Probability/Topology - Synopsis of lecture 2

Misha Gromov,
October 5, 2022

What is Topology?

Knots.

Browder fixed point theorem, noncontractibility of spheres
maps cube \rightarrow cube
proper maps $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,
e.g. $g_{k}:(x, z) \mapsto\left(x, z^{k}\right),(x, z) \in$
$\mathbb{R}^{n}=\mathbb{R}^{n-2} \times \mathbb{C}$.
$0 \in U \rightarrow \mathbb{R}^{n}, f: U \rightarrow \mathbb{R}^{n}$, s.t.
$0 \notin\left[g_{k}(b), f(b)\right], b \in \partial U$, e.g.
$\left\langle g_{k}(b), f(b)\right\rangle>0$.
$\Longrightarrow \exists u \in U$,, s.t. $f(u)=u$ and if f is "generic" there exist (at least) k such u. (Gauss)
(Room with 2 doors)

Homology like complex numbers, and unlike probability comes with a sign.) $n=\infty$ conservation of intersection numbers under proper deformation of linear subspaces

Poincare's principle of continuity

Nearly 2,500 years ago, a Greek wrestler, Milo of Croton, was regarded as the strongest person who had ever lived in the known world.

Projectivization, gain of the $\mathbb{Z}_{2^{-}}$
symmetry and loss of orientability, Borsuk Ulam Sandwiche Theorem.

THE BORSUK-ULAM THEOREM AND BISECTION OF NECKLACES ALON-WEST(\&REAL MOMENT MAP)

Probability and complex Moment map. Symplectic structure. Sign recovering by he wave function.

Averaging set. A generalization of mean values and SPHERICAL DESIGNS,SEYMOUR-ZASKAVSKY.
proper maps $\mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$,
Serre Finiteness theorem.
MANIFOLDS: objects or manners of speaking, concrete and generic.
(Definition objects and maps at the same time no carts....: Area of the disk is the limit of ${ }_{2}$, . but this is not a definition.)
All closed smooth n-manifolds X are pullbacks of the Grassmannians $X_{0}=G r_{N}\left(\mathbb{R}^{n+N}\right)$ in the canonical vector bundle $V \supset X_{0}$ of rank N
under generic smooth proper maps
$\mathbb{R}^{n+N} \supset U \rightarrow V$ (or from $S^{n+N}=$
$\mathbb{R}_{\bullet}^{n+N} \rightarrow V_{\bullet}$.) If $N=1$ these are
levels sets of generic points of smooth (proper) functions $\mathbb{R}^{n+1} \rightarrow \mathbb{R}$

What are non=generic manifolds?
(Simons-Federer theorem)

Figure 1: Zermelo Choice Problem
Two solutions:
I. $1 / 2$ probabiliy

II Mëbius Strip
Triangulated spaces.

Algorithms and Counting: (How many triangulation spheres have?)
Almost definition: Homology classes $[C] \in H_{i}(X)$, classes of "compact oriented i-submanifolds $C \subset X$ with singularities of codimension two".
But:
closed self-intersecting curves in surfaces, and/or the double covering map $S^{1} \rightarrow S^{1}$.
$C \subset X$ may have singularities of codimension one, and, besides orientation, a locally constant integer valued function on the non-singular locus of C.
dimension on closed subsets in smooth manifolds: of monotonicity, locality and max-additivity, i.e. $\operatorname{dim}(A \cup$ $B)=\max (\operatorname{dim}(A), \operatorname{dim}(B))$. is monotone decresaig under generic
smooth maps of compact subsets A, i.e. $\operatorname{dim}(f(A)) \leq \operatorname{dim}(A)$ and if $f: X^{m+n} \rightarrow Y^{n}$ is a generic map, then $f^{-1}(A) \leq \operatorname{dim}(A)+m$.
"generic dimension" is the minimal function with these properties which coincides with the ordinary dimension on smooth compact submanifolds. no problems if we do not take limits of maps.
[smooth generic \& piecewise linear \leadsto generic piecewise smooth \sim stratawise smooth]
An i-cycle $C \subset X$ is a closed subset in X of dimension i with a \mathbb{Z} multiplicity function on C with the following set decomposition of C.

$$
C=C_{r e g} \cup C_{\times} \cup C_{\text {sing }},
$$

such that

- $C_{\text {sing }}$ is a closed subset of dimension \leq $i-2$.
- $C_{r e g}$ is an open and dense subset in C and it is a smooth i-submanifold in X.
$C_{\times} \cup C_{\text {sing }}$ is a closed subset of dimension $\leq i-1$. Locally, at every point, $x \in C_{\times}$the union $C_{r e g} \cup C_{\times}$ is diffeomorphic to a collection of smooth copies of \mathbb{R}_{+}^{i} in X, called branches, meeting along their \mathbb{R}^{i-1} boundaries where the basic example is the union of hypersurfaces in general position.
- The \mathbb{Z}-multiplicity structure, is given by an orientation of $C_{r e g}$ and a locally constant multiplicity/weight \mathbb{Z}-function on $C_{r e g}$, (where for $i=$ 0 there is only this function and no orientation) such that the sum
of these oriented multiplicities over the branches of C at each point $x \in C_{\times}$equals zero.
Every C can be modified to C^{\prime} with empty C_{\times}^{\prime} and if $\operatorname{codim}(C) \geq$ 1, i.e. $\operatorname{dim}(X)>\operatorname{dim}(C)$, also with weights $= \pm 1$.
Double circle $2 S^{1}$ can be separated in two ways.
If $2 l$ oriented branches of $C_{r e g}$ with multiplicities 1 meet at C_{\times}, divide them into l pairs with the partners having opposite orientations, keep these partners attached as they meet along C_{\times}and separate them from the other pairs.
(The separation of branches is, say with the total weight $2 l$, can be performed in l ! different ways: parasitic structure)

A closed oriented n-manifold itself makes an n-cycle which represents the fundamental class $[X] \epsilon$ $H_{n}(X)$. Other n-cycles are integer combinations of the oriented connected components of X.
$(i+1)$-Plaque D with a boundary $\partial(D) \subset D$ is the same as a cycle, except that there is a subset $\partial(D)_{\times} \subset D_{\times}$, where the sums of oriented weights do not cancel, where the closure of $\partial(D)_{\times}$equals $\partial(D) \subset D$ and where $\operatorname{dim}(\partial(D) \backslash$ $\left.\partial(D)_{\times}\right) \leq i-2$
Two opposite canonical induced orientations on the boundary $C=$ ∂D.
Plaque can be "subdivided" $D_{1}=$ $D_{2} . D=0$ if the weight function on $D_{\text {reg }}$ equals zero.
$-D$ the plaque with the either minus weight function or with the opposite orientation.
$D=D_{1}+D_{2}$: a plaque D containing both D_{1} and D_{2} as its subplaques with the obvious addition rule of the weight functions.
$D_{1}=D_{2}$ if $D_{1}-D_{2}=0$.
THE SUM OF GENERIC PLAQUES
IS A PLAQUE.
If $D \subset X$ is an i-plaque (i-cycle)
then the image $f(D) \subset Y$ under a generic map $f: X \rightarrow Y$ is an i plaque (i-cycle).
If $\operatorname{dim}(Y)=i+1$, then the selfintersection locus of the image $f(D)$ becomes a part of $f(D)_{\times}$and if $\operatorname{dim}(Y)=i+1$, then the new part the \times-singularity comes from $f(\partial(D))$.
the pullback $f^{-1}(D)$ of an i-plaque
$D \subset Y^{n}$ under a generic map f : $X^{m+n} \rightarrow Y^{n}$ is an $(i+m)$-plaque in X^{m+n}; if D is a cycle and the map f is proper), then $f^{-1}(D)$ is cycle.
All of this extends to piecewise smooth, e.g. piecewise linear spaces.
Homology. C_{1} and C_{2} in X are homologous, $C_{1} \sim C_{2}$, if there is an $(i+1)$-plaque D in $X \times[0,1]$, such that $\partial(D)=C_{1} \times 0-C_{2} \times 1$.
For example every contractible cycle $C \subset X$ is homologous to zero, since the cone over C in $Y=X \times$ $[0,1]$ corresponding to a smooth generic homotopy makes a plaque with its boundary equal to C.
Since small subsets in X are contractible, a cycle $C \subset X$ is homologous to zero if and only if it admits
a decomposition into a sum of "arbitrarily small cycles", i.e. if, for every locally finite covering $X=$ $\cup_{i} U_{i}$, there exist cycles $C_{i} \subset U_{i}$, such that $C=\sum_{i} C_{i}$.

The homology group $H_{i}(X)$ is the Abelian group with generators [C] for all i-cycles C in X and with the relations $\left[C_{1}\right]-\left[C_{2}\right]=0$ whenever $C_{1} \sim C_{2}$.
$H_{i}(X ; \mathbb{Q}): C$ and D come with fractional weights.
Examples. Every closed orientable n-manifold X with k connected components has $H_{n}(X)=\mathbb{Z}^{k}$, where $H_{n}(X)$ is generated by the fundamental classes of its components. every closed orientable manifold X is non-contractible.
(on-contractibility of S^{n} and issuing from this the Brouwer fixed point theorem nearaly impossible within the world of continuous maps without using generic smooth or combinatorial ones, except for $n=1$ with the covering map $\mathbb{R} \rightarrow S^{1}$ and for S^{2} with the Hopf fibration $S^{3} \rightarrow$ S^{2}.
The catch is that the difficulty is hidden in the fact that a generic image of an $(n+1)$-plaque e.g. a cone over X) in $X \times[0,1]$ is again an ($n+1$)-plaqueisue.
But no problem with $H_{0}(X)=$ \mathbb{Z}^{k}, where k components is the number of component.)
The spheres S^{n} have $H_{i}\left(S^{n}\right)=0$ for $0<i<n$, since the complement to a point $s_{0} \in S^{n}$ is homeo-
morphic to \mathbb{R}^{n} and a generic cycles of dimension $<n$ misses s_{0}, while \mathbb{R}^{n}, being contractible, has zero homologies in positive dimensions.
Continuous maps $f: X \rightarrow Y$, when generically perturbed, define homomorphisms $f_{\star i}: H_{i}(X) \rightarrow H_{i}(Y)$ for $C \mapsto f(C)$ and that
homotopic maps $f_{1}, f_{2}: X \rightarrow Y$ induce equal homomorphisms $H_{i}(X) \rightarrow$ $H_{i}(Y)$.
Indeed, the cylinders $C \times[0,1]$ generically mapped to $Y \times[0,1]$ by homotopies $f_{t}, t \in[0,1]$, are plaque D in our sense with $\partial(D)=f_{1}(C)-$ $f_{2}(C)$.
It follows, that the
homology is invariant under homotopy equivalences $X \leftrightarrow Y$ for manifolds X, Y as well as for tri-
angulated spaces.
Similarly, if $f: X^{m+n} \rightarrow Y^{n}$ is a proper (pullbacks of compact sets are compact) smooth generic map between manifolds where Y has no boundary, then the pullbacks of cycles define homomorphism, denoted, $f^{!}: H_{i}(Y) \rightarrow H_{i+m}(X)$, which is invariant under proper homotopies of maps.
The homology groups are much easier do deal with than the homotopy groups, since the definition of an i-cycle in X is purely local, while "spheres in X " can not be recognized by looking at them point by point - they are not "sums" of their parts.
Homologically speaking, a space is the sum of its parts: the local-
ity allows an effective computation of homology of spaces X assembled of simpler pieces, such as cells, for example.

Degree of a Map. Let f : $X \rightarrow Y$ be a smooth (or piece-wise smooth) generic map between closed connected oriented equidimensional manifolds
Then the degree $\operatorname{deg}(f)$ can be (obviously) equivalently defined either as the image $f_{*}[X] \in \mathbb{Z}=$ $H_{n}(Y)$ or as the f-image of the generator $[\bullet] \in H_{0}(Y) \in \mathbb{Z}=H_{0}(X)$. For, example, l-sheeted covering maps $X \rightarrow Y$ have degrees l. Similarly, one sees that finite covering maps between arbitrary spaces are surjective on the rational homology groups.

If a compac X allowed a non-empty boundary, then f-pullback $\tilde{U}_{y} \subset X$ of some (small) open neighbourhood $U_{y} \subset Y$ of a generic point $y \in Y$ consists of finitely many connected components $\tilde{U}_{i} \subset \tilde{U}$, such that the map $f: \tilde{U}_{i} \rightarrow U_{y}$ is a diffeomorphism for all \tilde{U}_{i}.
Thus, every \tilde{U}_{i} carries two orientations: one induced from X and the second from Y via f. The sum of +1 assigned to \tilde{U}_{i} where the two orientation agree and of -1 when they disagree is called the local degree $\operatorname{deg}_{y}(f)$.
If two generic points $y_{1}, y_{2} \in Y$ can be joined by a path in Y which does not cross the f-image $f(\partial(X)) \subset$ Y of the boundary of X, then $\operatorname{deg}_{y_{1}}(f)=$ $\operatorname{deg}_{y_{2}}(f)$ since the f-pullback of this
path, (which can be assumed generic) consists, besides possible closed curves, of several segments in Y, joining ± 1-degree points in $f^{-1}\left(y_{1}\right) \subset \tilde{U}_{y_{1}} \subset$ X with ∓ 1-points in $f^{-1}\left(y_{2}\right) \subset U_{y_{2}}$.
The local degree does not depend on y if X has no boundary. Then, clearly, it coincides with the homologically defined degree.
The local degree is invariant under generic homotopies $F: X \times$ $[0,1] \rightarrow Y$, where the smooth (typically disconnected) pull-back curve $F^{-1}(y) \subset X \times[0,1]$ joins ± 1-points in $F(x, 0)^{-1}(y) \subset X=X \times 0$ with干1-points in $F(x, 1)^{-1}(y) \subset X=$ $X \times 1$.

Geometric Versus Algebraic Cycles. The homology of a triangulated space is algebraically defined
with \mathbb{Z}-cycles which are \mathbb{Z}-chains, i.e. formal linear combinations $C_{a l g}=$ $\sum_{s} k_{s} \Delta_{s}^{i}$ of oriented i-simplices Δ_{s}^{i} with integer coefficients k_{s}, where, by the definition of "algebraic cycle" , these sums have zero algebraic boundaries.
This is exactly the same as our generic cycles $C_{g e o}$ in the i-skeleton X_{i} of X and, tautologically, $C_{\text {alg }} \stackrel{\text { taut }}{\mapsto}$ $C_{\text {geo }}$ gives us a homomorphism from the algebraic homology to our geometric one.
An $(i+j)$-simplex minus its center can be radially homotoped to its boundary. Then the obvious reverse induction on skeleta of the triangulation shows that the space X minus a subset $\Sigma \subset X$ of codi-
mension $i+1$ can be homotoped to the i-skeleton $X_{i} \subset X$.
Since every generic i-cycle C misses Σ it can be homotoped to X_{i} where the resulting map, say $f: C \rightarrow X_{i}$, sends C to an algebraic cycle.
Similarly, the eqivalence of the two definitions of homology is seen for all cellular spaces X with piece-wise linear attaching maps.
(The usual definition of homology of such an X amounts to working with all i-cycles contained in X_{i} and with $(i+1)$-plaques in X_{i+1}. In this case the group of i-cycles becomes a subspace of the group spanned by the i-cells, which shows, for example, that the rank of $H_{i}(X)$ does not exceed the number of i cells in X_{i}.)

If X is a non-compact manifold, one may drop "compact" in the definition of these cycles. The resulting group is denoted $H_{1}\left(X, \partial_{\infty}\right)$. If X is compact with boundary, then this group of the interior of X is called the relative homology group $H_{i}(X, \partial(X))$. (The ordinary homology groups of this interior are canonically isomorphic to those of X.)

Intersection Ring. The intersection of cycles in general position in a smooth manifold X defines a multiplicative structure on the homology of an n-manifold X, denoted

$$
\begin{aligned}
& {\left[C_{1}\right] \cdot\left[C_{2}\right]=\left[C_{1}\right] \cap\left[C_{2}\right]=\left[C_{1} \cap C_{2}\right] \in H_{n-(i+j)}(} \\
& \quad \text { for }\left[C_{1}\right] \in H_{n-i}(X) \text { and } \\
& {\left[C_{2}\right] \in H_{n-j}(X),}
\end{aligned}
$$

where $[C] \cap[C]$ is defined by intersecting $C \subset X$ with its small generic perturbation $C^{\prime} \subset X$.
(Here genericity is most useful: intersection is painful for simplicial cycles confined to their respective skeleta of a triangulation. On the other hand, if X is a not a manifold one may adjust the definition of cycles to the local topology of the singular part of X and arrive at what is called the intersection homology.)
The intersection is respected by $f!$ for proper maps f, but not for f_{*}. The former implies. in particular, that this product is invariant under oriented (i.e. of degrees +1) homotopy equivalences between closed equidimensional manifolds. (But $X \times$
\mathbb{R}, which is homotopy equivalent to X has trivial intersection ring, whichever is the ring of X.)
The intersection of cycles of odd codimensions is anti-commutative and if one of the two has even codimension it is commutative.
The intersection of two cycles of complementary dimensions is a 0 cycle, the total \mathbb{Z}-weight of which makes sense if X is oriented; it is called the intersection index of the cycles.
The intersection between C_{1} and C_{2} equals the intersection of $C_{1} \times$ C_{2} with the diagonal $X_{\text {diag }} \subset X \times$ X.
Examples. (a) The intersection ring of the complex projective space $\mathbb{C} P^{k}$ is multiplicatively generated
by the homology class of the hyperplane, $\left[\mathbb{C} P^{k-1}\right] \in H_{2 k-2}\left(\mathbb{C} P^{k}\right)$, with the only relation $\left[\mathbb{C} P^{k-1}\right]^{k+1}=0$ and where, obviously, $\left[\mathbb{C} P^{k-i}\right] \cdot\left[\mathbb{C} P^{k-j}\right]=$ $\left[\mathbb{C} P^{k-(i+j)}\right]$.
In fthe homology class $\left[\mathbb{C} P^{i}\right]$ (additiacvely) generates $H_{i}\left(\mathbb{C} P^{k}\right)$, which is seen by observing that $\mathbb{C} P^{i+1}$ \ $\mathbb{C} P^{i}, i=0,1, \ldots, k-1$, is an open $(2 i+2)$-cell, i.e. the open topological ball $B_{o p}^{2 i+2}$ (where the cell attaching map $\partial\left(B^{2 i+2}\right)=S^{2 i+1} \rightarrow$ $\mathbb{C} P^{i}$ is the quotient map $S^{2 i+1} \rightarrow$ $S^{2 i+1} / \mathbb{T}=\mathbb{C} P^{i+1}$ for the obvious action of the multiplicative group \mathbb{T} of the complex numbers with norm 1 on $S^{2 i+1} \subset \mathbb{C}^{2 i+1}$).
(b) The intersection ring of the n torus is isomorphic to the exterior algebra on n-generators, i.e. the
only relations between the multiplicative generators $h_{i} \in H_{n-1}\left(\mathbb{T}^{n}\right)$ are $h_{i} h_{j}=-h_{j} h_{i}$, where h_{i} are the homology classes of the n coordinate subtori $\mathbb{T}_{i}^{n-1} \subset \mathbb{T}^{n}$.
This follows from the Künneth formula below, but can be also proved directly with the obvious cell decomposition of \mathbb{T}^{n} into 2^{n} cells.
The intersection ring structure immensely enriches homology. Additively, $H_{*}=\oplus_{i} H_{i}$ is just a graded Abelian group - the most primitive algebraic object (if finitely generated) - fully characterized by simple numerical invariants: the rank and the orders of their cyclic factors.
But the ring structure, say on H_{n-2} of an n-manifold X, for $n=2 d$ de-
fines a symmetric d-form, on $H_{n-2}=$ $H_{n-2}(X)$ which is, a polynomial of degree d in r variables with integer coefficients for $r=\operatorname{rank}\left(H_{n-2}\right)$. All number theory in the world can not classify these for $d \geq 3$ (to be certain, for $d \geq 4$).

