Probability / Topology — Synopsis of lecture 2%

Misha Gromov,

October 5, 2022

50

PR
St S

Figure 1: Bacterial DNA: Linking and supercoiling .

[t is obvious one can’t unlink links,
e.g. unlink the "vertical" m-sphere
S™ from the infinite "hoizontal" (n-
1)-plane in the (m+n)-space R+ =
RM+ 1« R7=1 for "vertical" sphere
S™m c RM*+1 and the "horizontal"
Rn-1 c R(m+1)+(n-1)

This obvious "unlinking property"
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for n—1 =0 (almost obviously) im-
plies non-obvious
Browder’s fived point theorem.
every continuous map f for the unit

(m + 1)-ball B+l 5 §m to itself
has a fixed point.

flz) =z.

TOPOLOGY OF THE n-CUBE. O" =
[-1,1]". (Cube also is a "prob-
abilistic" object: the law of large
numbers, the Shannon inequality.)
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1. If a continuous map n-cube =
n-cube, f = {fz(x])} -1< T < I
ij.=1,..m

sends each (n —1)-face 9;, c 0"
to itself, fi: (. £1;...0) » 1,
then f is onto, eg. the equation
f(x) =0 has a solution.

2. F X, ca” 1 =1,....n, sepa-
rate the pairs of the opposite (n—1)-
faces 0;,. ¢ 0O", then the intersec-
tion (; X; is non-empty.

Base
_ GEEE
= —

3. Generalization, to X~ " c
O™ = 0" x ... x 3" x ... x Ok,

>im; = n, where "separate" re-
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placed by "linked with" in the same
way as the axis of the 3d cylinder
is linked with its side boundary,

3 It a continuous maps f : R" —
R, satisty || f (), 2| <[} for ||z[| =
1, then the equation f(z) =0 for
has a solution.

(Averaging set. A generalization of
mean values and spherical designs,
Seymour-Zaslavsky. )

Given finitely many continuous func-
tions f;, ¢ € I, on the unit inter-

val, there exists a finite subset S c
[0, 1], such that

1
a5y Sses Ji(s) = Jo fit)at
(Caratheodory theorem about con-
vex hulls.)

BORSUK ULAM :
1. Topological ("Graph")Coloring
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Theorem,

Let the n-sphere be covered by
n + 1 open subsets. S*=UyuU...U
Uyu...uU,41. Then some U; con-
tains a pair of opposite points s and
—S.

2. Homological Intersection The-
orem,

Let X! c R? = "7y = R R
be smooth (piecewise smooth) sub-
manifolds such that >;m; = If
a "generic" (n — m;)-plane inter-
sects X; at odd number of points,
then the intersection (N; X; is non-
empty/.

3. Onto Theorem, Continuous f :

S — ST such that f(x+f(-x),

e.q. f(-x)=-f(x) are onto.
(Using the Borsuk-Ulam Theorem:
Lectures on Topological Methods in
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Combinatorics and Geometry, Jiri Ma-
tousek )
(The Borsuk-Ulam Theorem and Bi-
section of Necklaces Alon-West)
Every interval k-coloring has a bi-
section of size at most k. (Real mo-

ment map from the unit sphere S™ c
R to the simplex A c R+ for

Serre Finiteness theorem. The space

of proper maps RM*N . Rm+N
has finitely many components except
for two:

N =0



m is even and N =2k - 1.

CATEGORY OF SMOOTH MAN-
[FOLDS

An X is a smooth n-manifold, if it
is is "locally indistinguishable" from
R™ in-so-tar as C'*°-differentiable maps
between domains in the Euclidean spaces
are concerned.

To make sense of this, let F be 2
localizable and composable class of
maps between open subsets in Eu-
clidean spaces f : R" > Uy - Uy c
R™ f =(f1,..., fm) which contains
the identity maps.

An F-structure on a topological,
e.g. metric space X is a localiz-
able and composable class of maps
between open subsets from X and
these in the Euclidean spaces. (Such
an X is a new "book" added to the
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Yibrary" U, which is written in the
same words as U and follows the same
F-grammar.)

Then maps between two such F-
spaces X1 — Xy are F if foral Uy —
X and Y — Uy, U; c R", the
composed maps Uy - Uy for Uy —
X1 = X9 = Uy are from F. A bi-
jective correspondence X7 <> Xo is
a F-isomorphism it it is mathcal F
in both directions.

Examples. Subspaces and factor
spaces.

It F is the class of C'*°-ditferentiable
maps, then an F-space is a (-
manifold if it is locally isomorphic to
some R™. (Smooth manifolds added
to the Euclidean library are like imag-
inable books written in English words
and sentences used by 3-years old chil-
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dren of American mathematicians.)

Examples. Submanifolds in Euclidean
spaces, e.g. the space of orthornomal
n-frames FTO(R)RN c RN? Ho-
mogeneous quotient spaces, such as
the Grassmannian Grp(R?+V).

locally(!) given by (generic) equa-
tions.

All closed smooth n-manifolds X
are pullbacks of the Grassmannians
Xy = Gry(R™NY) in the canoni-
cal vector bundle V' > Xq of rank N
under generic smooth proper maps
RN 5 U -V (or from SN =
RN V. ) If N =1 these are
levels sets of generic points of smooth
(proper) functions R+l — R

Examples. Submanifolds in Euclidean
spaces locally(!) given by (generic)
equations.



Homogeneous quotient spaces

What are non=generic manifolds?’
(Simons-Federer theorem)

Figure 2: Zermelo Choice Problem

Two solutions :

|. 1/2 probabiliy

[l Mébius Strip

Triangulated spaces.

Algorithms and Counting: (How many
triangulation spheres have?)

Almost definition. Homology classes
[C] € H;(X), classes of "compact
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oriented ¢-submanifolds C' ¢ X with
singularities of codimension two".

But:

closed self-intersecting curves in sur-
faces, and/or the double covering map
Sl gh

C' ¢ X may have singularities of
codimension one, and, besides orien-
tation, a locally constant integer val-
ued function on the non-singular lo-
cus of C.

dimension on closed subsets in smooth
manifolds: of monotonicity, locality
and max-additivity, i.e. dim(A U
B) = max(dim(A),dim(B)). is
monotone decresaig under generic smooth
maps of compact subsets A, i.e. dim(f(A)) <
dim(A) and if f: XM+  y™n
is a generic map, then f71(A) <
dim(A) +m.
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"generic dimension" is the minimal
function with these properties which
coincides with the ordinary dimen-
sion on smooth compact submani-
folds. no problems if we do not take
limits of maps.

[smooth generic & piecewise linear~
generic piecewise smooth ~» strata-
wise smooth]

An i-cycle C' c X is a closed sub-
set in X of dimension ¢ with a Z-
multiplicity function on C' with the
following set decomposition of C'

C - Cfreg U Cx U CSinga

such that

e Csing is a closed subset of dimension<
1 — 2.

® Creg is an open and dense subset
in C'and it is a smooth ¢-submanifold
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in X.

Cx U Cgipg is a closed subset of
dimension < ¢ — 1. Locally, at ev-
ery point, z € Cx the union Cheq U
C'x is diffeomorphic to a collection
of smooth copies of Ri in X, called
branches, meeting along their R*~1-
boundaries where the basic example
is the union of hypersurfaces in gen-
eral position.

o [he Z-multiplicity structure, is
given by an orientation of Creq and a
locally constant multiplicity /weight
Z-function on Cyeg, (where for 7 = 0
there is only this function and no ori-
entation) such that the sum of these
oriented multiplicities over the branches
of C' at each point © € Cx equals
Zero.

Every C' can be modified to C' with
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empty C5 and if codim(C) > 1,
e, dim(X) > dim(C), also with
weights = +1.

Double circle 251 can be separated
In two ways.

If 20 oriented branches of Cj¢q with
multiplicities 1 meet at Cx, divide
them into [ pairs with the partners
having opposite orientations, keep these
partners attached as they meet along
C'x and separate them from the other
palrs.

(The separation of branches is, say
with the total weight 2[, can be per-
formed in {! different ways: parasitic
structure)

A closed oriented n-manifold itself
makes an n-cycle which represents

the fundamental class [ X ]| € Hp(X).

Other n-cycles are integer combina-
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tions of the oriented connected com-
ponents of X .

(2 + 1)-Plaque D with a boundary
J(D) c D is the same as a cycle, ex-
cept that there is a subset 9(D)x c
Dy, where the sums of oriented weights
do not cancel, where the closure of
0(D)x equals 9(D) c D and where
dim(O(D)N90(D)x) <1 -2

Two opposite canonical induced ori-
entations on the boundary C'=0D.

Plaque can be "subdivided" Dy =
Doy. D =0 if the weight function on
Dyeg equals zero.

—D the plaque with the either mi-
nus weight function or with the op-
posite orientation.

D = Dy + Dy a plaque D con-
taining both Dy and D9 as its sub-
plaques with the obvious addition rule
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of the weight functions.

Di1=Dy it Dy —Dy=0.

THE SUM OF GENERIC PLAQUES

IS A PLAQUE.

If D c X s an i-plaque (i-cycle)
then the image f(D) c'Y under a
generic map f : X - Y s an i-
plaque (i-cycle).

If dim(Y) =7+ 1, then the self-
intersection locus of the image (D)
becomes a part of f(D)x andif dim(Y) =
1+1, then the new part the x-singularity

comes from f(0(D)).

the pullback f~1(D) of ani-plaque
D c Y™ under a generic map f :
XN 5 Y s an (i + m)-plaque
i XMt D s a cycle and the
map f is proper), then f~1(D) is
cycle.

All of this extends to piecewise smooth,
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e.g. piecewise linear spaces.

Homology. C7 and Cy in X are
homologous, C ~ Co9, if there is an
(i +1)-plaque D in X x [0,1], such
that 9(D) =Cy x0-Cyx 1.

For example every contractible cy-
cle C' ¢ X 1s homologous to zero,
since the cone over C' in Y = X x
[0, 1] corresponding to a smooth generic
homotopy makes a plaque with its
boundary equal to C'.

Since small subsets in X are con-
tractible, a cycle C' ¢ X is homolo-
gous to zero if and only if it admits
a decomposition into a sum of "ar-
bitrarily small cycles", i.e. if, for ev-
ery locally finite covering X = U, U,
there exist cycles C; c Uj;, such that

The homology group H;( X)) is the
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Abelian group with generators [C]
for all 7-cycles C' in X and with the
relations [C] = [C5] = 0 whenever
C~Ch.

H;(X:;Q): C and D come with
fractional weights.

Examples. Every closed orientable
n-manifold X with k& connected com-
ponents has H,(X) = ZF, where
Hy,(X) is generated by the funda-
mental classes of its components.

every closed orientable manifold
X 1s non-contractible.

(on-contractibility of S™ and issu-
ing from this the Brouwer fixed point
theorem nearaly impossible within the
world of continuous maps without
using generic smooth or combinato-
rial ones, except for n = 1 with the
covering map R — Sl and for 5?2
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with the Hopf fibration S3 — S2.

The catch is that the difficulty is
hidden in the fact that a generic im-
age of an (n+1)-plaque e.g. a cone
over X) in X x [0,1] is again an
(n + 1)-plaqueisue.

But no problem with Hy(X) = ZF,
where k components is the number
of component.)

The spheres S™ have H;(S™) =0
for 0 < 72 < n, since the complement
to a point sg € S™ is homeomorphic
to R™ and a generic cycles of dimen-
sion < n misses sy, while R™ being
contractible, has zero homologies in
positive dimensions.

Continuous maps f : X = Y when
generically perturbed, define homo-
morphisms f,; : H;(X) - H;(Y)
for C'+ f(C) and that
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homotopic maps f1,fo: X =Y
induce equal homomorphisms H;(X) —
H;(Y).

Indeed, the cylinders C'x[0, 1] gener-
ically mapped to Y x [0,1] by ho-
motopies ft, t € [0, 1], are plaque D
in our sense with (D) = f1(C) -
f2(C).

It follows, that the

homology 1s invariant under ho-
motopy equivalences X < Y for
manifolds X,Y as well as for tri-
anqgulated spaces.

Similarly, it f: X™M* » Y7 s 3
proper (pullbacks of compact sets are
compact) smooth generic map be-
tween manifolds where Y has no bound-
ary, then the pullbacks of cycles de-
fine homomorphism, denoted, f': H;(Y) —»
H;,n(X), which is invariant under
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proper homotopies of maps.

The homology groups are much eas-
ier do deal with than the homotopy
groups, since the definition of an -
cycle in X is purely local, while "spheres
in X" can not be recognized by look-
ing at them point by point — they are
not "sums" of their parts.

Homologically speaking, a space s
the sum of its parts: the locality al-
lows an effective computation of ho-
mology of spaces X assembled of sim
pler pieces, such as cells, for exam-
ple.

Degree of a Map. Let f:
X =Y be a smooth (or piece-wise
smooth) generic map between closed
connected oriented equidimensional man-

ifolds
Then the degree deg(f) can be
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(obviously) equivalently defined either
as the image f«|X] e Z = Hy(Y)
or as the f-image of the generator
[o] € Ho(Y) € /L = H()(X) For,
example, [-sheeted covering maps X —
Y have degrees [. Similarly, one sees
that

finite covering maps between ar-
bitrary spaces are surjective on the
rational homology groups.

It a compac X allowed a non-empty
boundary, then f-pullback (NJy c X
of some (small) open neighbourhood
Uy c Y of a generic pointy € Y con-
sists of finitely many connected com-
ponents U; c U, such that the map
f:U; - Uy is a diffeomorphism for
all U;.

Thus, every (72 carries two orienta-
tions: one induced from X and the
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second from Y via f. The sum of +1
assigned to U; where the two orien-
tation agree and of —1 when they dis-
agree is called the local degree degy (f).

If two generic points y1,y9 € Y can
be joined by a path in Y which does
not cross the f-image f(O(X)) c
Y of the boundary of X, then degy, (f) =
degy,(f) since the f-pullback of this
path, (which can be assumed generic)
consists, besides possible closed curves,
of several segments in Y, joining +1-
degree points in f~1(y;) c 0y1 c X
with F1-points in f~1(ys) c UyQ.

The local degree does not depend
on y if X has no boundary. Then,
clearly, it coincides with the homo-
logically defined degree.

The local degree is invariant under
generic homotopies F': X x[0,1] —
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Y, where the smooth (typically dis-
connected) pull-back curve F=1(y) c

X x[0,1] joins £1-pointsin F'(x,0) 1(y) c
X = Xx0with F1-pointsin F(x,1)~(y) c
X =Xx1

Geometric Versus Algebraic
Cycles. The homology of a trian-
gulated space is algebraically defined
with Z-cycles which are Z-chains, i.e.
formal linear combinations C'y;, = X ks AL
of oriented i-simplices AL with in-
teger coefficients kg, where, by the
definition of "algebraic cycle" | these
sums have zero algebraic boundaries.

This is exactly the same as our generic

cycles Cyeo in the i-skeleton X; of

. taut
X and, tautologically, Cyy, s Cyeo

gives us a homomorphism from the
algebraic homology to our geometric
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one.

An (7 + j)-simplex minus its cen-
ter can be radially homotoped to its
boundary. Then the obvious reverse
induction on skeleta of the triangula-
tion shows that the space X minus
a subset ) ¢ X of codimension 7+ 1
can be homotoped to the i-skeleton
Xi c X.

Since every generic i-cycle C' misses
> it can be homotoped to X; where
the resulting map, say f : C' - X,
sends C' to an algebraic cycle.

Similarly, the eqivalence of the two
definitions of homology is seen for all
cellular spaces X with piece-wise lin-
ear attaching maps.

(The usual definition of homology
of such an X amounts to working
with all 2-cycles contained in X, and
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with (z+ 1)-plaques in X;,1. In this
case the group of i-cycles becomes
a subspace of the group spanned by
the 7-cells, which shows, for example,

that the rank of H;(X') does not ex-

ceed the number of i-cells in Xj.)

It X is a non-compact manifold,
one may drop "compact" in the def-
inition of these cycles. The resulting
group is denoted H{(X,000). If X
is compact with boundary, then this
group of the interior of X is called
the relative homology group H;(X,0(X)).
(The ordinary homology groups of this
interior are canonically isomorphic to
those of X )

Intersection Ring. The in-
tersection of cycles in general posi-
tion in a smooth manifold X defines
a multiplicative structure on the ho-
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mology of an n-manifold X', denoted
[C1]C2] = [C1]n[Ca] = [C1nCa] € H,_ ;. 5(

for [C1] € H,_;(X) and

[02] < Hn—j(X)'
where [C'] n[C'] is defined by inter-
secting C' ¢ X with its small generic
perturbation C' c X

(Here genericity is most useful: in-
tersection is painful for simplicial cy-
cles confined to their respective skeleta
of a triangulation. On the other hand,
it X is a not a manifold one may ad-
just the definition of cycles to the lo-
cal topology of the singular part of
X and arrive at what is called the
intersection homology.)

The intersection is respected by f'
for proper maps f, but not for fs.
The former implies. in particular, that
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this product is invariant under ori-
ented (i.e. of degrees +1) homotopy
equivalences between closed equidi-
mensional manifolds. (But X xR,
which is homotopy equivalent to X
has trivial intersection ring, whichever
is the ring of X )

The intersection of cycles of odd
codimensions is anti-commutative and
if one of the two has even codimen-
sion It Is commutative.

The intersection of two cycles of
complementary dimensions is a 0-cycle,
the total Z-weight of which makes
sense if X is oriented: it is called the
intersection index of the cycles.

The intersection between C' and
(9 equals the intersection of C'y xCY
with the diagonal X g4, € X x X

Examples. (a) The intersection ring
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of the complex projective space C P
is multiplicatively generated by the
homology class of the hyperplane, [CP¥~1] e
Hoi_o(CPF), with the only relation
[CPE-115+1 = (0 and where, obvi-
ously, [CPF-1].[CPk~J] = [CPk-(i+1)]
In fthe homology class [CP!] (ad-
ditiacvely) generates H;(CPF), which
is seen by observing that CP!*1 \
CP! i =0,1,....k -1, is an open
(2¢ + 2)-cell, i.e. the open topolog-
ical ball B2, (where the cell at-
taching map 9(B%+2) = g2+l
CP? is the quotient map S4+l —
S2+1IT = CP™!L for the obvious
action of the multiplicative group T
of the complex numbers with norm 1
on §2i+1 ¢ C2i+1)
(b) The intersection ring of the n-
torus is isomorphic to the exterior al-
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gebra on n-generators, i.e. the only
relations between the multiplicative
generators h; € Hy_1(T™) are h;h; =
—hjh;, where h; are the homology
classes of the n coordinate subtori
-1 cTn

zI—his follows from the Kiinneth for-
mula below, but can be also proved
directly with the obvious cell decom-
position of T™ into 2™ cells.

The intersection ring structure im-
mensely enriches homology. Addi-
tively, Hy = @®;H; is just a graded
Abelian group — the most primitive
algebraic object (if finitely generated)
— fully characterized by simple nu-
merical invariants: the rank and the
orders of their cyclic factors.

But the ring structure, say on H,,_9

of an m-manifold X, for n = 2d de-
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fines a symmetric d-form, on H,,_o =
H,,_o(X) which is, a polynomial of
degree d in r variables with integer
coefficients for r = rank(H,,_2). All
number theory in the world can not

classify these for d > 3 (to be certain,
for d >4).

31



