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SPECTRAL INTEGRATION AND TWO-POINT BOUNDARY VALUE
PROBLEMS*

L. GREENGARDY

Abstract. A numerical method for two-point boundary value problems with constant coefficients is
developed which is based on integral equations and the spectral integration matrix for Chebyshev nodes.
The method is stable, achieves superalgebraic convergence, and requires O(N log N) operations, where N
is the number of nodes in the discretization. Although stable spectral methods have been constructed in the
past, they have generally been based on reformulating the recurrence relations obtained through spectral
differentiation in an attempt to avoid the ill-conditioning introduced by that process.
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1. Introduction. Spectral methods are now a popular tool for the solution of many
types of partial differential equations. In the usual formulation, the basic idea is to
represent the solution f by means of a truncated series expansion, and to compute
spatial derivatives of f by analytic differentiation of the series. The linear map P,
which takes a vector of N function values {f(x;)} to a vector of N derivative values
{f'(x:)}, s known as the spectral differentiation matrix. The precise form of @, depends
on the location of the points {x;} and the choice of the approximating series. For
periodic functions, Fourier series are used with the function tabulated at equispaced
nodes. For bounded domains, Chebyshev (or Legendre) series are used with the
function tabulated at Chebyshev (or Legendre) nodes or extreme points.

Although spectral differentiation is remarkably accurate in exact arithmetic, there
are a number of difficulties associated with its use. Ill-conditioning of the matrix with
increasing N frequently causes degradation of the observed precision. Furthermore,
as recently demonstrated by Trefethen and Trummer for certain problems [12], [13],
the time step restrictions due to this ill-conditioning can be more severe than those
predicted by the standard stability theory.

In this paper, we will consider only the simplest steady-state case, namely linear
two-point boundary value problems with constant coefficients. It is well known that
problems of this type are efficiently and accurately solved by spectral methods. On the
other hand, it is also well known that care must be taken in applying spectral methods
to such problems. The naive approach leads to the use of unstable recurrence relations
for the determination of the expansions coefficients, a consequence of the ill-
conditioning of 9. Previous stable methods have consisted of a reformulation of the
linear system by analytic or algebraic means [4], [5], [7], [8]. While avoiding the error
amplification of the unstable recurrence relations in the calculation of the solution
itself, information about derivatives, which is often of physical interest, still requires
spectral differentiation.

Our main purpose in this paper is to suggest that well-conditioned spectral methods
be developed through the use of integral equations. For two-point boundary value
problems, this is accomplished by using the indefinite integral (and Clenshaw-Curtis
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quadrature [2]) to recast the governing differential equation as an integral equation
for the second derivative, which is solved with spectral accuracy. The solution and
first derivative may then be (stably) recovered by integration.

2. Chebyshev approximation. We will require several results from approximation
theory. The Chebyshev polynomial of degree k on [—1, 1] is defined by the formula

(1) T (cos 6) = cos (k0).

Clearly, |T(x)|=1 for xe[-1, 1],

(2) To(x) =1, Ty(x)=x

and, using elementary trigonometric identities,

3) Tii1(x) =2xT (x)— T_1(x) for k=1.

The functions T constitute an orthonormal basis with respect to the inner product
1

(4) (f,g)= J f(x)g(x)(1~-x*) 7" dx.
-1

The Chebyshev nodes t; of degree k are the zeros of T, namely,

2i+1
(5) t,~=cos(——l—)7r fori=0,1,2,--,k—1.

2k

Let C"[—1, 1] denote the set of functions defined on [—1, 1] with n continuous
derivatives. If fe C"[—1, 1] and

©) §00) =3 @ Tyx)+a Ty (X + & T(x)+ -

(7) = Z' a, T, (x)
k=0
is the Chebyshev expansion associated with f, then
2 (! 2
(8) ak=—J F(x)T(x)(1—x?)"1/? dx=—j f(cos 8) cos k@ doé.
mJa m™Jo

Moreover, the remainder in truncating the series at N terms is of the order

9) 0] (#) as N - o,

In particular, if f is infinitely differentiable, then the remainder goes to zero super-
algebraically (faster than any finite power of 1/ N). For a more complete discussion,
see Gottlieb and Orszag [7].

Remark 2.1. The introduction of the notation ) in (7) to represent the sum in
(6) simplifies many of the formulas to follow.

Remark 2.2. In practice, the Chebyshev series (6) is truncated at some finite
number of terms, say N. By relation (8), the coefficients a, are the coefficients of the
Fourier cosine series of F(8)=f(cos 0). Thus, if f is tabulated at equispaced points
in 6, a condition satisfied by the Chebyshev nodes {t;}, we can obtain all N coefficients
a, by means of the Fast Fourier Transform (FFT) or, more precisely, the Fast Cosine
Transform, using O(N log N) operations. Similarly, the inverse cosine transform can
be used to compute function values g(x) = f(x) at the nodes {t;} from the coefficients
a; of the expansion.
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Remark 2.3. In certain calculations it is useful to use a set of discrete nodes which
includes one or both endpoints of the interval [—1, 1], such as the Gauss-Lobatto
points [3]. Such a choice does not affect the obtained results and we will consider
only the classical “Chebyshev” nodes in our discussion.

2.1. Differentiation and integration of Chebyshev expansions.
DerINITION 2.1. Let X be the space consisting of infinite sequences of real
numbers

x=(x0,x1,x2, s ')'
For any a€ X, we will denote by %(a) the sequence b given by the formula
(10) b= Y p-a,

p=k+1
p+kodd

We will refer to the mapping & : X - X as spectral differentiation. We will denote by
F(a) the sequence d given by the formulae

1
(11) dkzﬁ(ak—l“ak+l) for k=1,

(12) d0=d1—d2+d3_"‘.

We will refer to the mapping #: X > X as spectral integration.
The definitions above are motivated by the following lemma, which may be found
in the Appendix to [7]. ‘
LeMMA 2.1. Let f be a smooth function given by a Chebyshev series

(13) f)= ¥ aTi(x).

Then the derivative of f has a series expansion of the form

(14) £ = ' BiTel)

with b, given by (10). The integral of f has a series expansion of the form
(15) L (1) dt = éo 4 T(x),

where d, is given by (11) and (12).

Remark 2.4. The series expansion (15) is the basis for Clenshaw- Curtis quadrature
[2]. After obtaining the coefficients d,, we compute

(16) Jl f(x) dx=2 OZO' dricis

which follows immediately from the equalities
(17) T(-1)=(-1)* and T.(1)=1.

It is clear from (10)-(12) that & is unbounded in the I, norm, while # is bounded.
This behavior is reflected in the numerical conditioning of the finite-dimensional
analogues of these operators. If f is represented by a truncated Chebyshev expansion

(1) 1= ¥ adio),
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then the coefficients of f' are still given by (10), but the summation is truncated at N
terms. Now let a= (ag, ay, - ,an), a=(apt+e a,+e, - -,an+e), D(a)=>b, and
%(a)=>b. Then

[b—b[

|13 ~a]

= O(N?),
the maximum relative error being incurred for the calculation of b,. In other words,
the process of differentiation via Chebyshev series can amplify errors by a factor
proportional to N2 On the other hand, it is easy to show that for any 4,

d.—d
(20) |A—k-—k|§1 for k=1,

la-alle
where d= $(a) and d= #(4). Using the definitions (11) and (12), an elementary
calculation shows that

ldo—do] 1 1
21 ——=—+-+{(2)<24,

where { denotes the Riemann zeta function. In other words, the process of integration
via Chebyshev series amplifies errors by a factor of less than 2.4.

2.2. The spectral integration matrix. The spectral differentiation matrix for Cheby-
shev nodes can be expressed in terms of & by the formula

(22) Dy = (6;11 D %N,

where € is the discrete cosine transform of dimension N.
DEerFINITION 2.2. The spectral integration matrix for Chebyshev nodes $n is
defined by the formula

(23) IN=CN I En.

It is clear that the matrix #, can be applied to a vector in O(N log N) operations
by using a Fast Cosine Transform algorithm.

Before turning to the solution of two-point boundary value problems, we briefly
investigate the behavior of &, and $, with a set of three examples (Fig. 1). Note that
in these examples, we test 9, by differentiating a function f(x) and we test $, by
integrating the corresponding derivative f'(x). The integration of f(x) itself is even
more stable and of less interest. When f(x) =sin (x), we observe the expected conver-
gence as soon as the number of sampling points is sufficient, approximately two points
per wavelength at the coarsest part of the grid. However, as the number of points
increases, differentiation becomes less and less accurate while integration is essentially
unaffected. Although there is no need to use 1,000 points to resolve sin (x) alone, the
error introduced by its differentiation remains when the problem becomes more complex
and more points are required. For example, when f(x) = sin (x)+0.01 sin (10x), about
50 points are required to achieve spectral accuracy, at which point an error of the
order 10~ has already been incurred. When f(x) =sin (x)+0.005 sin (60x), the situ-
ation is worse. In single precision, even with the optimal choice of N, the mean square
error is greater than 1 percent.

3. Two-point boundary value problems. The two-point boundary value problems
considered here are second-order equations of the form

(24) Lu=u"+ pu'+vu=f(x), xe[—-1,1]
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F1G. 1. The numerical behavior of spectral differentiation and integration is demonstrated with three
examples. The left hand of each pair of figures is a plot of the exact functions f(x) as a dashed curve and f'(x)
as a dotted curve. The right hand of each pair is a plot of the mean square error in the spectral differentiation
of f(x) (dotted line) and the spectral integration of f'(x) (dashed line) versus the number of points in the
discretization. For the top figure f(x) = sin (x), for the middle figure f(x) =sin (x)+0.01 sin (10x), and for the
bottom figure f(x) =sin (x)+0.005 sin (60x). Calculations were done in single precision.

with u, » € R and Dirichlet conditions
(25) u(-D=a, u(l)=8.

The fact that high-order polynomial approximations achieve superalgebraic con-
vergence for such differential equations has been known for a long time. Ciarlet,
Schultz, and Varga [1] have shown that superalgebraic convergence can be achieved
even when the governing ordinary differential equation is nonlinear, so long as the

solution is sufficiently smooth. In the standard spectral formulation [7], we seek a
solution

(26) () = § aTi(x),
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subject to the boundary conditions
N N

(27) Y (-Da=a and Y a =4,
k=0 k=0

where we have used the equalities in (17). From the differential equation (24) and the
spectral differentiation matrix, we obtain the relations

N N
(28) Y p(p’—K)a,+tu Y pa,+tva=f, fork=0,---,N=2,
p=k+2 p=k+1
ptkeven p+kodd

where the {f;} are the Chebyshev expansion coefficients for the right-hand side f(x).

This set of equations is inherently ill-conditioned. A reformulation of the recurrence

relations is, therefore, used to compute the solution in a stable manner (see [7, p. 119]).
Consider now the one-dimensional Poisson equation

(29) u'=f(x), u(=)=a, u(l)=8.

Rather than setting up the recurrence relations as in (28), it would be very attractive
to be able to write

(30) u(x)=Ix Jr f(r)drdt+ Cyx+ C,.

The spectral integration matrix of Definition 2.1 provides us with precisely the ability
to compute this formal solution. The constants C, and C, are chosen to satisfy the
boundary condition.

When the differential equation contains terms in u’ or u, we still have a simple
analytic expression for the solution. We may assume, without loss of generality, that
we are given homogeneous boundary conditions and that the corresponding Green’s
function has the form

u(x)v,(t) for x<t,
u(x)v,(t) for x>1t,

(31) G(x, t)={

where u,; and u, are solutions of the homogeneous equation Lu = 0. Since the equation
has constant coefficients, u; and u, are known explicitly. The desired solution can then
be written as

(32) u(X)=J1 G(x, t)f(t) dt
(33) —y(x) - f " o (Of(0) dt
(34) Fu(x) - (f os((1) dz—fx 0 (0f(0) dt).

The indefinite integrals in the preceding expression can be tabulated by means of the
spectral integration matrix, while the definite integral can be computed by formula
(16). Once this initial work, requiring two Fast Cosine Transforms, is done, the solution
is obtained using approximately 3N additional operations, where N is the number of
Chebyshev nodes used. A similar observation is made by Rokhlin in [9], where the
integrals are computed by a finite-order quadrature formula. His approach has the
advantage that it does not depend on the location of the discretization nodes. One
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drawback of this particular use of Green’s functions is that the terms u,, v;, u,, and
v, may behave much more violently than either the right-hand side or the solution,
requiring many more points in the discretization than otherwise necessary. (Consider,
e.g., the equation y”"—ay=f for large values of a.) Another drawback is that the
method does not extend to nonconstant coefficient problems, since we cannot determine
the Green’s function analytically.

We consider a closely related approach which does not require knowledge of the
Green’s function. An integral equation is constructed by solving for o-(x) = u"(x) rather
than u itself. The original system (24) becomes

(35) U(x)+uJ a(t) dt+[.LC1+VJ J o(7) drdt+vC,x+vCy= f(x).
-1 -1 J -1
Representing o(x) and f(x) by truncated Chebyshev series

(36) o= T aT),  f= T LT

and using the spectral integration matrix, we obtain the system of equations

a0+/.LC1+ VCO=f6

124
a1+§(ao—az)+§(8a+al—as>=ﬁ

v 1 1
a +2_;;( (@1 = @)+ 0 (Ek——_2 G ey C ak+2)> =

for k=2,---, N.

This is a sytem of N +1 equations with N +3 unknowns (the coefficients a, and the
constants of integration C, and C,). Two additional equations are obtained from the
boundary conditions

(37) CO_C1+§L(;(ak—2—ak)_ L (ak—ak+z))(—1)k=a,

k=22k \2k—-2 2k+2
69 CrCt T (s e g (e -
0 1T L 2k \2k—2 -2~ Qi k+2 Q= ayi2) | = B.

The discrete problem is pentadiagonal except for the two rows derived from the
boundary conditions, and can be solved using approximately 10N floating point
operations.

4. Numerical examples. A two-point boundary value problem solver, using the
method of the previous section, has been implemented and tested on a variety of
examples. It requires two cosine transforms and the solution of one linear system, with
a total computational cost estimated at 10N (log N + 1) floating point operations. All
calculations cited below were carried out in double precision on a SUN 3/50 work-
station with f68881 floating point accelerator.

The behavior of the algorithm is demonstrated by three examples (Fig. 2 and
Table 1). In the first case, we used a model problem from Stoer and Bulirsch [11]:

(39) —y"+400y = —400 cos® x — 27 cos 27X,
(40) y(0)=y(1)=0,
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FIG. 2. The numerical behavior of the integral equation algorithm, using three examples. The left hand of
each pair of figures is a plot of the exact solution as a function of x. The right hand of each pair is a plot of the
mean square error in the computed solution versus the number of points in the discretization. The governing
differential equations are discussed in the text.

TABLE 1
CPU times (in seconds) and mean square errors in computing the solutions to three boundary value
problems. The subscripts 1-3 refer to the three equations discussed in the text and displayed graphically in Fig. 2
Jfrom top to bottom.

N T, E, T, E, T, E,
16 0.08 7.2%x107° 0.06 22 0.06 0.9
64 0.30 8.7x107 1 0.32 4.0%x107° 0.32 7.9%107*
256 1.46 1.1x107% 1.48 9.1x1071 1.40 8.1x10714
1,024 6.42 1.5%1071 6.32 9.1x107* 6.10 1.0x10713
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with exact solution

—20

e X
(41) y(x) =1 e+

20x _ cos? mx.

1+e° ¢

Standard finite-difference and finite-element methods tend to converge quite
slowly, due to the large derivatives of the exact solution near the boundaries. While
multiple shooting, which is recommended in [11], is a viable approach, the method is
computationally expensive. Our calculations show that the corresponding integral
equation is solved to spectral accuracy with very little effort.

The second example involves a boundary layer near each endpoint. The governing
equation is

(42) ey'—y=0,

(43) y(=1=1, y(1)=2,

where £ =107, As is well known, the Chebyshev nodes are particularly good at
resolving boundary layers since they tend to cluster at the two endpoints (see [7]).
The third example is one where the solution is very oscillatory:

(44) y"+5y'+10,000y = —500 cos (100x) e >*,
(45) y(0)=0, y(1) =sin (100) e>,
for which the exact solution is

(46) y(x) =sin (100x) e>*.

In each case, it is clear that the spectral integral formulation is both rapidly
convergent and stable.

5. Conclusions. The spectral integration matrix is a well-conditioned operator
which yields an antiderivative of a function tabulated at Chebyshev nodes. In this
paper, we have presented a fast algorithm for the solution of constant coefficient
two-point boundary value problems through the use of integral equations and spectral
integration. The central advantage of the scheme proposed in this paper over the
stabilized spectral approach [7, p. 119] is that we can obtain first and second derivatives
of the solution without the instability of differentiation. These derivatives are needed
in many calculations of practical interest.

The difficulty with variable coefficient problems lies not in the formulation of the
integral equation, but in the fact that the resulting system of equations for the coefficients
of the Chebyshev series of u” is dense. Gaussian elimination would require O(N?)
operations, where N is the number of Chebyshev nodes used in the discretization. On
the other hand, the spectral integration matrix can be used to apply the integral operator
in O(N log N) operations, making iterative methods more attractive (see, e.g., [9]).
The number of iterations required is a function of the underlying problem, and does
not increase with the number of nodes. Unfortunately, for many situations of interest,
complex behavior of the solution causes the condition number of the underlying
problem and the number of iterations to be large, so that direct methods would be
preferable provided that an O(N) or O(N log N) operation count could be maintained.
Recently, such algorithms have been designed, both for second-order differential
equations [6] and more general first-order systems [10].
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