
Applied and Computational Harmonic Analysis9, 83–97 (2000)
doi:10.1006/acha.2000.0310, available online at http://www.idealibrary.com on

CASE STUDY

Spectral Approximation of the Free-Space Heat
Kernel

Leslie Greengard1,2 and Patrick Lin1,3

Communicated by Vladimir Rokhlin
Received September 3, 1999

Abstract—Many problems in applied mathematics, physics, and engineering
require the solution of the heat equation in unbounded domains. Integral equation
methods are particularly appropriate in this setting for several reasons: they are
unconditionally stable, they are insensitive to the complexity of the geometry,
and they do not require the artificial truncation of the computational domain as
do finite difference and finite element techniques. Methods of this type, however,
have not become widespread due to the high cost of evaluating heat potentials.
Whenm points are used in the discretization of the initial data,M points are used
in the discretization of the boundary, andN time steps are computed, an amount
of work of the orderO(N2M2 + NMm) has traditionally been required. In this
paper, we present an algorithm which requires an amount of work of the order
O(NM logM + m logm) and which is based on the evolution of thecontinuous
spectrum of the solution. The method generalizes an earlier technique developed by
Greengard and Strain (1990,Comm. Pure Appl. Math.43, 949) for evaluating layer
potentials in bounded domains. 2000 Academic Press

1. INTRODUCTION

The numerical solution of the heat equation

Ut =1U

arises as a computational task in heat transfer, solidification, fluid dynamics, finance, and
a variety of other areas of applied mathematics. In some cases, one wants to solve the pure
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initial value problem

Ut(x, t)=1U(x, t) for t > 0
U(x,0)= f (x) for x ∈Rd ,

(1)

while in other cases, one is given initial and boundary data on aninterior or exteriorspace–
time domain�T = ∏T

t=0�(t) with boundary0T = ∏T
t=00(t), where0(t) = ∂�(t).

(When the spatial domain is not time-dependent, we can write, more simply,�T =
�× [0, T ] and0T = 0 × [0, T ].)

There are many possible approaches to such problems, the most common of which are
finite difference and finite element methods, which we do not seek to review here. Rather,
we are interested in continuing the examination of integral equation methods begun in
[10, 11]. The first of these papers describes an algorithm for solving the pure initial value
problem (1), i.e., evaluating integrals of the form

U(x, t)= (4πt)−d/2
∫

Rd
e−|x−y|2/4t f (y) dy.

This fast Gauss transformrequiresO(n+m) work to determineU(x, t) atn points given
the initial dataf (y) atm points. The second paper describes a rather different algorithm
for rapidly evaluating layer heat potentials, with application to solving the heat equation on
arbitrary but bounded domains. In the present paper, we study the remaining case, namely
the solution of initial–boundary value problems in exterior regions, where the spectrum is
continuous and the Fourier series approach of [11] does not apply (or, more precisely, is
inefficient). For a complementary approach, related to the fast Gauss transform, we refer
the reader to the recent algorithm of Strain [23].

Consider now, as a typical example, the Dirichlet problem in an exterior time-dependent
domain�(t) ∈Rd with known boundary0(t),

Ut =1U in �(t) (2)

U(x, t)=f (x) in �(0) (3)

U(x, t)= g(x, t) on0(t). (4)

Classical potential theory [9, 12, 20] suggests that we seek a solutionU of the form

U(x, t)=
∫
�(0)

G(x− y, t)f (y) dy+
∫ t

0

∫
0(τ)

∂

∂νy
G(x− y, t − τ )µ(y, τ ) dy dτ, (5)

whereG is the fundamental solution of the heat equation in free space

G(x, t)= (4πt)−d/2 exp

(
−‖x‖

2

4t

)
,

νy is the unit outward normal to0(t) at y, andµ is an unknown surface density defined
on0(t). We will refer to the first integral in (5) as aninitial potential, denoted byVf , and
the second integral in (5) as adouble layer potential, denoted byDµ. This representation
of U clearly satisfies (2) and (3). It remains only to satisfy (4). Allowingx to approach the
boundary0(t) and using the standard jump relations for a double layer potential [9, 12,
20], we obtain a Volterra integral equation for the densityµ,
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1

2
µ(x, t)−

∫ t

0

∫
0(τ)

∂

∂νy
G(x− y, t − τ )µ(y, τ ) dy dτ

=
∫
�(0)

G(x− y, t)f (y) dy− g(x, t), x ∈ 0(t). (6)

Using the more concise operator notation, we can write the preceding equation in the form

1

2
µ(x, t)−Dµ(x, t)= Vf (x, t)− g(x, t). (7)

Some numerical work based on direct discretization of equations like (6) has been
described in both the mathematical literature [16, 19] and the engineering literature.
The latter is fairly extensive, so we simply refer the reader to the monographs [4, 18].
Nevertheless, the use of such methods has received only specialized interest due to
the enormous attendant cost. Both Eq. (6) and the representation (5) are fully history
dependent. Just to evaluateU on the space–time boundary0(t), 0< t ≤ T , requires
O(N2M2 + NM · m) work, whereN is the number of time steps,M is the number of
discretization points on the boundary, andm is the number of grid points used to represent
the initial data. By contrast, the algorithm of [11], although limited to bounded domains,
requires onlyO(NM + m logm) work. It has been used for large scale calculations of
crystal growth by Sethian and Strain [21] and, in a modified version, by Brattkus and
Meiron [3].

It is worth making a simple analytical observation at this point. We begin by lettingδ

be a small positive parameter and write the double layer potentialDµ as the sum ahistory
part, representing the influence of the densityµ at distant times, and alocal part, reflecting
the influence of the densityµ over the most recent time,

Dµ(x, t)=DHµ(x, t, δ)+DLµ(x, t, δ),

where

DHµ(x, t, δ)=
∫ t−δ

0

∫
0(τ)

∂

∂νy
G(x− y, t − τ )µ(y, τ ) dy dτ (8)

and

DLµ(x, t, δ)=
∫ t

t−δ

∫
0(τ)

∂

∂νy
G(x− y, t − τ )µ(y, τ ) dy dτ. (9)

We also introduce the notation

UH (x, t)= Vf (x, t)+DHµ(x, t) and UL(x, t)=DLµ(x, t),

so that

U(x, t)=UH (x, t)+UL(x, t).
The integral equation (7) can be then be written in the suggestive form

1

2
µ(x, t)−DLµ(x, t)=UH(x, t)− g(x, t). (10)
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Note that at the current timet , the right-hand side of Eq. (10) is already known.
Furthermore, the operatorDLµ is small. More precisely, it is easy to show (see [12]) that

‖D‖∞ =O(
√
δ).

Thus, (10) is very close to being anexplicit formula for the unknown value of the densityµ
as time proceeds. Four steps of fixed point iteration, for example, would yield second order
accuracy inδ. The point we wish to emphasize is that the evaluation of the history partUH

dominates the cost of both the solution of the integral equation (10) and the computation of
the functionU itself. The evaluation of the local partDLµ can be accomplished through
asymptotic methods, as in [11, 14] or through more accurate quadrature approaches, as
in [22].

In this paper, we introduce a new algorithm for the rapid evaluation of the history part
UH which is closely related to the earlier “box” method of Greengard and Strain [11].
There, the kernelK(x,y, t) used in the corresponding potentials is a Green’s function for
a box (ad-dimensional interval) which has a dual representation: one as an image system
and one as a Fourier series. The basis for the algorithm is thatUH is smooth and well
approximated using a small number of Fourier modes, whileUL is sharply peaked but well
approximated by a series expansion in the parameterδ.

In exterior domains, however, the situation is more complex. The free-space heat kernel
has a continuous spectrum andUH is well represented, not by a small number of Fourier
modes, but by a finite range of integration in Fourier space. The issue becomes one of
quadrature; can one compute the Fourier integral efficiently? It turns out that one can,
inexpensively and with high order accuracy, but not by using a uniform sampling. In fact,
the central result of this paper is the observation that one can select a nearly optimal set of
quadrature points and obtain rigorous error bounds for the resulting quadrature rule. This
analysis is carried out in the next section, while Section 3 contains a description of the fast
algorithm itself. We discuss future directions for research in Section 4.

2. SPECTRAL APPROXIMATION OF THE HEAT KERNEL

We begin by considering the heat kernel on an interval[−aπ,aπ] with periodic
boundary conditions. A Fourier series calculation shows that

K(x, t)= 1

2πa

∞∑
k=−∞

e−k2t/a2
eikx/a, (11)

while the method of images shows that

K(x, t)= 1√
4πt

∞∑
k=−∞

e−(x−2πak)2/4t . (12)

The equivalence of the two representations is a particular instance of the Poisson
summation formula [8]. Fort ≥ δ > 0, truncation of the Fourier series afterp terms yields
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an error

EFp ≡K(x, t)−
1

2πa

p∑
k=−p

e−k2t/a2
eikx/a,

which is easily seen to satisfy the estimate

|EFp | ≤
1√
4πδ

e−p2δ/a2
. (13)

Lettinga→∞ in (11) and (12), we obtain the integral formula

G(x, t)= e
−x2/4t
√

4πt
= 1

2π

∫ ∞
−∞

e−s2t eisx ds. (14)

Consider now the use of the trapezoidal rule with mesh spacing 1/a to approximate the
integral in (14). Simple inspection shows that one recovers the Fourier series (11). This
cannot be a valid approximation of the free-space heat kernel, at least for long times,
unlessa→∞. In physical terms, the problem is that for a given mesh spacing 1/a, there
are image sources atx − 2πa, x + 2πa, x − 4πa, x + 4πa, . . . , in accordance with the
representation (12). These source will pollute the solution ast→∞. By letting a→∞,
we push these spurious sources farther and farther away. Unfortunately, the estimate (13)
then shows that the number of retained Fourier modes must go to infinity as well.

To understand why the Fourier series fails as an approximation, it should first be noted
that the issue is not one of aliasing in the usual sense. High frequency information, as
one would expect, is rapidly damped and can be reliably ignored. The analog of the
estimate (13) is provided by the following lemma, whose proof is straightforward.

LEMMA 2.1. For t ≥ δ > 0,∣∣∣∣e−x2/4t

√
4πt
− 1

2π

∫ p

−p
e−s2t eisx ds

∣∣∣∣≤ e−p2δ

√
4πδ

.

The essential difficulty is easily illustrated by means of a simple example. In Fig. 1, we
plot the solution to the equation

Ut =Uxx, t ≥ 0 (15)

U(x,0)= δ(x) (16)

as well as its Fourier transform at timest = 0.02,1,100. Clearly, the problem with the
Fourier series is that excessively dense sampling is required to correctly resolve thelowest
frequency information. We must, therefore, abandon the trapezoidal rule and, along with it,
the classical fast Fourier transform (FFT). Mathematically (and numerically), the relevant
question is this: how many quadrature points are required on an interval[a, b] in the Fourier
domain in order to resolve the spectrum to within some specified precisionε? One answer
is provided by the following theorem.

THEOREM 2.1. Let [a, b] be a dyadic interval of the form[2j ,2j+1], let t ≥ δ > 0, let
ε > 0 be the desired precision, and letp be chosen so that

1√
7πδ

e−p2δ = ε. (17)
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FIG. 1. The heat kernel in physical and Fourier space att = 0.02, t = 1.0, andt = 100.

Finally, let {s1, . . . , sn} and {w1, . . . ,wn} be the nodes and weights forn-point Gauss–
Legendre quadrature on the interval. Then, for dyadic intervals withj < 0, we have∣∣∣∣∣

∫ b

a

eisxe−s2t ds −
n∑
k=1

eiskxe−s2
k twk

∣∣∣∣∣
≤√2π

(b− a)√
n

[
R(b− a)

2n
+
√

log(1/ε)

n

]2n

+ (b− a)ε (18)

for |x| ≤R. For dyadic intervals withj ≥ 0, we have∣∣∣∣∣
∫ b

a

eisxe−s2t ds −
n∑
k=1

eiskxe−s2
k twk

∣∣∣∣∣
≤√2π

(b− a)√
n

[
R(b− a)

2n
+
√

log(1/ε
√
δ)

n

]2n

+ (b− a)ε
p

(19)

for |x| ≤R.

Proof. For any interval[a, b], the standard estimate forn-point Gauss–Legendre
quadrature [6] yields∣∣∣∣∣

∫ b

a

eisxe−s2t ds −
n∑
k=1

eiskxe−s2
k twk

∣∣∣∣∣≤ (b− a)2n+1

2n+ 1

(n!)4
(2n)!3

∣∣D2n
s (e

isxe−s2t )
∣∣∞, (20)

whereDs denotes the partial derivative with respect tos.
Observe now that

D
j
s e
isx ≤Rj for |x| ≤R (21)
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and

D
j
s e
−s2t = (√t )jDjxe−x2 = (√t )jhj (x)≤

√
2(
√

2t )j (
√
j ! ), (22)

wherehj (x) is the classical Hermite function which satisfies Cramer’s inequality [13]:

|hj (x)| ≤ 2(j+1)/2
√
j !.

Combining the last two results, we have

|Dns eisxe−s
2t | ≤

n∑
j=0

(
n

j

)
D
n−j
s eisxD

j
s e
−s2t

≤√2
n∑
j=0

(
n

j

)
Rn−j (

√
2t )j

√
j !

≤√2
n∑
j=0

(
n

j

)
Rn−j (

√
2tn )j ≤√2(R+√2tn )n. (23)

Inserting (23) into (20) and using Stirling’s approximation [1]

√
2πnn+1/2e−n < n!< 2

√
πnn+1/2e−n,

it is easy to see that∣∣∣∣∣
∫ b

a

eisxe−s2t ds −
n∑
k=1

eiskxe−s2
k twk

∣∣∣∣∣
≤√2π

(b− a)√
n

[
R(b− a)

2n
+ (b− a)

√
t√

2n

]2n

. (24)

At first glance, this estimate appears useless, since the second term within the square
brackets is unbounded in time. If[a, b] = [2j ,2j+1] is a dyadic interval, however, then
it is separated from the origin by its length. For small intervals(j < 0), once(b− a)2t >
log(1/ε), thene−(b−a)2t = e−a2t < ε and∫ b

a

eisxe−s2t ds < (b− a)ε.

Thus, the estimate (24) need only be invoked for(b − a)√t < √
log(1/ε), and the

result (18) follows. For large dyadic intervals(j ≥ 0), the requirement (17) implies that

p =
(

log(1/ε
√
δ)

δ

)1/2

.

Once(b − a)2t > log(1/ε
√
δ), we havee−(b−a)2t = e−a2t < ε

√
δ. A simple calculation

then shows that ∫ b

a

eisxe−s2t ds < (b− a)ε/p.



90 CASE STUDY

The estimate (24) need only be invoked, therefore, for(b− a)√t <
√

log(1/ε
√
δ), and the

result (19) follows.

Note that, in the estimates (18) and (19), both terms in square brackets must be small for
the quadrature to be accurate. The first term requires that the number of nodes scale like
the length of the interval, while the second term requires that there be at least a constant
number of nodes on each interval,no matter how small. The first condition dominates on
large dyadic intervals, but the second dominates on small intervals near the origin, forcing
discretization points to cluster exponentially at zero.

Remark 2.1. The preceding theorem does not apply to the intervals[−2−j ,0] or
[0,2−j ]. For any finite timet , however, it is easy to use the estimate (24) to establish
that settingj = 2+ log2

√
t andn=O(log1/ε) guarantees that the quadrature error is of

the orderO(ε). To obtain a quadrature which is valid ast →∞, on the other hand, one
needs to continue the refinement process untilj = log(1/ε)+1. At that point,[−2−j ,2−j ]
is anε-neighborhood of the origin and can be ignored.

We are now in a position to combine Lemma 2.1 with Theorem 2.1 to give a discrete
spectral approximation of the heat kernel. The proof is straightforward.

COROLLARY 2.1 (Spectral resolution of the heat kernel).Let t ≥ δ > 0, let ε > 0
be the desired precision, letp be chosen according to(17), let Lmin = − log(1/ε), and
let Lmax= dlogpe. Further, let {sj,1, . . . , sj,n(j)} and {wj,1, . . . ,wj,n(j)} be the nodes
and weights forn(j)-point Gauss–Legendre quadrature on the interval[2j ,2j+1], where
n(j) = max(R2j+1,4 log(1/ε)) for j < 0 and n(j) = max(R2j+1,4 log(1/ε

√
δ)) for

j ≥ 2. Then

∣∣∣∣∣e−x
2/4t

√
4πt
− 1

2π

Lmax∑
j=Lmin

n(j)∑
k=1

(eisj,kx + e−isj,kx)e−s2
j,k twj,k

∣∣∣∣∣≤ 3ε (25)

for |x| ≤R.

Remark 2.2. The important fact which emerges from this theorem is that the total
number of sampling points in frequency needed to approximate the heat kernel on the
interval [−aπ,aπ] with a precisionε is of the orderO(logε + πap). This should be
compared with the Fourier series representation of the periodic heat kernel which requires
preciselyap modes to obtain the same accuracyε. In short, the preceding theorem shows
that, for a fixed precision, the number of modes needed to resolve the free-space heat kernel
is of the same order as the number needed to resolve the periodic heat kernel, despite the
fact that one has a continuous spectrum and the other a discrete spectrum.

Remark 2.3. In the remainder of this paper, we letNC denote the total number of nodes
in the spectral approximation (25) and write

e−x2/4t

√
4πt
≈

NC∑
q=1

eisqxe−s
2
q twq . (26)
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TABLE 1
Number of Fourier Nodes Needed to Discretize the Free-Space Heat Kernel on[−π,π] over

Three Different Time Intervals: I1= [0.001,0.001], I2= [0.001,10], I3= [0.001,∞]
ε p = smax NC(I1) NF (I1) NC(I2) NF (I2) NC(I3) NF (I3)

10−4 110 208 120 216 720 296 ≈105

10−7 140 282 160 294 1200 486 ≈108

10−10 165 332 184 368 1700 760 ≈1011

10−13 185 478 220 502 2200 1100 ≈1014

Note. The first column indicates the desired precisionε. The second column indicates the maximum
frequencyp required fort = δ = 0.001, according to Eq. (17).NC denotes the number of composite Gaussian
quadrature nodes using Corollary 2.1 andNF denotes the number of Fourier modes needed by the trapezoidal
rule (the standard Fourier series).

EXAMPLE 2.1. To verify the accuracy of our approximation and get a more concrete
feeling for the number of spectral nodes needed in practice, we compute the free-space
heat kernel

e−x2/4t
√

4πt
, −π ≤ x ≤ π,

from its spectral representation. In Table 1, the error is measured in the infinity norm by
sampling at 100 points in the indicated range. We consider three cases: 0.001≤ t ≤ 0.001,
0.001≤ t ≤ 10, and 0.001≤ t ≤ ∞. For the first two cases, we use the observation in
Remark 2.1 to halt the dyadic refinement process once 2−j ≈ 1/4

√
t .

As expected, for short times, the Fourier series approximation of the free-space heat
kernel needs a number of nodes which only slightly exceedsp (the number of Fourier
modes needed for representing theperiodic heat kernel with precisionε). As the time
interval increases, however, and image sources have the chance to diffuse in, the number
of nodes grows like

√
t . The number of discrete spectral modes is bounded, of course, even

ast→∞, because of the fact that we can ignore the heat kernel once it is belowε in the
L∞-norm. At x = 0, this occurs att ≈ ε2, which is a long time indeed. In Table 1, the
number of nodesNC(I3) is, in fact, determined by settingt = ε−2 and insisting that the
specified error tolerance is met.

Remark 2.4. In Theorem 2.1, the number of modes chosen on each large dyadic
interval is given byn(j) = max(R2j+1,4 log(1/ε

√
δ)). Our estimates are not sharp,

however. The data in Table 1, are obtained using a slight modification. On[1,p], we use
a single Gauss–Legendre grid withC0(p − 1) nodes. For the first 10 dyadic refinements
toward the origin, we useC1 modes and for all subsequent dyadic refinements we use
C2 modes. Forε = 10−4, we setC0 = 0.9, C1 = 4, andC2 = 2. For ε = 10−7, we set
C0 = 0.95,C1 = 6, andC2 = 4. For ε = 10−10, we setC0 = 1.0, C1 = 8, andC2 = 6.
Finally, for ε = 10−13, we setC0= 1.2,C1= 12, andC2= 6.

2.1. Higher Dimensional Approximation

We begin with the analog of Lemma 2.1, which bounds the error in truncating high
frequency modes. The proof is elementary.
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FIG. 2. Sampling nodes in the frequency domain representation of the two-dimensional heat kernel, using a
tensor product discretization.

LEMMA 2.2. For t ≥ δ > 0, x,s∈Rd , we have∣∣∣∣e−‖x‖2/4t4πt
−
(

1

2π

)2∫
‖s‖≤p

e−‖s‖2t eis·x ds

∣∣∣∣≤ e−p2δ

8π2δ
·
{

2π for d = 2√
π/δ+ 2p for d = 3.

The most natural discretization of the Fourier domain would use a radial grid, clustering
exponentially at the origin. For the sake of simplicity, we will work with tensor product
discretizations (Fig. 2) using the one-dimensional quadrature and omit the tedious analysis
of the corresponding errors. To demonstrate that tensor product discretization is effective,
however, we consider a concrete example.

EXAMPLE 2.2. Let

U(x, t)= e
−‖x−y1‖2/4t

4πt
+ e
−‖x−y2‖2/4t

4πt
,

wherey1= (−0.5,−0.5) andy2= (0.5,0.5), with 0.005< t < 50. In Fig. 3, we plot the
exact solution and three spectral approximations toU(x, t) at t = 0.005 using either the
equispaced trapezoidal rule (a Fourier series) or a tensor product composite rule based
on (26). Note that with too few Fourier modes, the image sources are clearly visible. In
Fig. 4, we plot the exact solution and three spectral approximations toU(x, t) at t = 50.
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FIG. 3. Reconstruction of two Gaussian pulses (Example2.2) at t = 0.005. The upper right-hand plot uses
a tensor product discretization based on our composite quadrature rule (26). The two lower figures show an
underresolved Fourier discretization (left) and a resolved one (right). The number of nodes in both tight-hand
figures is sufficient to guarantee six-digit accuracy.

The Fourier series requires approximately 106 modes to resolve the function, whereas the
composite rule requires less than 6000 modes.

3. THE FAST ALGORITHM

Let us recall that the integral equation (10) to be solved takes the form

1

2
µ(x, t)−DLµ(x, t)=UH(x, t)− g(x, t)

and that all of the nonlocal information is contained in

UH (x, t)= Vf (x, t)+DHµ(x, t).

To pose a concrete computational problem, we consider a discrete version of this evolution
process in two dimensions. We assume that the initial dataf (y) is supported in[0,π]2 and
given on a squarem1×m1 grid with mesh spacingh= π/m1 and

fj,k = f (jh, kh).
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FIG. 4. Reconstruction of two Gaussian pulses (Example2.2) at t = 50. The upper right-hand plot uses
a tensor product discretization based on our composite quadrature rule (26). The two lower figures show an
underresolved Fourier discretization (left) and a resolved one (right). The number of nodes in both right-hand
figures is sufficient to guarantee six-digit accuracy.

The boundary0(t) is discretized atM points, equispaced in arclength

(b1(t),b2(t), . . . ,bM(t)),

with mesh spacinghb(t) and unit outward normal atbm(t) given bynm(t). We would like
to compute the solution atN successive timestn = n1t . Note that, for the moment,δ and
the number of Fourier modes,NC , are free parameters. For the sake of simplicity, we set
δ = κ1t , with κ a positive integer, and let

UH (x, tn)= h2
m1∑
j=1

m1∑
k=1

e‖x−(jh,kh)‖2/4tn
4πtn

fj,k

+
n−k∑
l=1

hb(tl)

M∑
m=1

nm,l · (x− bm,l)
2(tn − tl)

e−‖x−bm,l‖2/4(tn−tl )

4π(tn − tl) µm(l), (27)

for n= κ + 1, . . . ,N , where

nm,l = nm(tl), bm,l = bm(tl), µm(l)= µ(bm,l, tl).

The cost of evaluatingUH (bm(tn), tn) on the boundary alone is clearly of the order
O(N2M2 + NMm) where m = m2

1. Using a fast algorithm, like the fast Gauss
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transform [10], to accelerate the summation over the spatial variables would reduce the
cost toO(N2M +N(M +m)), which still grows quadratically with the number of time
steps. A generalization of the fast Gauss transform introduced in [23] could be used to
overcome this difficulty, but our approach follows that of [11].

Using the results of the previous section, we assume that the parameterNC is chosen so
that

e−(x2
1+x2

2)/4t

4πt
−

NC∑
q=1

NC∑
r=1

wqwre
isqx1eisrx2e−s

2
q t e−s2

r t =O(ε). (28)

Substituting this approximation into (27) yields the Fourier representation

UH (x, tn)≈
NC∑
q=1

NC∑
r=1

Cq,r (n)e
isqx1eisrx2, (29)

where

Cq,r (n)=wqwre−(s2
q+s2

r )tn

(
h2

m1∑
j=1

m1∑
k=1

e−isqjπ/m1e−isr kπ/m1fj,k

+hb(tl)
n−κ∑
l=1

e(s
2
q+s2

r )tl

M∑
m=1

(isq,r · nm,l)e−isq,r ·bm,lµm(l)
)
, (30)

with sq,r = (sq, sr ).
At first glance, this looks worse than the original expression (27). Instead of dealing with

one history-dependent function, we haveN2
C of them! Upon closer inspection, however, it

is evident that time plays a very different role in (30) than it does in the physical space
description ofUH . In particular, the Fourier coefficientsCq,r satisfy a simple recurrence
relation,

Cq,r (n+ 1)= e−(s2
q+s2

r )1tCq,r (n)+ Uq,r (n+ 1), (31)

where

Uq,r (n+ 1)= hb(tl)wqwre−(s2
q+s2

r )κ1t
M∑
m=1

(isq,r · nm)e−isq,r ·bmµm(n+ 1− κ). (32)

In short, the Fourier modes are damped and updated at each time step, but the burden of
history dependence is eliminated. For initialization, atn= κ + 1, we have

Cq,r (κ + 1)= h2wqwre
−(s2

q+s2
r )(κ+1)1t

m1∑
j=1

m1∑
k=1

e−isq jπ/m1e−isr kπ/m1fj,k

+ Uq,r (κ + 1). (33)

The double summation in (33) is clearly a kind of discrete Fourier transform. Since the
spectral locations(sq, sr ) are not equispaced, however, the classical FFT does not apply.
Fortunately, in the past few years, versions of the FFT have been constructed which do
apply [2, 7, 22] and which requirem logm+ N2

C work. We refer the reader to the cited
papers for details. The summations over boundary points in computing the “updates”Uq,r
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in (32) are also discrete Fourier transforms evaluated at nonequispaced points, but with
a singular source distribution. The nonequispaced FFT can be used for this step as well,
requiringO(M logM +N2

C) work.
We are now in a position to fix values for the parametersNC andδ. Since we would like

to limit the work per time step toO(M logM), it is sufficient to choosep =√M, so that
NC =O(p) andN2

C =O(M). It remains only to chooseδ. Recall now, from Lemma 2.2,
that the error in truncating the Fourier integral at the frequency|s| = p is of the order

e−p2δ

4πδ
.

With p =√M already defined, choosingδ = κ logM/M yields an error of the order

e−p2δ

4πδ
= e−κ logM

4πκ logM
M = o

(
1

Mκ−1

)
.

For the sake of simplicity, we choose the time step1t = logM/M. The preceding
discussion then proves the following result: for any prescribed order of accuracy, the entire
history of the evolution process, up to the last few time steps, can be encompassed in a
Fourier representation using onlyO(M) modes.

We have ignored the calculation of the local part, but both asymptotic and direct
numerical approaches to the evaluation ofDL in (9) require an amount of work
proportional toκM. Sinceκ is a fixed integer for a fixed order of accuracy, we are done.
The total amount of work required is of the order

O(m logm+NM logM + κM).

The first term stems from computing the Fourier transform of the initial data, the second
from the evaluation ofUH , and the third from the local partDL.

4. CONCLUSIONS

We have presented a new discrete spectral approximation of the free space heat kernel,
which results in an extremely efficient representation of diffusion processes over long time
intervals. The method developed here may be of use in other problems with continuous
spectra.

To be incorporated into a solver for exterior heat equations, a significant amount of work
is still required. This includes adaptation of the nonequispaced FFT, the development of
accurate quadrature rules for the local part, etc. A full implementation will be described in
a forthcoming paper.
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