV+1). Moreover, suppose that both X and Y arebounded. Then the spaceZ := ftx+ (1�t)y : t 2 [0; 1];x 2 X;y 2 Y g � Rn;i.e. the union of all segments connecting a point of X to a point of Y , ishomeomorphic to the join X � Y . X � YX YU VSketch of proof. There is an obvious continous mapX � Y � [0; 1] ! ftx+ (1�t)y : t 2 [0; 1];x2 X;y 2 Y gthat induces a homeomorphism(X � Y � [0; 1])=� ! ftx+ (1�t)y : t 2 [0; 1];x2 X;y 2 Y g:First we observe that t0x0 + (1�t0)y0 = t00x00 + (1�t00)y00 implies t0 = t00; and, ift 6= 0, also x = x0. From it follows that our map is a bijection. The continuityat points with t 6= 0 is fairly obvious. For t 2 f0; 1g, some care is needed, andone needs to use the boundedness of X and Y (for unbounded X and Y , theinverse mapping need not be continuous).With this interpretation, it is not hard to see the equivalence of the de�nitionof join for simplicial complexes with that for spaces; that is, kK � Lk �= kKk�kLkfor any simplicial complexes K and L. Indeed, it su�ces to check that if X is ak-simplex and Y is an `-simplex, the geometric de�nition in Proposition 4.2.4



63 4. A Topological Interludeyields a (k+`+1)-simplex. This follows since if A � U and B � V are a�nelyindependent sets, then A [B is a�nely independent, too.Yet another description of the join is presented in Exercise 3.The join is commutative, in the sense X � Y �= Y �X . It is also associative,(X � Y ) � Z �= X � (Y � Z), as is best seen from the de�nition for simplicialcomplexes (at least for triangulable spaces).Cone and suspension. Two other well-known topological constructions canbe seen as special cases of the join. The cone over a space X is the join witha one-point space: cone(X) :=X � fpg. Geometrically, the cone is the union ofall segments connecting the points of X to a new point. Another equivalentde�nition is the quotient space cone(X) �= (X�[0; 1])=(X�f1g):X X � [0; 1] cone(X)The join with a two-point space, X � S0, is called the suspension of X anddenoted by susp(X). It can be interpreted as erecting a double cone over X , oras the quotient (X�[0; 1])=(X�f0g; X�f1g).Notation for points of a join. Let us consider an n-fold join X�n. A pointin it can be conveniently written in the form (\formal convex combination")t1x1 + t2x2 + � � �+ tnxn, where t1; t2; : : : ; tn are nonnegative reals summing upto 1 and x1; x2; : : : ; xn are points of X . As the notation suggests, if ti = 0,then the choice of xi does not matter, and we get the same point of X�n forall xi 2 X . On the other hand, the analogy with convex combination shouldnot be pushed too far: this formal convex combination is not commutative; forexample, 12a + 12b, a 6= b, is a point of X�2 di�erent from 12b + 12a. This isbecause of the \renaming convention" for joins: we should really think of x1 ascoming from a di�erent copy of X than x2, and so on.Join as a functor. Joins can be naturally de�ned not only for spaces butalso for (continuous) maps. Given maps f :X1 ! X2 and g: Y1 ! Y2, a mapf � g:X1 � Y1 ! X2 � Y2 is given by tx+ (1�t)y 7! tf(x) + (1�t)g(y).Joins and products. The Cartesian product X � Y can be embedded intoX �Y by (x; y) 7! 12x+ 12y 2 X �Y . Similarly, the Cartesian power Xn embedsinto X�n by (x1; x2; : : : ; xn) 7! 1nx1 + 1nx2 + � � �+ 1nxn. Here is an illustrationfor our usual example X = Y = �1:X YX�Y



4.3 k-connectedness 64Exercises1. Verify the following homeomorphisms and homotopy equivalences (X andY are triangulable spaces). If you cannot do the general case in (d){(f),try at least some special cases like X = Y = S1.(a) cone(Sn) �= Bn+1 ,(b) cone(Bn) �= Bn+1,(c) susp(Bn) �= Bn+1,(d) susp(X _ Y ) ' susp(X)_ susp(Y ),(e) susp(X t Y ) ' susp(X)_ susp(Y ) _ S1,(f) susp((X _ Y )t fpg) ' susp(X)_ susp(Y ) _ S1.Parts (d){(f) may fail if X and Y are arbitrary topological spaces.2. Show that joins preserve homotopy equivalence; that is, if X ' X 0, thenX � Y ' X 0 � Y .3. (Another interpretation of the join) Let X and Y be spaces. Verify thatX � Y is homeomorphic to the subspace (cone(X)� Y ) [ (X � cone(Y ))of the product cone(X) � cone(Y ). (Equivalently, glue the two spacescone(X)� Y and X � cone(Y ) in the subspaces homeomorphic to X � Ythat are given by the inclusions of bases X � cone(X) and Y � cone(Y ).)4. Let the topology on a space X be induced by a metric � and the topologyon Y by a metric �. Assume that both � and � are bounded, i.e. notwo points have distance more than K for a suitable �xed number K.Construct a metric � on the join X � Y inducing its topology (and checkthat it indeed works). Warning: there are some quite tempting wrongsolutions.5. In Section 1.7, we associated the simplicial complex �(P ) with every(�nite) poset P . What is the appropriate operation \�" on posets, suchthat �(P �Q) = �(P ) ��(Q)?4.3 k-connectednessInformally, a topological space X is k-connected if it has no \holes" up todimension k. A hole in dimension ` is something that prevents some suitablyplaced S` from continuously shrinking to a point:` = 0S0 S1 ` = 1



65 4. A Topological Interlude(To make a hole in a B3 in dimension 0, slice it in two pieces; for dimension 1,puncture a tunnel in it, and for dimension 2, make a void inside.) Of course,things can be more complicated: a torus certainly has a hole in dimension 1 inthis sense, but what about dimension 2? Fortunately, we need not contemplatesuch �nesses here, since the formal de�nition is simple:4.3.1 De�nition (k-connected space). Let k � �1. A topological spaceX is k-connected if for every ` = �1; 0; 1; : : : ; k, each continuous map f :S` !X can be extended to a continuous map �f :B`+1 ! X . (Equivalently, eachf :S` ! X is nullhomotopic.)Here S�1 is interpreted as? and B0 as a single point, and so (�1)-connectedmeans nonempty.For k � 0, k-connectedness includes the condition (for ` = 0) that X hasto be arcwise connected. A space X satisfying the condition for ` = 1, i.e.with every map S1 ! X nullhomotopic, is usually called simply connected. So1-connected means arcwise connected and simply connected.It is not hard to check that homotopy equivalence preserves k-connectedness(Exercise 1). Another very believable result is4.3.2 Theorem. The n-sphere Sn is (n�1)-connected and not n-connected.Proof. By the Borsuk-Ulam Theorem 2.1.1 (1.3), Sn is not n-connected.The fact that Sn is (n�1)-connected may seem almost obvious, but one hasto be careful, as already maps S1 ! Sn can be quite wild (think of a space-�lling curve!).Let us consider a (uniformly) continuous map f :Sk ! Sn. We show thatit is homotopic to another map g:Sk ! Sn that is not surjective. Such a g isobviously nullhomotopic and hence f , too, is nullhomotopic.To construct g, we �nd an " > 0 such that kf(x) � f(y)k < 1 wheneverkx � yk < ", and a triangulation � of Sk such that every simplex in � hasdiameter smaller than " (think of Sk as the boundary of a simplex, for example).Now we de�ne g on each simplex � 2 � by interpolating the values of f at thevertices of � suitably. Moreover, such a de�nition yields a homotopy of f andg. Namely, we de�ne F :Sk � I ! Sn byF (x; t) := tPmi=1 �if(vi) + (1�t)f(x)ktPmi=1 �if(vi) + (1�t)f(x)kwhere v1; : : : ; vm are the vertices of supp(x) (the simplex of � containing x inits relative interior) and x =Pmi=1 �ivi. We need to show that the denominatoris never 0. All the f(vi), as well as f(x), have distance at most 1 from v1 andhence they all lie in a spherical cap of radius smaller than 1. So their convexhull cannot contain the origin and F is well-de�ned and continuous. We havef = F (�; 0) and we set g :=F (�; 1). For every simplex � 2 �, the image g(�)is contained in a hyperplane in Rn+1 passing through the origin. A �nite unionof hyperplanes cannot cover the sphere and hence g is not surjective.



4.3 k-connectedness 66In many topological proofs of geometric or combinatorial results, the prob-lem is reduced to showing that certain spaces are highly connected. Num-ber of tools are available for the latter task. We will soon explain a simpletrick (Sarkaria's inequality) which will allow us to avoid explicit proofs of k-connectedness in most of the applications. But for attacking other problems,it can be useful to have tools for establishing k-connectedness at hand. In therest of this section, we state some such results without proof (since they usea technical apparatus which we do not want to assume in this book). Laterwe will add a few more, which we will be able to prove even with our meagertopological means.Homology and k-connectedness. The following theorem refers to thereduced singular homology groups. A reader not familiar with homology mayjust want to know that they are parameters of a topological space, invariantunder homotopy equivalence and e�ciently computable for simplicial complexes(and for many other spaces).4.3.3 Theorem. Let X be a nonempty topological space and let k � 1. ThenX is k-connected if and only if it is simply connected (i.e. the fundamentalgroup �(X) = 0) and ~Hi(X) = 0 for all i = 0; 1; : : : ; k.This is a special case of a famous theorem of Hurewicz: for a simply con-nected space, the �rst nonzero homotopy and homology groups occur in thesame dimension and they are isomorphic; see e.g. Hatcher [Hat01].Since the kth homology group of a simplicial complex depends only onsimplices of dimension at most k+1, and the fundamental group depends onlyon the 2-skeleton, we have4.3.4 Proposition. A simplicial complex K is k-connected if and only if the(k+1)-skeleton K�k+1 is k-connected.This can also be proved directly, without resorting to homology. Anotherconsequence of Theorem 4.3.3 (and of formulas for the homology of a join),which does not seem easy to prove directly, is4.3.5 Proposition (Connectivity of join). Suppose that X is k-connectedand Y is `-connected, where X and Y are triangulable (or CW-complexes).Then X � Y is (k+`+2)-connected.It may also be useful to know that if a k-dimensional simplicial complex isk-connected, then it is contractible. This follows, for example, from a theoremof Whitehead and Theorem 4.3.3. (For general spaces this need not be true!)Moreover, �nite k-dimensional (k�1)-connected simplicial complexes have aspecial structure: they are homotopy equivalent to a point or to a wedge ofk-dimensional spheres.



67 4. A Topological InterludeExercises1. Prove that if X is k-connected and Y ' X , then Y is k-connected as well.2. (a) Suppose that X is a space that is not k-connected. Show that X � Ycannot be k-connected either, for any Y .(b) Prove that if both X and Y are k-connected, then so is X � Y .3. (a) Deduce from Theorem 4.3.2 that Sn 6' Sm unless m = n.(b) Use (a) to derive Rn 6�= Rm unless m = n.4.4 Cell complexesThis section is optional: cell complexes are generally nice and very useful intopology, they will be mentioned in the formulation of some of the subsequentgeneral theorems, but they will not be essential for any of our concrete appli-cations.In algebraic topology, cell complexes are usually called CW-complexes. Themeaning of the mysterious letters C and W will be explained soon, but rightnow we note that they are signi�cant only for complexes with in�nitely manycells. We will occasionally use the name cell complex for a �nite CW-complex.Informally, a CW-complex is a topological space that can be pasted togetherfrom �nite-dimensional balls, where a new k-ball is always glued by its boundaryto the part already made from balls of dimension < k. Thus, we start with adiscrete set of vertices, called the 0-cells in this context. Then we put in some1-balls, called 1-cells . A 1-cell is just a closed interval, whose two endpoints areglued to some vertices, possibly both to the same vertex. The spaces obtainedat this phase can be viewed as topological realizations of graphs, possibly withloops and multiple edges:Next, we can paste in some 2-dimensional discs (2-cells). The boundary of eachdisc is glued to some of the edges, possibly in a complicated manner. Here area few examples of what can be obtained with a single 2-cell. We can make thedisc (as a topological space) with one 0-cell, one 1-cell, and one 2-cell:With just one 0-cell, no 1-cell, and one 2-cell, we can manufacture an S2; notethat the whole boundary of the 2-cell is identi�ed to a point:



4.4 Cell complexes 68Of course, an S2 can be made in many other ways, too; for example, using 2cells of each dimension 0,1,2, as will be shown in a drawing in Section 5.2. Ifwe picture a 2-cell as a square and we paste the edges in the indicated mannerto two 1-cells a and b, we get a torus:a b =b baa+In fact, as is taught in basic courses of algebraic topology (such as [Mun00] or[Sti93]), we can get any 2-dimensional manifold without boundary, includingnon-orientable ones like the projective plane or the Klein bottle, from a regularconvex polygon by suitable boundary identi�cations.A (geometric) simplicial complex is a special case of a CW-complex (eachsimplex is homeomorphic to a ball). One obvious new thing in CW-complexesis that, while simplices are \straight," cells can be \curved." But another,perhaps less obvious di�erence is that a simplex must remain homeomorphic toa ball in the simplicial complex, including the boundary, while the boundary ofa cell may become glued to itself and entangled in a complicated manner. Forexample, it is legal to glue a 2-cell to the middle of a 1-cell:Here is a formal de�nition of a CW-complex. A CW-complex is a Hausdor�space X which is the union of a collection fe�g�2� of disjoint subspaces calledcells with the following properties.� Each e� has some dimension dim e� 2 f0; 1; 2; : : :g. The n-skeleton of Xis X�n =[fe� : � 2 �; dim e� � ng:� If dim e� = n, then there is a continuous characteristic map (or attachmentmap) ��:Bn ! X , such that @Bn = Sn�1 is mapped into the (n�1)-skeleton X�n�1 and intBn is mapped homeomorphically onto e�.These conditions are su�cient to de�ne a �nite CW-complex (i.e. one with�nitely many cells); the topology on X is determined uniquely by the charac-teristic maps. Note that a �nite CW-complex is always compact. An in�niteCW-complex has to satisfy the following two additional conditions (which areautomatically satis�ed by �nite CW-complexes):� (Weak topology) A set F � X is closed if and only if F \ �e� is closed foreach � 2 �, where �e� denotes ��(Bn), i.e. the cell e� together with itsboundary.



69 4. A Topological Interlude� (Closure �niteness) The boundary of each cell e�, i.e. the image of @Bnunder ��, intersects only �nitely many cells.The \morphisms" of CW-complexes are called cellular maps. A map f :X !Y of CW-complexes is cellular if, for each n � 0, the n-skeleton X�n is mappedinto the n-skeleton Y �n. If a cellular map is a homeomorphism, then any n-cellis mapped homeomorphically onto an n-cell.For many applications, a CW-complex structure for a space is as good as atriangulation, or nearly as good. At the same time, the CW-complex structurecan have just a couple of cells where a triangulation would have to be quitelarge. For instance, an Sn can be expressed as a cell complex with one 0-celland one n-cell (as we have seen for S2), while the smallest triangulation is theboundary of an (n+1)-simplex, with 2n+1 � 1 simplices!Although there exist non-triangulable CW-complexes, it is known that everyCW-complex X is homotopy equivalent to a polyhedron of a simplicial complexK. Moreover, one may assume dimK = dimX and if X is �nite, then K can bechosen �nite as well.A subcomplex of a CW-complex X is a closed subspace A � X that is theunion of some of the cells of X (recall that the cells are relatively open). Anice feature of CW-complexes, not shared by simplicial complexes, is that thequotient X=A is again a CW-complex (Exercise 1).If A is a subcomplex of a CW-complex X , then the pair (X;A) has thehomotopy extension property; this is proved almost exactly as for simplicialcomplexes. Proposition 4.1.5 also extends without any di�culty: if A is con-tractible, then X=A ' X .Notes. There are several restricted classes of CW-complexes that liebetween general CW-complexes and simplicial complexes.In a regular (�nite) cell complex, we require that each of the attach-ment maps �� be a homeomorphism (not only on the interior of Bn butalso on the boundary). The intersection of the boundaries of two closedcells can still be topologically nontrivial, but regular cell complexes ad-mit a simple combinatorial description. Namely, if we de�ne the partialorder on the set of closed cells by inclusion, then the order complex ofthis poset is homeomorphic to the original cell complex (and it is naturalto call the resulting simplicial complex the �rst barycentric subdivisionof the regular cell complex).A more special class of regular cell complexes are polyhedral com-plexes. At least two di�erent de�nitions appear in the literature. Amore strict de�nition is very similar to the de�nition of a simplicialcomplex but the cells can be convex polytopes, instead of just simplices.Every two cells intersect in a cell and a face of a cell is again a cell.In a more permissive de�nition, it is only required that every cell behomeomorphic to a convex polytope.A special case of the latter de�nition are the �-complexes, used in[Hat01]. The cells are simplices, they are still glued together face-to-face, but for example gluing two triangles by just two sides is permitted:



4.4 Cell complexes 70;A (geometric) �-complex is obtained from a family of disjoint simplicesby face identi�cations. More precisely, let (�� : � 2 A) be a family of(geometric) simplices. We assume that for each ��, some linear orderingof the vertices has been �xed. Further let (F�� 2 B) be given, whereeach F� is a family of simplices, all simplices in F� having the samedimension k� and each of them being a face of some ��. The �-complexspeci�ed by these data is obtained from the sum F�2A �� by identifyingall the faces in each F� to a single k�-face. The identi�cation is madeaccording to the canonical a�ne homeomorphisms among the faces inF� that extend the (unique) order-preserving bijections of the vertexsets. Note that F� may contain several faces of the same ��; so, forexample, the three edges of a triangle can all be identi�ed as indicatedby the arrows:(The resulting mind-boggling geometric object can be realized in R3and it is known as the dunce cap.) Unlike general CW-complexes, thespeci�cation of a �-complex is purely combinatorial, albeit formallymore complicated than for a simplicial complex. Let us remark thatmodern homotopy theory uses yet another generalization of simplicialcomplexes, called the simplicial sets ; these are always in�nite and atpresent they do not seem relevant for combinatorial applications in thespirit discussed here.Exercises1. Let X be a CW-complex and A a subcomplex of it. De�ne a cell structureon X=A and check that it is a CW-complex (if you like, assume that X is�nite).



5Nonexistence of Z2-MapsIn the applications covered in Chapter 3, we always associated a continuousmap of the sphere with the considered problem, sometimes in a quite naturalway (for the ham sandwich cut theorem, say) and sometimes by a clever ad hocconstruction (in both the proofs of Kneser's conjecture). The Borsuk{Ulamtheorem applied to this map then provided the desired object or a contradiction.Here we �rst generalize the Borsuk{Ulam theorem from spheres to a muchwider class of spaces, which gives us more 
exibility. We pursue just one amongmany possible directions of generalizations, dealing with the Z2-index, whichproved very fruitful in combinatorial and geometric applications. Then weintroduce constructions, most notably deleted joins, which for many problemslead to a suitable space with a continuous map in an almost canonical way. Inthis connection, one speaks about a con�guration space (encoding all possible\con�gurations" in the considered problem) and a test map (distinguishingcon�gurations with some desired property from the others, say by mappingthem to zero).5.1 Z2-spaces and Z2-mapsOne of the versions of the Borsuk{Ulam theorem asserts that there is no an-tipodal map Sn+1 ! Sn, and this is the starting point of our generalizations.We will view antipodal maps not only as maps between topological spaces, butrather as maps between topological spaces with additional structure given bythe antipodality. Thus, here we regard Sn as the pair (Sn;�), where \�" isa shorthand for the mapping x 7! �x. The antipodality \�" is a homeo-morphism of the underlying space (Sn, or also Rn), and it gives the identityif performed twice: �(�x) = x. These are the essential properties that arere
ected in the de�nition of a general \antipodality space." Anticipating theterminology of the subsequent generalizations, we begin to use brave new namesfor old things, though: we start saying Z2-action instead of antipodality andZ2-map instead of antipodal map.5.1.1 De�nition (Z2-space and Z2-map). A Z2-space is a pair (X; �),where X is a topological space and �:X ! X is a homeomorphism, called theZ2-action on X , such that �2 = � � � = idX .



5.1Z2-spaces andZ2-maps 72The Z2-action � is free if �(x) 6= x for all x 2 X ; that is, if � has no �xedpoint. In that case, the Z2-space (X; �) is also called free.If (X; �) and (Y; !) are Z2-spaces, aZ2-map f : (X; �)! (Y; !) is a contin-uous map X ! Y that commutes with the Z2-actions: for all x 2 X , we havef(�(x)) = !(f(x)), or, more brie
y, f � � = ! � f .A Z2-map is also called an equivariant map, or an involution, or an antipo-dal map. If the Z2-action on a Z2-space (X; �) is understood, we write just\Z2-space X ;" this is similar to the conventions for many other mathematicalstructures.Obvious examples ofZ2-spaces are (Sn;�) and (Rn;�). Here is one examplethat, in reality, is not very di�erent, but at least it looks di�erent at �rst sight.5.1.2 Example. Consider the boundary of the (n�1)-dimensional simplex asan abstract simplicial complex K; i.e. K = 2[n] n f[n]g. Let L = sd(K) be the�rst barycentric subdivision of K; thus, the vertex set of L consists of all propernonempty subsets of [n]. De�ne a simplicial map �:V (L) ! V (L) by setting,for a vertex F 2 V (L), �(F ) = [n] n F . A simplex in L is a chain of setsunder inclusion, and so � maps simplices to simplices (reversing the inclusion!).Moreover, � is surjective (all chains are obtained) and �2 = id. So (kLk; k�k) isa (free) Z2-space.As we know, kLk = kKk �= Sn�2. For n = 3, the action � is depicted below:1 2312 2313 �It is essentially the same as the usual antipodality \�" on S1. (As we will seelater, all free Z2-actions on Sn are equivalent for our purposes.)The L above is an example of a simplicial Z2-complex. In general, a simpli-cialZ2-complex is a simplicial complex K with a simplicial map �:V (K)! V (K)such that k�k is a Z2-action on kKk. A cell Z2-complex is de�ned analogously:it is a �nite CW-complex and the Z2-action is a cellular map.5.1.3 Example (Join of Z2-spaces). If (X1; �1) and (X2; �2) areZ2-spaces,the join X1 �X2 can be equipped with the Z2-action �1 � �2. The join of freeZ2-spaces is clearly free.The two-point space S0 has an obvious free Z2-action that exchanges thetwo points (in the standard embedding of S0 into R1, it is precisely the usualaction x 7! �x). As we saw in Example 4.2.2, the n-fold join (S0)�n is an Sn�1,namely the boundary of the n-dimensional crosspolytope. By considering thisjoin as aZ2-space, we recover the standardZ2-action x 7! �x on the boundaryof the crosspolytope.



73 5. Nonexistence ofZ2-MapsThe next examples look rather simple, but we will be encountering theirvariations all the time.5.1.4 Example (Z2-action on X�X). Let X be any space. The Cartesianproduct X �X can be made into a Z2-space by letting the Z2-action exchangethe two components; �: (x; y) 7! (y; x).5.1.5 Example (Z2-action on X �X). Similarly, the join X �X becomes aZ2-space if we de�ne the Z2-action � by tx + (1�t)y 7! (1�t)y + tx (recall theconvention about writing the points in a join as formal convex combinations,and visualize this action for X being a segment).The Z2-spaces in the last two examples are not free. Later on, we will beusing constructions making them free by deleting suitable points from X �Xor from X �X .Exercises1. Verify that the Z2-action � in Example 5.1.2 is indeed free.5.2 The Z2-indexLet (X; �) and (Y; !) be Z2-spaces. Let us write X Z2�! Y if there exists a Z2-map fromX to Y and X Z2�!= Y if noZ2-map exists. The Borsuk{Ulam theoremtells us that Sn+1 Z2�!= Sn. In the applications of the concepts developed in thischapter, the crux is always in showing X Z2�!= Y for some given X and Y . Ofcourse, the relation Z2�! is rather complicated and one should not expect tobe able to decide whether X Z2�! Y for arbitrary given X and Y (in view ofthe di�culty of both homeomorphism and homotopy equivalence, for exam-ple). Nevertheless, with the tools introduced later one can succeed in manyinteresting concrete cases.The relation Z2�! is obviously transitive, and it is useful to think of it as apartial ordering: if X Z2�! Y , then Y is at least as big as X . To support thisideology notationally, we also writeX �Z2 Y if X Z2�! Y:Strictly speaking, �Z2 is not a partial ordering but rather a partial quasiorder-ing, since many spaces are equivalent under it (homeomorphic spaces with \thesame" Z2-actions, for example).Before proceeding, we can observe that non-freeZ2-spaces are uninterestingfrom the point of view of �Z2 . Namely, if (Y; !) is such that !(y0) = y0, thenX Z2�! Y for all X : simply send all of X to y0. In the �Z2 relation, all non-freeZ2-spaces are equivalent and strictly larger than all free Z2-spaces.The Z2-index. Spheres were useful in the Borsuk{Ulam theorem, and herewe are going to use them as a yardstick for measuring the \size" of Z2-spaceswith respect to �Z2 .



5.2 The Z2-index 745.2.1 De�nition (Z2-index). Let (X; �) be a Z2-space. We setindZ2(X) := minfn 2 f0; 1; 2; : : :g : X Z2�!Sng:Here Sn is taken with the standard antipodal action.The Z2-index can be a natural number or 1; the latter happens, for exam-ple, for a non-free Z2-space.5.2.2 Proposition (Properties of the Z2-index).(i) If X �Z2 Y , then indZ2(X) � indZ2(Y ). Therefore, indZ2(X) > indZ2(Y )implies X Z2�!= Y .(ii) indZ2(Sn) = n, for all n � 0 (with the standard Z2-action on Sn).(iii) indZ2(X � Y ) � indZ2(X) + indZ2(Y ) + 1.(iv) If X is (n�1)-connected, then indZ2(X) � n.(v) If X is a free simplicial Z2-complex (or cell Z2-complex) of dimension n,then indZ2(X) � n.1Part (i) follows trivially from the de�nition (right?) and it suggests howthe Z2-index can be used for establishing the nonexistence of a Z2-map. Thecondition indZ2(X) > indZ2(Y ) is only su�cient for X Z2�!= Y . If indZ2(X) �indZ2(Y ), both the possibilities X Z2�! Y and X Z2�!= Y are still open, althoughexamples of the second possibility are not obvious (see the notes and Exercise 4).Part (ii) is essentially a version of the Borsuk{Ulam theorem.Part (iii) follows immediately from Sn � Sm �= Sn+m+1. As we will see, itcan sometimes be used to show that the Z2-index of some space is large, in theform indZ2(X) � indZ2(X � Y )�indZ2(Y )�1 for a suitable Y .Finally, parts (iv) and (v) are a little more di�cult and we prove them below.The statement (iv), indZ2(X) � n for (n�1)-connected X , is the basic tool forbounding the Z2-index below, while (v), indZ2(X) � dim(X), is typically usedto bound it above.Mapping the sphere: proof of (iv). To show that indZ2(X) � n for an(n�1)-connected X , it su�ces to exhibit a Z2-map g:Sn ! X . We proceed1With some more technical machinery, this claim can be shown for much more generalspaces X. Namely, if X is paracompact, then indZ2 (X) � dim(X). Paracompactness is a mildtopological condition satis�ed by practically all the usually encountered topological spaces;for example, by all metric spaces. A topological space X is paracompact if it is Hausdor� andeach open cover U of X has a locally �nite open re�nement V. Here a cover U is open if itconsists of open sets, a cover V is a re�nement of a cover U if each set of V is contained insome set of U , and V is locally �nite if each point of X has an open neighborhood intersectingonly �nitely many members of V.The dimension is the usual covering dimension. For a metric space X, dimX � n if every�nite open cover of X has a �nite open re�nement such that each point of X is contained inat most n+1 sets of the re�nement. For a detailed treatment of both paracompactness andtopological dimensions see [Eng77]. For �nite simplicial complexes and CW-complexes, thecovering dimension coincides with the maximum dimension of a simplex or cell, respectively.



75 5. Nonexistence ofZ2-Mapsby induction, constructing Z2-maps gk:Sk ! X by induction on k. The casesk = �1 and k = 0 are clear. For the induction step, consider Sk�1 as a subset ofSk, by identifying it with the \equator" fx 2 Sk: xk+1 = 0g. Furthermore, viathe projection map �:Rk+1 ! Rk that deletes the last coordinate, the upperhemisphere Sk+ := fx 2 Sk: xk+1 � 0g is homeomorphic to the ball Bk . Now if aZ2-map gk�1:Sk�1 ! X has been constructed, we can extend it to a continuousmap �gk�1:Bk ! X , since X is (k�1)-connected. Using � we can then de�negk on Sk+, as gk = �gk�1 � �: Sk+ �! Bk �! X:Setting gk(x) := �(gk(�x)) for x 2 Sk� (the lower hemisphere), we get a mapgk:Sk ! X . This map is well-de�ned since gk is antipodal on the intersectionSk�1 of the two hemispheres of Sk. It is continuous since it is continuous onboth the closed hemispheres of Sk, and it is a Z2-map by construction.It is instructive to unwrap this inductive proof; for concreteness, we do it forn = 2. First we regard S0 as two antipodal points S0+ and S0� in R3. We choosethe value at S0+ as an arbitrary x0 2 X , and the value at S0� is enforced: �(x0).Next, we extend to an arc S1+ connecting S0+ and S0�, using the 0-connectednessof X , and we again put the enforced values on the opposite arc S1�. The twoarcs combine to a full circle S1, and from this circle, we extend to the upperhemisphere S2+ by the 1-connectedness of X . We �nish the construction byassigning the antipodal values on the lower hemisphere.S2+
S2� S1+S1� S0+ S0�

The proof implicitly used a suitable cell decomposition of S2 (see Section 4.4).This decomposition is equivariant, meaning that the interior of each k-di-mensional cell is mapped bijectively onto the interior of another k-dimensionalcell by the Z2-action.In order to stay in the realm of the perhaps more familiar simplicial com-plexes, we can also do the proof using an antipodally symmetric triangulationof Sk. For example, in the usual octahedral triangulation of S2, we can choosethe values of g0 at the three marked vertices,



5.2 The Z2-index 76
get the values at the other vertices by antipodality, extend on the marked edges,and so on.Mapping into the sphere: proof of (v). Here it su�ces to constructa Z2-map g: kKk ! Sn for every free simplicial Z2-complex with dimK � n.We show that, more generally, a free n-dimensional simplicial Z2-complex canbe Z2-mapped into any (n�1)-connected Z2-space Y . The argument is almostexactly as in the previous proof.We constructZ2-maps gk: kK�kk ! Y by induction, k = 0; 1; : : : ; n. Havingalready constructed gk, we divide the (k+1)-dimensional simplices in K intoequivalence classes|the orbits under the Z2-action; one can check that eachclass consists of two disjoint simplices F and �(F ) (Exercise 1). We pick onesimplex from each class and for these simplices, we extend gk on the interiorusing the k-connectedness of Y . We then de�ne gk+1 on the interiors of theremaining simplices in the only possible way that makes gk+1 a Z2-map. Thesame proof goes through for cell Z2-complexes.Other Z2-indices. There are various other sensible ways of de�ning a \Z2-index;" the one we have used is technically quite simple but others may be morepowerful or easier to compute in some cases. In principle, any mapping from theclass of Z2-spaces to some partially ordered set that is monotone with respectto the ordering �Z2 can serve as a \Z2-index." But in order to get interestingresults, the mapping should satisfy some extra properties similar to (ii){(v) inProposition 5.2.2. A little about other notions of index will be mentioned belowand in the notes to Section 6.2.Notes. A parameter of a Z2-space X called the genus and equal, inour notation, to 1+indZ2(X), was introduced by Krasnosel'ski�� [Kra52].Another, similar (but not always equivalent) notion of index for Z2-spaces was de�ned by Yang [Yan54]; his de�nition can be expressed usinga suitable equivariant homology theory with Z2-coe�cients. He provedthat if (X; �) is aZ2-space of index n (in particular, if (X; �) = (Sn;�))and f :X ! Rm is a continuous map, then (his) index of the coincidenceset Af = fx 2 X : f(x) = f(�(x)g is at least n�m, and consequently,dim(Af ) � n�m, too. He derived generalizations of several nice geo-metric theorems listed below. Some of these results were obtained byBourgin [Bou55], too.Kakutani-type results. Kakutani [Kak43] proved that for any compactconvex set in R3 there exists a cube circumscribed to it and touching itby all the 6 facets. This is an easy consequence of the following: for any



77 5. Nonexistence ofZ2-Mapscontinuous f :S2 ! R, there are three mutually perpendicular vectorsx1;x2;x3 2 S2 with f(x1) = f(x2) = f(x3). This was generalized todimension n (with n+1 mutually orthogonal vectors) by Yamabe andYujobô [YY50], and re-derived by Yang [Yan54] (in a greater general-ity, with an arbitrary Z2-space of index n replacing Sn, with a suitableabstract notion of \orthogonality"). Yang [Yan54] and Bourgin [Bou63]proved that for any continuous f :Sn ! R, there are n mutually orthog-onal x1; : : : ;xn 2 Sn with f(x1) = f(�x1) = f(x2) = � � � = f(�xn),generalizing such result for S2 due to Dyson [Dys51]. Here is anothernice result of Yang of this type: if f :Smn+m+n ! Rm is continuous, thenthere exists an antipodally symmetric subset of Smn+m+n of index (anddimension) at least n on which f is constant. Numerous results aboutcircumscribed geometric shapes and similar problems can be found inthe work of Makeev, such as [Mak96].In this connection, we should also mention a conjecture of Knaster[Kna47], stating that for any continuous f :Sn ! Rm and any con�gu-ration K � Sn of n�m+2 points, there exists a rotation � of Sn suchthat f(�(K)) is a single point. Although this was proved for some spe-cial values of n and m and for some special con�gurations, the generalconjecture was eventually refuted by Makeev [Mak84]. Stronger coun-terexamples were provided by Babenko and Bogaty�� [BB89]; for example,they showed that if n�2 � mt, then there is a mapping f :Sn ! Rm,given by a polynomial of degree at most t, such that no con�gurationof 2t+1 points on a great circle in Sn has the property required byKnaster's conjecture.A CW-complex with S3 Z2�!= X Z2�!= S2. The example we are going tosketch was constructed with the help of R. �Zivaljevi�c and P. Csorba; wedo not give a full proof. Let h:S3 ! S2 be the Hopf map (see [Hat01]or other topology textbooks). Construct X by attaching two 4-cells(copies of B4) to the standard S2, where the boundary of the �rst cell isattached by h and the boundary of the other cell by �h. The Z2-action� acts on the S2 as the antipodality and it interchanges the two 4-cells.If there were aZ2-map S3 ! X , it could be deformed so that it remainsa Z2-map and goes into the 3-skeleton of X . But the 3-skeleton is justthe S2, and so such map doesn't exist. If f :S2 ! S2 is aZ2-map, it canbe shown that f �h:S3 ! S2 is not nullhomotopic (using the propertiesof the Hopf invariant), and so it cannot be extended to a map B4 ! S2.But a Z2-map X ! S2 would yield such an extension.Exercises1. Let K be a simplicial complex and let � be a free simplicial Z2-action onK. Prove that F \ �(F ) = ? for every F 2 K.2. Give examples of free Z2-spaces of index n that are not (n�1)-connected.3. Give an example of a free Z2-space X with indZ2(X) =1.



5.3 The topological Radon theorem 784. De�ne the following index-like quantity for a Z2-space X :dni(X) := maxfn � 0 : Sn Z2�!Xg:(a) Formulate and prove analogues of Proposition 5.2.2(i){(v) for dni(X),and check that dni(X) � ind(X) for all Z2-spaces X .(b) Call a free Z2-space X tidy if dni(X) = indZ2(X) <1. Show that ifX and Y are tidy, then X Z2�! Y if and only if indZ2(X) � indZ2(Y ).(c) Construct an example of a free Z2-space X with dni(X) = 0 <indZ2(X) (in particular, X is not tidy).5.3 The topological Radon theoremMany proofs concerning geometric embeddability, coloring of Kneser-like graphs,and other applications of topological methods have a common general scheme.In this section we encounter it for the �rst time.We begin with a result well-known in convex geometry.5.3.1 Theorem (Radon's theorem). Every set X = fx1; : : : ;xd+2g of d+2points in Rd can be divided into two disjoint subsets whose convex hulls inter-sect.It may be good practice to visualize this for d � 2. For d = 1 we have threepoints on the real line, x1 � x2 � x3, say. Then fx2g intersects [x1; x3]. Ford = 2, four points are given in the plane. Then either one point xi is containedin the convex hull of the others, and then we have the partition into fxig andXnfxig, or the four points form the vertices of a convex quadrilateral, and thenthe diagonals are the two intersecting convex hulls.Although the standard proof is simple and unrelated to topology, we outline itfor completeness.Proof. Any d+2 points in Rd are a�nely dependent. Let us �x an a�nedependence: �1x1 + �2x2 + � � �+ �d+2xd+2 = 0, Pd+2i=1 �i = 0. Then we de�neI1 := fi 2 [d+2] : �i > 0g and I2 := [d+2] n I1. Further let S := Pi2I1 �i =Pj2I2(��j). Then the point x := Pi2I1(�iS )xi = Pj2I2(��jS )xj is a convexcombination of points in X1 := fxi : i 2 I1g as well as a convex combination ofpoints in X2 = X nX1.An equivalent formulation of Radon's theorem. For every a�ne mapf : k�d+1k ! Rd there exist two disjoint faces F1; F2 of the (d+1)-simplex �d+1such that f(kF1k) \ f(kF2k) 6= ?.



79 5. Nonexistence ofZ2-MapsProof of the equivalence. Each such f is determined by the images of thed+2 vertices of the simplex. The image of a face is the convex hull of the imagesof its vertices(Exercise 3).We prove a signi�cant generalization of Radon's theorem, which shows thatvery little of the vector-space structure of Rd is needed for the validity ofRadon's theorem.5.3.2 Theorem (Topological Radon's theorem; Bajm�oczy & B�ar�any[BB79]). Let f : k�d+1k ! Rd be a continuous map. Then there exist twodisjoint faces F1; F2 of �d+1 such that f(kF1k) \ f(kF2k) 6= ?.Since this is a prototype of several similar but more complicated statementsto come later, it is important to realize what it asserts. For example, for d = 1,it says that if the triangle is mapped into the line, there are some two disjointfaces, typically a side of the triangle and its opposite vertex, whose imagesintersect. For d = 2, we have a tetrahedron mapped into the plane, and thetheorem tells us that again the images of some two disjoint faces intersect; inthis case, they can be a triangle and its opposite vertex or two opposite edges.�2 �3If we recall the notion of support of a point x in a geometric simplicial complex(the simplex containing x in its relative interior), we can also express the the-orem by saying that there are x1;x2 2 k�d+1k with disjoint supports and suchthat f(x1) = f(x2).The �rst key idea in the proof is to pass to Cartesian products. Namely, letf2: k�d+1k � k�d+1k ! Rd�Rd(x1;x2) 7! (f(x1); f(x2)):The theorem can now be reformulated as follows: there is a pair x = (x1;x2) 2k�d+1k2 such that supp(x1) \ supp(x2) = ? and f2(x) intersects the diagonalin (Rd)2, i.e. the set f(y;y) : y 2 Rdg.For contradiction, let us suppose that this is not the case. This means thatf2 maps the setX := f(x1;x2) 2 k�d+1k2 : supp(x1) \ supp(x2) = ?ginto the set Y := f(y1;y2) 2 (Rd)2 : y1 6= y2g:The next crucial observation is that both X and Y are free Z2-spaces. In-deed, if we de�ne �:X ! X by �((x1;x2)) = (x2;x1), then � is obviously a



5.3 The topological Radon theorem 80homeomorphism with �2 = idX and, moreover, �((x1;x2)) 6= (x1;x2) since Xcontains no pairs (x1;x2) with x1 = x2. Similarly, we de�ne !: Y ! Y by!((y1;y2)) = (y2;y1), and we check in exactly the same way that ! is a freeZ2-action on Y . Finally, f2 is aZ2-map (it was carefully constructed that way).So, after these tricks, namely introducing the Cartesian products and delet-ing suitable points from them, we are in the situation for which we have beenpreparing in the previous sections: we have speci�c Z2-spaces X and Y and wewould like to prove X Z2�!= Y . If we manage to do so, we reach a contradictionwith the original assumption, namely that the images of disjoint faces of �d+1under f never intersect.Deleted products. Before we start inspecting our speci�c X and Y , let usmention a general terminology. If Z is a space, the (twofold) deleted product ofZ, denoted by Z2�, is the spaceZ2� := (Z � Z) n f(x; x) : x 2 Zg:So in our situation above, we have Y = (Rd)2�.Our X is also a kind of deleted product, but this time we delete more: theproduct of each simplex with itself. If � is a geometric simplicial complex, wede�ne its deleted product:�2� := f�1 � �2 : �1; �2 2 �; �1 \ �2 = ?g:It can be checked that this is a polyhedral cell complex. Moreover, its polyhe-dron (i.e. the union of its cells) is determined by the underlying abstract simpli-cial complex of � up to homeomorphism. So for an abstract simplicial complexK, the topological space corresponding to its deleted product is well-de�ned, andwe denote it by kK2�k. (Note that kK2�k is typically not homeomorphic to kKk2�,although it can be shows that they are homotopy equivalent and have the sameZ2-index.) We can also write kK2�k = f(x1;x2) 2 kKk2: supp(x1)\ supp(x2) =?g. In our case, we have X = k(�d+1)2�k.Both Z2� and kK2�k can be made into free Z2-spaces as above, the actionsbeing the exchanges of coordinates.What are our deleted products? Now that we have set the stage, forconcluding the proof of the topological Radon's theorem it would su�ce to showX Z2�!= Y . To this end, as we know, it would be enough to prove indZ2(X) >indZ2(Y ).It is not very di�cult to see that indZ2(Y ) = indZ2((Rd)2�) � d�1. Indeed,there is a simple Z2-map g: (Rd)2� ! Sd�1 given by (x1;x2) 7! x1�x2kx1�x2k .The space X = (�d+1)2� is more complicated. If we work out the structureof X for d = 1, we get a hexagon, i.e. an S1:



81 5. Nonexistence ofZ2-Maps1 23 = f1; 3g�f2g !2� f1g�f2; 3g f1; 2g�f3g f2g�f1; 3gf2; 3g�f1gf3g�f1; 2gWith some more e�ort, one can �nd out that for d = 2, X can be representedas the boundary of a nice 3-dimensional polytope, as is sketched below:=1 234 f1; 2; 3g�f4gf1; 2g�f3; 4g!2� So in this case X �= S2. In general, one can prove geometrically that X �= Sdfor all d (Exercise 5). This is good, since Sd is (d�1)-connected and thereforeindZ2(X) � d by Proposition 5.2.2(iv).As the above 3-dimensional picture for d = 2 indicates, the structure of thedeleted product (�d+1)2� is not very simple. In more complicated cases, thedeleted products would be even harder to handle. Moreover, in some appli-cations they are not su�ciently connected. In the next section, we introduceanother construction, the deleted join, which looks less natural but has sig-ni�cant advantages over the deleted product. We then redo the proof of thetopological Radon theorem using deleted joins.Notes. Surveys on Radon's theorem and its relatives are Eckho�[Eck79] and [Eck93].The original proof of the topological Radon theorem by Bajm�oczy &B�ar�any [BB79] is di�erent from the one shown above. They construct acontinuous map g:Sd ! k�d+1k such that for every x 2 Sd, supp(g(x))\supp(g(�x)) = ?, and then they apply the Borsuk-Ulam theorem tof � g:Sd ! Rd.Exercises1. (a) Prove that indZ2((Rd)2�) � d�1.(b) Check that Sd�1 is a deformation retract of (Rd)2�.2. Enumerate all the possible con�gurations for Radon's theorem in dimen-sions d = 3 and d = 4.3. Let A � Rn be a set and let f :Rn ! Rm be an a�ne map. Show thatconv(f(A)) = f(conv(A)).4. Let P and Q be convex polytopes in Rd, and let P + Q = fx + y : x 2P;y 2 Qg be their Minkowski sum.



5.4 Deleted joins 82(a) Prove that P + Q is a convex polytope.(b) Prove that each face of P +Q is of the form F +G, where F is a faceof P and G is a face of Q.5. Let S := k�dk � Rd be a (geometric) d-dimensional simplex, and letP :=S+(�S) = fx� y : x;y 2 Sg.(a) Verify that P is a d-dimensional convex polytope.(b) Show that each point x 2 @P has a unique representation in the formx = x1 � x2, where x1;x2 2 S satisfy supp(x1) \ supp(x2) = ?.(c) Prove that the deleted product k(�d)2�k is homeomorphic to @P and,consequently, to Sd�1.5.4 Deleted joinsIn this section we introduce deleted joins of simplicial complexes and of spacesand we give another, simpler, proof of the topological Radon theorem 5.3.2.While in the proof using deleted products we have delegated a nontrivial geo-metric part to the exercises, here we give a full proof.We begin with the deleted join of a simplicial complex, which is the simplicialcomplex consisting of the joins of all ordered pairs of disjoint simplices:5.4.1 De�nition ((Twofold) deleted join of a simplicial complex). LetK be a simplicial complex. The (twofold) deleted join of K isK�2� := fF1�F2 : F1; F2 2 K; F1 \ F2 = ?g � K�2:(Recall our convention that F1�F2 denotes the disjoint union of F1 and F2; F1comes from the �rst copy of K and F2 from the second copy.) The polyhedronof K�2� can be writtenkK�2� k = ftx1 + (1�t)x2 : x1;x2 2 K; supp(x1) \ supp(x2) = ?; t 2 [0; 1]g:The Z2-action � given by the exchange of coordinates, �: tx1 + (1�t)x2 7!(1�t)x2 + tx1, makes K�2� into a free simplicial Z2-complex.Let us have a few examples.� The deleted join (�0)�2� of a single point (the 0-dimensional simplex) con-sists of two disjoint points.� The deleted join (S0)�2� of two points (a 0-sphere S0 = f?; f1g; f2gg) is adisjoint union of two edges. In fact, this can be seen from the next �gure,which shows, from left to right, the disjoint union of two copies of S0 (fourpoints), their join (a circle consisting of four edges), and the deleted join.1 2 1020 1 2 1020 1 2 1020



83 5. Nonexistence ofZ2-MapsThe maximal simplices are f1g�f20g and f2g�f10g. The Z2-action � ex-changes them.� The deleted join (�1)�2� of an edge is the perimeter of a square. To illus-trate this, our �gure below shows, from left to right, the disjoint unionof two edges, their join (a solid tetrahedron), and the deleted join (as asubcomplex of the tetrahedron).1 2 1020 1 2 1 21020 1020The maximal (1-dimensional) simplices are ?�f10; 20g, f1; 2g�?, f1g�f20gand f2g�f10g, where 1 and 2 denote the vertices of �1. The Z2-action �is the symmetry around the center of the square.In the proof of the topological Radon's theorem, we will need to computethe deleted join of a simplex. Unlike the deleted product, this is very easy.5.4.2 Lemma. Let K and L be simplicial complexes. We have(K � L)�2� = K�2� � L�2� :Proof. Clear from the de�nition.5.4.3 Corollary. k(�n)�2� k �= Sn:Proof. We have �n = (�0)�(n+1). By Lemma 5.4.2 we obtain((�0)�(n+1))�2� = ((�0)�2� )�(n+1) = (S0)�(n+1) �= Sn:The last homeomorphism is the homeomorphism of the boundary of the cross-polytope in Rn+1 with the n-sphere.We will also need the deleted join of a space.5.4.4 De�nition ((Twofold) deleted join of a space). Let Z be a topo-logical space. The (twofold) deleted join of X isX�2� := X�2 n f12x+ 12x : x 2 Xg:A free Z2-action � on X�2� is given by �: tx1 + (1�t)x2 7! (1�t)x2 + tx1.Warning. Note the distinction between the deleted join of a simplicialcomplex and of a space (we had a similar distinction for deleted products). Wehave kK�2� k � kKk�2� , but the inclusion is proper (except for trivial cases)! (Onthe other hand, these two spaces are homotopy equivalent and have the sameZ2-index; see Exercise 1.) Perhaps one should distinguish these two notionsby di�erent notation, but this would add further symbols to learn. Moreover,we need the deleted join of a space exclusively for the case X = Rd, and sono confusion should arise; actually we only need to bound indZ2((Rd)�2� ) fromabove.



5.4 Deleted joins 845.4.5 Lemma (Deleted join of Rd). There is a Z2-map g: (Rd)�2� ! Sd,and consequently indZ2((Rd)�2� ) � d. (It can actually be shown that the indexequals d.)Proof. There are several ways of doing this. We exhibit aZ2-map h: (Rd)�2� !(Rd+1)2�; a Z2-map (Rd+1)2� ! Sd was shown in the previous section.We recall from Proposition 4.2.4 that the join X � Y can be representedgeometrically if X and Y are placed into some Rn as bounded subsets of twoskew a�ne subspaces U and V . In our case, Rd is unbounded, and so we �rstmap it homeomorphically into the ball Bd and consider the (larger) deleted join(Bd)�2� instead.For the geometric representation, we need two skew d-dimensional sub-spaces, and to preserve the Z2 symmetry, we choose them in R2d+2 = (Rd+1)2.Namely, we de�ne the mappings  1;  2:Rd! R2d+2 by 1(x) := (1; x1; : : : ; xd; 0; 0; : : : ; 0);  2(y) := (0; 0; : : : ; 0; 1; y1; : : : ; yd):Then U1 := 1(Rd) and U2 := 2(Rd) are d-dimensional skew subspaces, and wecan insert the two copies of Bd into them: Xi := i(Bd), i = 1; 2. We de�neh: (Bd)�2� ! (Rd+1)2 by h: tx+(1�t)y 7! t 1(x)+(1�t) 2(y). This mapping iscontinuous by Proposition 4.2.4, is obviously a Z2-map, and goes into (Rd+1)2�since the equality (t; tx1; : : : ; txd) = (1�t; (1�t)y1; : : : ; (1�t)yd) implies t = 12and x = y, which are exactly the points removed from the deleted join.Proof of the topological Radon theorem. Now we have everythingready. As before, we assume for contradiction that there is a continuous mapf : k�d+1k ! Rd where the images of vertex-disjoint faces never intersect. In-stead of passing to the mapping f2 of Cartesian products, we now pass to themapping of joins:f�2 := f � f : k�d+1k�2 ! (Rd)�2tx1 + (1�t)x2 7! tf(x1) + (1�t)f(x2):If we restrict f�2 to the deleted join X := k(�d+1)�2� k, the image surely containsno point of the form 12y + 12y (since f never sends points x1;x2 from disjointfaces to the same point y 2 Rd). Therefore, f�2� can be regarded as a Z2-mapX ! Y , where Y := (Rd)�2� .We have computed the indices in advance: indZ2(X) = indZ2((�d+1)�2� ) =d+1 (Corollary 5.4.3) and indZ2(Y ) � d by Lemma 5.4.5. Hence X Z2�!= Y andwe have a contradiction proving the topological Radon theorem.Exercises1. (Deleted join of a simplicial complex and of its polyhedron)(a) Construct aZ2-map of k�nk�2� ! k(�n)�2� k; proceed by induction on n.(b) Let K be a �nite simplicial complex. Show that kKk�2� Z2�!kK�2� k.



85 5. Nonexistence ofZ2-Maps(c) Show that the spaces in (b) are homotopy equivalent; namely, a suit-able Z2-map as in (b) is a homotopy inverse to the obvious insertionkK�2� k ! kKk�2� .5.5 The Van Kampen{Flores theoremIn the proof of the topological Radon theorem in the previous section, weshowed that if indZ2((�d+1)�2� ) > indZ2((Rd)�2� ) = d, then every continuousmap k�d+1k ! Rd identi�es two points with disjoint supports. This part of theproof works for any simplicial complex K in place of �d+1, and gives5.5.1 Proposition (Nonembeddability and index of the deleted join).Let K be a simplicial complex. If indZ2(K�2� ) > d, then for every continuousmapping f : kKk ! Rd, the images of some two disjoint faces of K intersect. Inparticular, Rd contains no subspace homeomorphic to kKk.To apply this proposition, one must bound above the index of the deletedjoin. We begin with an important class of examples.5.5.2 Theorem (The Van Kampen{Flores theorem; [vK32] [Flo34]).For all d � 1, the simplicial complex K := (�2d+2)�d, i. e. the d-skeleton ofthe (2d+2)-dimensional simplex, cannot be embedded into R2d. In fact, forany continuous map f : kKk ! R2d, the images of some two disjoint faces of Kintersect.In Theorem 1.6.1, we have embedded an arbitrary d-dimensional simplicialcomplex into R2d+1, and the Van Kampen{Flores theorem shows that this di-mension is best possible in general. The case d = 1 tells us that in any drawingof the complete graph K5 in the plane, some two vertex-disjoint edges intersect.This is well-known and can be proved in an elementary way (without the Jordancurve theorem; see, for example, [Tho92]), although the proofs usually o�eredin graph theory courses are not rigorous.We present two proofs of the Van Kampen{Flores theorem. In both of them,we show indZ2(K�2� ) > 2d and apply Proposition 5.5.1. The �rst proof, in thissection, analyzes K�2� in detail and shows that it is actually homeomorphic toS2d+1. On the way, we introduce an interesting class of triangulations of S2d+1.This part is optional and is not needed for the further development. The secondproof, given in the next section, contains important ideas which will be used inseveral other applications.



5.5 The Van Kampen{Flores theorem 86The Bier spheres. This �rst proof of the Van Kampen{Flores theorem issimilar to the original proof of Flores. To analyze the complex K�2� , we considera more general construction, due to Bier [Bie], which associates an (n�2)-di-mensional triangulated sphere on 2n vertices with every simplicial complex on nvertices. It is simple but ingenious, and we will also present another applicationof it.Recall that 2[n] denotes the system of all subsets of [n] = f1; 2; : : : ; ng. Asimplicial complex with vertex set [n] is a nonempty subset K � 2[n]. Strictlyspeaking, a vertex of such K is not an element i 2 [n] but rather the 0-dimension-al simplex fig. Up until now, there was no need to distinguish this, since wealways tacitly assumed that all elements of the ground set are 0-dimensionalsimplices. But now it does make some di�erence, since although we allow thatfig 62 K for some i 2 [n], we still want to speak of simplicial complexes with theground set [n]. In order to make the formulas shorter, let us write F for [n]nF ,where F � [n].5.5.3 De�nition. Let K � 2[n] be a simplicial complex on the ground set [n].The Alexander dual of K is the simplicial complex B(K) � 2[n] that consistsof the complements of the non-simplices of K:B(K) := fG � [n] : G =2 Kg = fH : H 2 2[n]nKg:The Bier sphere associated with K is de�ned as the deleted joinBiern(K) := K �� B(K) = fF�G : F 2 K; G =2 K; F \ G = ?g= fF�H : F 2 K; H =2 K; F � Hg:In this construction, neither K nor B(K) has to have all elements i 2 [n] asvertices|we just assume that their vertex sets are contained in [n]. However,if i is not a vertex of K (that is, fig =2 K), then [n]nfjg is never a face of Kfor j 6= i, and hence j is a vertex of B(K). It follows easily that Biern(K) isa simplicial complex with at least n vertices. You may also note that here weform a deleted join of complexes that are di�erent and may, in general, evenhave distinct vertex sets, but they have the same ground set [n].5.5.4 Theorem (Bier sphere is a sphere). For every simplicial complexK � 2[n], the simplicial complex Biern(K) is an (n�2)-sphere with at most 2nvertices.Before proving this theorem, let us check that it yields what we want forthe proof of the Van Kampen{Flores theorem.5.5.5 Example (The Flores sphere). Take n = 2d+3 and K = � [n]�d+1�,the d-skeleton of the (2d+2)-dimensional simplex. In this case B(K) = K, andhence by Theorem 5.5.4, Biern(K) = K�2� is a (2d+1)-sphere.For example, for d = 0 and n = 3, we have K = [3] (three disjoint points),and the deleted join K�2� is a hexagon:



87 5. Nonexistence ofZ2-Maps=1 2 310 20 30 30 2 1032015.5.6 Lemma. The facets (maximal simplices) of the Bier sphere Biern(K) areF�H where F � H; F 2 K; H =2 K; and jHnF j = 1:In particular, Biern(K) is a pure complex of dimension n�2 (i. e. each simplexis contained in a maximal (n�2)-dimensional simplex).Proof. For any face F0�H0 2 Biern(K) we can �nd F 2 K and H =2 K withF0 � F � H � H0 and jHnF j = 1:We get F0�H0 � F�H 2 Biern(K). The size of the face F�H, namely jF [Hj =jF j + n � jH j = n�1, is clearly maximal, since F � H and hence jHnF j �1.5.5.7 Examples. The simplest complex to study is probably the empty one:K = f?g. For this we get Biern(K) = B(K) = 2[n]n[n], the boundary complexof an (n�1)-dimensional simplex, with n vertices. Thus kBiern(f?g)k �= Sn�2.If we take K = 2[n�1] = �n�2, then B(K) = K, and thus Biern(K) = (�n�2)�2�is the deleted join of an (n�2)-simplex. This is the simplicial sphere given bythe boundary of an (n�1)-dimensional crosspolytope, with 2(n�1) vertices, byCorollary 5.4.3.Proof of Theorem 5.5.4. Let F =2 K be any inclusion-minimal non-faceof K. Then K [ fFg is a simplicial complex as well, and for the maximal (i. e.(n�2)-dimensional) simplices of the Bier spheres we �ndBiern(K[ fFg)n�2 = Biern(K)n�2 n f(Fnfig) � F : i 2 Fg[ fF � F [ fjg : j =2 Fg:The vertex sets of the simplices a�ected by this operation (added or removed)are all contained in VF = ffig�? : i 2 Fg [ f?�fjg : j 2 F g. The subcomplexL1 of Biern(K) induced by the vertex set VF isL1 = (2F nfFg) � 2Fwhile the corresponding subcomplex in Biern(K [ fFg) isL2 = 2F � (2F nfFg):Their common part isL0 = L1 \ L2 = (2F nfFg) � (2F nfFg):This is the join of the boundary of a (k�1)-simplex, k = jF j, with the boundaryof an (n�k�1)-simplex, so kL0k �= Sn�3. Both L1 and L2 are triangulations ofan (n�2)-ball bounded by this Sn�3. For example, for n = 4 and F = f1; 2g,the geometric picture in R3 is



5.5 The Van Kampen{Flores theorem 88L1f1g�?f2g�? ?�f3g?�f4gL0 L2and another possibility, with F = f1g, is L1f1g�??�f2g ?�f3g?�f4gL0 L2Further we note that a simplex having a vertex outside of VF never contains asimplex in L1 n L0 (or in L2 n L0). So both kL1k and kL2k are (n�2)-balls gluedto the rest of the Bier sphere by the (n�3)-sphere kL0k, and kBiern(K)k andkBiern(K[ fFg)k are homeomorphic.The re-triangulation of the ball bounded by the sphere kL0k is called a bi-stellar operation. It can be geometrically interpreted in Rn�2: consider a (k�1)-simplex A1, k = jF j, and an (n�k�1)-simplex A2, placed in Rn�2 so that theyintersect at a single point belonging to their relative interiors (this is a \Radoncon�guration" as in Theorem 5.3.1). The bistellar operation corresponds toswitching between two triangulations of conv(A1 [ A2). This convex polytopeis a projection of an (n�1)-simplex in Rn�1 into Rn�2, and the triangulationscorrespond to the \top" and \bottom" views of that simplex. For n = 4, thepossible operations are: switching the diagonal in a quadrilateral (k = 2), astellar subdivision of a triangle (adding a new vertex: k = 1), and its inverseoperation, namely removing such a stellar subdivision (and thus deleting onevertex: k = 3).
Note how this corresponds to the two 3-dimensional pictures above.Since every simplicial complex K � 2[n] can be generated from f?g by addingminimal non-faces, we see that Biern(K) is homeomorphic to Biern(f?g). Thisis an (n�2)-sphere by Example 5.5.7.Many PL-spheres. This proof establishes more. Bistellar operations pre-serve the property of spheres to be piecewise-linear (PL); that is, to have a



89 5. Nonexistence ofZ2-Mapssubdivision that is also a subdivision of a simplex boundary. In fact, by resultsof Pachner [Pac86], a sphere is PL if and only if it can be generated from theboundary of a simplex (such as Biern(f?g)) using only bistellar operations.We have produced many (n�2)-spheres with 2n vertices. Let n � 4 andconsider all simplicial complexes K � 2[n] that contain all faces of dimensionbn=2c�2 and some of the (bn=2c�1)-dimensional faces:� [n]�bn=2c�1� � K � � [n]�bn=2c�:The number of such K is 2( nbn=2c) > 22n=n:The Bier spheres Biern(K) have exactly 2n vertices. For every Bier sphereBiern(K), there are not more than (2n)!=n! < (2n)n < 2n2 di�erent complexesK that yield an isomorphic Bier sphere, and hence there are more than24n=n�n2non-isomorphic simplicial (n�2)-spheres with 2n vertices, a doubly exponentialnumber! This shows that most of the simplicial (n�2)-spheres on 2n verticescannot be realized as boundary complexes of (n�1)-dimensional convex poly-topes; they cannot be made \straight." This is because the number of di�erentcombinatorial types of (n�1)-dimensional polytopes with 2n vertices is no largerthan 24n3 :Such bound can be derived from the results of Oleinik and Petrovski��, Milnor,and Thom on the topological complexity of algebraic varieties; see Goodman &Pollack [GP86, last line of p. 222].Notes. The Van Kampen{Flores theorem was proved by Van Kam-pen [vK32] and Flores [Flo34] independently, at the same time. Anexposition of Flores' proof can be found in Gr�unbaum's book on convexpolytopes [Gr�u67, Sect. 11.2], while our development in the next sectioncan be traced back to the Van Kampen's proof.Realizability of simplicial complexes in Rd is a very interesting andlargely unexplored area. For d = 2, we have the well-developed theory ofplanar graphs and of various measures of non-planarity of a graph (thecrossing number etc.), but even higher-dimensional analogues of verybasic theorems about planar graphs remain unclear. The behavior inhigher dimensions can also be very di�erent from the planar case.For example, as is well-known, any planar graph has a planar draw-ing where all edges are straight segments. While every d-dimensionalsimplicial complex embeds into R2d+1, and even linearly, Brehm andSarkaria [BS92] proved that for each d � 2 and r � 1, there are d-di-mensional simplicial complexes K realizable in R2d but such that therth barycentric subdivision sd(sd(: : :sd(K) : : :)) cannot be realized lin-early in R2d (i. e. so that the embedding is a�ne on each simplex). Soa piecewise linear realization in R2d must have very many pieces. For



5.6 Sarkaria's inequality 90d = 2k, there are even d-dimensional triangulations of manifolds withboundary that embed in R2d�1 but not linearly (while all triangulationsof d-manifolds do embed linearly in R2d).Necessary and su�cient topological conditions for realizability of ad-dimensional simplicial complex in R2d, d � 3, were stated by VanKampen in 1932 and by Flores in 1933, and proved in detail indepen-dently by Shapiro [Sha57] and by Wu [Wu65]. (The case d = 2 is reallyexceptional.) Interesting necessary conditions for linear realizability ofsimplicial complexes were found by Novik [Nov00].A planar graph on n vertices has at most 3n�6 edges. Is it truethat any simplicial complex on n vertices realizable in Rd has at mostCdndd=2e simplices, for some Cd depending on d but not on n? If true,this would be best possible, as is witnessed by the boundary complex ofa cyclic (d+1)-polytope with one d-simplex removed, but the problemremains open. For d = 3, there is an elementary proof (Dey and Edels-brunner [DE94]): assume that the embedding is piecewise linear, say,and consider a tiny sphere around each vertex v; then the intersectionsof the edges and triangles adjacent to v give a planar graph drawn onthe sphere, with O(n) edges. A study of some embedding questions forhigher-dimensional complexes by elementary methods is Dey and Pach[DP98].The �rst construction of \many" simplicial spheres was given byKalai [Kal88]: for that, Kalai used the cyclic polytopes in the placewhere here we (combinatorially) deal with the crosspolytopes.5.6 Sarkaria's inequalityIn this section we give another proof of the Van Kampen{Flores theorem 5.5.2,in which we demonstrate a powerful trick for bounding the Z2-index.Recall that we need to prove indZ2(K�2� ) > 2d, where K is the d-skeletonof the (2d+2)-simplex. Our simplicial complex L0 :=K�2� is a subcomplex ofL := (�2d+2)�2� . We already know that indZ2(L) = 2d+2 (Corollary 5.4.3). Theidea is to look at the complement of L0 within L, see that it is \small," andconclude that L0 must be \large." One immediate problem is that the comple-ment LnL0 is not a simplicial complex. Yet it can be used to de�ne a simplicialcomplex, namely the order complex of the partially ordered set (L n L0;�).In the following lemma, we consider a slightly more symmetric situation,where the simplices of L are covered by two arbitrary subsets. For an arbitraryfamily F of �nite sets, let �0(F) with � denote the order complex of the poset(F n f?g;�). If it is clear that ? 62 F , we write just �(F).5.6.1 Lemma. Let L be a simplicial complex and let L = L0 _[L1 be a partitionof the simplices of L into two subsets. Then there is a (canonical) simplicialembedding �: sd(L) �! �0(L0) ��0(L1):If L is a simplicial Z2-complex and L0 and L1 are both invariant under theZ2-action, then �0(L0) and �0(L1) are simplicial Z2-complexes and � provides



91 5. Nonexistence ofZ2-Mapsa Z2-map �: kLk �! k�0(L0)k � k�0(L1)k:Let us have a geometric example �rst. Let L be the 2-simplex and letL = L0 _[L1 be the partition of its simplices indicated in the picture:= [L L0 L1Geometrically, �0(L0) is the subcomplex of the �rst barycentric subdivisionsd(L) induced by the barycenters of the simplices in L0. For our examples, wehave ,! �sd(L) �0(L0) �(L1)Note that the vertex sets of �0(L0) and of �0(L1) form a partition of the vertexset of sd(L); this is just rephrasing of the assumption L = L0 _[L1.Proof of Lemma 5.6.1. The vertex set V (�0(L0) ��0(L1)) is the union ofV (�0(L0)) and V (�0(L1)) and it equals V (sd(L)). So, on the level of vertices,we can just set �(F ) :=F , F 2 L. This map is simplicial: if C = fF1; F2; : : : ; Fngis a chain of simplices of L, F1 � F2 � � � � � Fn, it splits into the chainsC0 := C \ L0 and C1 := C \ L1. The concatenation C0 � C1 of these chains is asimplex of the join �0(L0) ��0(L1).It remains to check the equivariance of � if L is a simplicial Z2-complex andL0, L1 are invariant subsets of simplices. This is straightforward and is left tothe reader.If we let L0 = L0 be a subcomplex of L, then �0(L0) = sd(L0) is homeomor-phic to L0. Together with Proposition 5.2.2(iii), about the Z2-index of a join,Lemma 5.6.1 yields5.6.2 Theorem (Sarkaria's inequality). Let L be a �nite simplicial Z2-complex and let L0 be an invariant subcomplex of L. Then we haveindZ2(L0) � indZ2(L)� indZ2(�(L n L0))� 1:In combination with Proposition 5.5.1 about non-embeddability and Z2-index of a deleted join, we obtain



5.7 Index, colorings, and another proof of Kneser's conjecture 925.6.3 Corollary. Let K be a subcomplex of a simplicial complex J. IfindZ2(�(L)) � indZ2(J�2� )� d� 2;where L := J�2� n K�2� , then for any continuous map f : kKk ! Rd, the images ofsome two disjoint faces of K intersect. In particular, for J = �n, we requireindZ2(�(L)) � n� d� 2:Second proof of the Van Kampen{Flores theorem. We use Corol-lary 5.6.3 for embedding into R2d with J := �2d+2 and K being the d-skeletonof J.Here the vertices of �(L), which are the simplices of L, have the form F1�F2,where F1; F2 � [2d+3] are disjoint sets and at least one of them has more thand+1 vertices. The key observation is that they cannot both have more than d+1vertices since there is not enough room; the ground set has only 2d+3 points.So the vertices of �(L) naturally fall into two classes: those with jF1j � d+2and those with jF2j � d+2. The Z2-action on �(L) swaps these two classes.Let the two vertices of the 0-sphere be 1 and 2. We de�ne a mappingf :V (�(L))! S0 by f(F1�F2) := � 1 if jF1j � d+22 if jF2j � d+2:We claim that f is a simplicial Z2-map of �(L) to S0. (This implies that �(L)is disconnected.) It clearly commutes with theZ2-actions (on S0, the Z2-actionexchanges 1 and 2). It is simplicial as well, since if jF1j � d+2 and F 01 � F1,then jF 01j � d+2 .Therefore, indZ2(�(L)) = 0 andindZ2(K�2� ) � indZ2((�2d+2)�2� )� indZ2(�(L))� 1 � 2d+2� 0� 1 > 2d:The Van Kampen{Flores theorem is proved.Notes. The ideas in the proof shown in this section are from Sarkaria'spapers [Sar91a], [Sar90]. Our presentation owes much to �Zivaljevi�c'ssurvey [�Ziv96], where he isolated \Sarkaria's inequality" and expressedit elegantly using the index.Exercises1. Find an example of a simplicial Z2-complex L and a Z2-subcomplex L0where Sarkaria's inequality 5.6.2 is strict.5.7 Index, colorings, and another proof of Kneser's conjec-tureCorollary 5.6.3 provides a method for showing that a given simplicial complexK cannot be embedded into Rd. To use it, we need to bound above indZ2(�(L))



93 5. Nonexistence ofZ2-Mapswith L := J�2� n K�2� , where J is a suitable simplicial complex containing K forwhich we know indZ2(J�2� ). Here, surprisingly, we relate indZ2(�(L)) to thechromatic number of a certain Kneser graph.For a set system S, let MIN(S) denote the system of all sets in S that areminimal with respect to inclusion (no proper subset is in S). We further recallthat KG(S) denotes the Kneser graph of S, with vertex set S and with edgesconnecting disjoint sets.5.7.1 Lemma. Let K be a subcomplex of a simplicial complex J and let S :=MIN(JnK). Then indZ2(�(J�2� n K�2� )) � �(KG(S))� 1:Proof. Let m :=�(KG(S)), and let c:S ! [m] be a proper coloring of KG(S)with m colors, i.e. c(F1) 6= c(F2) whenever F1 \ F2 = ?.Let us write L := J�2� n K�2� . We would like to construct a Z2-map of �(L)into Sm�1.The �rst trick is to represent the sphere Sm�1 as the �rst barycentric sub-division of the deleted join (�m�1)�2� (which is correct by Corollary 5.4.3). Therequired Z2-map is constructed as a simplicial mapg: �(L) �! sd((�m�1)�2� ):A vertex of the complex on the left-hand side has the form F1�F2, whereF1 and F2 are disjoint faces of J, at least one of them not belonging to K.A vertex of the complex on the right-hand side is of the form G1�G2, whereG1 and G2 are disjoint subsets of [m], not both of them empty. We de�neg(F1�F2) := h(F1)�h(F2) for a suitable map h assigning subsets of [m] to sim-plices of J; this automatically guarantees that g is a Z2-map.We de�ne h(F ) := fc(G) : G 2 S; G � Fg:We need to verify that if F1�F2 2 L, then h(F1) and h(F2) are disjoint subsetsof [m], not both empty. If F1 \ F2 = ?, then h(F1) \ h(F2) = ? as well,for otherwise we would have sets G1 � F1 and G2 � F2, G1; G2 2 S, withc(G1) = c(G2) and c would not be a proper coloring of the Kneser graph. Thenonemptiness of h(F1) [ h(F2) also follows because we have h(F ) 6= ? exactlyif F 2 J n K. The map h is monotone with respect to inclusion and so g is asimplicial Z2-map as claimed.Putting this together with Corollary 5.6.3, we obtain the following amazingconnection between Kneser colorings and embeddability into Rd.5.7.2 Theorem (Sarkaria's coloring/embedding theorem). Let K be asubcomplex of a simplicial complex J and let S :=MIN(J n K). ThenindZ2(K�2� ) � indZ2(J�2� )� �(KG(S));and consequently, if d � indZ2(J�2� )� �(KG(S))� 1;



5.7 Index, colorings, and another proof of Kneser's conjecture 94then for any continuous mapping f : kKk ! Rd, the images of some two disjointfaces of K intersect. For J = �n, the condition becomesd � n � �(KG(S))� 1:Let us �rst see a few examples of using this remarkable result in proofs ofnonrealizability of simplicial complexes.5.7.3 Example. The Van Kampen{Flores theorem is the special case withJ = �2d+2 and K = (�2d+2)�d. Here S are all simplices of dimension d+1, andthe Kneser graph KG(S) has no edges at all, since no two sets in S are disjoint.So �(KG(S)) = 1 and Theorem 5.7.2 gives nonrealizability of K in R2d as itshould.5.7.4 Example. Let us prove, by this heavy machinery, that the completebipartite graph K3;3 is not planar.We let the vertex set be f1; 2; 3; 10; 20; 30g, J is the 5-simplex on this set, and themaximal simplices of K are fi; j 0g, i; j = 1; 2; 3. Then S consists of the pairsthat are not edges of K, i. e. the pairs fi; jg or fi0; j 0g. We can color the pairson f1; 2; 3g red and the pairs on f10; 20; 30g blue, and so �(KG(S)) = 2. ThusK3;3 cannot be realized in Rd for d � 5� 2� 1 = 2.The index of K�2� can easily be computed directly here: observing thatK = [3]�[3], we have K�2� = ([3]�2� )�2. Since [3]�2� is a cycle (of length 6), kK�2� k �=S1�S1 �= S3.5.7.5 Example (Non-realizability of RP2 in 3-space; Brehm& Sarkaria[BS92]). Let K � 2[6] be the pure, 2-dimensional complex whose maximalfaces are given by the list124 125 134 136 156 235 236 246 345 456This is a remarkable complex. We note four things:(i) K corresponds to the triangulation of a hexagon drawn below, where op-posite vertices and edges on the boundary are identi�ed.2 1 33 2145 6



95 5. Nonexistence ofZ2-MapsThus, K triangulates the real projective plane RP2. (Another interpreta-tion is that K is the complex obtained by identifying all opposite faces onthe boundary of a regular icosahedron. The icosahedron has 12 vertices,20 edges and 10 triangles, and so the complex K we are looking at hasexactly half of these face numbers.)(ii) K has a complete 1-skeleton: we have � [6]�2� � K.(iii) For triples F 2 �[6]3 � we �nd that F 2 K if and only if [6]nF =2 K. Fromthis we derive that B(K) = K, and thus Bier6(K) = K�2� . Therefore,ind(K�2� ) = 4, and Proposition 5.5.1 gives non-realizability in R3.(iv) The system S of minimal non-faces is �[6]3 �nK, and the Kneser graph isagain trivial, since S has no disjoint simplices. Thus, from Theorem 5.7.2we obtain another proof of non-realizability of kKk in R3.Since embeddability is independent of the triangulation, we have proved thatthe real projective plane RP2 has no embedding into R3.Third proof of Kneser's conjecture. Sarkaria's theorem can be usednot only for proving the impossibility of an embedding from the existence of aKneser coloring, but also the other way round.Let S := �[n]k � be given, and choose the simplicial complex K accordinglyto consist of all proper subsets of the sets in S. That is, K is the (k�2)-skeleton of �n�1, and in particular, dim(K) = k�2. By the geometric realizationtheorem 1.6.1, kKk can be realized in R2(k�2)+1 = R2k�3. Theorem 5.7.2 gives�(KG(S)) � n�2k+2, as it should be.Alternatively, we can avoid speaking about an embedding and use the �rstinequality in Theorem 5.7.2 directly. It gives �(KG(S)) � indZ2((�n�1)�2� ) �indZ2(K�2� ) = n�1�indZ2(K�2� ) � n�1� dim(K�2� ) = n�2k+2.Notes. The main results of this section are due to Sarkaria [Sar91a]and [Sar90] (who formulated them for concrete examples rather than asgeneral statements).Similar to Example 5.7.5, one can prove that the complex projectiveplane CP2 cannot be realized in R6. There is a 9-vertex triangulationK � 2[9] of CP2 . It is a pure, 4-dimensional simplicial complex with 9vertices such that B(K) = K; consequently, the deleted join is a Biersphere. Again we get that there are no disjoint non-faces, which impliesthat there is no embedding of this complex, and thus of CP2 , into Rd ford � 8� 1� 1 = 6. (See K�uhnel & Bancho� [KB83] and K�uhnel [K�uh95,Thm. 4.13] for more information.)Exercises1. Prove the following \generalized Van Kampen{Flores theorem" (Sarkaria[Sar91b]): the simplicial complexT (k1; : : : ; km) := (��2k1)�k1�1 � (��2k2)�k2�1 � � � � � (��2km)�km�1



5.7 Index, colorings, and another proof of Kneser's conjecture 96does not embed into R2k, for any partition k1+k2+ � � �+km = k+1.Similarly (indeed: equivalently!), the complexes �r �T (k1; : : : ; km) do notembed into Rd for d = 2(k1+k2+ � � �+km�1) + (r+1).(Sarkaria calls these complexes the Kuratowski complexes; they includeboth the Kuratowski minimal nonplanar graphs K3;3 and K5.)2. Consider a graph G as a 1-dimensional simplicial complex. Prove that Gis planar if and only if indZ2(G�2� ) � 2; that is, Proposition 5.5.1 worksperfectly for 1-dimensional simplicial complexes.3. (Dol'nikov's theorem revisited) Let P0(n) := f(A;B) : A;B � [n]; A \B = ?g, and de�ne a partial ordering � on P0 by inclusion in bothcomponents: (A;B) � (A0; B0) if and only if A � A0 and B � B0. LetP(n; `) := f(A;B) 2 P0(n) : jA[Bj � n�`g, and let K(n; `) be the ordercomplex of (P(n; `);�). A simplicial Z2-action on K(n; `) is given by theexchange of the components.(a) Check that K(n; n�1) is isomprphic to sd((�n�1)�2� ).(b) Show that indZ2(K(n; `)) � `.(c) Express K(n; n�1) as the join of K(n; `) with another suitable simpli-cial complex, and use Proposition 5.2.2(iii) to verify that indZ2(K(n; `)) �`, 1 � ` � n.(d) Let S be a set system on [n] and suppose that c:S ! [m] is a propercoloring of the Kneser graph KG(S). For A � [n], de�ne h(A) := fc(S) :S 2 S; S � Ag. Assuming that cd2(S) > m, show that the map-ping g: (A;B) 7! (h(A); h(B)) is a simplicial Z2-map of K(n;m) intoK(m;m�1). Derive Dol'nikov's theorem 3.4.1.This proof follows [Mat01b] and the basic idea is due to K�r���z [Kri92],[Kri00].



6Multiple points of coincidenceUp until now, we have been considering spaces with Z2-actions and theoremssaying that under suitable conditions, there exist points x and y with disjointsupports that are mapped to the same point. Here we generalize these consider-ations on spaces with actions of other groups, most notably the groups Zp. Wewill obtain theorems in which images of some p points with disjoint supportsare guaranteed to coincide.6.1 G-spacesSome spaces posses symmetries other than antipodality: they have groups otherthan Z2 acting on them.For a �nite group G, a G-action on a topological space X is a collection� = ('g)g2G of homeomorphisms 'g:X ! X . The homeomorphism 'e corre-sponding to the unit element e of G is the identity idX , and the compositionof these homeomorphisms respects the group operation: 'g � 'h = 'gh for allg; h 2 G. (Thus, g 7! 'g is a homomorphism of G into the group of homeomor-phisms of X ; if X is a topological vector space and all the 'g are linear maps,we have a representation of G in the usual sense.) In the literature, one oftenwrites just gx for 'g(x).How does our earlier de�nition of aZ2-action �t into this general de�nition?For G = Z2, the cyclic group f0; 1g with addition modulo 2, the homeomor-phism assigned to 0 must be the identity, and the homeomorphism assigned to1 is what was earlier called the Z2-action �.Similarly, let us consider a cyclic groupZn, which we think of as f0; 1; : : : ; n�1g with addition modulo n. AZn-action � is fully speci�ed by the single home-omorphism '1, as 'i = ('1)i. In this sense, we will mostly write \a Zn-space(X; �)," with the action denoted by a lowercase Greek letter, meaning that �is the homeomorphism corresponding to 1.We will work exclusively with actions of �nite groups, but we can as wellstate the general de�nition. For in�nite topological groups,1 we moreover re-quire that 'g(x) depend continuously on both g and x.1A topological group is a group and, at the same time, a Hausdor� topological space, suchthat the group operation and the inverse are continuous maps G � G ! G and G ! G,respectively.



6.1 G-spaces 986.1.1 De�nition (G-spaces and G-maps). Let G be a topologicalgroup and X a topological space. A G-action on X is a collection � = ('g)g2Gof homeomorphisms X ! X , such that (g; x) 7! 'g(x) is a continuous mapG�X ! X , 'e = idX , and 'g � 'h = 'gh for all g; h 2 G. The pair (X;�) isa G-space.If (X;�) and (Y;	) are G-spaces, a continuous map f :X ! Y is a G-map(or equivariant map) if f � 'g =  g � f for all g 2 G.For x 2 X , the set f'g(x) : g 2 Gg is called the orbit of x under theG-action �, and similarly for a subset A � X . A set A � X is invariant if'g(A) = A for all g 2 G.Free actions. ForZ2-spaces, we have seen the important distinction betweenfree and non-free spaces. We recall that a free Z2-spaces is one where thesingle homeomorphism corresponding to 1 has no �xed points. Two ways ofgeneralizing this to actions of larger groups suggest itself: we can require thatnone of 'g with g 6= e have a �xed point, or only require that no point be �xedby all 'g. Both ways lead to interesting notions. We will mostly encounter theformer:6.1.2 De�nition. A G-space (X;�) is called free if no 'g, g 6= e, has a �xedpoint. Equivalently, for each x 2 X , the mapping g 7! 'g(x) is injective; thatis, the orbit of each point is a copy of G.The second notion is a �xed-point free G-action, where the orbit of eachx 2 X has at least two points. Our moderate topological means won't allowus to make use of �xed-point free actions that are not free. But in some moreadvanced applications, they have been employed successfully.6.1.3 Observation. Let p be a prime number. Then a Zp-space (X; �) is freeif and only if � has no �xed point.Indeed, for every k with 1 � k < p, there is some ` with k` � 1 (mod p),and hence �k(x) = x would imply that �(x) = �k`(x) = x.Examples of group actions. Some of the examples below, especially thosewith in�nite groups, serve just as illustrations, but others (marked by boldfacelabels) will be important later for combinatorial and geometric applications.6.1.4 Examples (Group actions).(a) Let S1 be the unit circle in the plane and � the rotation by 2�q . Then(S1; �) is a (free) Zq-space, for any integer q > 1.(b) The group SO(2) of all rotations of the plane around the origin also actson S1, and we have an example of a (free) SO(2)-space.(c) More generally, the group O(n) of all isometries of Rn �xing the origin(corresponding to all orthogonal n�n matrices with determinant �1) actson Sn�1 in the obvious way. The action is �xed-point free but not freefor n > 2. Of course, O(n) acts on Rn as well, and here the origin is a�xed point.



99 6. Multiple points of coincidence(d) Since O(n) acts on Sn�1, its subgroups G � O(n) do as well. Such actionsare usually called orthogonal representations of G, and they have beenmuch studied in the literature. For a slightly exotic example, consider theregular icosahedron
centered at the origin. It is known that the group of symmetries of theicosahedron is A5 (the noncommutative alternating group, consisting ofall even permutations of �ve elements, with composition of permutationsas the group operation). Thus, A5 acts on the icosahedron, and also onits boundary. The latter action is �xed-point free but not free.(e) In the complex plane, the unit circle S1 consists of the unit complexnumbers: fz 2 C : jzj = 1g. In this way, S1 is given a group structure,with complex multiplication as the group operation. Then S1 is a (free)S1-space, where the homeomorphism 'z is given by multiplication by z.Geometrically, multiplication by z = ei� acts as the rotation of S1 by theangle � (radians). Thus, this is just a di�erent view of the example (b)with the group of all rotations of the plane around the origin acting onS1.(f) Any topological group G acts freely on itself by the left multiplication;i.e. 'g(h) = gh. The previous example was a special case of this.(g) New G-spaces can be produced from old ones by joins. If (X;�) and(Y;	) are G-spaces, then a G-action � = � � 	 on X � Y is de�ned by�g = 'g� g. If both � and 	 are free, then the join ��	 is free, too. Youmay want to check that joins of G-maps produce G-maps (Exercise 1).A similar construction can be made for Cartesian products of G-spaces.(h) The previous abstract example is more clever than it might seem. Aswe know, the sphere S3 can be represented as the join S1 � S1. Takingthe rotation by 2�q as in (a) on both copies of S1 and using the joinconstruction in (g), we get a free Zq-action on S3. Such an example isby no means obvious. If we consider S1 as the simplicial complex formedby the perimeter of a regular q-gon, we obtain a triangulated S3, andthe Zq-action is a simplicial map. Here is an attempt at visualization ofthe join in R3. Two hexagons are placed in perpendicular planes, andonly the simplex f3; 4g�f10; 20g is shown. Its image under the Z6-actionis f4; 5g�f20; 30g (indicated by dashed lines).



6.1 G-spaces 1000010203040 50 0 1 2345Of course, if we added more simplices to the picture, they would start tointersect; S3 cannot be embedded in R3.(i) In the same way, we get a free Zq-action on each odd-dimensional sphereS2n�1, using S2n�1 �= (S1)�n. Here is another way of representing thesame Zq-action: regard S2n�1 as the unit sphere in Cn , i.e. the setf(z1; : : : ; zn) 2 C 2 : jz1j2 + � � � + jznj2 = 1g, and de�ne the action by(z1; : : : ; zn) 7! (!z1; : : : ; !zn), where ! = e2�i=q is a qth root of unity.(j) It is useful to remember, some negative results, too: the only nontrivialgroup with a free action on an even-dimensional sphere S2n is Z2.2 Fur-ther, it is known that any group G acting freely on some Sn has at mostone element of order 2 and every Abelian subgroup of such G is cyclic(equivalently, there is no subgroup Zp�Zp with prime p); see e.g. [Hat01,Sec. 1.3] for a part of the proof and references.(k) For any space X , the symmetric group Sn (all permutations of [n]) actson the nth Cartesian power Xn by permuting the coordinates. Explicitly,for � 2 Sn, the action is '�(x1; x2; : : : ; xn) = (x�(1); x�(2); : : : ; x�(n)). Thesubgroups of Sn, such as Zn, thus act on Xn as well. The same appliesto the n-fold joint X�n. These actions are not free but they become freeby deleting all �xed points; we will discuss this further when consideringdeleted joins (and products).Notes. Actions of groups other than Z2 on spheres, and the corre-sponding Borsuk{Ulam type results, appeared soon after Borsuk's paper;Steinlein [Ste85] gives Eilenberg [Eil40] and Hirsch [Hir37], [Hir43] as theearliest such references. They use degree-theoretic considerations or theLefschetz number. Smith [Smi42], [Smi41], [Smi38] also considered ac-tions of �nite groups, but his results mainly concern the structure ofthe set of �xed points. Many subsequent generalizations asserting thenonexistence of an equivariant map X ! Y relax the conditions onX and Y . For example, since the degree of a map can be de�ned in(co)homological terms, it su�ces that X has theZ2 (co)homology of Snand Y that of Sn�1. We refer to Steinlein [Ste85] for a detailed bibliog-raphy.2This is because the order of a group G having a free action on X must divide the Eulercharacteristic of X, and the Euler characteristic of S2n is 2.



101 6. Multiple points of coincidenceA basic book on group actions on topological spaces is Bredon [Bre72].*** mention tom Dieck book???Exercises1. If (X1;�1), (X2;�2), (Y1;	1), and (Y2;	2) areG-spaces and f1: (X1;�1)!(Y1;	1) and f2: (X2;	2)! (Y2;	2) are G-maps, check that f1 � f2: (X1 �X2;�1 � �2)! (Y1 � Y2;	1 �	2) is a G-map.6.2 EnG spaces and the G-indexMuch of the theory we have developed for Z2-spaces, concerning the Z2-indexand the nonexistence of equivariant maps, can be imitated for G-spaces. Alarge part of this goes through almost without change; we will mainly point outthe modi�cations needed for G-spaces.As expected, we write X G�! Y or X �G Y if there is a G-map X ! Y . Forintroducing a G-index, though, we need suitable \yardstick" spaces analogousto the spheres; these are called EnG spaces.6.2.1 De�nition. Let G be a �nite group and n � 0. An EnG space is aG-space that is� a �nite simplicial G-complex (or a �nite cell G-complex),� n-dimensional,� (n�1)-connected,� and free.(Here, similar to the Z2 case, a simplicial G-complex is a simplicial complexmade into a G-space so that all the homeomorphisms 'g are simplicial maps,and similarly for cell G-complexes.)A concrete example of an EnG space that we will use most often is the(n+1)-fold join G�(n+1). As a topological space, this is the join [m]�(n+1),where m := jGj and [m] denotes the m-point discrete space. For example, forn = 1, G�2 is the complete bipartite graph Km;m. Clearly, G�n+1 is an n-dimensional simplicial complex. As in Example 6.1.4(f), G acts on itself freelyby the left multiplication, and so G�n+1 is a free simplicial G-complex. Finally,the (n�1)-connectedness follows immediately from Proposition 4.3.5 about theconnectivity of joins. With some more work, one can also show by inductionthatG�n+1 is homotopy equivalent to a wedge of a suitable number of n-spheres,from which the (n�1)-connectedness follows as well.We describe other, perhaps simpler, EnG spaces for the most often consid-ered case G =Zp. As we know from Example 6.1.4(i), odd-dimensional spherescan be equipped with free Zp-actions (Example 6.1.4(i)), and so S2n�1 withsuch a Zp-action can serve as another E2n�1Zp. For even dimensions, we cantake the join of a sphere of dimension one less with one copy of Zp (such spaces



6.2 EnG spaces and the G-index 102were used in the �rst proof of the topological Tverberg theorem by B�ar�any,Shlosman, and Sz�ucs [BSS81]). We can picture this space as p \tipis" of di�er-ent heights erected over the sphere S2n�1. As the following picture indicates,this space is homotopy equivalent to a wedge of (p�1) spheres S2n and thus(2n�1)-connected.The following lemma shows, among others, that all EnG spaces are equiva-lent for our purposes:6.2.2 Lemma. Let X be an (n�1)-connected G-space and let K be a free �nitesimplicial G-complex (or a free �nite cell G-complex) of dimension at most n.Then kKk G�!X .Sketch of proof. The proof is very similar to the proof of Proposition 5.2.2(v):the required G-map is built face-by-face, by induction on the dimension. Hav-ing constructed the mapping on the k-skeleton of K, we partition the (k+1)-simplices into orbits, we extend the mapping on one simplex in each orbit usingk-connectedness, and we transfer this extension to the remaining simplices viathe G-action. Here we need that the simplices in each orbit have disjoint rel-ative interiors, but if the relative interior of 'g(int �) intersected the relativeinterior of �, then we would have 'g(�) = � (as 'g is simplicial and bijective)and � would contain a point �xed by 'g.6.2.3 De�nition (G-index). For a G-space X , we de�neindG(X) := minfn : X G�!EnGg:(Here EnG can be any EnG space, since any of them G-maps into any other.)The properties of the Z2-index listed in Proposition 5.2.2 generalize with-out change. For convenience, we list them again here; we also add Sarkaria'sinequality.6.2.4 Proposition (Properties of the G-index). Let G be a nontrivial�nite group (jGj > 1).(i) indG(X) > indG(Y ) implies X G�!= Y .(ii) indG(EnG) = n (for any EnG space).(iii) indG(X � Y ) � indG(X) + indG(Y ) + 1.



103 6. Multiple points of coincidence(iv) If X is (n�1)-connected, then indG(X) � n.(v) If X is a free simplicial G-complex (or free cell G-complex) of dimensionn, then indG(X) � n.3(vi) (Sarkaria's inequality) If L is a �nite simplicial G-complex and L0 is aninvariant subcomplex of it, then indG(L0) � indG(L)� indG(�(LnL0))�1.Part (i) is obvious, (iii) follows from the fact that G�n+1 is an EnG space,(iv) and (v) are consequences of Lemma 6.2.2 (of course, (iv) also needs (ii)),and (vi) is proved exactly like Theorem 5.6.2. The hardest part is the innocent-looking (ii), which requires a new theorem of a Borsuk{Ulam type.6.2.5 Theorem (A \Borsuk{Ulam" theorem for G-spaces). There isno G-map of an EnG space into an En�1G space.We postpone the proof a little, and we comment on the role of the groupsZp. First, we observe that if H is a subgroup of G, then any G-space can alsobe regarded as an H-space (and a G-map as an H-map). By inspecting theabove proposition, we see that it never makes any reference to the properties ofG (except for the nontriviality), and so, if we use only these tools for boundingthe index, we lose nothing by restricting ourselves to a nontrivial subgroup. Infact, sometimes we might gain, since it can happen that a G-action is not freebut the action of some subgroup H is free. It is not hard to show that every(nontrivial) �nite group contains a subgroup isomorphic to Zp for a prime p.Therefore, when considering free actions, it is usually su�cient to consider onlyZp-actions. This happens, for instance, in the following proof.Sketch of proof of Theorem 6.2.5. (Specialized to G = Z2, this is alsoanother proof of the Borsuk{Ulam theorem.) Exceptionally, in this proof wehave to assume familiarity with the basics of simplicial homology.As was just noted above, it is su�cient to consider the case G = Zp withprime p.For concreteness, let us work with theEnZp space (Zp)�n+1. Let K := (Zp)�n+1and let L := (Zp)�n. This L can be identi�ed with a subcomplex of K (corre-sponding to the �rst n factors in the (n+1)-fold join); let i: L ! K be theinclusion map.For contradiction, we suppose that there is a Zp-map f :K ! L. First weneed to make f into a simplicial map; more precisely, we need that there is asu�ciently �ne subdivision ~K of K and a simplicial Zp-map ~f : ~K ! L. This isdone using a standard procedure (simplicial approximation theorem; see e.g.[Hat01, Theorem 2C.1]); one has to be a little careful so that the simplicialapproximation remains a Zp-map, but this is not a problem.The composed map g := i � ~f : ~K! K is a simplicial Zp-map. We analyze itsLefschetz number in two ways and reach a contradiction.First we consider the level of chain groups. The simplicial map g: ~K! K in-duces maps g#k :Ck(~K)! Ck(~K), where Ck(~K) = Ck(~K;Q) is the k-dimensional3As in Proposition 5.2.2, this holds for all paracompact Y of dimension at most n.



6.2 EnG spaces and the G-index 104chain group with rational coe�cients (g goes into K but every k-simplex in Kis written as the sum of the k-simplices in ~K subdividing it). The Lefschetznumber on the level of chain maps is�(g) =Xk�0(�1)k trace(g#k):Since we are working with rational coe�cients, the Ck(~K) are vector spaces andthe g#k are linear endomorphisms, and so trace is the trace of a linear map inthe usual sense.We consider the usual basis of Ck(~K) made of all chains e� , where � 2 ~Khas dimension k and e� is 1 on � and 0 elsewhere. Expressing trace(g#k) withrespect to this basis, we see that since g is a Zp-map, � gives the same contri-bution as the other p�1 simplices in its orbit (here we use that the simplicesin each orbit are all distinct). Therefore, trace(g#k) is divisible by p, and so is�(g).Now we consider �(g) on the level of homology groups. The map g inducesmaps g�k:Hk(K;Q) ! Hk(K;Q) in homology, and by the Hopf trace formula,the Lefschetz number equals�(g) =Xk�0(�1)k trace(g�k):Since K is (n�1)-connected, we have Hk(K;Q) = 0 for 1 � k � n�1, andso the only contribution to �(g) may come from dimensions 0 and n. Butg�n is trivial, since it is the composition i�n � ~f�n, and so it goes through thehomology group Hn(L;Q) which is 0 because L is (n�1)-dimensional. It followsthat �(g) = 1, which contradicts the previous calculation and shows that theZp-map f : kKk ! kLk is impossible. (From the �rst part of the proof, we canactually learn something about actual (existing)Zp-maps of a (triangulable)Zp-space into itself: any such map has Lefschetz number divisible by p.)The following consequence of Proposition 6.2.4, which does not mention theG-index, has been often quoted and used in the literature:6.2.6 Theorem (Dold's theorem [Dol83]). Let X be an n-connected G-space and let Y be a free G-space of dimension at most n (it may be a simplicialG-complex, a cell G-complex, or even an arbitrary paracompact space). ThenX G�!= Y .Notes. Krasnosel'ski��'s notion of genus (equivalent to our Z2-index)was extended to actions of more general groups by �Svarc [�Sva57], [�Sva62].There are more advanced results, whose proofs or even reasonablygeneral formulation are beyond our scope, which can establish X G�!= Ywith the G-action on Y being �xed-point free but not necessarily free.One useful result, which can be formulated easily, is the following theo-rem of Volovikov [Vol96]:



105 6. Multiple points of coincidenceLet G :=Zp�Zp � � � � �Zp be the product of �nitely many copiesof Zp, with p prime. Let X and Y be �xed-point free G-spaces suchthat ~H i(X;Zp) = 0 for all i � n (reduced cohomology groups withZp-coe�cients) and Y is �nite-dimensional and an n-dimensional co-homology sphere over Zp (the cohomology ring with Zp coe�cients isisomorphic to that of Sn). Then X G�!= Y .In particular, there is no G-map of an n-connected X into Sn, pro-vided that the actions are �xed-point free. Similar results have beenobtained, in varying degrees of generality, by �Ozaydin [�Oza] (in an un-published manuscript) and later independently by Sarkaria [Sar00]. Adetailed completion and exposition of Sarkaria's argument was given byde Longueville [dL99]. The proofs rely on advanced topological methods(cohomology and characteristic classes of vector bundles).Cohomological ideal-valued index. Production of results similar tothe just mentioned theorem can be \mechanized" using a cohomolog-ical ideal-valued index of Fadell & Husseini [FH88]. This index theoryappears very useful for combinatorial and geometric applications. It canbe seen as a generalization of the idea of the cohomological proof of theBorsuk{Ulam theorem mentioned in the notes to Section 2.1. The in-dex IndG(X) of a G-space (X;�) is not a single number, but rather anideal in a ring RG. This ring is the cohomology ring of a certain spaceconstructed from G and, for �nite G, it can usually be represented asa polynomial ring. A G-map (X;�) ! (Y;	) implies the containmentIndG(X) � IndG(Y ), and so the existence of a G-map can be excludedwhenever this inclusion doesn't hold. This index is �ner than the nu-merical G-index considered in this chapter, and it also gives results for�xed-point free actions. On the other hand, its computation requires theknowledge of certain cohomology rings and their maps, which may not beeasy to obtain. A short introduction to this theory with several impres-sive applications and a few ready-made recipes for computing IndG(X)in some common cases was provided by �Zivaljevi�c [�Ziv98].Finally, the equivariant obstruction theory is another powerful tool(again requiring more advanced knowledge of algebraic topology) for at-tacking the question whether X G�! Y or not. Sometimes it yields thenonexistence of a G-map and sometimes, unlike the index theories, itallows one to prove the existence of a G-map X ! Y (without explic-itly constructing it). For an application, the existence of a G-map isusually disappointing but at least it identi�es a dead end. Equivariantobstruction theory deals with the following question: Given an equivari-ant map f de�ned on the n-skeleton of a simplicial G-complex (or cellG-complex), is there an equivariant map de�ned on the (n+1)-skeletonthat agrees with f on the (n�1)-skeleton? (In other words, we wantto extend f from the (n�1)-skeleton to the (n+1)-skeleton, knowingthat extension to the n-skeleton is possible.) The answer is yes if andonly if certain cohomology class (the \obstruction") is zero. Since therecan be many choices for the extension in each step, the method does-



6.3 Deleted joins and deleted products 106n't seem to provide a generally e�cient algorithm for deciding whetherX G�! Y , even if we can evaluate the required cohomology classes. Inmany concrete cases it works nicely, though. For a �rst impression ofthe method, one can consult [�Ziv98], which also provides references fora deeper study.Exercises1. Prove by induction on n that [m]�n is homotopy equivalent to a wedge of(n�1)-dimensional spheres. How many spheres are there?6.3 Deleted joins and deleted productsIn the subsequent applications, which are mostly generalizations of problems wehave encountered earlier, we construct G-spaces X and Y and then use the G-index for showing X G�!= Y . Here X and Y are usually suitable p-fold deletedjoins or deleted products, and in this section we discuss these constructions.Unlike for twofold joins and products, for p-fold ones there are various possibil-ities as to which points should be deleted. For example, from the product X3,we can delete all points (x; x; x), where all the three components coincide, oralternatively the points where at least two coordinates coincide. What needs tobe deleted is usually dictated by the application. Here is the general de�nition,of which we will actually use only a few special cases.6.3.1 De�nition. Let n � k � 2 be given integers (we will mostly encounterthe cases k = n and k = 2). Call an n-tuple (x1; x2; : : : ; xn) k-wise distinct ifno k among the xi are equal.The n-fold k-wise deleted product of a space X isXn�(k) := Xn n f(x1; x2; : : : ; xn) 2 Xn : (x1; : : : ; xn) not k-wise distinctg:The n-fold k-wise deleted join of X isX�n�(k) := X�n n f 1nx1 + 1nx2 + � � �+ 1nxn : (x1; : : : ; xn) not k-wise distinctg:For a simplicial complex K, the n-fold k-wise deleted join of K isK�n�(k) := fF1�F2� � � � �Fn 2 K�n : (F1; F2; : : : ; Fn) k-wise disjointg;where an n-tuple (F1; F2; : : : ; Fn) of sets is k-wise disjoint if every k amongthe Fi have empty intersection.For k = n, we write only Xn� for Xn�(n), X�n� for X�n�(n), and K�n� for K�n�(n).So the 2-wise deleted joins and products are the \most deleted" (smallest)while the n-wise deleted ones are the \least deleted" (largest).On all these deleted joins and products, the symmetric group Sn acts bypermuting the coordinates. We will consider the action of the cyclic subgroup



107 6. Multiple points of coincidenceZn generated by the cyclic shift to the left, namely by the permutation �: 1 7! 2,2 7! 3, . . . , n�1 7! n, n 7! 1. Explicitly, on the deleted product, � acts by�: (x1; x2; : : : ; xn) 7�! (x2; x3; : : : ; xn; x1);and on the deleted join, it acts by�: t1x1 + t2x2 + � � �+ tnxn 7�! t2x2 + t3x3 + � � �+ tnxn + t1x1:Free actions. For 2-wise deleted joins and products, where no two coordinatesof points coincide, the whole Sn-action is free.On the other hand, for n-wise deleted n-fold products and joins, the Sn-action is not free and the Zn-action � is free if (and only if) n = p is a prime.Indeed, if p is a prime, then by Observation 6.1.3, it su�ces to verify that � hasno �xed point, and this is obvious since if (x2; x3; : : : ; xn; x1) = (x1; x2; : : : ; xn),then x1 = x2 = � � � = xn. Moreover, as is not di�cult to check, this is the onlycase (up to a renumbering of the coordinates) when a nontrivial subgroup of Snacts freely on an n-wise deleted n-fold product or join of a space or simplicialcomplex with at least two points (Exercise 1).We need deleted joins and products of spaces only for the case X = Rd andk = n. Now we calculate the Zp-indices in that case.6.3.2 Proposition (Deleted products and deleted joins of Rd). Let pbe a prime and let d � 1. ThenindZp((Rd)p�) � d(p�1)�1and indZp((Rd)�p� ) � (d+1)(p�1)�1:Proof. We construct a Zp-map g: (Rd)p� ! Sd(p�1)�1, where Sd(p�1)�1 isequipped with a suitable free Zp-action.Let us interpret Rd�p = �Rd�p as the space of matrices (xij)di=1 pj=1 withd rows and p columns. The Zp-action is the cyclic shift of the columns. Theelements of (Rd)p� are all matrices of this form except for those with all columnsbeing equal. For instance, for d = 1 and p = 3 we get the 3-dimensional Eu-clidean space with the diagonal line fx1 = x2 = x3g removed. First we considerthe orthogonal projection g1 of Rd�p on the d(p�1)-dimensional subspace Lperpendicular to the diagonal. In coordinates, L is the subspace consisting ofall d�p matrices with zero row sums, and g1 maps a matrix X = (xij) to thematrix g1(X) = �xij � 1p pXk=1 xik�ij ;that is, the average of all columns is subtracted from each column. We see thatg1(X) is the zero matrix O if and only if each column of X equals the averageof all columns; i.e. if all columns of X are equal. Therefore, g1 provides a



6.3 Deleted joins and deleted products 108(surjective) Zp-map (Rd)p� ! LnfOg. For instance, for d = 1 and p = 3, themap g1 is the orthogonal projection onto the plane x1 + x2 + x3 = 0.We set g(X) := g1(X)kg1(X)k . The range of g is the unit sphere S(L) in L, whichcan be identi�ed with Sd(p�1)�1. Here is a geometric illustration for p = 3 andd = 1:
LS(L) x2x3x1 O x1 = x2 = x3Clearly, g is aZp-map, and we have proved the �rst part of the proposition. Asfor the deleted join, we construct a Zp-map h: (Rd)�p� ! (Rd+1)p�, generalizingthe proof of Lemma 5.4.5 in a straightforward manner. As in that proof, weconsider the deleted join of a bounded set, say Bd, instead of Rd. Then weplace the copies of Bd into (R(d+1))p using the embeddings  1; : : : ;  p, where i(x) has (1; x1; x2; : : : ; xd) in the ith block of coordinates and 0s elsewhere.The mapping h: (Bn)�p� ! (Rd+1)p� is given byt1x1 + t2x2 + � � �+ tpxp 7�! t1 1(x1) + t2 2(x2) + � � �+ tp p(xp):It is clearly a Zp-map, it goes into the deleted product as it should, and con-tinuity follows by a slight generalization of the considerations in the proof ofProposition 4.2.4 about a geometric representation of joins.With a little more work, it can be shown that (Rd)p� ' Sd(p�1)�1, and soindZp((Rd)p�) actually equals d(p�1)�1 (Exercise 2). Similarly, indZp((Rd)�p� ) =(d+1)(p�1)�1.Warning. For general n and k, the topology of the deleted product (Rd)n�(k)can be quite complicated. Based on some special cases and on an analogy withthe deleted join of a simplex, (�d)�n�(k) (which is homotopy equivalent to a wedgeof ((d+1)(k�1)�1)-spheres; see Exercise 6.7.1), one might be tempted to believethat (Rd)n�(k) is homotopy equivalent to a wedge of (d(k�1)�1)-spheres (as isasserted [Sar91a]). The truth is much subtler, though: while it can be shownthat (Rd)n�(k) is (d(k�1)�2)-connected, it can also have nonzero homology invarious higher dimensions.We conclude this section with generalization of version (1.1) of the Borsuk{Ulam theorem; we recall that (1.1) asserts the existence of an x with f(x) =f(�x) for any continuous f :Sn ! Rn.



109 6. Multiple points of coincidence6.3.3 Theorem (On p-fold coincidence points). Let (X; �) be aZp-spacewith indZp(X) � d(p�1), where p is a prime. Then for any continuous mapf :X ! Rd there exists x 2 X such that f(x) = f(�(x)) = f(�2(x)) = � � � =f(�p�1(x)).Proof. Suppose that there is no such x 2 X . Then the mapx 7�! �f(x); f(�(x)); : : : ; f(�p�1(x))�is a Zp-map of X into the deleted product (Rd)p�, which yields indZp(X) �indZp((Rd)p�) � d(p�1)�1.Notes. The space Xn�(2) is sometimes called the nth (ordered)con�guration space of X , since it models con�gurations of n distinct(and distinguishable) particles in X , and it is a classical object of study.For X = C �= R2, C n�(2) is known as the pure braid space. Lot of workhas been devoted to the topological properties of the complement ofthe zero set of various systems of polynomials; see Vassiliev [Vas92] forinteresting and advanced results.*** mention Fadell-Husseni bookThe topology of the deleted products (Rd)n�(k) for d = 1 and d = 2has been investigated by Bj�orner and Welker [BW95] (for d = 1, (R)n�(k)is known as the k-equal manifold). Their method generalizes easily toarbitrary d and allows one to describe the cohomology in concrete cases,although obtaining general formulas seems very complicated.Exercises1. Let X be a topological space with at least two points.(a) Show that if n is not a prime then the Zn-action on Xn� generated bythe cyclic shift by one position left is not free.(b) More generally, show that if G is a nontrivial subgroup of Sn whoseaction on Xn� is free then n = p is a prime and G is a cyclic groupisomorphic toZp generated by a cyclic shift, after a suitable renumberingof the coordinates.2. Show that (Rd)p� and Sd(p�1)�1 are homotopy equivalent. (Use the mapg in the proof of Proposition 6.3.2.)3. For p = 3 and d = 1, the sphere S(L) in the proof of Proposition 6.3.2 isisometric to S1. Is it true that the cyclic shift action � on S(L) inheritedfrom R3 is equal to the rotation of S(L) by 2�3 ?4. (A Lusternik{Schnirelmann-type theorem for Zp-actions) Let (X; �) be aZp-space (assume that X is a metric space if it helps) with indZp(X) �d(p�1), where p is a prime, and let A1; A2; : : : ; Ad+1 be closed sets cov-ering X . Show that there is an index i and a point x 2 X such thatfx; �(x); : : : ; �p�1(x)g � Ai.



6.4 Necklace for many thieves 1106.4 Necklace for many thievesWe consider the necklace problem from Section 3.2 but with q thieves. Weonly deal with the continuous version here (the discrete version is proved fromthe continuous version by a simple combinatorial argument). The followingtheorem formally states that q(d�1) cuts su�ce for q thieves.6.4.1 Theorem (Continuous necklace with many thieves; Alon [Alo87]).Let �1; �2; : : : ; �d be continuous probability measures on [0; 1], let q � 2, andset N = d(q�1). Then there exists a partition of [0; 1] into N+1 intervalsI1; I2; : : : ; IN+1 by N cuts and a partition of the index set [N+1] into subsetsT1; T2; : : : ; Tq such thatXj2Tk �i(Ij) = 1q for i = 1; 2; : : : ; d and q = 1; 2; : : : ; q:Proof. In the subsequent topological argument, we will need to assume thatthe number of thieves q is a prime. Unlike the topological Tverberg theorem,say, the non-prime cases follow from the result for all prime q by a simple directargument; see Exercise 1.From now on, q is a prime. Consider an arbitrary division of [0; 1] among qthieves: let I1; I2; : : : ; IN+1 be a partition of the interval [0; 1] intoN+1 intervals(numbered from left to right), and let T1; T2; : : : ; Tq be a partition of [N+1].We encode such division by a point of the deleted join k(�N)�q�(2)k; this is thekey step.Let us regard �N as the \standard simplex" in RN+1:�N = fx 2 RN+1 : xj � 0; x1 + x2 + � � �+ xN+1 = 1g:Each of the N+1 vertices of �N lies on one of the coordinate axes, and so thevertex set can be identi�ed with [N+1].A point of the deleted join k(�N)�q�(2)k has the form t1x1+ t2x2+ � � �+ tqxq.First we determine the coe�cients tk from the given division: tk is the totallength of intervals assigned to the kth thief, i.e.tk := Xj2Tk length(Ij):Next, we de�ne xk. If tk = 0, then xk does not matter in the join, so assumetk > 0. We set (xk)j := � 1tk length(Ij) for j 2 Tk0 for j 62 Tk:In other words, we consider the intervals going to the kth thief and we blowthem up, all in the same ratio, so that they �ll up the whole interval [0; 1], whilethe other intervals shrink to zero length. Here is an example for N = 6, q = 3,and i = 2:



111 6. Multiple points of coincidencethief 2 thief 3thief 1
(x2)2 (x2)4 (x2)70 1I1 I2 I3 I4 I5 I6 I7

Note that V (supp(xk)) � Tk, and so the xk have pairwise disjoint supports.Conversely, given any point z = t1x1 + � � � + tqxq 2 k(�N)�q�(2)k, we candetermine the lengths of the intervals I1; : : : ; IN+1 uniquely, and we can also �ndthe assignments of the intervals of nonzero lengths to the thieves: Tk consists ofthe indices of the vertices of supp(xk). The assignment of the intervals of zerolength is not unique. But what is unique is the function f : k(�N)�q�(2)k ! (Rd)qexpressing the gains of the thieves. Namely, we putf(z)i;k := Xj2Tk �i(Ij):It can be veri�ed that f is continuous, and obviously it is a Zq-map. If therewere no division as claimed in the theorem, f would miss the diagonal in (Rd)q,and so we would get an equivariant mapf : k(�N)�q�(2)k �! (Rd)q�:This is impossible, since the Zq-index of the left-hand side is N while that ofthe right-hand side is (d+1)(q�1)�1 = N � 1.Notes. Alon's proof [Alo87] of the necklace theorem for many thievesuses a di�erent encoding of the divisions and relies on the Borsuk{Ulam type result of B�ar�any, Shlosman, and Sz�ucs [BSS81] mentionedin the notes to Section 6.5. The presented proof basically follows Vu�ci�cand �Zivaljevi�c [V�Z93] (they assume, w.l.o.g., that one of the �i is theLebesgue measure on [0; 1], and they construct aZq-map into the deletedjoin (Rd�1)�q� instead of deleted product). They also give a lower boundfor the number of fair divisions for \generic" necklaces (where no fairsplitting is possible with fewer than d(q�1) cuts), by the method shownin Section 6.6 below for Tverberg partitions.Exercises1. Suppose that the statement of Theorem 6.4.1 holds with q = q1 and alsowith q = q2. Show that it holds for q = q1q2, too.



6.5 The topological Tverberg theorem 1126.5 The topological Tverberg theoremRadon's theorem 5.3.1 states that any d+2 points in Rd can be divided into twoparts with intersecting convex hulls. Tverberg's theorem is a generalization ofthis statement, where we want not only two disjoint subsets with intersectingconvex hulls but r of them.It is not too di�cult to show that for every d and r, there exists a T = T (d; r)such that for any set A of T points in Rd can be divided into r pairwise disjointsubsets A1; A2; : : : ; Ar with Tri=1 conv(Ai) 6= ; (Exercise 1). It is much harderto establish the tight bound for T (r; d), as stated in the next theorem.6.5.1 Theorem (Tverberg's theorem [Tve66]). For any d � 1 and r � 2,any set of (d+1)(r�1)+1 points in Rd can be partitioned into r pairwise disjointsubsets A1; : : : ; Ar in such a way that conv(A1)\ � � �\ conv(Ar) 6= ? (call sucha partition a Tverberg partition).Let us examine some special cases �rst. As was remarked above, the caser = 2 is Radon's theorem. For d = 1, we have 2r�1 points on the real line, sayx1 � x2 � � � � � x2r�1. Then we can choose Ai := fxi; x2r�ig for 1 � i � r�1,and Ar = fxrg. In fact, if the points xi are all distinct, then this is the onlysuitable partition! Here is an example for d = 2 and r = 3, showing two possibleTverberg partitions of a 7-point set (can you �nd other partitions?):The reader is invited to check that of N+1 points with N = (d+1)(r�1) is thebest possible (for all r and d); see Exercise 2.We will not prove Tverberg's theorem here|instead, we prove a topologicalversion which implies Tverberg's theorem in the case where r is a prime.6.5.2 Theorem (Topological Tverberg theorem; B�ar�any, Shlosman &Sz�ucs [BSS81]). Let p be a prime, let d � 1 be arbitrary, and put N =(d+1)(p�1). For every continuous mapf : k�Nk �! Rdthere exist p pairwise disjoint faces F1; : : : ; Fp � �N whose images under fintersect: f(kF1k) \ f(kF2k)\ � � � \ f(kFpk) 6= ?:It seems likely that this theorem remains true for all p, not only primes,but so far nobody has managed to prove this. It has been veri�ed for all primepowers, though.Proof. This is very similar to the proof of the topological Radon theorem;the only di�erence is that we work with p-fold joins.



113 6. Multiple points of coincidenceSuppose that there is an f violating the theorem; that is, there are nopairwise disjoint faces F1; F2; : : : ; Fp with all f(kFik) intersecting. We considerthe p-fold join f�p, and we regard it as a map from the p-fold 2-wise deletedjoin: f�p: k(�N)�p�(2)k �! (Rd)�p� :The fact that this map indeed goes into the deleted join exactly translates thecondition on f above.Note how the problem itself determines what kind of deleted joins we shoulduse: we deal with pairwise disjoint faces, and so we use the 2-wise deleted joinon the left-hand side. We assume that no p images coincide, and so the join onthe right-hand side is p-wise deleted (only the points with all components equalare removed).Automatically, f�p is a continuous Zp-map. We know that indZp((Rd)�p� ) �(d+1)(p�1) � 1 (Proposition 6.3.2), and so it remains to calculate the Zp-index of the left-hand side. This is again similar to the case p = 2 handled inconnection with the topological Radon theorem. Analogous to Lemma 5.4.2,we have6.5.3 Lemma. Let K and L be simplicial complexes. Then(K � L)�p�(2) = K�p�(2) � L�p�(2):Proof. Clear!6.5.4 Corollary. We have indZp((�n)�p�(2)) = n.Proof. This time we have(�n)�p�(2) = ((�0)�(n+1))�p�(2) = ((�0)�p�(2))�(n+1) = [p]�(n+1):In Section 6.2, we saw that [p]�(n+1) is (n�1)-connected|in fact, it is an EnZpspace (if we identify [p] with Zp).This also concludes the proof of the topological Tverberg theorem.The space [p]�(n+1) is quite important; we used it as an EnZp space, hereit turned up as the deleted join of a simplex, and we will meet it several moretimes. From a combinatorial point of view, the maximal simplices can be re-garded as the edges of the complete (n+1)-partite hypergraph on n+1 classesof size p each. In the picture, n = 2, p = 4, and only 3 edges are drawn as asample:



6.5 The topological Tverberg theorem 114The isomorphism of the complex [p]�(n+1) with the deleted join (�n)�p�(2) is quiteintuitive in this drawing. Each row consists of p copies of the same vertex of�n, one for each factor in the deleted join, and since the join is 2-wise deleted,a simplex can use only one of the copies in each row.Alternatively, we can also consider the maximal simplices as functions [n+1]![p].Notes. The original proof of Tverberg's theorem [Tve66] is compli-cated. The idea is simple, though: start with some point con�gurationfor which the theorem is valid, and convert it to a given con�gurationby moving one point at a time. During the movement, the current par-tition may stop working at some point, and it must be shown that it canbe replaced by another suitable partition. Later on, Tverberg found asimpler proof [Tve81]. Sarkaria [Sar92] invented another, very nice, andreasonably simple proof, based on a geometric lemma due to B�ar�any,and his proof was further streamlined by Onn (see [BO97]). Still an-other proof, also due to Tverberg and inspired by B�ar�any's proof, waspublished in Tverberg and Vre�cica [TV93]. A similar proof, technicallysomewhat simpler, is due to Roudne� [Rou01].Tverberg's theorem is quite important and has numerous applica-tions, as well as extensions and generalizations; see e.g. Eckho� [Eck93].Some interesting aspects are brie
y discussed in Kalai's lively survey[Kal01].The topological Tverberg theorem. B�ar�any et al. [BSS81] proved The-orem 6.5.2 using deleted products. By an ingenious argument, theyshowed that the p-fold 2-wise deleted product of �N is (N�p)-connected.Then they established and used apparently the �rst theorem of Borsuk{Ulam type dealing withZp-actions that has appeared in a combinatorial-geometric application. In our terminology, that result can be phrased asfollows. For a prime p and integer d � 1, consider the sphere Sd(p�1)�1with the Zp-action obtained as in the proof of Proposition 6.3.2, and letXd;p :=Sd(p�1)�1� [p] (the action on [p] is a cyclic permutation of the ppoints). Then for any continuous f :Xd;p ! Rd there is a point x 2 Xd;pwhose whole orbit under theZp-action is mapped to a single point in Rd(this is a special case of Theorem 6.3.3, and, in fact, it is equivalent toit). Their proof proceeds by reduction to a lemma from Krasnosel'ski��and Zabrejko [KZ75], claiming that, given a free Zp-action on Sn, anyZp-map Sn ! Sn has degree 1 modulo p.The technique of deleted joins for such problems was developed bySarkaria [Sar90], [Sar91a].The validity of the topological Tverberg theorem for arbitrary (non-prime) p is one of the most challenging problems in this �eld. For pbeing a prime power, the theorem was proved by �Ozaydin [�Oza] in anunpublished manuscript, and much later by Volovikov [Vol96] (and alsoby Sarkaria [Sar00]). Assuming the theorem of Volovikov mentioned inthe notes to Section 6.2 about maps of �xed-point free (Zp� � � ��Zp)-spaces, the proof is a relatively straightforward generalization of the



115 6. Multiple points of coincidenceproof in this section.Exercises1. Prove (directly, without using Tverberg's Theorem) that for any inte-gers d; r1; r2 � 2, we have T (d; r1r2) � T (d; r1)T (d; r2). (Together withRadon's theorem, this implies that T (d; r) is �nite for all d and r.)2. Let v1; : : : ; vd+1 be vertices of a simplex in Rd and let Bi be a set ofr�1 points lying very close to vi. Prove that there is no partition ofB :=B1 [ � � � [ Bd+1 into r disjoint parts whose convex hulls have anonempty intersection.6.6 Many Tverberg partitionsA conjecture of Sierksma, still unresolved at the time of writing, states that thenumber of Tverberg partitions for a set of (r�1)(d+1)+1 points in Rd in generalposition is at least ((r�1)!)d. This number is attained for the con�guration ofd+1 tight clusters, with r�1 points each, placed at the vertices of a simplex, andone point in the middle (Exercise 1). (We count unordered partitions, wherethe order of the sets A1; : : : ; Ar does not matter.)For a prime r, one can prove a quite good lower bound by cleverly extendingthe topological proof (while no non-topological method is known to yield a goodlower bound).6.6.1 Theorem (Many Tverberg partitions; Vu�ci�c and �Zivaljevi�c [V�Z93]).Let p be a prime. For any continuous map f : k�Nk ! Rd, where N =(d+1)(p�1), the number of unordered p-tuples fF1; F2; : : : ; Fpg of pairwise dis-joint faces of �N with Tpi=1 f(kFik) 6= ? is at least1(p�1)! � �p2�(d+1)(p�1)=2 :We note that for d and p large, this bound is roughly the square root of thebound conjectured by Sierksma.Proof. Let K denote the simplicial complex (�N)�p�(2). As we know, themaximal simplices of K are the edges of the complete (N+1)-partite hypergraph;if the vertex set of K is identi�ed with [N+1]� [p], then such a maximal simplexS is f(1; i1); (2; i2); : : : ; (N+1; iN+1)g, i1; : : : ; iN+1 2 [p]. Such an S encodes theordered partition (F1; F2; : : : ; Fp) with Fi = fj 2 [N+1] : ij = ig. For example,with d = 2 and p = 3, the indicated S in the picture encodes the orderedTverberg partition of the N+1 = 7 points drawn on the right:1 2 31234567 1 2 34567



6.6 Many Tverberg partitions 116Call S good whenever it encodes a Tverberg partition; that is, wheneverTpi=1 f(kFik) 6=?. An S is good exactly if it contains a point mapped to the diagonal in (Rd)�pby f�p, where f�p is the p-fold join of f as in the preceding proof. If we provethat K has at leastM good maximal simplices, we obtain that there are at leastM=p! (unordered) Tverberg partitions.Here is the strategy of further progress. We de�ne a suitable family L ofsubcomplexes L � K. Each L is closed under the Zp-action (cyclic shift on therows of the hypergraph), and indZp(L) � N so that f�p restricted to kLk mapssome point to the diagonal. Consequently, each L 2 L contains a good maximalsimplex (actually at least p of them). Finally, we count the number Q of L 2 Lcontaining any given maximal simplex of K, and estimate M � p � jLj=Q.Since in the case p = 2 the theorem is already proved, we may now assumep > 2, so p is odd, and N = (p+1)(d�1) is even. To describe a member Lof the family L, we �rst divide the N+1 rows in the hypergraph into N2 pairsplus one remaining row; let � be the number of ways of accomplishing this(we do not need its value since it will cancel out later). Next, we look at thetwo rows in one of the pairs; the simplices of K living on these rows are theedges of the complete bipartite graph between the rows. We choose a cycle Cin this complete bipartite graph that is invariant under the cyclic shift action.Some thought reveals that such a cycle is uniquely determined by choosing twodistinct edges emanating from the �rst vertex of the top row into the bottomrow, as in the drawing (for p = 5):All the other edges are given as shifts of the chosen two. (Yes, we always getjust one cycle|right?) Thus, there are �p2� choices for C. Such a cycle is chosenfor each pair of rows, so we obtain invariant cycles C1; : : : ; CN=2. For a �xedpairing of the rows, the number of choices of the Ci is �p2�N=2. The maximalsimplices of the subcomplex L corresponding to a given choice of the row pairingand of the Ci are the maximal simplices of K that contain an edge of each Ci,such as is drawn below: C1C2C3SWe have jLj = � � �p2�N=2. We leave it as an exercise to show that thenumber Q of complexes L 2 L that contain a given maximal simplex S 2 K is� � (p�1)N=2.



117 6. Multiple points of coincidenceEach L can be interpreted as the join of its N=2 cycles C1; : : : ; CN=2 and ofthe remaining p points. Thus, topologically,kLk �= (S1)�(N=2) � [p] �= SN�1 � [p];and so indZp(L) � N as required. Theorem 6.6.1 follows by the calculationindicated above.Notes. The presented proof of the lower bound for the numberof Tverberg partitions is a simpli�cation of the argument of Vu�ci�c and�Zivaljevi�c [V�Z93] (instead of the invariant subcomplexes L, they considernon-invariant cones over invariant spheres in K and use an argumentabout mapping degrees).Exercises1. Show that the number of (unordered) Tverberg r-partitions for the con-�guration described in the text (d+1 clusters by r�1 points near thevertices of a simplex in Rd and one point in the center of the simplex)equals ((r�1)!)d.6.7 Zp-index, Kneser colorings, and p-fold pointsIn this part, we more or less repeat the considerations about index and Knesercolorings from Section 5.7 in a p-fold setting. No new ideas are needed; one justhas to get the de�nitions right and verify that the proofs work. As a reward,we then prove quite quickly some theorems which were generally consideredreasonably hard,Considering the proof of the topological Tverberg theorem in Section 6.5and replacing �N with an arbitrary simplicial complex K, we obtain6.7.1 Proposition (Index and p-fold points). Let p be a prime and let Kbe a simplicial complex such thatindZp(K�p�(2)) � (d+1)(p�1):Then for any continuous mapping f : kKk ! Rd there are points x1;x2; : : : ;xp 2kKk with pairwise disjoint supports such that f(x1) = f(x2) = � � � = f(xp).By Sarkaria's inequality (Proposition 6.2.4(vi)), if K is a subcomplex of alarger simplicial complex J for which we know indZp(J�p�(2)), we can estimateindZp(K�p�(2)) � indZp(J�p�(2))� indZp(�(J�p�(2) n K�p�(2)))� 1:So we want to bound above the Zp-index of �(J�p�(2) n K�p�(2)), and this can bedone using Kneser-like colorings.



6.7Zp-index, Kneser colorings, and p-fold points 118Kneser hypergraphs. Let S be a set system. Generalizing the notion ofKneser graph, we de�ne the Kneser r-hypergraph KGr(S): the vertex set is Sand the edges are all r-tuples of pairwise disjoint sets as edges; that is,nfS1; S2; : : : ; Srg : S1; : : : ; Sr 2 S; Si \ Sj = ? for 1 � i < j � ro:We recall that a properm-coloring of a hypergraphH is a mapping c:V (H)![m] such that no edge of H is monochromatic. For the Kneser r-hypergraphKGr(S), we color the sets in S and we want that no r pairwise disjoint sets getthe same color. Or, phrased di�erently, we want a coloring of the vertices ofthe usual Kneser graph KG(S) such that no clique (complete subgraph) of sizer is monochromatic.The following lemma gives a whole family of bounds for the Zp-index:6.7.2 Lemma (Index bound from coloring KGr). Let p be a prime, let Kbe an invariant subcomplex of a simplicial Zp-complex J, and let S :=MIN(JnK)be the system of the inclusion-minimal simplices in J n K. Then, for any r =2; 3; : : : ; p, we haveindZp(�(J�p�(2) n K�p�(2))) � (r�1) � �(KGr(S))� 1:We will actually use only the case r = p (which tends to give the strongestbound, although it need not always be the case; see Exercise 3.We remark that the restriction on p being prime is only needed to guaranteethat the deleted join (�m�1)�p�(r) is a freeZp-space. For r = 2, for example, anygroup of permutations of [p], including Zp represented by the cyclic shift, actsfreely even if p is composite.Proof of Lemma 6.7.2. As in the proof of Lemma 5.7.1, we de�ne thelabeling h of the simplices in J by subsets of [m]:h(F ) = fc(G) : G 2 S; G � Fg:Note that simplices in K receive ? while those in J nK receive a nonempty set.For a simplex F1� � � � �Fp 2 J�p�(2)nK�p�(2), we put g(F1� � � � �Fp) := h(F1)� � � � �h(Fp).Since c is a proper coloring of KGr(S), each r sets among h(F1); : : : ; h(Fp) havean empty intersection, and so g is a simplicial Zp-map into sd((�m�1)�p�(r)).It remains to show that the index of the latter space is (at most)m(r�1)�1.This is left as Exercise 1.Together with Proposition 6.7.1, Lemma 6.7.2 yields6.7.3 Theorem (Sarkaria's theorem on coloring and p-fold points).Let p be a prime. Let K be a subcomplex of a simplicial complex J, andsuppose that for some r 2 f2; 3; : : : ; pg,d � 1p� 1 indZp(J�p�(2))� r � 1p� 1 �(KGr(MIN(J n K)))� 1:



119 6. Multiple points of coincidenceThen for any continuous map f : kKk ! Rd there are p points x1; : : : ;xp 2 kKkwith pairwise disjoint supports such that f(x1) = f(x2) = � � � = f(xp). ForJ = �n and r = p, the condition isd � np�1 � �(KGp(S))� 1:6.7.4 Example (Tverberg's theorem with restricted dimensions). InTverberg's theorem, (d+1)(r�1)�1 points in Rd su�ce to get r disjoint subsetswith intersecting convex hulls. What happens if we consider N+1 points andwant r disjoint subsets with intersecting convex hulls, but each of the sets shouldhave at most k+1 � d points? For example, for r = 3, d = 3, and k = 2, wewould like to �nd 3 vertex-disjoint triangles in R3 with a common point.
It turns out that such triangles always exist, even with the smallest conceivablenumber of points, i.e. 9. On the other hand, no matter how many pointsin suitable general position in R3 we have, we cannot �nd 4 vertex-disjointintersecting triangles. More generally, if the sum of codimensions of the rconvex hulls, i. e. r(d�k), is greater than d, no N will do.For r being a prime and such that the codimension condition r(d�k) � dholds, one can show the existence of a suitable N using Theorem 6.7.3; seeExercise 4.Notes. This section is again based on [Sar91a] and [Sar90].Sarkaria also considers the k-wise deleted joins K�p�(k) (with K beingthe (k�1)-skeleton of an n-simplex) and uses Kneser-like colorings fordetermining the index of such deleted joins.Example 6.7.4 is inspired by Vre�cica and �Zivaljevi�c [�ZV94].*** Tverberg{Vre�cica project, some results?Kneser's conjecture. Here we brie
y summarize refences concerningthe chromatic number of Kneser graphs and hypergraphs. As was men-tioned in Section 3.3, Kneser's conjecture [Kne55] was �rst proved byLov�asz [Lov78]. (Previously Garey & Johnson [GJ76] had establishedthe case k = 3 by elementary means; also see Stahl [Sta76].)Lov�asz' proof is not included in our text (it may appear in a futureversion). With every graph G, Lov�asz associated a simplicial complex



6.7Zp-index, Kneser colorings, and p-fold points 120N(G), whose vertex set is V = V (G) and the simplices are the sub-sets vertices having a common neighbor in G. He then proved that ifN(G) is k-connected, then �(G) � k+3, and analyzed the connectivityof the neighborhood complex of the Kneser graph. This approach wasfurther developed in Alon, Frankl & Lov�asz [AFL86] (who generalizedthe results to hypergraphs, and de�ned the technically somewhat moreconvenient box complex associated with a graph or hypergraph; also seeK�r���z [Kri92]). Walker [Wal83] showed that graph homomorphisms in-duce Z2-maps of suitably modi�ed neighborhood complexes (accordingto Bj�orner [Bj�o95], it was also independently noted by Lov�asz in unpub-lished lecture notes). For another application of neighborhood complexessee Lov�asz [Lov83].Alon, Frankl & Lov�asz [AFL86] established Erd}os' generalizationof Kneser's conjecture for hypergraphs: if n � (m�1)(r�1)+rk, then�(KGr(�[n]k �)) > m.By the method shown in Section 3.4, Dol'nikov estimated �(KGr(S))from below by the minimum cardinality of a set Y � X (where X is theground set of S) such that X n Y can be colored by two colors so thatno color class contains d r2e pairwise disjoint sets of S. He then re-provesresult of [AFL86] on �(KGr(�[n]k �)) for all even r; for odd r he needsan additional condition on the parameters r; k; n. Yet another proof ofa statement generalizing the Erd}os' conjecture was given by Sarkaria[Sar90]; see Exercise 2.K�r���z [Kri92, Kri00] proved the following generalization of Dol'nikov'stheorem: for any set system S,�(KGr(S)) � 1r� 1 � cdr(S);where cdr(S) is the r-colorability defect introduced in Section 3.4. Thistheorem, too, easily implies the results of Alon et al. on �(KGr(�[n]k �)).The proof in [Kri92] does not work in the generality stated there (as waspointed out by �Zivaljevi�c) but the result for the Kneser hypergraphsremains valid [Kri00]. A simpli�ed version of K�r���z's proof, emplyoing aSarkaria-style inequality for estimating the index of a certain space, wasgiven in [Mat01b] (see Exercise 5.7.3 for the special case of this proofwith r = 2).In [Mat01a], using the ideas from the just mentioned proof, Kne-ser's conjecture was derived from Tucker's lemma by a direct combina-torial argument, without using a continuous result of Borsuk{Ulam type.Since the required instance of Tucker's lemma also has a combinatorialproof, the resulting proof of Kneser's conjecture is purely combinato-rial, although the topological inspiration remains notable, of course. Anextensive generalization of this method was obtained by Ziegler [Zie01].He formulated aZp-analogue of the required special instance of Tucker'slemma, and derived many generalizations of Kneser's conjecture from it(including Schrijver's theorem, the Dol'nikov{K�r���z theorem, and Sarkari-a's results).



121 6. Multiple points of coincidenceExercises1. (a) Prove that the Zp-index of the p-fold k-wise deleted join (�n)�p�(k) isat most (n+1)(k�1)�1, 2 � k � p.(b) Show that the index in (a) is actually equal to (n+1)(k�1)�1.2. (a) Find a coloring of the Kneser r-hypergraph KGr(�[n]k �) by dn�r(k�1)r�1 ecolors.(b) Use Theorem 6.7.3 to prove that this number of colors is the smallestpossible.3. (a) Prove that for r � 3 and any �nite set system S, we have�(KGr(S)) � ��(KG2(S))r � 1 � :(b) More generally, check that for r > q � 2, we have�(KGr(S)) � &�(KGq(S))rq�1 � 1 ' :4. (a) Let p be a prime and let f be a continuous map of the k-skeleton of theN -simplex into Rd. Supposing that p(d�k) � d and N = (d+2)(p�1),use Theorem 6.7.3 to show that there are p points with pairwise disjointsupports that are mapped to the same point by f .(b) Derive the claim of Example 6.7.4 from (a): for any prime p, anyd � 1, and any k, 0 � k � d�1, such that p(d�k) � d, there exists Nsuch that among any N points in Rd, one can select p disjoint groups ofsize k+1 each whose convex hulls have a nonempty intersection.(c) Show that the conclusion of (b) need not be true for any N if thecodimension condition p(d�k) � d is not satis�ed.6.8 The colored Tverberg theoremIf we have 7 points in the plane, by Tverberg's theorem we can divide them into3 groups whose convex hulls have a common intersection. The colored versionof this statement is: given 3 red, 3 blue, and 3 white points in the plane, wecan always partition them into 3 \tricolores" with intersecting convex hulls:



6.8 The colored Tverberg theorem 1226.8.1 Theorem (The colored Tverberg theorem). For any integers r � 2and d � 1 there exists an integer t = t(d; r), such that for any d+1 pairwisedisjoint t-point sets C1; C2; : : : ; Cd+1, we can �nd disjoint sets A1; A2; : : : ; Arwith jAi \ Cj j = 1 for all i = 1; 2; : : : ; r and j = 1; 2; : : : ; d+1 such thatTri=1 conv(Ai) 6= ?. If we think of the points of Cj as having color j, theneach Ai is required to use all colors (to be a \rainbow" set).This may look like an innocent (and not too exciting) variation of Tver-berg's theorem, but in fact, this theorem attracted great interest. It was a keyingredient in obtaining a nontrivial upper bound in the so-called k-set problem:what is the maximum number of distinct k-element subsets of an n-point setA � Rd that can be cut o� by a halfspace, i. e. what ismaxA�Rd;jAj=n jfA \ h : jA\ hj = k; h a halfspacegj:This problem seems to be very hard even in the plane. Here we will not explainthe connection to the colored Tverberg theorem (see, e.g., [ABFK92]).While the Tverberg theorem can be proved in an elementary way, all knownproofs for the colored version are topological.We prove the following topological version, which implies the colored Tver-berg theorem with t = 4r�1. We use \Bertrand's postulate," which states thatfor any r > 1 there is a prime p with r � p < 2r. (This was �rst proved byChebyshev, and Erd}os found the �rst simple and elementary proof as a �rst-year undergraduate at age 17 [Erd32] [AZ00].)6.8.2 Theorem (Topological colored Tverberg theorem [�ZV92]). Letd be a positive integer and let p be a prime. Let C1; C2; : : : ; Cd+1 be disjointsets of cardinality 2p�1 each, and let K be the simplicial complex with vertexset C1 _[C2 _[ � � � _[Cd+1, whose simplices are all subsets using at most one pointfrom each Ci. (In other words, K = [2p�1]�(d+1).) Then for any continuousmap f : kKk ! Rd, there are p pairwise disjoint faces F1; F2; : : : ; Fp of K whoseimages intersect: Tpi=1 f(kFik) 6= ?.Proof. With the powerful Theorem 6.7.3 on coloring and p-fold points, theproof is routine.We take J :=�N , where N = jV (K)j�1 = (d+1)(2p�1)�1. The system S ofminimal non-faces of K consists of all edges connecting two points in the sameCi. We work with r = p, i. e. we look for a coloring of the Kneser p-hypergraphKGp(S). Having p disjoint edges of S, they together cover 2p points, and sothey cannot all live on the same class Ci. Thus, coloring all the edges on Ci bythe color i shows �(KGp(S)) � d+1. The right-hand side in the condition inTheorem 6.7.3 comes out as d � pp�1 > d, and we are done.Notes. The colored Tverberg theorem was proved for d = 2and conjectured to hold for arbitrary d by B�ar�any, F�uredi & Lov�asz[BFL90]. The general d-dimensional case was proved, with t � 4r�1,



123 6. Multiple points of coincidenceby �Zivaljevi�c & Vre�cica [�ZV92]. A simpler proof was found by Bj�orner,Lov�asz, Vre�cica & �Zivaljevi�c [BL�ZV94] (also see [�ZV94] for a similar ar-gument and Ziegler [Zie94] for yet another approach). The proof of thecolored Tverberg theorem by Sarkaria's method was noted in [Mat96].B�ar�any et al. actually conjectured that t = r should su�ce in thecolored Tverberg theorem. This is known for d = 2 (B�ar�any & Lar-man [BL92]) and for r = 2 (Lov�asz; also published in [BL92]|theBorsuk{Ulam theorem is applied in a beautiful way). For r a prime,the �Zivaljevi�c{Vre�cica approach gives t � 2r�1. This was extended toall prime powers r by �Zivaljevi�c [�Ziv98] (similar to the proofs of the topo-logical Tverberg theorem for prime powers, as mentioned in the notesto Section 6.5).Exercises1. (Vre�cica & �Zivaljevi�c [�ZV94]) This is a colored version of Example 6.7.4.(a) Given 5 red, 5 blue, and 5 red points in R3, prove that there are 3vertex-disjoint tricolored triangles having a common point.(b) Let C1; : : : ; Ck+1 � Rd be sets of cardinality 2p�1 each, where pis a prime satisfying p(d�k) � d. Prove that there are p pairwise dis-joint rainbow sets A1; : : : ; Ap (with jAi \ Cj j = 1 for all i; j) such thatTpi=1 conv(Ai) 6= ?.
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Indexa :=B (de�nition), 8bxc (
oor function), 8dxe (ceiling function), 8jSj (cardinality), 72S (powerset), 7�Sk� (k-element subsets), 7[n] (= f1; 2; : : : ; ng), 7@X (boundary), 11X t Y (disjoint sum), 58(4.1.3)X _ Y (wedge), 58(4.1.3)X � Y (Cartesian product), 60X � Y (join), 61(4.2.1)kKk (polyhedron), 16(1.3.5)kfk (a�ne extension of a simplicialmap), 20(1.5.3)��k (k-skeleton), 17X2� (deleted product of a space), 80�2� (deleted product of a simplicialcomplex), 80Xn� (n-fold n-wise deleted productof a space), 106(6.3.1)Xn�(k) (n-fold k-wise deletedproduct of a space), 106(6.3.1)K�2� (deleted join of a simplicialcomplex), 82(5.4.1)X�2� (deleted join of a space), 83(5.4.4)K�n� (n-fold n-wise deleted join of asimplicial complex), 106(6.3.1)X�n� (n-fold n-wise deleted join of aspace), 106(6.3.1)K�n�(k) (n-fold k-wise deleted join ofa simplicial complex), 106(6.3.1)X�n�(k) (n-fold k-wise deleted join ofa space), 106(6.3.1)X �= Y (homeomorphic spaces), 11

f � g (homotopic maps), 12(1.2.1)X ' Y (homotopy equivalent), 13(1.2.2)X G�! Y (a G-map exists), 101X G�!= Y (no G-map exists), 101X �G Y (same as X G�! Y ), 101kxk (Euclidean norm), 7kxkp (`p norm), 7kxk1 (maximum norm), 7hx;yi (scalar product), 7�(P ) (order complex), 22(1.7.1)�0(F) (= �(F n f?g;�)), 90�(F) (= �(F ;�)), 90�(G) (independence number), 50�(G) (chromatic number), 48�(S) (chromatic number of ahypergraph), 53�f (G) (fractional chromaticnumber), 49�n (the n-simplex as a simplicialcomplex), 17action| by left multiplication, 99| �xed-point free, 98| | nonexistence of equivariantmaps, 104| free, 98(6.1.2)| | on deleted joins andproducts, 107| G-, 98(6.1.1)| Z2-, 71(5.1.1)a�nely independent, 14(1.3.1)Akiyama{Alon theorem, 44(3.2.1)alternating group, 99antipodal mapping, 27(2.1.1)137



Index 138antipodality, 26antipodality space, see Z2-spaceattachment map, 68B(K) (Alexander dual), 86(5.5.3)Bn (unit ball), 7barycentric subdivision, 23(1.7.2)Bier spheres, 86{89Biern(K), 86(5.5.3)bipartite graph, 8bistellar operation, 88Borsuk graph, 31Borsuk's conjecture, 31Borsuk{Ulam theorem, 26(2.1.1)| algebraic proofs, 29| combinatorial proof, 35{38| proof by homotopy extension,32{35| via cohomology ring, 29| via degree, 29| via Lefschetz number, 103boundary, 11Bourgin{Yang type theorem, 30, 76Brouwer �xed point theorem, 28C (complex numbers), 7cdm(S) (m-colorability defect), 53cell complex, see CW-complexcellular map, 69centerpoint theorem, 42characteristic map, 68chromatic number, 48| fractional, 49| of a hypergraph, 53cl (X) (closure), 11closed set, 11closure, 11cobweb partition, 44code, Gray, 43cohomological ideal-valued index,105cohomology (and Borsuk{Ulamtheorem), 29colorability defect, 53, 120colored Tverberg theorem, 122(6.8.1)

| with restricted dimensions, 123(Ex. 1)comb, topologist's, 14(Ex.6)combination, convex, 7compact space, 11complementary edge, 35complete graph, 8complex| CW, 68| �, 69| G-, simplicial, 101| Kuratowski, 96(Ex.1)| order, 22(1.7.1)| polyhedral, 69| regular, 69| simplicial (abstract), 19(1.5.1)| simplicial (geometric), 15(1.3.5)| Z2-, simplicial, 72cone(X), 63con�guration space (ordered), 109conjecture| Borsuk's, 31| Knaster's, 77| Kneser's, 49(3.3.2)| | for hypergraphs, 120, 121(Ex. 2)| | proof, 50{55, 95| Sierksma's, 115k-connectedness, 65(4.3.1)| and homology, 66(4.3.3)continuous mapping, 9contractible space, 13, 14(Ex.6)contractible subcomplex, 58(4.1.5)conv(X) (convex hull), 7convex combination, 7convex polytope, 7| simplicial, 17convex set, 7covering dimension, 74crosspolytope, 18(1.4.1)cube, triangulation, 18(1.4.2)curve, moment, 21(1.6.3), 42, 51CW-complex, 68defect, m-colorability, 53, 120deformation retract, 12degree, 29



139 Index| of a Zp-map, 114deleted join, 82(5.4.1), 83(5.4.4),106(6.3.1)| of a simplex, 83(5.4.3), 113(6.5.4), 121(Ex.1)| of Rd, 84(5.4.5), 107(6.3.2)deleted product, 80, 106(6.3.1)| of a simplex, 81| of Rd, 80, 107(6.3.2)| | structure, 108�-complex, 69diagram, Hasse, 23dimension| covering, 74| Dushnik{Miller, 24| of a simplicial complex, 16(1.3.5)Dold's theorem, 104(6.2.6)Dol'nikov's theorem, 53(3.4.1), 96(Ex.3)dunce cap, 70Dushnik{Miller dimension, 24Dyson's theorem, 77E(G) (edge set), 8EnG space, 101edge, complementary, 35embedding, linkless, 30k-equal manifold, 109equipartition theorems, 42, 43equivariant mapping, 72, 98(6.1.1)face (of a polytope), 7face poset, 22Fadell{Husseini index, 105k-fan, 43�xed-point free action, 98| nonexistence of equivariantmaps, 104Flores sphere, 86(5.5.5)fractional chromatic number, 49free action, 71(5.1.1), 98(6.1.2)| on a sphere, 100| on deleted joins and products,107G-action, 98(6.1.1)G-index, 102(6.2.3)

G-map, 98(6.1.1)G-space, 98(6.1.1)Gale's lemma, 50(3.3.3)genus, 76geometric realization, 19| dimension, 21(1.6.1)| linear, 89| maximum number of simplices,90graph, 7| bipartite, 8| Borsuk, 31| complete, 8| Petersen, 49| Schrijver, 52Gray code, 43group| acting on itself, 99| alternating, 99| topological, 97group action, 98(6.1.1)halfspace, 7ham sandwich theorem, 39(3.1.1)| discrete, 40(3.1.2)| for circles, 44(Ex.1)| generalized, 42Hasse diagram, 23Hausdor� space, 10Hobby{Rice theorem, 46(3.2.3)homeomorphism, 10(1.1.2)homotopic maps, 12(1.2.1)homotopy equivalent spaces, 13(1.2.2)homotopy extension property, 59(4.1.6)Hopf trace formula, 104hypergraph, 8| Kneser, 118hyperplane, 7icosahedron, 99indG(X), 102(6.2.3)indZ2(X), 74(5.2.1)independence number, 50index| and p-fold points, 117(6.7.1)



Index 140| cohomological, ideal-valued, 105| G-, 102(6.2.3)| Z2-, 74(5.2.1)inequality, Sarkaria's, 91(5.6.2),103(6.2.4)intX (interior), 11interior, 11| relative, 15(1.3.4)invariant set, 98involution, see Z2-mapisomorphism (of simplicialcomplexes), 20(1.5.2)join| connectivity, 66(4.3.5)| deleted, 82(5.4.1), 106(6.3.1)| | of a simplex, 83(5.4.3), 113(6.5.4), 121(Ex.1)| | of a space, 83(5.4.4)| | of Rd, 84(5.4.5), 107(6.3.2)| geometric representation, 62(4.2.4)| of G-spaces, 99| of mappings, 63| of simplicial complexes, 61(4.2.1)| of spaces, 61(4.2.3)| of Z2-spaces, 72(5.1.3)Kn (complete graph), 8Km;n (complete bipartite graph), 8K3;3, nonplanarity, 94(5.7.4)Kakutani's theorem, 76k-connectedness, 65(4.3.1)| and homology, 66(4.3.3)k-equal manifold, 109k-fan, 43KGn;k = KG(�[n]k �), 48KG(S) (Kneser graph), 48Knaster's conjecture, 77Kneser hypergraph, 118Kneser's conjecture, 49(3.3.2)| for hypergraphs, 120, 121(Ex.2)| proof, 50{55, 95k-partite hypergraph, 8k-set problem, 122k-uniform hypergraph, 8

Kuratowski complex, 96(Ex.1)K�r���z's theorem, 120Lefschetz number, 103lemma| Gale's, 50(3.3.3)| Tucker's, 35(2.3.1)linkless embedding, 30Lusternik{Schnirelmann theorem,27(2.1.1)| for Zp-action, 109(Ex.4)manifold, k-equal, 109mapping| antipodal, 27(2.1.1)| attachment, 68| cellular, 69| characteristic, 68| continuous, 9| equivariant, 72, 98(6.1.1)| G-, 98(6.1.1)| monotone, 23| nullhomotopic, 12| quotient, 57(4.1.1)| simplicial, 20(1.5.2)| uniformly continuous, 11| Z2-, 72(5.1.1)mappings, homotopy, 12(1.2.1)MIN(S) (the inclusion-minimal setsin S), 93moment curve, 21(1.6.3), 42, 51monotone mapping, 23necklace theorem| q thieves, 110(6.4.1)| two thieves, 45(3.2.2)nowhere dense, 35(Ex. 1)nullhomotopic mapping, 12number| chromatic, 48| | of a hypergraph, 53| fractional chromatic, 49| Lefschetz, 103obstruction theory, 43, 105open set, 9(1.1.1)operation, bistellar, 88orbit, 98



141 Indexorder complex, 22(1.7.1)orthogonal representation, 99P (K) (face poset), 22paracompact space, 74k-partite hypergraph, 8partition| cobweb, 44| into rainbow d-tuples, 44(3.2.1)| Tverberg, 112(6.5.1)| | number of, 115{117Petersen graph, 49PL-sphere, 88polyhedral complex, 69polyhedron, 16(1.3.5)| of abstract simplicial complex,19polytope, convex, 7| simplicial, 17problem, k-set, 122product| deleted, 80, 106(6.3.1)| | of a simplex, 81| | of Rd, 80, 107(6.3.2)| | of Rd, structure, 108| of spaces, 60| scalar, 7projective plane, nonembeddabilityinto Rd, 94, 95(5.7.5)Q (rational numbers), 7quotient space, 57(4.1.1)R (real numbers), 7Radon's theorem, 78(5.3.1)realization, geometric, 19| dimension, 21(1.6.1)| linear, 89| maximum number of simplices,90regular cell complex, 69relative interior, 15(1.3.4)representation, orthogonal, 99retract, 59| deformation, 12Sn (unit sphere), 7

Sarkaria's coloring/embeddingtheorem, 93(5.7.2), 118(6.7.3)Sarkaria's inequality, 91(5.6.2), 103(6.2.4)scalar product, 7Schrijver graph, 52sd(K) (barycentric subdivision), 23(1.7.2)set| closed, 11| convex, 7| invariant, 98| open, 9(1.1.1)SGn;k (Schrijver graph), 52Sierksma's conjecture, 115simplex, 15(1.3.3)simplicial complex (abstract), 19(1.5.1)simplicial complex (geometric), 15(1.3.5)simplicial G-complex, 101simplicial mapping, 20(1.5.2)simplicial Z2-complex, 72simply connected space, 65skeleton, 17| of a CW-complex, 68skew a�ne subspaces, 62(4.2.4)space| antipodality, see Z2-space| compact, 11| con�guration (ordered), 109| contractible, 13, 14(Ex.6)| EnG, 101| G-, 98(6.1.1)| Hausdor�, 10| paracompact, 74| quotient, 57(4.1.1)| simply connected, 65| topological, 9(1.1.1)| Z2-, 71(5.1.1)spaces, homotopy equivalent, 13(1.2.2)sphere| as a CW-complex, 67| Bier, 86{89| Flores, 86(5.5.5)| free actions on, 100



Index 142| PL, 88| triangulation, 18(1.4.1), 86(5.5.4)subcomplex, 17(1.3.7)| contractible, 58(4.1.5)| of a CW-complex, 69subdivision| barycentric, 23(1.7.2)subspace, 9sum (of spaces), 58(4.1.3)supp(x) (support), 16support, 16susp(X) (= X�S0), 63theorem| Akiyama{Alon, 44(3.2.1)| Borsuk{Ulam, 26(2.1.1)| | algebraic proofs, 29| | combinatorial proof, 35{38| | proof by homotopyextension, 32{35| | via cohomology ring, 29| | via degree, 29| | via Lefschetz number, 103| Bourgin{Yang type, 30, 76| Brouwer �xed point, 28| centerpoint, 42| colored Tverberg, 122(6.8.1)| | with restricted dimensions,123(Ex.1)| Dold's, 104(6.2.6)| Dol'nikov's, 53(3.4.1), 96(Ex.3)| Dyson's, 77| ham sandwich, 39(3.1.1)| | discrete, 40(3.1.2)| | for circles, 44(Ex.1)| | generalized , 42| Hobby{Rice, 46(3.2.3)| Kakutani's, 76| K�r���z's, 120| Lusternik{Schnirelmann, 27(2.1.1)| | for Zp-action, 109(Ex.4)| necklace, q thieves, 110(6.4.1)| necklace, two thieves, 45(3.2.2)| Radon's, 78(5.3.1)

| Sarkaria's coloring/embedding,93(5.7.2), 118(6.7.3)| topological Radon's, 79(5.3.2)| topological Tverberg, 112(6.5.2)| | for prime powers, 114| Tverberg's, 112(6.5.1)| | proofs, 114| | with restricted dimensions,119(6.7.4)| Van Kampen{Flores, 85(5.5.2)| | generalized, 95(Ex. 1)theorems, equipartition, 42, 43theory, obstruction, 43topological group, 97topological Radon's theorem, 79(5.3.2)topological space, 9(1.1.1)topological Tverberg theorem, 112(6.5.2)| for prime powers, 114topologist's comb, 14(Ex.6)triangulation, 17| of the cube, 18(1.4.2)| of the sphere, 18(1.4.1), 86(5.5.4)Tucker's lemma, 35(2.3.1)Tverberg partition, 112(6.5.1)| number of, 115{117Tverberg's theorem, 112(6.5.1)| colored, 122(6.8.1)| | with restricted dimensions,123(Ex.1)| proofs, 114| with restricted dimensions, 119(6.7.4)k-uniform hypergraph, 8uniformly continuous mapping, 11V (�) (vertex set), 17V (G) (vertex set), 8Van Kampen{Flores theorem, 85(5.5.2)| generalized, 95(Ex.1)wedge, 58(4.1.3)Z(integers), 7



143 IndexZ2-index, 74(5.2.1)| Yang's, 76 Z2-space, 71(5.1.1)Zp-space, 97


