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Figure 1: Topology and probability in action: linking and supercoiling of
bacterial DNA.

Topology of the n-cube. ◻n = [−1,1]n. (Probabilistic perspective on
the cube, the law of large number and the Shannon inequality will be in another
lecture.)

A. If a continuous map between cubes

f ∶ ◻n → ◻n,

that is an n-tuple of continuous functions fi(xj)}, −1 ≤ xj ≤ 1, i, j. = 1, ..., n,

fi ∶ ◻n → [−1,1], i = 1, ...n,

sends each (n − 1)-face ∂i± ⊂ ∂◻n to the corresponding face ∂i±◻n, i.e.

fi ∶ (.... ± 1i....)↦ ±1,

then f is onto, the equation f(x) = y has a solution for all y = (y1, ...yn) ∈ ◻n.
Equivalent formulation.
B.If closed subsets Xi ⊂ ◻n, i = 1, ..., n, separate the pairs of the opposite

(n − 1)-faces ∂i± ⊂ ∂◻n, then the intersection ⋂iXi is non-empty.
B Ô⇒ A . To solve f(x) = (y1, ..., yn) let Xi be the set of x ∈ ◻n, where

fi(x) = yi.
A Ô⇒ B. Given a closed separating Xi ⊂ ◻n, let fi(X) be a function with

the zero set Xi and such that fi(∓1) = ∓1.
C. We shall proof A and B. by a homology theoretic argument in lecture???

which, at least in the A-form, applies to face respecting maps between general
polyhedral spaces.
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*****************************************************************

D. Besicovitch-Derrick Distance/Volume Inequality.1 Let ◻̃n be the
cube with a Riemannin metric g on it, e.g. it is an Euclidean domain homeo-
morphic to the cube.

If the g-distances between the opposite (n−1)-faces of ◻̃n are ≥ di, i = 1, ..., n,
then the g-volume of t ◻̃n is bounded from below by the product of di

vol(◻̃n) ≥ d1 ⋅ ... ⋅ dn.

(The g-distance between two subsets is the infimum of the g-lengths of the
curves jining these subsets.)

Proof. Let δi±(x) be the distances from x ∈ ◻̃n to the pairs of the i-th faces
of the cube and let fi(x) = min(δi+(x), di).

The resulting map f = f1, ....fn, sends ◻̃ onto the solid [0, d1] × ... × [0, dn],
since, by the construction, faces go to faces.

Since fi are distance functions, they are almost everywhere differentiable
with unit gradients, i.e. ∣∣df ∣∣ = 1, and, by the (obvious) Hadamard inequality, the
Jacobian of f is almost everywhere is ≤ 1. (If you don’t like "almost everywhere"
approximate fi by smooth functions with ∣∣grad∣∣ ≤ 1 + ε and let ε→ 0.)

Thus vol(◻̃n ≤ vol(⨉i[−.di]). QED.

*****************************************************************

E. "Segments" and "Cubes" . A compact connected metric space S
with two distinguished points 0̃, 1̃ ∈ S is called a "segment", where 0̃, and 1̃ are
regarded as "vertices".

The product ◻̃n = ⨉ni [Si, 0̃i, 1̃i], i = 1, ..., n, is caled the n-"cube" on the
vertex set ⨉i{”0̃i, 1̃i}.

The (K,ν)-face SKν in such a "cube" for K ⊂ {1, ...,N} and ν ∈ ⨉i∉K{0̃i, 1̃i}
is

SKν = ⨉
i∈K

(Si, 0̃i, 1̃i) × ν ⊂ ◻̃N .

F. If a continuous map from an N -"cube" to the true N -cube,

f ∶ ◻̃n =
N

⨉
1

[Si, 0̃i, 1̃i]→ [0,1]N ,

sends each face from the "cube" to the the corresponding one in the cube, then
the map f is onto.

Proof. Join 0̃i with 1̃i by a chain of Ni consecutively mutually ε-close points
in Si, replace Si by the unit segment [0,1] divided into Ni+1 equal subsegments
and reduce F to A , where Si = [0,1], with ε→ 0.

Speaking formally, let σi,ε ∶ {0,1, ....Ni} → S, ε > 0 be maps such that
σi(0) = 0̃i, σi(Ni) =˜̃1i, and dist(j, j + 1) ≤ ε) for all i ∈ {0,1, ....Ni} and all i, let

Σε =
n

⨉
i

σi ∶
n

⨉
1

{0,1, ....Ni}→ ◻̃n

and
Φε = f ○Σε ∶

n

⨉
1

{0,1, ....Ni}→ [0,1]n.

1A Volume-diameter inequality for n-cubes, William R. Derrick, Journal d’Analyse Math-
ématique volume 22, pages 1-36 (1969)
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Identify the sets {0,1, ....Ni} with the subsets { j
Ni

}j=1,...,Ni ⊂ [0,1] and extend
the map Φε to a continuous map Ψε ∶ [0,1]n → [0,1]n, which is obtained by
consecutive peacewise linear interpolation with conical extension of maps from
the boundaries of faces of small cubes. to these faces.

Since the maps Ψε are onto, the maps Φε have ε-dense images in [0,1]n,
where ε→ 0 for ε→ 0 and the onto property of f follows with ε→ 0.2

G. ε-Corollary. If a continuous map

f ∶ ◻̃n =
N

⨉
1

[Si, 0̃i, 1̃i]→ Rn ⊃ [0,1]N ,

sends each face from the "cube" ε-close to the corresponding face of [0,1]n, then
the image f contains all points in [0,1]n, which lie ε-far from the boundary ∂[0,1]n.

Proof. Let dist(z0, ∂[0,1]n) > ε and let φ0 ∶ [0,1]n → [0,1]n be a continuous
map, such that φ0(z) = z on the boundary of the cube and in a small neigh-
bourhood of z0 and which sends the ε-neighbourhoods of the faces of [0,1]n to
these very faces.

Then F applies to the composed map φ0 ○ f ∶ ◻̃n → [0,1]n and G follows.

*****************************************************************

H. The convex hull of a subset X ⊂ Rn is the set of all convex combinations

z =
N

∑
j=1

pjxj , xj ∈X,pj ≥ 0,∑
j

pj = 1,

where, this is called Caratheodory theorem,
if z = ∑Nj=1 pjxj , then there exists a subset K ⊂ J = {1, ...,N} of cardinality

n + 1, such that z = ∑n+1
k=1 qkxk, for some qk ≥ 0,∑k qk = 1.

In fact, the convex polyhedron conv{xj} can be (obviously) subdivided into
simplices with vertices in {xj}.

A point z in the convex hull of X ⊂ Rn is called X-rational if it is equal to
a convex combination of points from X with rational weights,

[pj] z =
N

∑
j=1

pjxj , xj ∈X,

where pi ≥ 0 are rational numbers , such that ∑j pi = 1.
Equivalently, X-rational points z ∈ conv(X) are centers of mass of finite

multisets3 from X,

[1/M] z = 1

M

M

∑
k=1

xk,

where [pj] Ô⇒ [1/M] for M equal the common denominator of the numbers
pj .

I. SZ Theorem.4 If a compact subset X ⊂ Rn contains 2n point xi, yi ∈X,
i = 1, ..., n, such that the n vectors xi − yi ∈ R

n are linearly independent and such

2This argument in homological terms proves continuity of C̀ech cohomology.
3A multiset is an mage of a map I → X, written as {xi} ⊂ X, i ∈ I, xi ∈ X.
4Seymour, P. D. and Zaskavsky, T., Averaging set. A generalization of mean values and

spherical designs, Adv. Math. 52 (1984), 213-246.
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that xi and y
i

lie in the same connected component of X for all i = 1, ..., n, then
all points in the interior of the convex hull of X, are X-rational.

Proof. Since rational numbers are dense in R the X-rational points are dense
in the convex hull of X and it suffices to show that the "rational interior" of the
convex hull conv(X) is non-empty: conv(X) contains a ball of positive radius,
say Bnz (δ) ⊂ conv(X), z ∈X, δ > 0, such that all points in this ball X-rational

In fact, the existence of an X-rational ball B = Bnz (δ) implies the existence
of rational δ-balls around all points z ∈ conv(S), B = Bz(δ), where δ is bounded
from below essentially by the distance from z to the boundary of conv(X),
namely

δ ≥ (δ ⋅ dist(z, ∂conv(X))
2diam(X) .

Indeed, let us extend the straight segment between z and z to the boundary
of the ball Bz(d), d = dist(z, ∂conv(X), let

[z0, z] ⊂ conv(X)

be the extended segment with z0 ∈ ∂Bz(d) and with z ∈ [z0, z], where ∣∣z−z0∣∣ = d.
Let z′0 ⊂ conv(X) be an X-rational point ε-close to z0 for

ε ≤ dist(z′0, z)
10dist(z, ∂conv(X)) .

Now, the ball B = Bz(δ) for

δ = δ ⋅ dist(z′0, z)
2dist(z, ∂conv(X)) − ε

is the required X-rational one, since all points in it are are convex combinations
Nz′0 + (1 −N)b, b ∈ B, for an integer N , such that

∣N − dist(z′0, z)
dist(z, ∂conv(X)) ∣ ≤ 1.

With the above understood, the proof of the theorem reduces to the follow-
ing.

J. Lemma. Let ◻n ⊂ Rn be the Minkovski mean of the straight segments
[xi, yi] ⊂ Rn, that is the set of the averages

1

n
∑
i

zi, zi ∈ [xi, yi] ⊂ conv(X).

Then all points in the interior of ◻n are X-rational. .
Proof. Let us show the existence of subsets, or rather multisets, in the

connected components Si ⊂X of xi ∈X,

{xi,j} ⊂ Si, i = 1, ..., n, j = 1, ...,N,

such that all interior points z ∈ int(◻n) are representable as

z = 1

nN
∑
i,j

xij
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for sufficiently large N = N(z).
Definition of "Chain Segment". Given a "segment" [S, 0̃, 1̃] let the N ∗ S-

chain in the N -"cube" [S, 0̃, 1̃]N be the union of the N consecutive "edges" Ej
in this cube, which join the diagonally opposite "vertices" (0̃, ..., 0̃

´¹¹¹¹¹¹¸¹¹¹¹¹¶
N

) and ( 1̃, ...1̃
²
N

),

Ej = {0̃, ..., 0̃
´¹¹¹¹¹¹¸¹¹¹¹¹¶
j−1

, s, 1̃, ...1̃
²
N−j

}s∈S ⊂ [S, 0̃, 1̃]N ,

where this chain [N ∗ S] = ⋃Ni=1Ei is itself a "segment" with the "vertices"
(0̃, ..., 0̃
´¹¹¹¹¹¹¸¹¹¹¹¹¶
N

) and ( 1̃, ...1̃
²
N

).

Let φ ∶ S → Rn be a continuous map and let

N ∗ φ ∶ [N ∗ S]→ Rn

send (s1, ...sN) ∈ N ∗ S ⊂ SN to the center of mass of the N image points
φ(sj) ∈ Rn, j = 1, ...,N ,

N ∗ φ ∶ (s1, ...sN)↦ 1

N

N

∑
1

φ(sj).

Clearly, the "division points" from the chain, that are

{0̃, ..., 0̃
´¹¹¹¹¹¹¸¹¹¹¹¹¶

j

, 1̃, ...1̃
²
N−j

},

lands in the segment [φ(0̃), [φ(1̃)] ⊂ Rn, such that
● these points divide this segment into N equal subsegments,
● the image of the j-th copy of S in N ∗ S goes to the δ-neighbourhood
of the j-th subsegment in [φ(0̃), [φ(1̃)], where δ is small when N is much

greater than the diameter of the φ-image of S in Rn:

δ ≤ diam(φ(S))√
N

.

Next let Si ⊂ X be the common connected components of xi, yi ∈ X, where
we set 0̃i = xi and 1̃i = y, and let N ∗ Si ⊂ SNi be their chain "segments" N ∗Si.

Map ⨉n1 [N ∗ Si]→ conv(X) by

ΦN ∶ si,j ↦
1

n

n

∑
i=1

1

N

N

∑
j=1

si,j

where, by the above, with φi being the imbeddings Si ↪ Rn,
the map ΦN sends each face of the n-"cube"⨉n1 [N∗Si] to the δ-neighbourhood

of the corresponding face in ◻n, for

δ ≤ ∑
n
1 diam(φi(Si))√

N
.

Finally, the ε-Corollary G applies and the proof follows.
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K. From Multisets to Sets. The X-rationality of a point z implies the
exiatence ofsgives of a multiset in X with the center of mass z but the above
proof allows effortless disengagement of multiple points by small perturbations.
Therefore,

all points in the interior of conv(X) are representable by centers of mass of
(true) finite subsets in X.

L. The original formulation of I reads:
Let X be a compact connected5 space with a probability (total mass one)

Borel measure dx, which is strictly positive on non-empty open subsets in X
and let fi(x), i = 1, ..., n, be continuous functions on X. Then there exists a
finite subset Σ ∈X such that

1

card(Σ) ∑σ∈Σ
fi(σ) = ∫

X
fi(x)dx

for all i = 1, ..., n.
Reduction L Ô⇒ K. Map X → Rn by x ↦ 1(x), ..., f(n)x), observe that

the vector
z = (∫

X
f1(x)dx, ...,∫

X
fn(x)dx) ∈ Rn

is the interior of conv(X) due to positivity of dx. Then the subset Σ ⊂ X with
the center of mass z does the job.

M. Exercises. (a) Reduce ertaithe SZ-theorem for no-compact path connected
X to the compact case.6

(b) Let Si be the images of C1-maps φi ∶ Si → Rn of smooth connected
manifolds Si and show that the linear independence of xi − yi implies that
the mages of the differentials dφi ∶ T (Si)→ Rn at some points si ∈ Si span Rn.

Then prove lemma J in this case by applying the implicit function theorem.
N, Question Let Si ⊂ Rn, n = 1, ...n, be compact connected subsets (e.g. the

images of [0,1] under continuous maps) which contain pairs of points xi, yi ∈ Si
with linearly independent xi −yi. Is then the interior of the Minkovski mean (or the
sum if you wish) non-empty. (Looks easy but I couldn’t figure it out.)

O. Hilbert’s Rationality. Hilbert in his solution of the Waring problem7

uses and proves (but not formulate) I in the case, where rational points are dense
in X and where this is done for images of spheres Sl in Rn under polynomial
maps with rational coefficients.8

Thus, this is small step in Hilbert’s (arithmetic) argument, he constructs
what is now-a-days called spherical designs 9 Σ ⊂ Sl, where all points σ ∈ Σ are
rational, and where this rationality is most essential in the following steps of
Hilbert’s proof.

5In the Seymour- Zaslavsky paper X is assumed path connected but not necessarily com-
pact.

6I am not certain of this with "connected" instead of "path connected".
7For all p = 2,3, ..., there exists a constant N = N(p), such that every positive integer x is

the sum x∑M
1 ypi for positive integers yi and M ≤ N .

8Hilbert, D., Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter
Potenzen (Waringsches Problem) Math. Ann. 67 (1909), 281-300.

9See Isometric embed-dings between classical Banach spaces, cubature formulas, and spher-
ical designs, Yuri I. Lyubich & Leonid N. Vaserstein Geometriae Dedicata volume 47, pages
327-362 (1993).
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