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1 Lecture 1: Seeds of Mathematics in the 20th
Century Soil: from Pythagorus to Hilbert and
Beyond

Much of mathematics springs from a few miraculous seeds-theorems-ideas sown
in the soil of the 20 century concepts : spaces, maps, symmetries, where the
consistency of these concepts is as improbable as the the properties of the seeds
planted in it.

(This is reminiscent of how the propagation of life on the surface of the Earth
depends on the fertility of the soil, where this fertility would be impossible if not
for the fixation of the free nitrogen from the air and which is possible due to the
inequality 2237 < 2346 in the energy balance of the synthesis of ammonia:

3[H
432
− H]+ [N

941≡ N]↦ 2[N
3×391≡ 3H]

2237 = 3 × 432 + 941 < 2 × 3 × 391 = 2346 ≈ 1.05 × 2237.
If the energy of the N −H bonds were slightly weaker, say 371 J/mol instead

of 391, there would hardly be a chance for Hominidae emerging on Earth: 6 ×
371 = 2226 < 2237.)

1



Here are 5 seeds-theorems-ideas most of mathematics grows from.1

I. Pythagorus (500s BC)2 : a2 + b2 = c2.

II. Archimedes (200s BC): area(S2(r)) = 4πr2.

III. Euclid (300s BC) Isometric maps from a subset in the plane, R2 ⊂
Y

fY→ R2, e.g. the vertex set of a triangle, extend to isometric maps from the
plane, R2 f→ R2.

IV. Hilbert(1909) generalized Hurwitz’ 1908 identity3:
5040(a21 + a22 + a23 + a24)4 =

= 6∑
±
(a1 ± a2 ± a3 ± a4)8 + ∑

i>j>k
(2ai ± aj ± ak)8 + 60∑

i>j
(ai ± aj) + 6∑

i

(2ai)8.

V. Borsuk-Ulamn(Lyusternik-Shnirel’man?)(circa 1930): Let f ∶ Sn →
Sm be a continuous map between spheres.

If f is ±-symmetric, i.e f(−s) = −f(s), then m ≥ n;
if m = n and f is piecewise smooth (C1-differentiable), then there exists a

point s in the receiving sphere, such that the pullback f−1(s) (in the source
sphere Sn) is finite and the number card(f−1(s)) is odd. Thus continuous
±-symmetric maps Sn → Sn are onto.4

1In the following lectures, where we shall give definitions, precise statements and proofs of
everything, which is only briefly indicated in sections 1 and 1.1-1.6 below.

2Each minute you inhale millions N ≡ N molecules exhaled by Pythagorus but half of
the nitrogen which stays in your body (3% of your body mass), arrived by a chemical route
nonexistent in the Pythagorus’ times.

3https://www.jstor.org/stable/2370754?seq=10
4Less known to mathematicians is Teller-Ulam implosion design of the thermonuclear

bomb.
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1.1 Pythagorean World; Hilbert, von Neumann, Atiyah
Pythagorean theorem reconstructs a fragment of Platonic reality by its shadows
on walls, where this "fragment" is a rod, a stick, a pencil R floating in the air
in the room. This stick casts three shadows S1, S2 S3 on the two walls W1, W2

and on the floor W3 by three sources of lights L1, L2, L3 normal to W1, W2,
W3.

If R rotates in the air, the shadows, their lengths and the sum of the lengths
change, but, this is supposed to amaze you, the sum of the squares

length(S1)2 + length(S2)2 + length(S3)2

doesn’t change:
by Pythagorean theorem this sum is equal to 2 ⋅ length(R)2.

Euclidean and Riemannian. A couple of thousand years later (Oresme
1300s, Decartes 1600s, Schläfli 1850s, ), the Pythagorean dist(x, y) =

√
∑i∈I(xi − yi)2

was taken for a defining axiom of the Euclidean space RI .
Contemporary with Schläfli, Riemann (1854) introduced spaces with "vari-

able Euclidean/Pythagorean" – what we now call Riemannian, geometries,
where their curvatures – "measures of non-Euclideaness" abided the Pythagorean
rule along with all homogeneous quadratic polynomial P on the n-dimensional
Euclidean space X:

the sum of values of such a P over n orthonormal vectors in X doesn’t
depend on which set of such vectors you take.

This generalises the invariance of sums ∑n
i=1 pi under permutations of the

group Πn of the set {1,2, ..., n}.
Energy and Probability. Prior to its full geometric interpretation, Pythagorean

additivity of squares was seen in every corner of physics as additivity of kinetic
energy, e.g. in the Maxwell distribution and as the square root mean square
displacement rule in sums of random variables, where this "rule"

yields the Law of Large numbers (Cardano 1500s, Bernoulli1600s)
leads to von Neumann’s L2-proof of the ergodic theorem.
configures the random walk theory in science (physics, chemistry,
biology, e.g. heat propagation and Brownian motion)
as well as in mathematics.
(∫

∞
−∞ e−x

2

dx)
2
= ∫

∞
−∞ ∫

∞
∞
e−x

2−y2

dxdy = ∫
∞
0 2πre−r

2

dr = −π ∫
∞
0

d
dr
e−r

2

dr = π
Infinite Dimensions and Hilbert Spaces Pythagorean in analyses is

demonstrated by the L2-geometry in function spaces X which, in particular,
supports the spectral theory of differential and integral operators (which al-
lows natural realizations of L2-spaces by l2-spaces of sequences) and the group
representation theory.

Also L2-estimates for functions, such as the Poincaré’s inequalities, provide
an essential information on the domains of these functions, such as measure
concentration properties.

Von Neumann Dimension and Atiyah L2-index theorem.
Let G be a countable group and X be the l2-space of functions Γ→ Rn.
Then, this depends on the the Pythagorean theorem, there is a well defined

dimension function on G-invariant linear subspaces Y ⊂X, where Y1 admits an
isometric embedding to Y2 if and only if dimNeum(Y1) ≤ dimNeum(Y2).
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This dimension is also defined on kernels of Γ-invariant elliptic (e.g. Dirac)
operators D on L2-vector functions on non-compact manifolds acted by Γ, where
an evaluation of this dimension via Atiyah L2-index theorem implies the exis-
tence of non-zero L2-solutions f of D(f) = 0.

Von Neumann Quantum and von Neumann entropy
Let P = P (x) be a homogeneous quadratic polynomial on the Euclidean

space X = RI and let us think of P as family of functions or measures µo = P ∣Eo

on the sets (of cardinalities n = dim(X) = card(I)) of orthonormal frames
Eo ⊂X, o ∈ O○(n), in X.

The orthogonal group O(n) naturally simply transitively acts on O○(n), and
we think of this action as a "Pythagorization" (quantisation?) of the action of
the permutation group Πn on the set I.

The Pythagorean theorem says that the total mass of the measure µo, de-
noted mass(µo) = traceEo(P ), that is a it function on O○(n), is invariant under
the action of O(n), that is constant in o.

If P > 0 (and µo are positive measures) and trace(P ) = 1, then, follow-
ing physicists, the selfadjoint operator P ∗, corresponding to P , i.e. such that
⟨P ∗(x), x⟩ = P (x), is called a density state.

Von Neumann’s Definition of Quantum Entropy.(1932) Recall that
by the Boltzmann-Planck (circa 1900) and Shannon (1948) formula (sometimes
taken for the definition5 the entropy of a probability measure µ on a countable
set I satisfies:

entShan(µ) = −∑
i∈I
µ(i) logµ(i).

Then Von Neumann defined his entropy of P as the ordinary entropy of the
spectral measure µ∗ of the operator P ∗, i. e. where µ∗(i) is equal the i-th
eigenvalue of P ∗.

Equivalently, ent(P ) = entNeum(P ) can be defined as the minimum of
entShan(µo) over all orthonormal frames o in X.

(The equality of the two, we shall see it later, follows from the Pythagorean
theorem.)

ent(P12) ≤ ent(P1) + ent(P2),

where P12 is a density state on the tensor product X1 ⊗ X2 and Pi on Xi,
i = 1,2, are natural reductions – "quantum shadow" of P12 on X1and X2.

More generally, this is Lieb-Ruskai’s strong subadditivity theorem

ent(P3) + ent(P123) ≤ ent(P23) + ent(P13)

for the reductions of P123 on X1 ⊗X2 ⊗X3.
*****************************************************************
Besides the Pythagorean orthogonal group O(n), that is the group of the

linear transformations of the R-linear n-space which preserves the quadratic
form ∑n

i=1 x
2
i , all basic (classical) symmetry groups: orthogonal, symplectic and

their complex-geometric relatives are defined following Pythagorus dictum via
forms of degree 2 on linear spaces.

5One doesn’t define the area of the disk as the limit of the areas of the regular inscribed
n-gons, n→∞.
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1.2 Archimedes Map, Symplectic Geometry and Com-
plex Manifolds

Archimedes map A, that is the normal projection from the unit 2-sphere S2 onto
the segment [−1,1] (positioned on the "vertical’ x-axes), is measure preserving
for the measure 2πdx. on [−1,1]; in fact, the radial map A+ from the 2-sphere
to the cylinder [−1,1]×S2 has Jacobian 1 = sin r

sin r
, where r = r(s) is the spherical

(angular) distance from s ∈ S2 to the South pole.
Symplectic interpretation/generalisation of A: forget the metric in S2, re-

member only the area form ω and use the fact that ω is invariant under the the
circle action, which keeps the poles of the sphere fixed.

This defines A, since the ω-gradient of A equals the vector field of this action6

There is a better algebraically described version of the Archimedes map,
that is C→ R+ for z ↦ r = ∣z∣ = zz̄, which is measure preserving for dz ; 2πdr.

This, raised to the nth power, Cn → Rn
+ , is measure preserving for ∏i dzi ;

(2π)n∏i dri and this leads to the measure preserving map An from the complex
projective space CPn to the "probability simplex" ∆n = {pi ≥ 0}∑i pi=1 ⊂ Rn+1,
which is the moment map for the diagonal action of the n-torus on CPn and
which is equal to the original Archimedes map for n = 1.

The real part of An, which sends Rn+1 ⊃ Sn →∆n for

Sn ∋ (x0, x1, ..., xn)↦ (p0 = x20, p1 = x21, ..., pn = x2n) ∈ ∆n,

is also significant. For instance the spherical metric transported by An on the
simplex ∆n is equal to the minus Hessian of the entropy function ∑i pi log pi
on ∆n by the Fisher entropy formula. (1922).

********************************************************
The measure preserving property of the map CPn →∆n ⊂ Rn+1, generalises

to all symplectic manifolds (X2n, ω) acted by m-tori:
the push forward of the ωn-measure µ under the moment map M ∶X → Rm

is a piecewise polynomial and the Fourier transform of µ can be expressed as
a stationary phase approximation at the critical points of M , according to the
Duistermaat-Heckman formula.

Infinite dimensional moment maps.
Example (Atiyah and Bott 1982): the curvature can be viewed as a moment

map for the action of the gauge group on the space of connec- tions of unitary
bundles over surfaces.7

*************************************************
Beside its symplectic aspect, the map CPn → ∆n ⊂ Rn+1 has a complex

analytic one, which allows an uplifting of convexity to pseudo-convexity, as it is
illustrated by the following.

Brunn-Minkowski inequality for complex algebraic manifolds. Let
X ⊂ CPN1×CPN2 be a connected algebraic submanifold of complex dimension n
and let Xi ⊂ CPNi , i = 1,2, be the images of X under the coordinate projections

CPN1 ×CPN2 → CPN1 ,CPN2 .

6Miraculously, the fundamental physical forces – gravitational and electric and -magnetic
are symplectic ω-gradients for the Louiville form ω on the cotangent bundles of configuration
spaces.

7Moment maps in differential geometry(2003) by S.K. Donaldson
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Then
vol(X)1/n ≥ vol(X1)1/n + vol(X2)1/n.

1.3 Extension of Isometries and Lipschitz Maps in Eu-
clidean and non-Euclidean Spaces

An essential feature of of the plane R2, regarded as a metric space, which is
shared with many (but not all) spaces, is

1. Intermediate distance property. Given points x1, x2 ∈ R2 and a real
number 0 ≥ r ≤ 1, there exists a point x ∈ R2 such that dist(x1, x) = r ⋅dist(x1, x2
and dist(x,x2) = (1 − r) ⋅ dist(x1, x2).

Exercise: Every metric space X is isometric to a subspace. in a space with
the Intermediate distance property.

But the following is highly restrictive and nearly characterises the plane;
2. Full homogeneity. Every isometry map from a subset R2 ⊃ U → R2

extends to an isometry R2 ⊃ U → R2.8

There little to add to 1&2 to uniquely characterise the plane.
3. dim(R2) = 2. The maximal number of points in the plane with mutually

equal distances is 3.
4. Self-similarity (scaling symmetry) "Fifth postulate". There exists

a map φ ∶ R2 → R2, such that

dist(φ(x1), φ(x2)) = λ ⋅ dist(x1, x2), x1, x2 ∈ R2,

for some λ ≠ 0,1.
There are many interesting spaces, where only parts of these properties are

satisfied, historically starting with hyperbolic and spherical spaces, many ho-
mogeneous spaces and/or self-similar spaces , p-adic spaces, etc.

****************************************************
Kirszbraun’s theorem. Partially defined λ-Lipschitz maps

Rn ⊃ U f→ Rm

extend to everywhere defined λ-Lipschitz maps

Rn F→ Rm.

The Kneser-Poulsen monotonicity conjecture for volumes of unions
and intersections of balls. If Bi,B

′
i ⊂ Rn,i ∈ I, are two finite sets of pairwise

equal balls with centres ci, c′i ∈ Rn, such that

dist(ci, cj) ≤ dist(c′i, c′j) for all i, j ∈ I,

Then
vol(⋃

i

Bi) ≤ vol(⋃
i

B′
i) and vol(⋂

i

Bi) ≥ vol(⋂
i

B′
i)

8Full homogeneity of the physical space allows an unrestrictive freedom of movements of
our bodies – one can hardly imagine living in a different kind of space.
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Example of Lang-Schröder’s Theorem. Let the surface X1 ⊂ Rn+1 be
defined by the equation x3 = x21 + x22 and the surface X2 by x3 = x21 − x22 and let
these surfaces be endowed by the shortest paths metrics on them.

Then partially defined λ-Lipschitz maps X1 ⊃ Y
f→X2 extend to everywhere

defined λ-Lipschitz maps X1
F→X2.

Stoker’s conjecture. If the corresponding dihedral angles of two com-
binatorially equivalent convex polyhedra X,X ′ ⊂ Rn satisfy ∠′ ≤ ∠ then all
corresponding face angles are mutually equal.

This is proven to be true9 for many (all?) cases where X ′ is a curvelinear
polyhedron X ′ such that the codimension 1 faces have mean.curv ≥ 0.

For instance, if X is a regular n-simplex and X ′ is a convex curved linear
simplex, such that ∠′ ≤ ∠, the Wang-Xie-Yu-Li-Brendle theorem implies that
X ′ is an ordinary (hence regular) simplex, but no simple proof (not using the
index theorem for Dirac operators, at least for N ≥ 8) of this is available.

***********************************************
Uryson spaces U . These are universal objects in the category of metric

spaces. and isometric maps:
isometric embeddings from subspaces

X ⊃ Y → U

extend to isometric embeddings X → U for compact metric spaces X.
In fact, properly understood random metric spaces are Uryson.

1.4 Hilbert’s Spherical Designs, Cubature Formulas, Mean
Value Theorems, and Curvatures of Immersions

Hilbert’s Spherical Design Lemma allows an imbedding of the n-torus to
the Euclidean unit ball, fo ∶ Tn → BN(1) ⊂ RN for large N = N(n) with
curvature curv(f) ≤

√
3 n
n+2 .

Petrunin’s theorem. There is no C2-immersion f ∶ Tn → BN(1) ⊂ RN for
all N with curvature everywhere <

√
3 n
n+2 .

The relies on nonexistence of Riemannian metrics on tori with scal.cirv > 0
and also applies to certain manifolds homeomorphic to spheres, where the proofs
are based on the Atiyah-Singer index theorem.

(The real projective space RPn imbeds to BN(1), N ≈ n2, with curvature√
2 n
n+1 .)
Seymour -Zaslavsky Mean value theorem. Let {fi(x)}, i ∈ I, be a

finite set of continous functions on the unit interval X = [0,1], Then there
exists a finite subset {xj} ⊂ [0,1], j ∈ J , such that

∫
X
fi(x)dx =

1

card(J) ∑j∈J
fi(xj) for all i ∈ I.

1.5 Combinatorial Applications and Fredholm Generali-
sations of the Topological Intersection Theorems

Intersections and (self) Linking of submanifolds.
9Wang, Xie, Yu, Li, Brendle, whete some proves are long and difficult
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Kneser conjecture: if the n-subsets of a (2n+k)-set are divided into k+1
classes, then two disjoint subsets are contained in the same class.

Bisection of Necklaces by Alon-West
Every interval n-coloring has a bisection of size at most n.
That is, given continuous functions f1(t), ..., fj(t), , ..fn(t), t ∈ [0,1], there

exist n points t1 < ... < ti < .. < tn ∈ [0,1] and a partition of the set of the n + 1
segments S0 = [0, t1], S1 = [t1, t2], ..., Sn = [tn,1] into two subsets , say I+ and
I−, such that the integrals of the functions fj over the unions of these intervals,
called

S+ = ⋃
i∈I+

Si and S− = ⋃
i∈I−

Si

satisfy

∫
S+
fj(t)dt = ∫

S−
fj(t)dt, j = 1, ..., n.

KUKUTANI-YAMABE-YUJOBO’S THEOREM: Let f ∶ Rn → R be a con-
tinuous function.

Then there exists an orthonormal frame {xi} ⊂ Rn, i = 1, ..., n, such that
f(x1) = f(x2) = ... = f(xn).

DYSON’S THEOREM if n = 2, then there exists a pair of unit ortogonal
vectors. x1, x2 such that f(x1) = f(x2) = f(−x1) = f(−x2)

Nash equilibrium theorem
Dvoretzky’s theorem. and counterexamples to the Knaster conjecture

1.6 Spaces, Transformations, Perturbations, Deformations
and Approximations Genericity versus Symmetry, Maps
and Categories, Linearisation and Unitarization...

Powers and Cartesian products
dimensions finite and infinite
Genericity and Symmetry in Physics
Indistinguishability of different random sequences
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