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Figure 1: Bacterial DNA: Linking and supercoiling .

It is obvious one can’t unlink links,
e.g. unlink the "vertical" m-sphere
Sm from the infinite "hoizontal" (n−
1)-plane in the (m+n)-spaceRm+n =
Rm+‘1×Rn−1 for "vertical" sphere
Sm ⊂ Rm+‘1 and the "horizontal"
Rn−1 ⊂ R(m+1)+(n−1).

This obvious "unlinking property"
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for n−1 = 0 (almost obviously) im-
plies non-obvious
Browder’s fixed point theorem.
every continuous map f for the unit

(m + 1)-ball Bm+1 ⊃ Sm to itself
has a fixed point.

f(x) = x.

Topology of the n-cube. ◻n =
[−1, 1]n. (Cube also is a "prob-
abilistic" object: the law of large
numbers, the Shannon inequality.)
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1. If a continuous map n-cube
f
→

n-cube, f = {fi(xj)}, −1 ≤ xj ≤ 1,
i, j. = 1, ..., n,
sends each (n− 1)-face ∂i± ⊂ ∂◻n

to itself, fi ∶ (.... ± 1i....) ↦ ±1,
then f is onto, e.g. the equation
f(x) = 0 has a solution.
2. If Xi ⊂ ◻n, i = 1, ..., n, sepa-

rate the pairs of the opposite (n−1)-
faces ∂i± ⊂ ∂◻n, then the intersec-
tion ⋂iXi is non-empty.

3. Generalization, to X
n−mi
i ⊂

◻n = ◻m1 × ... × ◻mi × ... × ◻mk,
∑imi = n, where "separate" re-
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placed by "linked with" in the same
way as the axis of the 3d cylinder
is linked with its side boundary,
3 If a continuous maps f ∶ Rn →

Rn, satisfy ∣∣f(x), x∣∣ < ∣∣x∣∣ for ∣∣x∣∣ =
1, then the equation f(x) = 0 for
has a solution.
(Averaging set. A generalization of

mean values and spherical designs,
Seymour-Zaslavsky.)
Given finitely many continuous func-

tions fi, i ∈ I , on the unit inter-
val, there exists a finite subset S ⊂
[0, 1], such that

1
card(S)∑s∈S fi(s) = ∫

1
0 fi(t)dt,

(Caratheodory theorem about con-
vex hulls.)

Borsuk Ulam :
1. Topological ("Graph")Coloring
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Theorem,
Let the n-sphere be covered by

n + 1 open subsets. Sn = U1 ∪ ... ∪
U1∪ ...∪Un+1. Then some Ui con-
tains a pair of opposite points s and
−s.
2. Homological Intersection The-

orem,
LetXmi

i ⊂ Rn = Sn/Z2 = Rn+1/R×+
be smooth (piecewise smooth) sub-
manifolds such that ∑imi =. If
a "generic" (n − mi)-plane inter-
sects Xi at odd number of points,
then the intersection ⋂iXi is non-
empty|.
3. Onto Theorem, Continuous f ∶

Sn → Sn, such that f(x≠f(−x),
e.g. f(−x) = −f(x) are onto.
(Using the Borsuk-Ulam Theorem:

Lectures on Topological Methods in
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Combinatorics and Geometry, Jiri Ma-
tousek)
(The Borsuk-Ulam Theorem and Bi-

section of Necklaces Alon-West)
Every interval k-coloring has a bi-

section of size at most k. (Real mo-
ment map from the unit sphere Sn ⊂
Rn+1 to the simplex ∆n ⊂ Rn+1 for
MR ∶ (x0, x1, ..., xn)↦ (x2

0, x
2
1, ..., x

2
n).)

Serre Finiteness theorem. The space
of proper maps Rm+N → Rm+N

has finitely many components except
for two:
N = 0
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m is even and N = 2k − 1.
Category of Smooth Man-

ifolds
An X is a smooth n-manifold, if it

is is "locally indistinguishable" from
Rn in-so-far asC∞-differentiable maps
between domains in the Euclidean spaces
are concerned.
To make sense of this, let F be a

localizable and composable class of
maps between open subsets in Eu-
clidean spaces f ∶ Rn ⊃ U1 → U2 ⊂
Rm f = (f1, ..., fm) which contains
the identity maps.
An F -structure on a topological,

e.g. metric space X is a localiz-
able and composable class of maps
between open subsets from X and
these in the Euclidean spaces. (Such
an X is a new "book" added to the
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"library" U , which is written in the
same words as U and follows the same
F -grammar.)
Then maps between two such F -

spacesX1 →X2 are F if for al U1 →
X and Y → U2, Ui ⊂ Rni, the
composed maps U1 → U2 for U1 →
X1 → X2 → U2 are from F . A bi-
jective correspondence X1 ↔ X2 is
a F -isomorphism if it is mathcalF
in both directions.
Examples. Subspaces and factor

spaces.
IfF is the class ofC∞-differentiable

maps, then an F -space is a C∞-
manifold if it is locally isomorphic to
some Rn. (Smooth manifolds added
to the Euclidean library are like imag-
inable books written in English words
and sentences used by 3-years old chil-
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dren of American mathematicians.)
Examples. Submanifolds in Euclidean

spaces, e.g. the space of orthornomal
n-frames FrO(n)RN ⊂ RNn Ho-
mogeneous quotient spaces, such as
the Grassmannian GrN(Rn+N).
locally(!) given by (generic) equa-

tions.
All closed smooth n-manifolds X

are pullbacks of the Grassmannians
X0 = GrN(Rn+N) in the canoni-
cal vector bundle V ⊃X0 of rank N
under generic smooth proper maps
Rn+N ⊃ U → V (or from Sn+N =
Rn+N● → V●.) If N = 1 these are
levels sets of generic points of smooth
(proper) functions Rn+1 → R.
Examples. Submanifolds in Euclidean

spaces locally(!) given by (generic)
equations.
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Homogeneous quotient spaces

What are non=generic manifolds?
(Simons-Federer theorem)

Figure 2: Zermelo Choice Problem

Two solutions :
I. 1/2 probabiliy
II Mëbius Strip
Triangulated spaces.
Algorithms and Counting: (How many

triangulation spheres have?)
Almost definition: Homology classes

[C] ∈ Hi(X), classes of "compact
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oriented i-submanifolds C ⊂ X with
singularities of codimension two".
But:
closed self-intersecting curves in sur-

faces, and/or the double covering map
S1 → S1.
C ⊂ X may have singularities of

codimension one, and, besides orien-
tation, a locally constant integer val-
ued function on the non-singular lo-
cus of C.
dimension on closed subsets in smooth

manifolds: of monotonicity, locality
and max-additivity, i.e. dim(A ∪
B) = max(dim(A), dim(B)). is
monotone decresaig under generic smooth
maps of compact subsetsA, i.e. dim(f(A)) ≤
dim(A) and if f ∶ Xm+n → Y n

is a generic map, then f−1(A) ≤
dim(A) +m.
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"generic dimension" is theminimal
function with these properties which
coincides with the ordinary dimen-
sion on smooth compact submani-
folds. no problems if we do not take
limits of maps.
[smooth generic & piecewise linear;

generic piecewise smooth ; strata-
wise smooth]
An i-cycle C ⊂ X is a closed sub-

set in X of dimension i with a Z-
multiplicity function on C with the
following set decomposition of C.

C = Creg ∪C× ∪Csing,

such that
●Csing is a closed subset of dimension≤

i − 2.
● Creg is an open and dense subset

inC and it is a smooth i-submanifold
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in X .
C× ∪ Csing is a closed subset of

dimension ≤ i − 1. Locally, at ev-
ery point, x ∈ C× the union Creg ∪
C× is diffeomorphic to a collection
of smooth copies of Ri

+ in X , called
branches, meeting along their Ri−1-
boundaries where the basic example
is the union of hypersurfaces in gen-
eral position.
● The Z-multiplicity structure, is

given by an orientation of Creg and a
locally constant multiplicity/weight
Z-function on Creg, (where for i = 0
there is only this function and no ori-
entation) such that the sum of these
oriented multiplicities over the branches
of C at each point x ∈ C× equals
zero.
EveryC can be modified toC′ with
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empty C′
× and if codim(C) ≥ 1,

i.e. dim(X) > dim(C), also with
weights = ±1.
Double circle 2S1 can be separated

in two ways.
If 2l oriented branches of Creg with

multiplicities 1 meet at C×, divide
them into l pairs with the partners
having opposite orientations, keep these
partners attached as they meet along
C× and separate them from the other
pairs.
(The separation of branches is, say

with the total weight 2l, can be per-
formed in l! different ways: parasitic
structure)
A closed oriented n-manifold itself

makes an n-cycle which represents
the fundamental class [X] ∈Hn(X).
Other n-cycles are integer combina-
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tions of the oriented connected com-
ponents of X .
(i + 1)-Plaque D with a boundary

∂(D) ⊂D is the same as a cycle, ex-
cept that there is a subset ∂(D)× ⊂
D×, where the sums of oriented weights
do not cancel, where the closure of
∂(D)× equals ∂(D) ⊂D and where
dim(∂(D) ∖ ∂(D)×) ≤ i − 2
Two opposite canonical induced ori-

entations on the boundary C = ∂D.
Plaque can be "subdivided" D1 =

D2. D = 0 if the weight function on
Dreg equals zero.
−D the plaque with the either mi-

nus weight function or with the op-
posite orientation.
D = D1 + D2: a plaque D con-

taining both D1 and D2 as its sub-
plaques with the obvious addition rule
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of the weight functions.
D1 =D2 if D1 −D2 = 0.
The sum of generic plaques
is a plaque.
If D ⊂ X is an i-plaque (i-cycle)

then the image f(D) ⊂ Y under a
generic map f ∶ X → Y is an i-
plaque (i-cycle).
If dim(Y ) = i + 1, then the self-

intersection locus of the image f(D)
becomes a part of f(D)× and if dim(Y ) =
i+1, then the new part the ×-singularity
comes from f(∂(D)).
the pullback f−1(D) of an i-plaque

D ⊂ Y n under a generic map f ∶
Xm+n → Y n is an (i +m)-plaque
in Xm+n; if D is a cycle and the
map f is proper), then f−1(D) is
cycle.
All of this extends to piecewise smooth,
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e.g. piecewise linear spaces.
Homology. C1 and C2 in X are

homologous, C1 ∼ C2, if there is an
(i+ 1)-plaque D in X × [0, 1], such
that ∂(D) = C1 × 0 −C2 × 1.
For example every contractible cy-

cle C ⊂ X is homologous to zero,
since the cone over C in Y = X ×
[0, 1] corresponding to a smooth generic
homotopy makes a plaque with its
boundary equal to C.
Since small subsets in X are con-

tractible, a cycle C ⊂ X is homolo-
gous to zero if and only if it admits
a decomposition into a sum of "ar-
bitrarily small cycles", i.e. if, for ev-
ery locally finite covering X = ⋃iUi,
there exist cycles Ci ⊂ Ui, such that
C = ∑iCi.
The homology group Hi(X) is the
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Abelian group with generators [C]
for all i-cycles C in X and with the
relations [C1] − [C2] = 0 whenever
C1 ∼ C2.
Hi(X ;Q): C and D come with

fractional weights.
Examples. Every closed orientable

n-manifoldX with k connected com-
ponents has Hn(X) = Zk, where
Hn(X) is generated by the funda-
mental classes of its components.
every closed orientable manifold

X is non-contractible.
(on-contractibility of Sn and issu-

ing from this the Brouwer fixed point
theorem nearaly impossible within the
world of continuous maps without
using generic smooth or combinato-
rial ones, except for n = 1 with the
covering map R → S1 and for S2
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with the Hopf fibration S3 → S2.
The catch is that the difficulty is

hidden in the fact that a generic im-
age of an (n+ 1)-plaque e.g. a cone
over X) in X × [0, 1] is again an
(n + 1)-plaqueisue.
But no problem withH0(X) = Zk,

where k components is the number
of component.)
The spheres Sn have Hi(Sn) = 0

for 0 < i < n, since the complement
to a point s0 ∈ Sn is homeomorphic
to Rn and a generic cycles of dimen-
sion < n misses s0, while Rn, being
contractible, has zero homologies in
positive dimensions.
Continuous maps f ∶X → Y , when

generically perturbed, define homo-
morphisms f∗i ∶ Hi(X) → Hi(Y )
for C ↦ f(C) and that
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homotopic maps f1, f2 ∶ X → Y
induce equal homomorphismsHi(X)→
Hi(Y ).
Indeed, the cylindersC×[0, 1] gener-

ically mapped to Y × [0, 1] by ho-
motopies ft, t ∈ [0, 1], are plaque D
in our sense with ∂(D) = f1(C) −
f2(C).
It follows, that the
homology is invariant under ho-

motopy equivalences X ↔ Y for
manifolds X,Y as well as for tri-
angulated spaces.
Similarly, if f ∶ Xm+n → Y n is a

proper (pullbacks of compact sets are
compact) smooth generic map be-
tweenmanifolds where Y has no bound-
ary, then the pullbacks of cycles de-
fine homomorphism, denoted, f ! ∶Hi(Y )→
Hi+m(X), which is invariant under
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proper homotopies of maps.
The homology groups are much eas-

ier do deal with than the homotopy
groups, since the definition of an i-
cycle inX is purely local, while "spheres
inX" can not be recognized by look-
ing at them point by point – they are
not "sums" of their parts.
Homologically speaking, a space is

the sum of its parts: the locality al-
lows an effective computation of ho-
mology of spacesX assembled of sim-
pler pieces, such as cells, for exam-
ple.

Degree of a Map. Let f ∶
X → Y be a smooth (or piece-wise
smooth) generic map between closed
connected oriented equidimensional man-
ifolds
Then the degree deg(f) can be
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(obviously) equivalently defined either
as the image f∗[X] ∈ Z = Hn(Y )
or as the f !-image of the generator
[●] ∈ H0(Y ) ∈ Z = H0(X). For,
example, l-sheeted covering mapsX →
Y have degrees l. Similarly, one sees
that
finite covering maps between ar-

bitrary spaces are surjective on the
rational homology groups.
If a compacX allowed a non-empty

boundary, then f -pullback Ũy ⊂ X
of some (small) open neighbourhood
Uy ⊂ Y of a generic point y ∈ Y con-
sists of finitely many connected com-
ponents Ũi ⊂ Ũ , such that the map
f ∶ Ũi → Uy is a diffeomorphism for
all Ũi.
Thus, every Ũi carries two orienta-

tions: one induced from X and the
22



second from Y via f . The sum of +1
assigned to Ũi where the two orien-
tation agree and of −1 when they dis-
agree is called the local degree degy(f).
If two generic points y1, y2 ∈ Y can

be joined by a path in Y which does
not cross the f -image f(∂(X)) ⊂
Y of the boundary ofX , then degy1(f) =
degy2(f) since the f -pullback of this
path, (which can be assumed generic)
consists, besides possible closed curves,
of several segments in Y , joining ±1-
degree points in f−1(y1) ⊂ Ũy1 ⊂X

with ∓1-points in f−1(y2) ⊂ Ũy2.
The local degree does not depend

on y if X has no boundary. Then,
clearly, it coincides with the homo-
logically defined degree.
The local degree is invariant under

generic homotopies F ∶X ×[0, 1]→
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Y , where the smooth (typically dis-
connected) pull-back curve F−1(y) ⊂
X×[0, 1] joins ±1-points in F (x, 0)−1(y) ⊂
X =X×0 with ∓1-points in F (x, 1)−1(y) ⊂
X =X × 1.
Geometric Versus Algebraic

Cycles. The homology of a trian-
gulated space is algebraically defined
with Z-cycles which are Z-chains, i.e.
formal linear combinationsCalg = ∑s ks∆

i
s

of oriented i-simplices ∆i
s with in-

teger coefficients ks, where, by the
definition of "algebraic cycle" , these
sums have zero algebraic boundaries.
This is exactly the same as our generic

cycles Cgeo in the i-skeleton Xi of

X and, tautologically, Calg
taut↦ Cgeo

gives us a homomorphism from the
algebraic homology to our geometric
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one.
An (i + j)-simplex minus its cen-

ter can be radially homotoped to its
boundary. Then the obvious reverse
induction on skeleta of the triangula-
tion shows that the space X minus
a subset Σ ⊂X of codimension i+ 1
can be homotoped to the i-skeleton
Xi ⊂X .
Since every generic i-cycleC misses

Σ it can be homotoped to Xi where
the resulting map, say f ∶ C → Xi,
sends C to an algebraic cycle.
Similarly, the eqivalence of the two

definitions of homology is seen for all
cellular spaces X with piece-wise lin-
ear attaching maps.
(The usual definition of homology

of such an X amounts to working
with all i-cycles contained in Xi and
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with (i+ 1)-plaques in Xi+1. In this
case the group of i-cycles becomes
a subspace of the group spanned by
the i-cells, which shows, for example,
that the rank of Hi(X) does not ex-
ceed the number of i-cells in Xi.)
If X is a non-compact manifold,

one may drop "compact" in the def-
inition of these cycles. The resulting
group is denoted H1(X,∂∞). If X
is compact with boundary, then this
group of the interior of X is called
the relative homology groupHi(X,∂(X)).
(The ordinary homology groups of this
interior are canonically isomorphic to
those of X .)

Intersection Ring. The in-
tersection of cycles in general posi-
tion in a smooth manifold X defines
a multiplicative structure on the ho-
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mology of an n-manifoldX , denoted

[C1]⋅[C2] = [C1]∩[C2] = [C1∩C2] ∈Hn−(i+j)(X)
for [C1] ∈ Hn−i(X) and

[C2] ∈Hn−j(X),
where [C]∩ [C] is defined by inter-
secting C ⊂X with its small generic
perturbation C′ ⊂X .
(Here genericity is most useful: in-

tersection is painful for simplicial cy-
cles confined to their respective skeleta
of a triangulation. On the other hand,
if X is a not a manifold one may ad-
just the definition of cycles to the lo-
cal topology of the singular part of
X and arrive at what is called the
intersection homology.)
The intersection is respected by f !

for proper maps f , but not for f∗.
The former implies. in particular, that
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this product is invariant under ori-
ented (i.e. of degrees +1) homotopy
equivalences between closed equidi-
mensional manifolds. (But X × R,
which is homotopy equivalent to X
has trivial intersection ring, whichever
is the ring of X .)
The intersection of cycles of odd

codimensions is anti-commutative and
if one of the two has even codimen-
sion it is commutative.
The intersection of two cycles of

complementary dimensions is a 0-cycle,
the total Z-weight of which makes
sense if X is oriented; it is called the
intersection index of the cycles.
The intersection between C1 and

C2 equals the intersection of C1×C2
with the diagonal Xdiag ⊂X ×X .
Examples. (a) The intersection ring

28



of the complex projective space CP k

is multiplicatively generated by the
homology class of the hyperplane, [CP k−1] ∈
H2k−2(CP k), with the only relation
[CP k−1]k+1 = 0 and where, obvi-
ously, [CP k−i]⋅[CP k−j] = [CP k−(i+j)].
In fthe homology class [CP i] (ad-

ditiacvely) generatesHi(CP k), which
is seen by observing that CP i+1 ∖
CP i, i = 0, 1, ..., k − 1, is an open
(2i + 2)-cell, i.e. the open topolog-
ical ball B2i+2

op (where the cell at-
taching map ∂(B2i+2) = S2i+1 →
CP i is the quotient map S2i+1 →
S2i+1/T = CP i+1 for the obvious
action of the multiplicative group T
of the complex numbers with norm 1
on S2i+1 ⊂ C2i+1).
(b) The intersection ring of the n-

torus is isomorphic to the exterior al-
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gebra on n-generators, i.e. the only
relations between the multiplicative
generators hi ∈Hn−1(Tn) are hihj =
−hjhi, where hi are the homology
classes of the n coordinate subtori
Tn−1
i ⊂ Tn.
This follows from the Künneth for-

mula below, but can be also proved
directly with the obvious cell decom-
position of Tn into 2n cells.
The intersection ring structure im-

mensely enriches homology. Addi-
tively, H∗ = ⊕iHi is just a graded
Abelian group – the most primitive
algebraic object (if finitely generated)
– fully characterized by simple nu-
merical invariants: the rank and the
orders of their cyclic factors.
But the ring structure, say onHn−2

of an n-manifold X , for n = 2d de-
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fines a symmetric d-form, onHn−2 =
Hn−2(X) which is, a polynomial of
degree d in r variables with integer
coefficients for r = rank(Hn−2). All
number theory in the world can not
classify these for d ≥ 3 (to be certain,
for d ≥ 4).
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