Probability /Topology — Synopsis of lecture 2

Misha Gromov,

October 5, 2022

What is Topology?

Knots.

Browder fixed point theorem, non-
contractibility of spheres

maps cube — cube

proper maps R"™ — R,

e.g. gr:(x,2)m (2,2F), (2,2) €
R"=R" 2 xC.

0eU—->R", f:U—-R" st.

0 ¢ [g(0), f(b)], b € OU, eg

—> Ju e U,, st. f(u) = u

and if f is "generic" there exist (at
least) k such u. (Gauss)
(Room with 2 doors)
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Homology like complex numbers,
and unlike probability comes with a
sign.) n = oo conservation of inter-
section numbers under proper de-
formation of linear subspaces

(.

Poincare’s principle of continuity

Nearly 2,500 years ago, a Greek wrestler, Milo of Croton, was regarded as

the strongest person who had ever lived in the known world.

Projectivization, gain of the Zo-
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symmetry and loss of orientability,
Borsuk Ulam Sandwiche Theorem.

THE BORSUK-ULAM THEOREM AND BISECTION OF NECKLACES
ALON-WEST(&REAL MOMENT MAP)

Probability and complex Moment
map. oymplectic structure. Sign
recovering by he wave function.

AVERAGING SET. A GENERALIZATION OF MEAN VALUES AND
SPHERICAL DESIGNS,SEYMOUR-ZASKAVSKY.

proper maps R™M*71 — R™

Serre Finiteness theorem.

MANIFOLDS: objects or manners
of speaking, concrete and generic.

(Definition objects and maps at
the same time no carts..... Area of
the disk is the limit of,,. but this
is not a definition.)

All closed smooth n-manifolds X
are pullbacks of the Grassmannians
Xy = Gry(R™NY) in the canoni-
cal vector bundle V' > Xq of rank N
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under generic smooth proper maps
RN 5 U -V (or from SN =
RN V4. ) If N =1 these are
levels sets of generic points of smooth
(proper) functions R — R

What are non=generic manifolds?
(Simons-Federer theorem)

Figure 1: Zermelo Choice Problem

Two solutions :

[. 1/2 probabiliy

IT Mébius Strip
Triangulated spaces.
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Algorithms and Counting: (How
many triangulation spheres have?)

Almost definition: Homology classes
(C] € H;(X), classes of "compact
oriented ¢-submanifolds C' ¢ X with
singularities of codimension two" .

But:

closed self-intersecting curves in
surfaces, and/or the double cover-
ing map S1 - St

C' c¢ X may have singularities of
codimension one, and, besides ori-
entation, a locally constant integer
valued function on the non-singular
locus of C.

dimension on closed subsets in smooth
manifolds: of monotonicity, local-
ity and max-additivity, i.e. dim( AU
B) = max(dim(A),dim(B)). is

monotone decresaig under generic
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smooth maps of compact subsets
A e dim(f(A)) <dim(A) and
if f o XM YT is a generic
map, then f~1(A) < dim(A) +m.

"generic dimension" is the mini-
mal function with these properties
which coincides with the ordinary
dimension on smooth compact sub-
manifolds. no problems if we do
not take limits of maps.

[smooth generic & piecewise linear~
generic piecewise smooth ~» strata-
wise smooth|

An i-cycle C' ¢ X is a closed sub-
set in X of dimension ¢ with a Z-
multiplicity function on C' with the
following set decomposition of C'.

C = Cr@g U Cx U Csxl:ng,
such that



e Cging s aclosed subset of dimension<
1 — 2.

® Creg 1s an open and dense sub-
set in C' and it is a smooth ¢-submanifold
m X.

Cx U Cygjng 18 a closed subset of
dimension < ¢—1. Locally, at every
point, x € Cx the union Cpeg U Cx
is diffeomorphic to a collection of
smooth copies of R in X, called
branches, meeting along their R¥=1-
boundaries where the basic exam-
ple is the union of hypersurfaces in
general position.

o The Z-multiplicity structure, 1s
given by an orientation of Cyeq and
a locally constant multiplicity /weight
Z-tfunction on Cpeg, (Where for ¢ =
0 there is only this function and
no orientation) such that the sum
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of these oriented multiplicities over
the branches of C' at each point
x € Cx equals zero.

Every C' can be modified to C'
with empty C and if codim(C') >
1, ie. dim(X) > dim(C), also
with weights = +1.

Double circle 251 can be separated
1 two ways.

[T 2] oriented branches of Cyeq with
multiplicities 1 meet at Cx, divide
them into [ pairs with the partners
having opposite orientations, keep
these partners attached as they meet
along C'x and separate them from
the other pairs.

(The separation of branches is, say
with the total weight 2[, can be
performed in ! different ways: par-
asitic structure)



A closed oriented n-manifold it-
self makes an n-cycle which repre-
sents the fundamental class [ X] €
Hy(X). Other n-cycles are integer
combinations of the oriented con-
nected components of X.

(i + 1)-Plaque D with a bound-
ary O(D) c D is the same as a
cycle, except that there is a sub-
set 0(D)x c Dx, where the sums
of oriented weights do not cancel,
where the closure of 9(D)x equals
J(D) c D and where dim(9(D) ~
O(D)x)<i-2

Two opposite canonical induced
orientations on the boundary C' =

oD.

Plaque can be "subdivided" Dy =
Dy. D =0 if the weight function on
Dyeg equals zero.
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—D the plaque with the either mi-
nus weight function or with the op-
posite orlentation.

D = Dy + Dy: a plaque D con-
taining both Dy and D9 as its sub-
plaques with the obvious addition
rule of the weight functions.

Dy=Dy it D;—Dy=0.

THE SUM OF GENERIC PLAQUES

IS A PLAQUE.

If D c X is an i-plaque (i-cycle)
then the image f(D) cY under a
generic map f : X =Y 1is an 1-
plaque (i-cycle).

If dim(Y) =14+ 1, then the self-
intersection locus of the image f (D)
becomes a part of f(D)x and if
dim(Y) =i+ 1, then the new part
the x-singularity comes from f(9(D)).

the pullback f~1(D) of ani-plaque
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D c Y™ under a generic map f :
XA — Y1 s an (i + m)-plaque
i XM qf D is a cycle and the
map f is proper), then f~1(D) is
cycle.

All of this extends to piecewise
smooth, e.g. piecewise linear spaces.

Homology. C7 and Cy in X are
homologous, C7 ~ Co, if there is an
(i+1)-plaque D in X x [0, 1], such
that 8(D) = Cl x () — CQ x 1.

For example every contractible cy-
cle C' ¢ X 1s homologous to zero,
since the cone over €' in Y = X x
[0, 1] corresponding to a smooth generic
homotopy makes a plaque with its
boundary equal to C"

Since small subsets in X are con-
tractible, a cycle C' ¢ X is homolo-
oous to zero if and only if it admits
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a decomposition into a sum of "ar-
bitrarily small cycles", i.e. if, for
every locally finite covering X =
U; U;, there exist cycles C; c U,
such that C' =Y, C}.

The homology group H;(X) is the
Abelian group with generators [C']
for all 7-cycles C'in X and with the
relations [C]] — [C2] = 0 whenever
Cp~ (Y.

H;(X;Q): C and D come with
fractional weights.

Examples. Every closed orientable
n-manifold X with k£ connected com-
ponents has H,(X) = ZF, where
Hy(X) is generated by the funda-
mental classes of its components.

every closed orientable manifold
X 18 non-contractible.
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(on-contractibility of S™ and is-
suing from this the Brouwer fizved
point theorem nearaly impossible within
the world of continuous maps with-
out using generic smooth or combi-
natorial ones, except for n = 1 with

the covering map R - S! and for
S2 with the Hopf fibration S3 —

S2.

The catch is that the difficulty is
hidden in the fact that a generic
image of an (n + 1)-plaque e.g. a
cone over X ) in X x [0, 1] is again
an (n + 1)-plaqueisue.

But no problem with Hy(X) =
7F where k components is the num-
ber of component.)

The spheres S™ have H;(S™) =0
for 0 < 7 < n, since the comple-
ment to a point sp € S™ is homeo-
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morphic to R™ and a generic cycles
of dimension < m misses sg, while
R™ being contractible, has zero ho-
mologies in positive dimensions.

Continuous maps f : X —= Y.
when generically perturbed, define
homomorphisms f,; : H;(X) - H;(Y)
for C'~ f(C) and that

homotopic maps f1,fo: X =Y
induce equal homomorphisms H;(X) —
H;(Y).

Indeed, the cylinders C x [0, 1]
generically mapped to Y x [0, 1] by
homotopies fy, t € [0, 1], are plaque
D in our sense with (D) = f1(C)-
f2(C).

[t follows, that the

homology 1s invariant under ho-

motopy equivalences X < Y for
manifolds X.,Y as well as for tri-
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angulated spaces.

Similarly, if f: XM - Y7 s a
proper (pullbacks of compact sets
are compact) smooth generic map
between manifolds where Y has no
boundary, then the pullbacks of cy-
cles define homomorphism, denoted,
' H(Y) » Hjppy(X), which is
invariant under proper homotopies
of maps.

The homology groups are much
casier do deal with than the ho-
motopy groups, since the definition
of an ¢-cycle in X is purely local,
while "spheres in X" can not be
recognized by looking at them point
by point — they are not "sums" of
their parts.

Homologically speaking, a space
is the sum of its parts: the local-
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ity allows an effective computation
of homology of spaces X assembled
of simpler pieces, such as cells, for
example.

Degree of a Map. Let f :
X =Y be a smooth (or piece-wise
smooth) generic map between closed
connected oriented equidimensional
manifolds

Then the degree deg(f) can be
(obviously) equivalently defined ei-
ther as the image f«[X] € Z =
Hp(Y) or as the f-image of the
generator [o] € Hy(Y) e Z = Hy(X).
For, example, [-sheeted covering maps
X — Y have degrees [. Similarly,
one sees that

finite covering maps between ar-
bitrary spaces are surjective on the
rational homology groups.
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If a compac X allowed a non-empty
boundary, then f-pullback ﬁy cX
of some (small) open neighbourhood
Uy c Y of a generic point y € Y
consists of finitely many connected
components (NJZ c U, such that the
map f : U; — Uy is a diffeomor-
phism for all U;.

Thus, every (~]Z carries two orien-
tations: one induced from X and
the second from Y via f. The sum
of +1 assigned to U; where the two
orientation agree and of —1 when
they disagree is called the local de-
gree degy(f).

If two generic points y1,y9 € Y
can be joined by a path in Y which
does not cross the f-image f(9(X)) c
Y of the boundary of X, then degy, (f) =
degy,( f) since the f-pullback of this
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path, (which can be assumed generic)
consists, besides possible closed curves,
of several segments in Y, joining
+1-degree pointsin f~ 1(y1) C Uy1

X with ¥1-pointsin f~(y9) c Uys,.

The local degree does not depend
on y if X has no boundary. Then,
clearly, it coincides with the homo-
logically defined degree.

The local degree is invariant un-
der generic homotopies F' : X x
[0,1] = Y, where the smooth (typ-
ically disconnected) pull-back curve
F~1(y) c X x[0,1] joins +1-points
in F(x,0)"(y) c X = X x 0 with
F1-points in F(z,1) Hy) c X =
X x1.

Geometric Versus Algebraic Cy-

cles. The homology of a triangu-
lated space is algebraically defined
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with Z-cycles which are Z-chains,
1.e. formal linear combinations Cy, =
Y ksAL of oriented i-simplices AL
with integer coefficients kg, where,
by the definition of "algebraic cy-
cle" | these sums have zero alge-
braic boundaries.

This is exactly the same as our
generic cycles Cgep In the 2-skeleton

X; ot X and, tautologically, Cy, e
Clgeo glves us a homomorphism from
the algebraic homology to our geo-
metric one.

An (7 + 7)-simplex minus its cen-
ter can be radially homotoped to
its boundary. Then the obvious re-
verse induction on skeleta of the

triangulation shows that the space
X minus a subset X ¢ X of codi-
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mension 2+ 1 can be homotoped to
the 2-skeleton X; c X.

Since every generic i-cycle C' misses
>3 1t can be homotoped to X; where
the resulting map, say f:C — Xj,
sends C' to an algebraic cycle.

Similarly, the eqivalence of the two
definitions of homology is seen for
all cellular spaces X with piece-wise
linear attaching maps.

(The usual definition of homology
of such an X amounts to working
with all 2-cycles contained in Xj
and with (7 + 1)-plaques in X;,1.
In this case the group of i-cycles
becomes a subspace of the group
spanned by the ¢-cells, which shows,
for example, that the rank of H;(X)

does not exceed the number of -
cells in X;.)
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If X is a non-compact manitold,
one may drop "compact" in the det-
inition of these cycles. The result-
ing group is denoted Hi(X, 0oo).
If X is compact with boundary, then
this group of the interior of X is
called the relative homology group
H;(X,0(X)). (The ordinary ho-
mology groups of this interior are
canonically isomorphic to those of
X.)

Intersection Ring. The inter-
section of cycles in general position
in a smooth manifold X defines a
multiplicative structure on the ho-
mology of an n-manifold X, denoted

[C1][Co] = [Ciln[Co] = [CinCa] € H,_(;,5)(

for [C1] € H,—;(X) and
[Co] € Hy— i (X)),
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where [C'] n [C] is defined by in-
tersecting C' ¢ X with its small
generic perturbation C’ c X.

(Here genericity is most useful: in-
tersection is painful for simplicial
cycles confined to their respective
skeleta of a triangulation. On the
other hand, it X is a not a mani-
fold one may adjust the definition
of cycles to the local topology of
the singular part of X and arrive at
what is called the intersection ho-
mology.)

The intersection is respected by
f' for proper maps f, but not for
f«. The former implies. in partic-
ular, that this product is invariant
under oriented (i.e. of degrees +1)
homotopy equivalences between closed
equidimensional manifolds. (But X x
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R, which is homotopy equivalent
to X has trivial intersection ring,
whichever is the ring of X.)

The intersection of cycles of odd
codimensions is anti-commutative and
if one of the two has even codimen-
sion 1t 1s commutative.

The intersection of two cycles of
complementary dimensions is a 0-
cycle, the total Z-weight of which
makes sense if X is oriented: it is
called the intersection index of the
cycles.

The intersection between C7 and
(9 equals the intersection of C7 x
C with the diagonal X4, c X X
X.

Examples. (a) The intersection
ring of the complex projective space
CPF is multiplicatively generated
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by the homology class of the hyper-

plane, [CP*~1] € Hy;._o(CPF), with

the only relation [CPk-1]k+1 =

and where, obviously, [CP#~].[CPk-7] =
[CPF-(i+5)].

[n fthe homology class [CP*] (ad-
ditiacvely) generates H;(CPF), which
is seen by observing that CP**1
CP! i=0,1,....k -1, is an open
(27 + 2)-cell, i.e. the open topolog-
ical ball Bgf;“Q (where the cell at-
taching map 9(B%+2) = §2+1
CP? is the quotient map S+l —
S2+1/T = CP**! for the obvious
action of the multiplicative group T
of the complex numbers with norm
1 on S2t+1 ¢ @2i+1>.

(b) The intersection ring of the n-
torus is isomorphic to the exterior
algebra on n-generators, i.e. the
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only relations between the multi-
plicative generators h; € Hy,_1(T™)
are hih; = —hjh;, where h; are the
homology classes of the n coordi-
nate subtori T?‘l c T

This follows from the Kiinneth for-
mula below, but can be also proved
directly with the obvious cell de-
composition of T™ into 2" cells.

The intersection ring structure im-
mensely enriches homology. Addi-
tively, Hy = ®;H; 1s just a graded
Abelian group — the most primitive
algebraic object (if finitely gener-
ated) — fully characterized by sim-
ple numerical invariants: the rank
and the orders of their cyclic tac-
tors.

But the ring structure, say on H,,_»
of an n-manifold X, for n = 2d de-
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fines a symmetric d-form, on H,,_o =
H,,_5(X) which is, a polynomial of

degree d in r variables with integer

coefficients for r = rank(H,_2).

All number theory in the world can

not classify these for d > 3 (to be

certain, for d > 4).
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