Revision I: Cubes \rightarrow Cubes and Averaging Sets.

Misha Gromov

October 17, 2022

Figure 1: Topology and probability in action: linking and supercoiling of bacterial DNA.

Topology of the n-CUBE. $\square^{n}=[-1,1]^{n}$. (Probabilistic perspective on the cube, the law of large number and the Shannon inequality will be in another lecture.)
A. If a continuous map between cubes

$$
f: \square^{n} \rightarrow \underline{\square}^{n},
$$

that is an n-tuple of continuous functions $\left.f_{i}\left(x_{j}\right)\right\},-1 \leq x_{j} \leq 1, i, j$. $=1, \ldots, n$,

$$
f_{i}: \square^{n} \rightarrow[-1,1], i=1, \ldots n,
$$

sends each $(n-1)$-face $\partial_{i \pm} \subset \partial \square^{n}$ to the corresponding face $\partial_{i \pm} \square^{n}$, i.e.

$$
f_{i}:\left(\ldots \pm 1_{i} \ldots\right) \mapsto \pm 1
$$

then f is onto, the equation $f(x)=y$ has a solution for all $y=\left(y_{1}, \ldots y_{n}\right) \in \square^{n}$.
Equivalent formulation.
B.If closed subsets $X_{i} \subset \square^{n}, i=1, \ldots, n$, separate the pairs of the opposite ($n-1$)-faces $\partial_{i \pm} \subset \partial \square^{n}$, then the intersection $\bigcap_{i} X_{i}$ is non-empty.
$\mathbf{B} \Longrightarrow \mathbf{A}$. To solve $f(x)=\left(y_{1}, \ldots, y_{n}\right)$ let X_{i} be the set of $x \in \square^{n}$, where $f_{i}(x)=y_{i}$.
$\mathbf{A} \Longrightarrow \mathbf{B}$. Given a closed separating $X_{i} \subset \square^{n}$, let $f_{i}(X)$ be a function with the zero set X_{i} and such that $f_{i}(\mp 1)=\mp 1$.
C. We shall proof A and B. by a homology theoretic argument in lecture??? which, at least in the A-form, applies to face respecting maps between general polyhedral spaces.
D. Besicovitch-Derrick Distance/Volume Inequality. ${ }^{1}$ Let \tilde{a}^{n} be the cube with a Riemannin metric g on it, e.g. it is an Euclidean domain homeomorphic to the cube.

If the g-distances between the opposite $(n-1)$-faces of $\tilde{\square}^{n}$ are $\geq d_{i}, i=1, \ldots, n$, then the g-volume of $t \tilde{\square}^{n}$ is bounded from below by the product of d_{i}

$$
\operatorname{vol}\left(\tilde{\square}^{n}\right) \geq d_{1} \cdot \ldots \cdot d_{n} .
$$

(The g-distance between two subsets is the infimum of the g-lengths of the curves jining these subsets.)

Proof. Let $\delta_{i \pm}(x)$ be the distances from $x \in \tilde{\square}^{n}$ to the pairs of the i-th faces of the cube and let $f_{i}(x)=\min \left(\delta_{i+}(x), d_{i}\right)$.

The resulting map $f=f_{1}, \ldots . f_{n}$, sends $\tilde{\square}$ onto the solid $\left[0, d_{1}\right] \times \ldots \times\left[0, d_{n}\right]$, since, by the construction, faces go to faces.

Since f_{i} are distance functions, they are almost everywhere differentiable with unit gradients, i.e. $\|d f\|=1$, and, by the (obvious) Hadamard inequality, the Jacobian of f is almost everywhere is ≤ 1. (If you don't like "almost everywhere" approximate f_{i} by smooth functions with $\|\operatorname{grad}\| \leq 1+\varepsilon$ and let $\varepsilon \rightarrow 0$.)

Thus $\operatorname{vol}\left(\tilde{\square}^{n} \leq \operatorname{vol}\left(\times_{i}\left[-. d_{i}\right]\right)\right.$. QED.
E. "Segments" and "Cubes" . A compact connected metric space S with two distinguished points $\tilde{0}, \tilde{1} \in S$ is called a "segment", where $\tilde{0}$, and $\tilde{1}$ are regarded as "vertices".

The product $\tilde{\square}^{n}=\times_{i}^{n}\left[S_{i}, \tilde{0}_{i}, \tilde{1}_{i}\right], i=1, \ldots, n$, is caled the n-"cube" on the vertex set $\times_{i}\left\{"{ }^{2} \tilde{0}_{i}, \tilde{1}_{i}\right\}$.

The (K, ν)-face S_{ν}^{K} in such a "cube" for $K \subset\{1, \ldots, N\}$ and $\nu \in \times_{i \notin K}\left\{\tilde{0}_{i}, \tilde{1}_{i}\right\}$ is

$$
S_{\nu}^{K}=\underset{i \in K}{X}\left(S_{i}, \tilde{0}_{i}, \tilde{1}_{i}\right) \times \nu \subset \tilde{\square}^{N}
$$

F. If a continuous map from an N-"cube" to the true N-cube,

$$
f: \tilde{\square}^{n}=\underset{1}{N}\left[S_{i}, \tilde{0}_{i}, \tilde{1}_{i}\right] \rightarrow[0,1]^{N},
$$

sends each face from the "cube" to the the corresponding one in the cube, then the map f is onto.

Proof. Join $\tilde{0}_{i}$ with $\tilde{1}_{i}$ by a chain of N_{i} consecutively mutually ε-close points in S_{i}, replace S_{i} by the unit segment $[0,1]$ divided into $N_{i}+1$ equal subsegments and reduce \mathbf{F} to \mathbf{A}, where $S_{i}=[0,1]$, with $\varepsilon \rightarrow 0$.

Speaking formally, let $\sigma_{i, \varepsilon}:\left\{0,1, \ldots . N_{i}\right\} \rightarrow S, \varepsilon>0$ be maps such that $\sigma_{i}(0)=\tilde{0}_{i}, \sigma_{i}\left(N_{i}\right)=\tilde{\mathcal{I}}_{i}$, and $\left.\operatorname{dist}(j, j+1) \leq \varepsilon\right)$ for all $i \in\left\{0,1, \ldots N_{i}\right\}$ and all i, let

$$
\Sigma_{\varepsilon}={\underset{X}{X}}_{i}^{n} \sigma_{i}: \underset{1}{n}\left\{0,1, \ldots . N_{i}\right\} \rightarrow \tilde{\square}^{n}
$$

and

$$
\Phi_{\varepsilon}=f \circ \Sigma_{\varepsilon}: \stackrel{n}{\neq}\left\{0,1, \ldots . N_{i}\right\} \rightarrow[0,1]^{n} .
$$

[^0]Identify the sets $\left\{0,1, \ldots . N_{i}\right\}$ with the subsets $\left\{\frac{j}{N_{i}}\right\}_{j=1, \ldots, N_{i}} \subset[0,1]$ and extend the $\operatorname{map} \Phi_{\varepsilon}$ to a continuous map $\Psi_{\varepsilon}:[0,1]^{n} \rightarrow[0,1]^{n}$, which is obtained by consecutive peacewise linear interpolation with conical extension of maps from the boundaries of faces of small cubes. to these faces.

Since the maps Ψ_{ε} are onto, the maps Φ_{ε} have ϵ-dense images in $[0,1]^{n}$, where $\epsilon \rightarrow 0$ for $\varepsilon \rightarrow 0$ and the onto property of f follows with $\varepsilon \rightarrow 0 .{ }^{2}$
G. ε-Corollary. If a continuous map

$$
f: \tilde{\square}^{n}={\underset{1}{X}}_{N}^{N}\left[S_{i}, \tilde{0}_{i}, \tilde{1}_{i}\right] \rightarrow \mathbb{R}^{n} \supset[0,1]^{N},
$$

sends each face from the "cube" ε-close to the corresponding face of $[0,1]^{n}$, then the image f contains all points in $[0,1]^{n}$, which lie ε-far from the boundary $\partial[0,1]^{n}$.

Proof. Let $\operatorname{dist}\left(z_{0}, \partial[0,1]^{n}\right)>\varepsilon$ and let $\phi_{0}:[0,1]^{n} \rightarrow[0,1]^{n}$ be a continuous map, such that $\phi_{0}(z)=z$ on the boundary of the cube and in a small neighbourhood of z_{0} and which sends the ε-neighbourhoods of the faces of $[0,1]^{n}$ to these very faces.

Then \mathbf{F} applies to the composed map $\phi_{0} \circ f: \tilde{\square}^{n} \rightarrow[0,1]^{n}$ and \mathbf{G} follows.
$* *$
H. The convex hull of a subset $X \subset \mathbb{R}^{n}$ is the set of all convex combinations

$$
z=\sum_{j=1}^{N} p_{j} x_{j}, x_{j} \in X, p_{j} \geq 0, \sum_{j} p_{j}=1,
$$

where, this is called Caratheodory theorem,
if $z=\sum_{j=1}^{N} p_{j} x_{j}$, then there exists a subset $K \subset J=\{1, \ldots, N\}$ of cardinality $n+1$, such that $z=\sum_{k=1}^{n+1} q_{k} x_{k}$, for some $q_{k} \geq 0, \sum_{k} q_{k}=1$.

In fact, the convex polyhedron $\operatorname{conv}\left\{x_{j}\right\}$ can be (obviously) subdivided into simplices with vertices in $\left\{x_{j}\right\}$.

A point z in the convex hull of $X \subset \mathbb{R}^{n}$ is called X-rational if it is equal to a convex combination of points from X with rational weights,
$\left[p_{j}\right]$

$$
z=\sum_{j=1}^{N} p_{j} x_{j}, x_{j} \in X
$$

where $p_{i} \geq 0$ are rational numbers, such that $\sum_{j} p_{i}=1$.
Equivalently, X-rational points $z \in \operatorname{conv}(X)$ are centers of mass of finite multisets ${ }^{3}$ from X,
$[1 / M]$

$$
z=\frac{1}{M} \sum_{k=1}^{M} x_{k}
$$

where $\left[p_{j}\right] \Longrightarrow[1 / M]$ for M equal the common denominator of the numbers p_{j}.
I. SZ Theorem. ${ }^{4}$ If a compact subset $X \subset \mathbb{R}^{n}$ contains $2 n$ point $\underline{x}_{i}, \underline{y}_{i} \in X$, $i=1, \ldots, n$, such that the n vectors $\underline{x}_{i}-\underline{y}_{i} \in \mathbb{R}^{n}$ are linearly independent and such

[^1]that \underline{x}_{i} and \underline{y}_{i} lie in the same connected component of X for all $i=1, \ldots, n$, then all points in the interior of the convex hull of X, are X-rational.

Proof. Since rational numbers are dense in \mathbb{R} the X-rational points are dense in the convex hull of X and it suffices to show that the "rational interior" of the convex hull $\operatorname{conv}(X)$ is non-empty: $\operatorname{conv}(X)$ contains a ball of positive radius, say $B_{\underline{z}}^{n}(\underline{\delta}) \subset \operatorname{conv}(X), \underline{z} \in X, \underline{\delta}>0$, such that all points in this ball X-rational

In fact, the existence of an X-rational ball $\underline{B}=B_{z}^{n}(\underline{\delta})$ implies the existence of rational δ-balls around all points $z \in \operatorname{conv}(S), B=\bar{B}_{z}(\delta)$, where δ is bounded from below essentially by the distance from z to the boundary of $\operatorname{conv}(X)$, namely

$$
\delta \geq \frac{(\underline{\delta} \cdot \operatorname{dist}(z, \partial \operatorname{conv}(X))}{2 \operatorname{diam}(X)}
$$

Indeed, let us extend the straight segment between \underline{z} and z to the boundary of the ball $B_{z}(d), d=\operatorname{dist}(z, \partial \operatorname{conv}(X)$, let

$$
\left[z_{0}, \underline{z}\right] \subset \operatorname{conv}(X)
$$

be the extended segment with $z_{0} \in \partial B_{z}(d)$ and with $z \in\left[z_{0}, \underline{z}\right]$, where $\left\|z-z_{0}\right\|=d$.
Let $z_{0}^{\prime} \subset \operatorname{conv}(X)$ be an X-rational point ϵ-close to z_{0} for

$$
\epsilon \leq \frac{\operatorname{dist}\left(z_{0}^{\prime}, \underline{z}\right)}{10 \operatorname{dist}(z, \partial \operatorname{conv}(X))}
$$

Now, the ball $B=B_{z}(\delta)$ for

$$
\delta=\frac{\underline{\delta} \cdot \operatorname{dist}\left(z_{0}^{\prime}, \underline{z}\right)}{2 \operatorname{dist}(z, \partial \operatorname{conv}(X))}-\epsilon
$$

is the required X-rational one, since all points in it are are convex combinations $N z_{0}^{\prime}+(1-N) b, b \in \underline{B}$, for an integer N, such that

$$
\left|N-\frac{\operatorname{dist}\left(z_{0}^{\prime}, \underline{z}\right)}{\operatorname{dist}(z, \partial \operatorname{conv}(X))}\right| \leq 1
$$

With the above understood, the proof of the theorem reduces to the following.
J. Lemma. Let $\square^{n} \subset \mathbb{R}^{n}$ be the Minkovski mean of the straight segments $\left[\underline{x}_{i}, \underline{y}_{i}\right] \subset \mathbb{R}^{n}$, that is the set of the averages

$$
\frac{1}{n} \sum_{i} z_{i}, z_{i} \in\left[\underline{x}_{i}, \underline{y}_{i}\right] \subset \operatorname{conv}(X)
$$

Then all points in the interior of \square^{n} are X-rational. .
Proof. Let us show the existence of subsets, or rather multisets, in the connected components $S_{i} \subset X$ of $\underline{x}_{i} \in X$,

$$
\left\{x_{i, j}\right\} \subset S_{i}, i=1, \ldots, n, j=1, \ldots, N
$$

such that all interior points $z \in \operatorname{int}\left(\square^{n}\right)$ are representable as

$$
z=\frac{1}{n N} \sum_{i, j} x_{i j}
$$

for sufficiently large $N=N(z)$.
Definition of "Chain Segment". Given a "segment" [S, $0, \tilde{1}]$ let the $N * S$ chain in the N-"cube" $[S, \tilde{0}, \tilde{1}]^{N}$ be the union of the N consecutive "edges" E_{j} in this cube, which join the diagonally opposite "vertices" $(\underbrace{\tilde{0}, \ldots, \tilde{0}}_{N})$ and $(\underbrace{\tilde{1}, \ldots \tilde{1}}_{N})$,

$$
E_{j}=\{\underbrace{\tilde{0}, \ldots, \tilde{0}}_{j-1}, s, \underbrace{\tilde{1}, \ldots \tilde{1}}_{N-j}\}_{s \in S} \subset[S, \tilde{0}, \tilde{1}]^{N}
$$

where this chain $[N * S]=\bigcup_{i=1}^{N} E_{i}$ is itself a "segment" with the "vertices" $(\underbrace{\tilde{0}, \ldots, \tilde{0}}_{N})$ and $(\underbrace{\tilde{1}, \ldots \tilde{1}}_{N})$.

Let $\phi: S \rightarrow \mathbb{R}^{n}$ be a continuous map and let

$$
N * \phi:[N * S] \rightarrow \mathbb{R}^{n}
$$

send $\left(s_{1}, \ldots s_{N}\right) \in N * S \subset S^{N}$ to the center of mass of the N image points $\phi\left(s_{j}\right) \in \mathbb{R}^{n}, j=1, \ldots, N$,

$$
N * \phi:\left(s_{1}, \ldots s_{N}\right) \mapsto \frac{1}{N} \sum_{1}^{N} \phi\left(s_{j}\right) .
$$

Clearly, the "division points" from the chain, that are

$$
\{\underbrace{\tilde{0}, \ldots, \tilde{0}}_{j}, \underbrace{\tilde{1}, \ldots \tilde{1}}_{N-j}\},
$$

lands in the segment $\left[\phi(\tilde{0}),[\phi(\tilde{1})] \subset \mathbb{R}^{n}\right.$, such that

- these points divide this segment into N equal subsegments,
- the image of the j-th copy of S in $N * S$ goes to the δ-neighbourhood
of the j-th subsegment in [$\phi(\tilde{0}),[\phi(\tilde{1})]$, where δ is small when N is much greater than the diameter of the ϕ-image of S in \mathbb{R}^{n} :

$$
\delta \leq \frac{\operatorname{diam}(\phi(S))}{\sqrt{N}}
$$

Next let $S_{i} \subset X$ be the common connected components of $\underline{x}_{i}, \underline{y}_{i} \in X$, where we set $\tilde{0}_{i}=\underline{x}_{i}$ and $\tilde{1}_{i}=\underline{y}$, and let $N * S_{i} \subset S_{i}^{N}$ be their chain "segments" $N * S_{i}$.

Map $\times_{1}^{n}\left[N * S_{i}\right] \rightarrow \overline{\operatorname{conv}}(X)$ by

$$
\Phi_{N}: s_{i, j} \mapsto \frac{1}{n} \sum_{i=1}^{n} \frac{1}{N} \sum_{j=1}^{N} s_{i, j}
$$

where, by the above, with ϕ_{i} being the imbeddings $S_{i} \hookrightarrow \mathbb{R}^{n}$,
the map Φ_{N} sends each face of the n-"cube" $\times 1$ n $\left[N * S_{i}\right]$ to the δ-neighbourhood of the corresponding face in \square^{n}, for

$$
\delta \leq \frac{\sum_{1}^{n} \operatorname{diam}\left(\phi_{i}\left(S_{i}\right)\right)}{\sqrt{N}} .
$$

Finally, the ε-Corollary \mathbf{G} applies and the proof follows.
K. From Multisets to Sets. The X-rationality of a point z implies the exiatence ofsgives of a multiset in X with the center of mass z but the above proof allows effortless disengagement of multiple points by small perturbations. Therefore,
all points in the interior of conv (X) are representable by centers of mass of (true) finite subsets in X.
L. The original formulation of I reads:
Let X be a compact connected ${ }^{5}$ space with a probability (total mass one) Borel measure $d x$, which is strictly positive on non-empty open subsets in X and let $f_{i}(x), i=1, \ldots, n$, be continuous functions on X. Then there exists a finite subset $\Sigma \in X$ such that

$$
\frac{1}{\operatorname{card}(\Sigma)} \sum_{\sigma \in \Sigma} f_{i}(\sigma)=\int_{X} f_{i}(x) d x
$$

for all $i=1, \ldots, n$.
Reduction $\boldsymbol{L} \Longrightarrow \boldsymbol{K} . \operatorname{Map} X \rightarrow \mathbb{R}^{n}$ by $\left.x \mapsto 1(x), \ldots, f(n) x\right)$, observe that the vector

$$
z=\left(\int_{X} f_{1}(x) d x, \ldots, \int_{X} f_{n}(x) d x\right) \in \mathbb{R}^{n}
$$

is the interior of $\operatorname{conv}(X)$ due to positivity of $d x$. Then the subset $\Sigma \subset X$ with the center of mass z does the job.
M. Exercises. (a) Reduce ertaithe SZ-theorem for no-compact path connected X to the compact case. ${ }^{6}$
(b) Let S_{i} be the images of C^{1}-maps $\phi_{i}: S_{i} \rightarrow \mathbb{R}^{n}$ of smooth connected manifolds S_{i} and show that the linear independence of $\underline{x}_{i}-\underline{y}_{i}$ implies that the mages of the differentials $d \phi_{i}: T\left(S_{i}\right) \rightarrow \mathbb{R}^{n}$ at some points $s_{i} \in S_{i}$ span \mathbb{R}^{n}.

Then prove lemma \mathbf{J} in this case by applying the implicit function theorem.
\mathbf{N}, Question Let $S_{i} \subset \mathbb{R}^{n}, n=1, \ldots n$, be compact connected subsets (e.g. the images of $[0,1]$ under continuous maps) which contain pairs of points $x_{i}, y_{i} \in S_{i}$ with linearly independent $x_{i}-y_{i}$. Is then the interior of the Minkovski mean (or the sum if you wish) non-empty. (Looks easy but I couldn't figure it out.)
O. Hilbert's Rationality. Hilbert in his solution of the Waring problem ${ }^{7}$ uses and proves (but not formulate) \mathbf{I} in the case, where rational points are dense in X and where this is done for images of spheres S^{l} in \mathbb{R}^{n} under polynomial maps with rational coefficients. ${ }^{8}$

Thus, this is small step in Hilbert's (arithmetic) argument, he constructs what is now-a-days called spherical designs ${ }^{9} \Sigma \subset S^{l}$, where all points $\sigma \in \Sigma$ are rational, and where this rationality is most essential in the following steps of Hilbert's proof.

[^2]
[^0]: ${ }^{1}$ A Volume-diameter inequality for n-cubes, William R. Derrick, Journal d'Analyse Mathématique volume 22, pages 1-36 (1969)

[^1]: ${ }^{2}$ This argument in homological terms proves continuity of C̀ech cohomology.
 ${ }^{3} \mathrm{~A}$ multiset is an mage of a map $I \rightarrow X$, written as $\left\{\underline{x}_{i}\right\} \subset X, i \in I, \underline{x}_{i} \in X$.
 ${ }^{4}$ Seymour, P. D. and Zaskavsky, T., Averaging set. A generalization of mean values and spherical designs, Adv. Math. 52 (1984), 213-246.

[^2]: ${ }^{5}$ In the Seymour- Zaslavsky paper X is assumed path connected but not necessarily compact.
 ${ }^{6}$ I am not certain of this with "connected" instead of "path connected".
 ${ }^{7}$ For all $p=2,3, \ldots$, there exists a constant $N=N(p)$, such that every positive integer x is the sum $x \sum_{1}^{M} y_{i}^{p}$ for positive integers y_{i} and $M \leq N$.
 ${ }^{8}$ Hilbert, D., Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem) Math. Ann. 67 (1909), 281-300.
 ${ }^{9}$ See Isometric embed-dings between classical Banach spaces, cubature formulas, and spherical designs, Yuri I. Lyubich \& Leonid N. Vaserstein Geometriae Dedicata volume 47, pages 327-362 (1993).

