Probability/Topology - Synopsis of lecture $2 \frac{1}{2}$

Misha Gromov,

October 21, 2022

Borsuk Ulam 1: Topological Graph Color Number is $n+2$.
Let the n-sphere be covered by $n+1$ open subsets. $S^{n}=U_{1} \cup \ldots \cup U_{1} \cup \ldots \cup U_{n+1}$. Then some of U_{i} contains a pair of opposite points s and $-s \subset S^{n}$.

Borsuk Ulam 2: Homological Intersection.

Let $X_{i}^{m_{i}} \subset S^{n}$ be n closed \mp symmetric subsets such that each X_{i} separates all pairs of symmetric points in the sphere, i.e. the complements $S^{n} \backslash X_{i}$ contain no connected symmetric subsets. Then the intersection $\bigcap_{1}^{n} X_{i}$ is non-empty.

Borsuk Ulam 3: Onto Theorem. Continuous $f: S^{n} \rightarrow S^{n}$, such that $f(x) \neq f(-x)$, e.g. $f(-x)=-f(x)$, are onto.

Generlization to Pseudomanifolds. By, definition, the only 1-dimensional pseudomanifolds are disjoint union of lines $(\mathbb{R}$ (and circles.

The n-dimensional (topological) pseudomanifolds are the spaces, which are locally homeomorphic to cones over compact ($n-1$)-dimensional pseudomanifolds $/{ }^{1}$

If X is an n-dimensional pseudomanifold, then Continuous maps $f: S^{n} \rightarrow X$, such that $f(x) \neq f(-x)$ for all $x \in X$, then f is onto.
(Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry, Jiri Matousek)

(The Borsuk-Ulam Theorem and Bisection of Necklaces Alon-West)
Every interval n-coloring has a bisection of size at most n.
That is, given continuous functions $f_{1}(t), \ldots, f_{j}(t),, . . f_{n}(t), t \in[0,1]$, there exist n points $t_{1}<\ldots<t_{i}<. .<t_{n} \in[0,1]$ of and a partition of the set of the $n+1$

[^0]segments $S_{0}=\left[0, t_{1}\right], S_{1}=\left[t_{1}, t_{2}\right], \ldots, S_{n}=\left[t_{n}, 1\right]$ into two subsets, say I_{+}and I_{-}, such that the integrals of the functions f_{j} over the unions of these intervals, called
$$
S_{+}=\bigcup_{i \in I_{+}} S_{i} \text { and } S_{-}=\bigcup_{i \in I_{-}} S_{i}
$$
satisfy
$$
\int_{S_{+}} f_{j}(t) d t=\int_{S_{-}} f_{j}(t) d t, j=1, \ldots, n
$$

Proof: Let $\mathcal{M}=\mathcal{M}_{\mathbb{R}}$ be the (real) moment map from the unit sphere $S^{n} \subset$ \mathbb{R}^{n+1} defined by $\sum x_{i}^{2}=1$ to the simplex $\Delta^{n} \subset \mathbb{R}^{n+1}$ defined by $\sum x_{i}=1, x_{i} \geq 0$,

$$
\mathcal{M}:\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{0}^{2}, x_{1}^{2}, \ldots, x_{n}^{2}\right)
$$

and

$$
\overline{\mathcal{M}}_{i}: S^{n} \rightarrow[0,1], i=1, \ldots, m, \text { for } \overline{\mathcal{M}}_{i}:\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mapsto \sum_{j=0}^{i-1} x_{j}^{2}
$$

Thus, each $s=\left(x_{0}, \ldots, x_{n}\right) \subset S^{n}$ defines a partition of $[0,1]$ into subsets $S_{+}(s)$ and $S_{-}(s)$ by the rule: a point $t \in[0,1]$ from the interval $\underline{\mathcal{M}}_{i-1}(s) \leq t \leq \underline{\mathcal{M}}_{i}(s)$ is in S_{+}if $x_{i} \geq 0$ and it is in S_{-}for $x_{i} \leq 0$.

Since the functions $F_{j \mp}(s)=\int_{S_{\mp}(s)} f_{j}(t)$ are continuous (check it!), the Borsuk-Ulam 3 applies to the map $F=\left(F_{1}, \ldots, F_{n}\right): S^{n} \rightarrow \mathbb{R}^{n}$ and since this map can't be onto (the sphere is compact and the Euclidean space is non-compact), there exist two opposite points in the sphere,

$$
s_{+}=\left(x_{0+}, \ldots, x_{n+}\right) \text { and } s_{-}=\left(x_{0-}, \ldots,-x_{n-}\right)=\left(-x_{0+}, \ldots,-x_{n+}\right) \in S^{n},
$$

such that

$$
\int_{S_{+}(s)} f_{j}(t)=\int_{S_{-}(s)} f_{j}(t)=1, \ldots, n
$$

QED.
Remarks. (a) The the only feature of the real moment map needed for the proof is that it is invariant under the reflection group \mathbb{Z}_{2}^{n} acting on the sphere and \mathcal{M} is a homeomorphism of $S^{n} / \mathbb{Z}_{2}^{n}$ with the simplex Δ^{n}.

In fact, the sphere is equal to the universal orbifold covering of the simplex.
(b) Besides topology, the moment map also establishes a probabilistic link between the simplex and the sphere:

Fisher Theorem. The Riemannin metric on $\Delta^{n} \subset \mathbb{R}^{n+1}$ defined by the minus Hessian of the entropy,

$$
g_{i j}=\partial_{i j}^{2} \sum_{i=0}^{n} x_{i} \log x_{i}
$$

is equal, up to a scaling, to the spherical metric (of constnt curvature) on the positive quadrant in S^{n} (check it!).

[^0]: ${ }^{1}$ A cone over X is the cylinder $X \times[0,1]$ with the base $X \times 0$ collapsed to a point.

