Probability/Topology – Synopsis of lecture 2

Misha Gromov,

October 5, 2022

What is Topology?

Knots.

Browder fixed point theorem, noncontractibility of spheres

maps $cube \rightarrow cube$

proper maps $\mathbb{R}^n \to \mathbb{R}^n$,

e.g. $g_k : (x, z) \mapsto (x, z^k), (x, z) \in \mathbb{R}^n = \mathbb{R}^{n-2} \times \mathbb{C}.$

 $0 \in U \to \mathbb{R}^n, f: U \to \mathbb{R}^n, \text{ s.t.}$

 $0 \notin [g_k(b), f(b)], b \in \partial U, \text{ e.g.}$ $\langle g_k(b), f(b) \rangle > 0.$

 $\implies \exists u \in U, \text{ s.t. } f(u) = u$ and if f is "generic" there exist (at least) k such u. (Gauss) (Room with 2 doors)

1

Homology like complex numbers, and unlike probability comes with a sign.) $n = \infty$ conservation of intersection numbers under proper deformation of linear subspaces

Poincare's principle of continuity $\mathbb{R} \rightsquigarrow \mathbb{C}$

Nearly 2,500 years ago, a Greek wrestler, Milo of Croton, was regarded as the strongest person who had ever lived in the known world.

Projectivization, gain of the \mathbb{Z}_2 -

symmetry and loss of orientability, Borsuk Ulam Sandwiche Theorem.

THE BORSUK-ULAM THEOREM AND BISECTION OF NECKLACES ALON-WEST(&Real moment map)

Probability and complex Moment map. Symplectic structure. Sign recovering by he wave function. AVERAGING SET. A GENERALIZATION OF MEAN VALUES AND SPHERICAL DESIGNS, SEYMOUR-ZASKAVSKY.

proper maps $\mathbb{R}^{m+n} \to \mathbb{R}^n$, Serre Finiteness theorem.

MANIFOLDS: objects or manners of speaking, concrete and generic.

(Definition objects and maps at the same time no carts....: Area of the disk is the limit of,,, but this is not a definition.)

All closed smooth n-manifolds X are pullbacks of the Grassmannians $X_0 = Gr_N(\mathbb{R}^{n+N})$ in the canonical vector bundle $V \supset X_0$ of rank N under generic smooth proper maps $\mathbb{R}^{n+N} \supset U \rightarrow V$ (or from $S^{n+N} =$ $\mathbb{R}^{n+N} \rightarrow V_{\bullet}$.) If N = 1 these are levels sets of generic points of smooth (proper) functions $\mathbb{R}^{n+1} \rightarrow \mathbb{R}$

What are non=generic manifolds? (Simons-Federer theorem)

Figure 1: Zermelo Choice Problem

Two solutions : I. 1/2 probabiliy II Mëbius Strip Triangulated spaces. Algorithms and Counting: (How many triangulation spheres have?)

Almost definition: Homology classes $[C] \in H_i(X)$, classes of "compact oriented *i*-submanifolds $C \subset X$ with singularities of codimension two".

But:

closed self-intersecting curves in surfaces, and/or the double covering map $S^1 \rightarrow S^1$.

 $C \subset X$ may have singularities of codimension one, and, besides orientation, a locally constant integer valued function on the non-singular locus of C.

dimension on closed subsets in smooth manifolds: of monotonicity, locality and max-additivity, i.e. $dim(A \cup B) = \max(dim(A), dim(B))$. is monotone decressing under generic smooth maps of compact subsets A, i.e. $dim(f(A)) \leq dim(A)$ and if $f : X^{m+n} \rightarrow Y^n$ is a generic map, then $f^{-1}(A) \leq dim(A) + m$.

"generic dimension" is the *mini-mal* function with these properties which coincides with the ordinary dimension on smooth compact submanifolds. no problems if we do not take limits of maps.

[smooth generic & piecewise linear \sim generic piecewise smooth \sim stratawise smooth]

An *i*-cycle $C \subset X$ is a closed subset in X of dimension *i* with a Zmultiplicity function on C with the following set decomposition of C.

$$C = C_{reg} \cup C_{\times} \cup C_{sing},$$

such that

• C_{sing} is a closed subset of dimension $\leq i-2$.

• C_{reg} is an open and dense subset in C and it is a smooth *i*-submanifold in X.

 $C_{\times} \cup C_{sing}$ is a closed subset of dimension $\leq i-1$. Locally, at every point, $x \in C_{\times}$ the union $C_{reg} \cup C_{\times}$ is diffeomorphic to a collection of smooth copies of \mathbb{R}^{i}_{+} in X, called *branches*, meeting along their \mathbb{R}^{i-1}_{-} boundaries where the basic example is the union of hypersurfaces in general position.

• The Z-multiplicity structure, is given by an orientation of C_{reg} and a locally constant multiplicity/weight Z-function on C_{reg} , (where for i =0 there is only this function and no orientation) such that the sum of these oriented multiplicities over the branches of C at each point $x \in C_{\times}$ equals zero.

Every C can be modified to C'with empty C'_{\times} and if $codim(C) \ge$ 1, i.e. dim(X) > dim(C), also with weights = ± 1 .

Double circle $2S^1$ can be separated in two ways.

If 2l oriented branches of C_{reg} with multiplicities 1 meet at C_{\times} , divide them into l pairs with the partners having *opposite* orientations, keep these partners attached as they meet along C_{\times} and separate them from the other pairs.

(The separation of branches is, say with the total weight 2l, can be performed in l! different ways: parasitic structure) A closed oriented *n*-manifold itself makes an *n*-cycle which represents the fundamental class $[X] \in$ $H_n(X)$. Other *n*-cycles are integer combinations of the oriented connected components of X.

(i + 1)-Plaque D with a boundary $\partial(D) \subset D$ is the same as a cycle, except that there is a subset $\partial(D)_{\times} \subset D_{\times}$, where the sums of oriented weights do not cancel, where the closure of $\partial(D)_{\times}$ equals $\partial(D) \subset D$ and where $dim(\partial(D) \smallsetminus$ $\partial(D)_{\times}) \leq i - 2$

Two opposite canonical induced orientations on the boundary $C = \partial D$.

Plaque can be "subdivided" $D_1 = D_2$. D = 0 if the weight function on D_{reg} equals zero.

-D the plaque with the either minus weight function or with the opposite orientation.

 $D = D_1 + D_2$: a plaque D containing both D_1 and D_2 as its subplaques with the obvious addition rule of the weight functions.

 $D_1 = D_2$ if $D_1 - D_2 = 0$.

THE SUM OF GENERIC PLAQUES IS A PLAQUE.

If $D \subset X$ is an *i*-plaque (*i*-cycle) then the image $f(D) \subset Y$ under a generic map $f : X \rightarrow Y$ is an *i*plaque (*i*-cycle).

If dim(Y) = i + 1, then the selfintersection locus of the image f(D)becomes a part of $f(D)_{\times}$ and if dim(Y) = i + 1, then the new part the \times -singularity comes from $f(\partial(D))$. the pullback $f^{-1}(D)$ of an i-plaque $D \subset Y^n$ under a generic map $f : X^{m+n} \rightarrow Y^n$ is an (i + m)-plaque in X^{m+n} ; if D is a cycle and the map f is proper), then $f^{-1}(D)$ is cycle.

All of this extends to piecewise smooth, e.g. piecewise linear spaces.

Homology. C_1 and C_2 in X are homologous, $C_1 \sim C_2$, if there is an (i+1)-plaque D in $X \times [0,1]$, such that $\partial(D) = C_1 \times 0 - C_2 \times 1$.

For example every contractible cycle $C \subset X$ is homologous to zero, since the cone over C in $Y = X \times$ [0,1] corresponding to a smooth generic homotopy makes a plaque with its boundary equal to C.

Since small subsets in X are contractible, a cycle $C \subset X$ is homologous to zero if and only if it admits a decomposition into a sum of "arbitrarily small cycles", i.e. if, for every locally finite covering $X = \bigcup_i U_i$, there exist cycles $C_i \subset U_i$, such that $C = \sum_i C_i$.

The homology group $H_i(X)$ is the Abelian group with generators [C]for all *i*-cycles C in X and with the relations $[C_1] - [C_2] = 0$ whenever $C_1 \sim C_2$.

 $H_i(X; \mathbb{Q})$: C and D come with fractional weights.

Examples. Every closed orientable *n*-manifold X with k connected components has $H_n(X) = \mathbb{Z}^k$, where $H_n(X)$ is generated by the fundamental classes of its components.

 $every \ closed \ orientable \ manifold$ X is non-contractible. (on-contractibility of S^n and issuing from this the Brouwer fixed point theorem nearaly impossible within the world of continuous maps without using generic smooth or combinatorial ones, except for n = 1 with the covering map $\mathbb{R} \to S^1$ and for S^2 with the Hopf fibration $S^3 \to$ S^2 .

The catch is that the difficulty is hidden in the fact that a *generic* image of an (n + 1)-plaque e.g. a cone over X) in $X \times [0, 1]$ is again an (n + 1)-plaqueisue.

But no problem with $H_0(X) = \mathbb{Z}^k$, where k components is the number of component.)

The spheres S^n have $H_i(S^n) = 0$ for 0 < i < n, since the complement to a point $s_0 \in S^n$ is homeomorphic to \mathbb{R}^n and a generic cycles of dimension < n misses s_0 , while \mathbb{R}^n , being contractible, has zero homologies in positive dimensions.

Continuous maps $f : X \to Y$, when generically perturbed, define homomorphisms $f_{*i} : H_i(X) \to H_i(Y)$ for $C \mapsto f(C)$ and that

homotopic maps $f_1, f_2 : X \to Y$ induce equal homomorphisms $H_i(X) \to$ $H_i(Y)$.

Indeed, the cylinders $C \times [0,1]$ generically mapped to $Y \times [0,1]$ by homotopies $f_t, t \in [0,1]$, are plaque D in our sense with $\partial(D) = f_1(C) - f_2(C)$.

It follows, that the

homology is invariant under homotopy equivalences $X \Leftrightarrow Y$ for manifolds X, Y as well as for tri-

angulated spaces.

Similarly, if $f: X^{m+n} \to Y^n$ is a proper (pullbacks of compact sets are compact) smooth generic map between *manifolds* where Y has no boundary, then the pullbacks of cycles define homomorphism, denoted, $f^!: H_i(Y) \to H_{i+m}(X)$, which is invariant under proper homotopies of maps.

The homology groups are much easier do deal with than the homotopy groups, since the definition of an *i*-cycle in X is purely local, while "spheres in X" can not be recognized by looking at them point by point – they are not "sums" of their parts.

Homologically speaking, a space *is* the sum of its parts: the local-

ity allows an effective computation of homology of spaces X assembled of simpler pieces, such as cells, for example.

Degree of a Map. Let f: $X \rightarrow Y$ be a smooth (or piece-wise smooth) generic map between closed connected oriented equidimensional manifolds

Then the degree deg(f) can be (obviously) equivalently defined either as the image $f_*[X] \in \mathbb{Z} =$ $H_n(Y)$ or as the $f^!$ -image of the generator $[\bullet] \in H_0(Y) \in \mathbb{Z} = H_0(X)$. For, example, *l*-sheeted covering maps $X \to Y$ have degrees *l*. Similarly, one sees that

finite covering maps between arbitrary spaces are surjective on the rational homology groups. If a compac X allowed a non-empty boundary, then f-pullback $\tilde{U}_y \subset X$ of some (small) open neighbourhood $U_y \subset Y$ of a generic point $y \in Y$ consists of finitely many connected components $\tilde{U}_i \subset \tilde{U}$, such that the map $f : \tilde{U}_i \to U_y$ is a diffeomorphism for all \tilde{U}_i .

Thus, every U_i carries two orientations: one induced from X and the second from Y via f. The sum of +1 assigned to \tilde{U}_i where the two orientation agree and of -1 when they disagree is called the *local de*gree $deg_y(f)$.

If two generic points $y_1, y_2 \in Y$ can be joined by a path in Y which does not cross the f-image $f(\partial(X)) \subset$ Y of the boundary of X, then $deg_{y_1}(f) =$ $deg_{y_2}(f)$ since the f-pullback of this path, (which can be assumed generic) consists, besides possible closed curves, of several segments in Y, joining ± 1 -degree points in $f^{-1}(y_1) \subset \tilde{U}_{y_1} \subset X$ with ∓ 1 -points in $f^{-1}(y_2) \subset \tilde{U}_{y_2}$.

The local degree does not depend on y if X has no boundary. Then, clearly, it coincides with the homologically defined degree.

The local degree is invariant under generic homotopies $F : X \times [0,1] \rightarrow Y$, where the smooth (typically disconnected) pull-back curve $F^{-1}(y) \subset X \times [0,1]$ joins ± 1 -points in $F(x,0)^{-1}(y) \subset X = X \times 0$ with ∓ 1 -points in $F(x,1)^{-1}(y) \subset X =$ $X \times 1$.

Geometric Versus Algebraic Cycles. The homology of a triangulated space is algebraically defined with \mathbb{Z} -cycles which are \mathbb{Z} -chains, i.e. formal linear combinations $C_{alg} = \sum_{s} k_s \Delta_s^i$ of oriented *i*-simplices Δ_s^i with integer coefficients k_s , where, by the definition of "algebraic cycle", these sums have zero algebraic boundaries.

This is exactly the same as our generic cycles C_{geo} in the *i*-skeleton X_i of X and, tautologically, $C_{alg} \stackrel{taut}{\mapsto} C_{geo}$ gives us a homomorphism from the algebraic homology to our geometric one.

An (i + j)-simplex minus its center can be radially homotoped to its boundary. Then the obvious reverse induction on skeleta of the triangulation shows that the space X minus a subset $\Sigma \subset X$ of codimension i + 1 can be homotoped to the *i*-skeleton $X_i \subset X$.

Since every generic *i*-cycle C misses Σ it can be homotoped to X_i where the resulting map, say $f: C \to X_i$, sends C to an algebraic cycle.

Similarly, the eqivalence of the two definitions of homology is seen for all cellular spaces X with piece-wise linear attaching maps.

(The usual definition of homology of such an X amounts to working with all *i*-cycles contained in X_i and with (i + 1)-plaques in X_{i+1} . In this case the group of *i*-cycles becomes a subspace of the group spanned by the *i*-cells, which shows, for example, that the rank of $H_i(X)$ does not exceed the number of *i*cells in X_i .) If X is a non-compact manifold, one may drop "compact" in the definition of these cycles. The resulting group is denoted $H_1(X, \partial_{\infty})$. If X is compact with boundary, then this group of the interior of X is called the *relative homology group* $H_i(X, \partial(X))$. (The ordinary homology groups of this interior are canonically isomorphic to those of X.)

Intersection Ring. The intersection of cycles in general position in a smooth manifold X defines a multiplicative structure on the homology of an n-manifold X, denoted $[C_1] \cdot [C_2] = [C_1] \cap [C_2] = [C_1 \cap C_2] \in H_{n-(i+j)}(C_1)$ for $[C_1] \in H_{n-i}(X)$ and $[C_2] \in H_{n-j}(X)$, where $[C] \cap [C]$ is defined by intersecting $C \subset X$ with its small generic perturbation $C' \subset X$.

(Here genericity is most useful: intersection is painful for simplicial cycles confined to their respective skeleta of a triangulation. On the other hand, if X is a *not* a manifold one may adjust the definition of cycles to the local topology of the singular part of X and arrive at what is called the *intersection homology*.)

The intersection is respected by $f^!$ for proper maps f, but not for f_* . The former implies. in particular, that this product is invariant under oriented (i.e. of degrees +1) homotopy equivalences between *closed* equidimensional manifolds. (But $X \times$

 \mathbb{R} , which is homotopy equivalent to X has trivial intersection ring, whichever is the ring of X.)

The intersection of cycles of *odd* codimensions is *anti-commutative* and if one of the two has *even* codimension it is *commutative*.

The intersection of two cycles of complementary dimensions is a 0cycle, the total \mathbb{Z} -weight of which makes sense if X is oriented; it is called the intersection index of the cycles.

The intersection between C_1 and C_2 equals the intersection of $C_1 \times C_2$ with the diagonal $X_{diag} \subset X \times X$.

Examples. (a) The intersection ring of the complex projective space $\mathbb{C}P^k$ is multiplicatively generated

by the homology class of the hyperplane, $[\mathbb{C}P^{k-1}] \in H_{2k-2}(\mathbb{C}P^k)$, with the only relation $[\mathbb{C}P^{k-1}]^{k+1} = 0$ and where, obviously, $[\mathbb{C}P^{k-i}] \cdot [\mathbb{C}P^{k-j}] = [\mathbb{C}P^{k-(i+j)}].$

In fthe homology class $[\mathbb{C}P^i]$ (additiacvely) generates $H_i(\mathbb{C}P^k)$, which is seen by observing that $\mathbb{C}P^{i+1} \\ \mathbb{C}P^i$, i = 0, 1, ..., k - 1, is an open (2i + 2)-cell, i.e. the open topological ball B_{op}^{2i+2} (where the cell attaching map $\partial(B^{2i+2}) = S^{2i+1} \rightarrow$ $\mathbb{C}P^i$ is the quotient map $S^{2i+1} \rightarrow$ $S^{2i+1}/\mathbb{T} = \mathbb{C}P^{i+1}$ for the obvious action of the multiplicative group \mathbb{T} of the complex numbers with norm 1 on $S^{2i+1} \subset \mathbb{C}^{2i+1}$).

(b) The intersection ring of the ntorus is isomorphic to the exterior algebra on n-generators, i.e. the only relations between the multiplicative generators $h_i \in H_{n-1}(\mathbb{T}^n)$ are $h_i h_j = -h_j h_i$, where h_i are the homology classes of the *n* coordinate subtori $\mathbb{T}_i^{n-1} \subset \mathbb{T}^n$.

This follows from the Künneth formula below, but can be also proved directly with the obvious cell decomposition of \mathbb{T}^n into 2^n cells.

The intersection ring structure immensely enriches homology. Additively, $H_* = \bigoplus_i H_i$ is just a graded Abelian group – the most primitive algebraic object (if finitely generated) – fully characterized by simple numerical invariants: the rank and the orders of their cyclic factors.

But the ring structure, say on H_{n-2} of an *n*-manifold X, for n = 2d defines a symmetric *d*-form, on $H_{n-2} = H_{n-2}(X)$ which is, a polynomial of degree *d* in *r* variables with integer coefficients for $r = rank(H_{n-2})$. All number theory in the world can not classify these for $d \ge 3$ (to be certain, for $d \ge 4$).