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What is Topology?
Knots.
Browder fixed point theorem, non-

contractibility of spheres
maps cube→ cube
proper maps Rn → Rn,
e.g. gk ∶ (x, z)↦ (x, zk), (x, z) ∈

Rn = Rn−2 ×C.
0 ∈ U → Rn, f ∶ U → Rn, s.t.
0 ∉ [gk(b), f(b)], b ∈ ∂U , e.g.

⟨gk(b), f(b)⟩ > 0.
Ô⇒ ∃u ∈ U,, s.t. f(u) = u

and if f is "generic" there exist (at
least) k such u. (Gauss)
(Room with 2 doors)
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Homology like complex numbers,
and unlike probability comes with a
sign.) n =∞ conservation of inter-
section numbers under proper de-
formation of linear subspaces

Poincare’s principle of continuity
R ; C

Projectivization, gain of the Z2-
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symmetry and loss of orientability,
Borsuk Ulam Sandwiche Theorem.

THE BORSUK-ULAM THEOREM AND BISECTION OF NECKLACES
ALON-WEST(&Real moment map)

Probability and complex Moment
map. Symplectic structure. Sign
recovering by he wave function.

Averaging set. A generalization of mean values and
spherical designs,Seymour-Zaskavsky.

proper maps Rm+n → Rn,
Serre Finiteness theorem.
Manifolds: objects or manners

of speaking, concrete and generic.
(Definition objects and maps at

the same time no carts....: Area of
the disk is the limit of„ ,. but this
is not a definition.)
All closed smooth n-manifolds X

are pullbacks of the Grassmannians
X0 = GrN(Rn+N) in the canoni-
cal vector bundle V ⊃X0 of rank N

3



under generic smooth proper maps
Rn+N ⊃ U → V (or from Sn+N =
Rn+N● → V●.) If N = 1 these are
levels sets of generic points of smooth
(proper) functions Rn+1 → R

What are non=generic manifolds?
(Simons-Federer theorem)

Figure 1: Zermelo Choice Problem

Two solutions :
I. 1/2 probabiliy
II Mëbius Strip
Triangulated spaces.
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Algorithms and Counting: (How
many triangulation spheres have?)
Almost definition: Homology classes

[C] ∈ Hi(X), classes of "compact
oriented i-submanifoldsC ⊂X with
singularities of codimension two".
But:
closed self-intersecting curves in

surfaces, and/or the double cover-
ing map S1 → S1.
C ⊂ X may have singularities of

codimension one, and, besides ori-
entation, a locally constant integer
valued function on the non-singular
locus of C.
dimension on closed subsets in smooth

manifolds: of monotonicity, local-
ity and max-additivity, i.e. dim(A∪
B) = max(dim(A), dim(B)). is
monotone decresaig under generic
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smooth maps of compact subsets
A, i.e. dim(f(A)) ≤ dim(A) and
if f ∶ Xm+n → Y n is a generic
map, then f−1(A) ≤ dim(A) +m.
"generic dimension" is the mini-

mal function with these properties
which coincides with the ordinary
dimension on smooth compact sub-
manifolds. no problems if we do
not take limits of maps.
[smooth generic & piecewise linear;

generic piecewise smooth ; strata-
wise smooth]
An i-cycle C ⊂X is a closed sub-

set in X of dimension i with a Z-
multiplicity function on C with the
following set decomposition of C.

C = Creg ∪C× ∪Csing,

such that
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●Csing is a closed subset of dimension≤
i − 2.
● Creg is an open and dense sub-

set inC and it is a smooth i-submanifold
in X .
C× ∪ Csing is a closed subset of

dimension ≤ i−1. Locally, at every
point, x ∈ C× the union Creg ∪C×
is diffeomorphic to a collection of
smooth copies of Ri+ in X , called
branches, meeting along theirRi−1-
boundaries where the basic exam-
ple is the union of hypersurfaces in
general position.
● The Z-multiplicity structure, is

given by an orientation of Creg and
a locally constantmultiplicity/weight
Z-function on Creg, (where for i =
0 there is only this function and
no orientation) such that the sum
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of these oriented multiplicities over
the branches of C at each point
x ∈ C× equals zero.
Every C can be modified to C′

with empty C′× and if codim(C) ≥
1, i.e. dim(X) > dim(C), also
with weights = ±1.
Double circle 2S1 can be separated

in two ways.
If 2l oriented branches ofCreg with

multiplicities 1 meet at C×, divide
them into l pairs with the partners
having opposite orientations, keep
these partners attached as they meet
along C× and separate them from
the other pairs.
(The separation of branches is, say

with the total weight 2l, can be
performed in l! different ways: par-
asitic structure)
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A closed oriented n-manifold it-
self makes an n-cycle which repre-
sents the fundamental class [X] ∈
Hn(X). Other n-cycles are integer
combinations of the oriented con-
nected components of X .
(i + 1)-Plaque D with a bound-

ary ∂(D) ⊂ D is the same as a
cycle, except that there is a sub-
set ∂(D)× ⊂ D×, where the sums
of oriented weights do not cancel,
where the closure of ∂(D)× equals
∂(D) ⊂D and where dim(∂(D)∖
∂(D)×) ≤ i − 2
Two opposite canonical induced

orientations on the boundary C =
∂D.
Plaque can be "subdivided" D1 =

D2. D = 0 if the weight function on
Dreg equals zero.
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−D the plaque with the either mi-
nus weight function or with the op-
posite orientation.
D = D1 + D2: a plaque D con-

taining both D1 and D2 as its sub-
plaques with the obvious addition
rule of the weight functions.
D1 =D2 if D1 −D2 = 0.
The sum of generic plaques
is a plaque.
If D ⊂ X is an i-plaque (i-cycle)

then the image f(D) ⊂ Y under a
generic map f ∶ X → Y is an i-
plaque (i-cycle).
If dim(Y ) = i + 1, then the self-

intersection locus of the image f(D)
becomes a part of f(D)× and if
dim(Y ) = i + 1, then the new part
the ×-singularity comes from f(∂(D)).
the pullback f−1(D) of an i-plaque
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D ⊂ Y n under a generic map f ∶
Xm+n → Y n is an (i +m)-plaque
in Xm+n; if D is a cycle and the
map f is proper), then f−1(D) is
cycle.
All of this extends to piecewise

smooth, e.g. piecewise linear spaces.
Homology. C1 and C2 in X are

homologous, C1 ∼ C2, if there is an
(i+1)-plaque D in X × [0, 1], such
that ∂(D) = C1 × 0 −C2 × 1.
For example every contractible cy-

cle C ⊂ X is homologous to zero,
since the cone over C in Y = X ×
[0, 1] corresponding to a smooth generic
homotopy makes a plaque with its
boundary equal to C.
Since small subsets in X are con-

tractible, a cycle C ⊂X is homolo-
gous to zero if and only if it admits
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a decomposition into a sum of "ar-
bitrarily small cycles", i.e. if, for
every locally finite covering X =
⋃iUi, there exist cycles Ci ⊂ Ui,
such that C = ∑iCi.
The homology groupHi(X) is the

Abelian group with generators [C]
for all i-cycles C in X and with the
relations [C1] − [C2] = 0 whenever
C1 ∼ C2.
Hi(X ;Q): C and D come with

fractional weights.
Examples. Every closed orientable

n-manifoldX with k connected com-
ponents has Hn(X) = Zk, where
Hn(X) is generated by the funda-
mental classes of its components.
every closed orientable manifold

X is non-contractible.
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(on-contractibility of Sn and is-
suing from this the Brouwer fixed
point theorem nearaly impossible within
the world of continuous maps with-
out using generic smooth or combi-
natorial ones, except for n = 1 with
the covering map R → S1 and for
S2 with the Hopf fibration S3 →
S2.
The catch is that the difficulty is

hidden in the fact that a generic
image of an (n + 1)-plaque e.g. a
cone over X) in X × [0, 1] is again
an (n + 1)-plaqueisue.
But no problem with H0(X) =

Zk, where k components is the num-
ber of component.)
The spheres Sn have Hi(Sn) = 0

for 0 < i < n, since the comple-
ment to a point s0 ∈ Sn is homeo-
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morphic to Rn and a generic cycles
of dimension < n misses s0, while
Rn, being contractible, has zero ho-
mologies in positive dimensions.
Continuous maps f ∶ X → Y ,

when generically perturbed, define
homomorphisms f∗i ∶Hi(X)→Hi(Y )
for C ↦ f(C) and that
homotopic maps f1, f2 ∶ X → Y

induce equal homomorphismsHi(X)→
Hi(Y ).
Indeed, the cylinders C × [0, 1]

generically mapped to Y ×[0, 1] by
homotopies ft, t ∈ [0, 1], are plaque
D in our sense with ∂(D) = f1(C)−
f2(C).
It follows, that the
homology is invariant under ho-

motopy equivalences X ↔ Y for
manifolds X,Y as well as for tri-
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angulated spaces.
Similarly, if f ∶ Xm+n → Y n is a

proper (pullbacks of compact sets
are compact) smooth generic map
between manifolds where Y has no
boundary, then the pullbacks of cy-
cles define homomorphism, denoted,
f ! ∶ Hi(Y ) → Hi+m(X), which is
invariant under proper homotopies
of maps.
The homology groups are much

easier do deal with than the ho-
motopy groups, since the definition
of an i-cycle in X is purely local,
while "spheres in X" can not be
recognized by looking at them point
by point – they are not "sums" of
their parts.
Homologically speaking, a space

is the sum of its parts: the local-
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ity allows an effective computation
of homology of spacesX assembled
of simpler pieces, such as cells, for
example.

Degree of a Map. Let f ∶
X → Y be a smooth (or piece-wise
smooth) generic map between closed
connected oriented equidimensional
manifolds
Then the degree deg(f) can be

(obviously) equivalently defined ei-
ther as the image f∗[X] ∈ Z =
Hn(Y ) or as the f !-image of the
generator [●] ∈H0(Y ) ∈ Z =H0(X).
For, example, l-sheeted covering maps
X → Y have degrees l. Similarly,
one sees that
finite covering maps between ar-

bitrary spaces are surjective on the
rational homology groups.
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If a compacX allowed a non-empty
boundary, then f -pullback Ũy ⊂X
of some (small) open neighbourhood
Uy ⊂ Y of a generic point y ∈ Y
consists of finitely many connected
components Ũi ⊂ Ũ , such that the
map f ∶ Ũi → Uy is a diffeomor-
phism for all Ũi.
Thus, every Ũi carries two orien-

tations: one induced from X and
the second from Y via f . The sum
of +1 assigned to Ũi where the two
orientation agree and of −1 when
they disagree is called the local de-
gree degy(f).
If two generic points y1, y2 ∈ Y

can be joined by a path in Y which
does not cross the f -image f(∂(X)) ⊂
Y of the boundary ofX , then degy1(f) =
degy2(f) since the f -pullback of this
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path, (which can be assumed generic)
consists, besides possible closed curves,
of several segments in Y , joining
±1-degree points in f−1(y1) ⊂ Ũy1 ⊂
X with ∓1-points in f−1(y2) ⊂ Ũy2.
The local degree does not depend

on y if X has no boundary. Then,
clearly, it coincides with the homo-
logically defined degree.
The local degree is invariant un-

der generic homotopies F ∶ X ×
[0, 1]→ Y , where the smooth (typ-
ically disconnected) pull-back curve
F−1(y) ⊂X×[0, 1] joins ±1-points
in F (x, 0)−1(y) ⊂ X = X × 0 with
∓1-points in F (x, 1)−1(y) ⊂ X =
X × 1.
Geometric Versus Algebraic Cy-

cles. The homology of a triangu-
lated space is algebraically defined
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with Z-cycles which are Z-chains,
i.e. formal linear combinationsCalg =
∑s ks∆

i
s of oriented i-simplices ∆i

s
with integer coefficients ks, where,
by the definition of "algebraic cy-
cle" , these sums have zero alge-
braic boundaries.
This is exactly the same as our

generic cyclesCgeo in the i-skeleton
Xi ofX and, tautologically, Calg

taut↦
Cgeo gives us a homomorphism from
the algebraic homology to our geo-
metric one.
An (i + j)-simplex minus its cen-

ter can be radially homotoped to
its boundary. Then the obvious re-
verse induction on skeleta of the
triangulation shows that the space
X minus a subset Σ ⊂ X of codi-
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mension i+ 1 can be homotoped to
the i-skeleton Xi ⊂X .
Since every generic i-cycleC misses

Σ it can be homotoped toXi where
the resulting map, say f ∶ C →Xi,
sends C to an algebraic cycle.
Similarly, the eqivalence of the two

definitions of homology is seen for
all cellular spacesX with piece-wise
linear attaching maps.
(The usual definition of homology

of such an X amounts to working
with all i-cycles contained in Xi
and with (i + 1)-plaques in Xi+1.
In this case the group of i-cycles
becomes a subspace of the group
spanned by the i-cells, which shows,
for example, that the rank ofHi(X)
does not exceed the number of i-
cells in Xi.)
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If X is a non-compact manifold,
one may drop "compact" in the def-
inition of these cycles. The result-
ing group is denoted H1(X,∂∞).
IfX is compact with boundary, then
this group of the interior of X is
called the relative homology group
Hi(X,∂(X)). (The ordinary ho-
mology groups of this interior are
canonically isomorphic to those of
X .)

Intersection Ring. The inter-
section of cycles in general position
in a smooth manifold X defines a
multiplicative structure on the ho-
mology of an n-manifoldX , denoted

[C1]⋅[C2] = [C1]∩[C2] = [C1∩C2] ∈Hn−(i+j)(X)
for [C1] ∈ Hn−i(X) and

[C2] ∈Hn−j(X),
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where [C] ∩ [C] is defined by in-
tersecting C ⊂ X with its small
generic perturbation C′ ⊂X .
(Here genericity is most useful: in-

tersection is painful for simplicial
cycles confined to their respective
skeleta of a triangulation. On the
other hand, if X is a not a mani-
fold one may adjust the definition
of cycles to the local topology of
the singular part ofX and arrive at
what is called the intersection ho-
mology.)
The intersection is respected by

f ! for proper maps f , but not for
f∗. The former implies. in partic-
ular, that this product is invariant
under oriented (i.e. of degrees +1)
homotopy equivalences between closed
equidimensionalmanifolds. (ButX×
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R, which is homotopy equivalent
to X has trivial intersection ring,
whichever is the ring of X .)
The intersection of cycles of odd

codimensions is anti-commutative and
if one of the two has even codimen-
sion it is commutative.
The intersection of two cycles of

complementary dimensions is a 0-
cycle, the total Z-weight of which
makes sense if X is oriented; it is
called the intersection index of the
cycles.
The intersection between C1 and

C2 equals the intersection of C1 ×
C2 with the diagonal Xdiag ⊂ X ×
X .
Examples. (a) The intersection

ring of the complex projective space
CP k is multiplicatively generated
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by the homology class of the hyper-
plane, [CP k−1] ∈H2k−2(CP k), with
the only relation [CP k−1]k+1 = 0
and where, obviously, [CP k−i]⋅[CP k−j] =
[CP k−(i+j)].
In fthe homology class [CP i] (ad-

ditiacvely) generatesHi(CP k), which
is seen by observing that CP i+1 ∖
CP i, i = 0, 1, ..., k − 1, is an open
(2i + 2)-cell, i.e. the open topolog-
ical ball B2i+2

op (where the cell at-
taching map ∂(B2i+2) = S2i+1 →
CP i is the quotient map S2i+1 →
S2i+1/T = CP i+1 for the obvious
action of the multiplicative group T
of the complex numbers with norm
1 on S2i+1 ⊂ C2i+1).
(b) The intersection ring of the n-

torus is isomorphic to the exterior
algebra on n-generators, i.e. the
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only relations between the multi-
plicative generators hi ∈Hn−1(Tn)
are hihj = −hjhi, where hi are the
homology classes of the n coordi-
nate subtori Tn−1

i ⊂ Tn.
This follows from the Künneth for-

mula below, but can be also proved
directly with the obvious cell de-
composition of Tn into 2n cells.
The intersection ring structure im-

mensely enriches homology. Addi-
tively, H∗ = ⊕iHi is just a graded
Abelian group – the most primitive
algebraic object (if finitely gener-
ated) – fully characterized by sim-
ple numerical invariants: the rank
and the orders of their cyclic fac-
tors.
But the ring structure, say onHn−2

of an n-manifold X , for n = 2d de-
25



fines a symmetric d-form, onHn−2 =
Hn−2(X) which is, a polynomial of
degree d in r variables with integer
coefficients for r = rank(Hn−2).
All number theory in the world can
not classify these for d ≥ 3 (to be
certain, for d ≥ 4).
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