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Abstract. A long-standing area of materials science research has been the study of electrostatic,
magnetic, and elastic fields in composites with densely packed inclusions whose material properties
differ markedly from that of the background. While powerful tools exist for dilute suspensions, accu-
rate calculations in the close-to-touching case have been carried out largely by asymptotic methods
and only for simple geometries such as regular arrays of cylinders or spheres. In this paper, we
develop a hybrid numerical method for the evaluation of electrostatic fields in composites consisting
of arbitrary dispersions of cylinders. Our approach is based on an integral equation formulation of
the governing interface problem combined with a new method of images. High accuracy is achieved
using only a small number of degrees of freedom for each inclusion.
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1. Introduction. As materials with complex microstructures become easier and
easier to manufacture, there is a corresponding need for analytic and numerical meth-
ods that allow us to predict and understand their properties. In this paper, we will
concentrate on the determination of electrical transport properties in a specific two-
dimensional setting, namely a composite consisting of a uniform background in which
are embedded cylindrical inclusions with distinct conductivities which may be very
close to touching. We leave the translation of our results to other applications (such
as heat transport) to the reader [1, 9, 17].

To fix notation, consider a composite material consisting of a uniform background
matrix with conductivity σe in which are embedded M cylindrical inclusions Di cen-
tered at the points {(xi, yi)} and having conductivities σi for i = 1, . . . ,M . We will
assume, for the sake of simplicity, that the radii of the cylinders (disks) are identi-
cally equal to a, but it is straightforward to generalize the method below to the case
where the cylinders are not equisized. The electric field induced in such a material
by a uniform field applied in the x-direction can be obtained by solving the interface
problem:

∆ue = 0 in R2 −
M⋃
j=1

Dj ,(1)

∆uj = 0 in Dj , j = 1, 2, . . . ,M,(2)
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ue = uj on ∂Dj , j = 1, 2, . . . ,M(3)

σe
∂ue
∂n

= σj
∂uj
∂n

on ∂Dj , j = 1, 2, . . . ,M(4)

with the far field condition

∇ue(P ) −→ (1, 0) as P −→∞,(5)

where uj denotes the potential restricted to the inclusion Dj , ue denotes the potential
restricted to the matrix, and ∂/∂n denotes the outward normal derivative on the
boundary of the inclusion. The global potential function will be referred to as u.

Classical potential theory [11, 12, 35] suggests representing the solution to the
system (1)–(5) in terms of a single layer potential

u(P ) = x+
M∑
j=1

∫
∂Dj

G(P,Q)ρj(Q)ds,(6)

where G(P,Q) = 1
2π log |P − Q| is the free-space Green function and ρ is the charge

density which remains to be determined. Equations (1)–(3) are automatically satis-
fied, and imposition of the remaining interface condition yields the system of integral
equations

2λ1n1(P ) = ρ1(P )− 2λ1

M∑
j=1

∫
∂Dj

∂G

∂n
(P,Q)ρj(Q)ds, P ∈ ∂D1,

. . .(7)

2λMn1(P ) = ρM (P )− 2λM
M∑
j=1

∫
∂Dj

∂G

∂n
(P,Q)ρj(Q)ds, P ∈ ∂DM ,

where λj = σj−σe
σj+σe

, and n1(P ) denotes the x-component of the unit outward normal
at P .

The representation (6) can, of course, be used for inclusions of arbitrary shape.
In the multidisk problem, however, we can expand the charge density on the jth
inclusion as a Fourier series which we express in complex notation as

ρj(Q) = Re

( ∞∑
k=1

Aj(k)eikθ
)
.(8)

Here, the multipole moments (or Fourier coefficients) Aj(k) are unknown complex
numbers and Q = (xj+a cos θ, yj+a sin θ). No constant term is needed in the Fourier
series, since ρ can be shown to be charge neutral. Substituting the representation
(8) into the integral equation (7) and some analytic manipulation yield the infinite-
dimensional linear system

Aj(k) + λj

M∑
m=1
m6=j

∞∑
l=1

(
l+k−1
k−1

)(
a

zm−zj

)l+k
(−1)k Am(l) =

{
2λj if k = 1,
0 if k > 1,(9)

where zj = xj + i yj is the center of Dj viewed as a point in the complex plane. This
method, which we will loosely refer to as Rayleigh’s method, is capable of describing
the electrostatic field for any configuration of disks and any prescribed conductivities.
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Remark 1.1. In the case of a single disk, the system (9) has the analytic solution

A1(1) = 2λ1, A1(k) = 0 for k > 1,

or

ρ1(Q) = 2λ1 cos θ.(10)

In other words, the polarization charge induced on the surface of the inclusion by the
applied field is that of a pure dipole.

Remark 1.2. It should be noted that Lord Rayleigh, in his classic paper [28],
introduced a further modification of this Fourier approach in order to determine the
effective conductivity of a composite material consisting of a periodic array of disks in
a uniform background. Applications of Rayleigh’s method to more complex periodic
systems can be found in [19, 21, 30, 32]. While we will consider periodic geometries
in section 3.2, we will restrict our attention, for the moment, to the infinite medium
problem.

In practice, it is clear that the infinite system (9) has to be made finite by ignoring
all multipole moments beyond a given order. In the case that the inclusions are
reasonably well separated or have conductivities close to that of the background,
the number of moments which need to be retained to resolve the charge density is
relatively small, and Rayleigh’s method gives excellent results. Unfortunately, if the
inclusions are close to touching and their conductivities differ greatly from that of the
background, the charge density becomes nearly singular and the number of degrees of
freedom required grows extremely large. The linear system to be solved also becomes
ill conditioned. If we were to consider a system of 100 inclusions with unit radius,
each within a distance 10−6 of at least one other, we would need millions of Fourier
modes to obtain reliable results. This is clearly unsatisfactory.

Most of the methods which have been developed to circumvent this difficulty are
based on asymptotics [2, 4, 13, 14, 20, 23, 24, 31] that correctly describe the close-
to-touching interaction for special geometries. However, there has been no efficient
method that allows for accurate evaluation of the field in arbitrary dispersions. Even
fast multipole-accelerated integral equation methods [7], whose cost grows linearly
with the number of unknowns, can only make limited progress here because the num-
ber of degrees of freedom grows so rapidly.

In the remainder of this paper, we present a new numerical method for the eval-
uation of electrostatic fields in densely packed dispersions, which overcomes the dif-
ficulties associated with Rayleigh’s method. The mathematical foundations of our
approach are presented in section 2, where we extend the classical method of images
for dipole sources to multipoles of arbitrary order. In section 3, we describe our hybrid
integral equation scheme, and in section 4 we present some numerical examples for
both clusters in an infinite medium and periodic composites. Section 5 contains some
concluding remarks.

2. The method of images. A different approach to solving the multidisk inter-
face problem (1)–(5) begins with the single disk solution given by (10). In the infinitely
dilute limit, the multidisk solution is well approximated by the superposition of single
disk solutions, namely,

ρj ≈ 2λj cos θj ,(11)

where (rj , θj) are the coordinates of the point (r, θ) with respect to the jth disk center.
This gives rise to an approximation of the global potential function of the form



ELECTROSTATICS OF CLOSELY SPACED CYLINDERS 125

(     )oo

(     )oo

a

z
1

z
1

(2)

(3)z
1

z

z
2

(3)

z
2

a

(2)z
2

1

d

E
a

z
2

FIG. 1. Two disks separated by a distance d and the image series generated by successive
reflection.

ue(r, θ) ≈ r cos θ +
M∑
j=1

a2λj
cos θj
rj

,(12)

uj(r, θ) ≈ r cos θ + λjrj cos θj .(13)

Thus, each dipole distribution of surface charge of the form (11) yields a point dipole
approximation of the external field (12).

The infinitely dilute approximation must be abandoned, however, as the inclusions
approach each other and begin to interact more and more strongly. Rather than
include higher-order multipole corrections as in Rayleigh’s method, the method of
images [10, 18, 22, 24] proceeds by representing the field in terms of a series of dipole
fields. For ease of notation, we equate the plane R2 with the complex plane C.

LEMMA 2.1. Let D1 and D2 be nonintersecting disks of radius a centered at z1
and z2 with identical conductivities σd (Fig. 1). Then, in the presence of a uniform
applied field Ea = (1, 0), the potential is given by

ue = Re

(
z +

∞∑
k=1

α
(k)
1

z− z1(k)
+
∞∑
k=1

α
(k)
2

z− z2(k)

)
,

u1 = Re

(
z + λ(z− z1) + (1− λ)

∞∑
k=1

α
(k)
2

z− z2(k)

)
,(14)

u2 = Re

(
z + λ(z− z2) + (1− λ)

∞∑
k=1

α
(k)
1

z− z1(k)

)
,

where

α
(1)
1 = a2λ, a

(1)
2 = a2λ, z1(1) = z1, z2(1) = z2,
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and, for k > 1,

z1(k) = z1 + a2/(z2(k − 1)− z1),

z2(k) = z2 + a2/(z1(k − 1)− z2),(15)

α
(k)
1 = λa2 · α(k−1)

2 /(z1(k − 1)− z2)2,

α
(k)
2 = λa2 · α(k−1)

1 /(z2(k − 1)− z1)2.(16)

The limiting image points are given by

z1(∞) =
z1 + z2

2
−
√
ad+ d2/4 · z2 − z1

|z2 − z1|
,

z2(∞) =
z1 + z2

2
+
√
ad+ d2/4 · z2 − z1

|z2 − z1|
,(17)

where d = |z2 − z1| − 2a is the distance between the two disks.
Proof. Ignoring all terms with k ≥ 2 in (14) corresponds to the dilute approxi-

mation of (12) and (13), which fails to satisfy the interface conditions (3) and (4) on
either disk. The method of images proceeds by reflecting the dipole source at z2 into
the point z1(2) in D1 with strength a1(2). A straightforward calculation shows that
the functions

u(1)
e = Re

(
z +

2∑
k=1

α
(k)
1

z− z1(k)
+

1∑
k=1

α
(k)
2

z− z2(k)

)
,

u
(1)
1 = Re

(
z + λ(z− z1) + (1− λ)

1∑
k=1

α
(k)
2

z− z2(k)

)
,

u
(1)
2 = Re (z + λ(z− z2))

satisfy the continuity conditions on D1 but not on D2. Reflection of the original dipole
source at z1 plus the image at z1(2) into D2 yields the functions

u(2)
e = Re

(
z +

2∑
k=1

α
(k)
1

z− z1(k)
+

3∑
k=1

α
(k)
2

z− z2(k)

)
,

u
(2)
1 = Re

(
z + λ(z− z1) + (1− λ)

1∑
k=1

α
(k)
2

z− z2(k)

)
,

u
(2)
2 = Re

(
z + λ(z− z2) + (1− λ)

2∑
k=1

α
(k)
1

z− z1(k)

)
,

which now satisfy the flux conditions on D2 but not on D1. Continuation of this
process leads to the solution (14). (These series are easily seen to converge, since the
magnitudes of successive terms are decaying geometrically.) The formulae for z1(∞)
and z2(∞) are obtained by finding a fixed point for the reflection procedure.

Let us establish the nature of the relationship between Rayleigh’s method and
the method of images for the two-disk problem. The former is based on seeking the
global potential u in the form of a single layer potential

u(P ) = x+
2∑
j=1

∫
∂Dj

G(P,Q)ρj(Q)ds,(18)
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where G(P,Q) is the free-space Green function and ρ is the charge density. While the
kernel G(P,Q) is simple to evaluate, ρ becomes very complex in the close-to-touching
case, requiring many Fourier modes to resolve. The method of images also comes
from an integral representation

u(P ) = x+
2∑
j=1

∫
∂Dj

K(P,Q)µj(Q)ds,(19)

but K(P,Q) can be thought of as incorporating the influence of all images according
to (14). Inserting the integral representation (19) into the system (7), with ∂G/∂n
replaced by ∂K/∂n, yields the analytic solution

µj(Q) = 2λj cos θ,(20)

where Q = (xj+a cos θ, yj+a sin θ). By sacrificing simplicity of the kernel, we are able
to invert the integral equation analytically and to expand µi with only one Fourier
mode. In the language of functional analysis, K(P,Q) is the resolvent kernel for the
integral equation (7).

Unfortunately, the multidisk case is not so simple. To see this, suppose that we
compute the image series generated by each pair of disks using Lemma 2.1, which we
refer to as first-order reflections. These images must then themselves be reflected into
all other disks, generating second-order reflections, and so on. Even if we truncated
each image series after a finite number of terms, the total number of reflections re-
quired grows exponentially with the number of disks. Thus, the method of images is
impractical for large-scale problems.

2.1. A reflection theorem. Rayleigh’s method and the method of images are
clearly at opposite extremes of the spectrum of possible integral representations. It
would seem reasonable, therefore, to investigate the behavior of a method which is
situated somewhere in between, such as one where images are used for each pair
of close-to-touching disks but not for any other interactions. This has an obvious
interpretation in terms of the kernel of the integral equation (7). As an example,
consider the three-disk problem of Fig. 2.

Because of its spatial separation from the other disks, the surface charge density on
disk D3 is well represented by only a small number of Fourier modes. The interaction
between disks D1 and D2, on the other hand, is more complex and better handled by
an image series (indicated in Fig. 2 by a dotted line). Therefore, we choose a global
integral representation of the form

u(P ) = x+
3∑
j=1

∫
∂Dj

Kj(P,Q)µj(Q)ds,(21)

where K3(P,Q) is just 1
2π log |P−Q|, but K1(P,Q) and K2(P,Q) include the influence

of all images. Note that, in order to be a self-consistent representation, the influence
of the images placed in disks D1 and D2 must be considered not only on each other,
but on D3 as well.

There is, however, an analytical obstacle to using this idea: the densities µj will
no longer be pure dipole distributions and the formulae of Lemma 2.1 do not apply.
On the other hand, each µj is still a charge distribution on ∂Dj whose far field can be
expressed as a multipole expansion. The following theorem, which does not seem to be
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FIG. 2. Three disks in a uniform applied field Ea = (1, 0).

available in the literature, gives a simple formula for reflecting a multipole expansion
of arbitrary order.

THEOREM 2.2. Suppose that D1 is a disk of radius a, centered at z1, with con-
ductivity σ1, embedded in the infinite medium C of conductivity σe. Suppose also
that λ = (σ1 − σe)/(σ1 + σe) and that Φ is a multipole source centered at z2 with
|z1 − z2| > a,

Φ(z) =
p∑
k=1

α(k)
(z− z2)k

.

Let zI = z1 + a2/(z2 − z1) and let

ΦI(z) =
p∑
k=0

β(k)
(z− zI)k

,

where β(k) satisfies

β(k) = −λ
(

a2

z2 − z1

)k p∑
m=k

(
m

k

)(
−1

z2 − z1

)m
α(m)(22)

for k = 0, 1, . . . , p. Then the functions

ue = Re (Φ(z) + ΦI(z)) ,

u1 = Re ((1− λ)Φ(z))

are harmonic in C−(D1∪z2) and D1, respectively, and satisfy the interface conditions

ue = u1 on ∂D1,

σe
∂ue
∂n

= σ1
∂u1

∂n
on ∂D1.
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Proof. For the sake of simplicity, we first translate z1 to the origin. The circle
theorem [25] (or the method of inversion [18]) then states that if Φ(z) is an analytic
function inside D1, then the desired interface conditions are satisfied by

ue = Re(Φ(z)− λΦ(a2/z)),

u1 = Re((1− λ)Φ(z)).

Thus,

ΦI(z) = −λ
p∑
k=0

α(k)
(a2

z − z2)k
.

A sequence of algebraic manipulations yields

ΦI(z) = −λ
p∑
k=0

α(k)
(a2

z − z2)k

= −λ
p∑
k=0

α(k)
(a2

z2
− z)k(z2

z )k

= −λ
p∑
k=0

α(k)
(−z2)k

zk

(z− zI)k

= −λ
p∑
k=0

α(k)
(−z2)k

k∑
m=0

(
k

m

)
zmI (z− zI)k−m

(z− zI)k

= −λ
p∑
k=0

k∑
m=0

(
k

m

)
α(k)

(−z2)k
zmI

(z− zI)m
.

Rearranging the order of the summation,

ΦI(z) = −λ
p∑
k=0

[(
a2

z2

)k p∑
m=k

(
m

k

)
α(m)

(−z2)m

]
1

(z− zI)k
.

Remark 2.1. Note that the preceding theorem is exact; a finite-order multipole
has a finite-order image.

Remark 2.2. As noted earlier, the multipole expansion Φ(z) in the preceding
theorem is generally derived from a charge distribution, say µ2, on the boundary of a
nearby disk, say ∂D2. An alternative derivation of formula (22) would be to compute
the image charge distribution on the reflection of D2 in D1, which we refer to as the
image disk. The image multipole series ΦI(z) could then be obtained as the far field
expansion induced by this image charge distribution. The center of the image disk is
z1(2) in (15), and it is easy to verify that the radius of the image disk on reflection is
less than a/2 (see Fig. 3).

DEFINITION 2.1. The operator that maps the mulitpole coefficients α =
(α(1), . . . , α(p)) to the coefficients β = (β(1), . . . , β(p)) according to formula (22)
will be referred to as as the reflection operator Rz1,z2 = R(z1, z2, a).

The following lemma follows immediately from the preceding definition and
Theorem 2.2.
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LEMMA 2.3. Let D1 and D2 be nonintersecting disks of radius a, centered at z1
and z2, with identical contrast parameter λ (Fig. 1). Suppose further that there is a
multipole source

Φ(1)(z) =
p∑
k=1

α(1)(k)
(z− z2)k

centered at z2. Then successive reflection in D1 and D2 generates a series of image
multipole expansions given by

Φ(m)(z) =
p∑
k=1

α(m)(k)
(z− ζm)k

,(23)

where

ζm =

{
z2(m) if m is odd,
z1(m) if m is even,

z1(m) and z2(m) are defined in (15), and α(m) = (α(m)(1), . . . , α(m)(p)) is defined
recursively by

α(m) =

{
Rz2,ζm−1α

(m−1) if m is odd,

Rz1,ζm−1α
(m−1) if m is even

for m ≥ 2.

3. A hybrid numerical method. We are now in a position to consider the
approach suggested at the beginning of section 2.1 in a systematic fashion. Letting δ
be a free parameter, we represent the potential for a multidisk problem as

u(P ) = x+
M∑
j=1

∫
∂Dj

Kδ
j (P,Q)µj(Q)ds,(24)

where Kδ
j (P,Q) includes the influence of all first-order reflections generated by inter-

actions with disks which lie within a distance δ of Dj . In practice, we choose δ = a,
where a is the disk radius. (In the absence of nearby disks, Kδ

j (P,Q) is just the
free-space kernel.) More precisely, we expand µj as a finite Fourier series on ∂Dj ,

µj(Q) = Re

(
p∑
k=1

µ̂j(k)eikθ
)
,(25)

where Q = (xj + a cos θ, yj + a sin θ). A straightforward calculation shows that the
far field induced by the charge density µj on ∂Dj is given by the multipole expansion
of degree p

Φ(z) = Re

(
p∑
k=1

αj(k)
(z− zj)k

)
,

where

αj(k) = −a
k+1 µ̂j(k)

2k
.
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The first-order reflections in the integral representation for u are an image series like
(14) but where the reflections are obtained according to formula (23). For illustration,
the three-disk problem depicted in Fig. 2 would be solved by letting

ue = Re

(
z +

N∑
m=1

p∑
k=1

α
(m)
1 (k)

(z− z1(m))k
+

N∑
m=1

p∑
k=1

α
(m)
2 (k)

(z− z2(m))k
+

p∑
k=1

α3(k)
(z− z3)k

)
,

u1 = Re

(
z +

p∑
k=1

α1(k)
a2k (z− z1)k + (1− λ)

N∑
m=1

p∑
k=1

α
(m)
2 (k)

(z− z2(m))k
+

p∑
k=1

α3(k)
(z− z3)k

)
,

(26)

u2 = Re

(
z +

p∑
k=1

α2(k)
a2k (z− z2)k + (1− λ)

N∑
m=1

p∑
k=1

α
(m)
1 (k)

(z− z1(m))k
+

p∑
k=1

α3(k)
(z− z3)k

)
,

u3 = Re

(
z +

p∑
k=1

α3(k)
a2k (z− z3)k +

N∑
m=1

p∑
k=1

α
(m)
1 (k)

(z− z1(m))k
+

N∑
m=1

p∑
k=1

α
(m)
2 (k)

(z− z2(m))k

)
,

where the image points z1(m) and z2(m) are defined in (15), α(1)
j (k) ≡ αj(k) for

j = 1, 2, and the α(m)
j (k) are defined in Lemma 2.3. Unlike the method of images,

however, the coefficients αj(k) are now unknown, and we must solve a linear system to
obtain them. This is done by requiring the flux interface condition (4) to be satisfied
on each inclusion boundary. In other words, the condition we impose is formally
equivalent to the integral equation (7), except that the free-space kernel G(P,Q) has
been replaced by the more complicated Kδ

j (P,Q):

2λ1n1(P ) = µ1(P )− 2λ1

M∑
j=1

∫
∂Dj

∂Kδ
j

∂n
(P,Q)µj(Q)ds, P ∈ ∂D1,

. . .(27)

2λMn1(P ) = µM (P )− 2λM
M∑
j=1

∫
∂Dj

∂Kδ
j

∂n
(P,Q)µj(Q)ds, P ∈ ∂DM ,

where λj = σj−σe
σj+σe

, and n1(P ) denotes the x-component of the unit outward normal at
P . This leaves two questions unanswered: 1) in order to achieve a specified precision,
how many Fourier modes p are required? and 2) after how many reflections N can
we ignore the tail of the image series?

3.1. Error analysis. The simplest estimate for the rate of decay of the terms
in an image series is obtained by examining the highest-order moment.

LEMMA 3.1. Under the conditions of Lemma 2.3, α(m)(p) satisfies the relation

|α(m)(p)| = λm


m︷ ︸︸ ︷

1
2 + d

a

· 1
2 + d

a −
1

2+ d
a

· 1
2 + d

a −
1

2+ d
a−

1
2+ d

a

· · · 1
· · ·


2p

|α(1)(p)|.(28)

If we denote the continued fraction f(j) by

f(1) =
1

2 + d
a

, f(j) =
1

2 + d
a − f(j − 1)

for j ≥ 2,(29)
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then the recursion (28) can be written as

|α(m+1)(p)| = λm

 m∏
j=1

f(j)

2p

|α(1)(p)|.(30)

Proof. When m = 1, the formula (28) is obtained immediately from (22). The
general case follows by induction, observing that

α(m+1)(p) = −λ
(

a2

−w2
m

)p
α(m)(p),

where wm = ζm−z1 if m is odd, and wm = ζm−z2 if m is even, the ζm being defined
in Lemma 2.3. A tedious calculation shows that the norms of the vectors wm satisfy

|w1| = |z1 − z2| = 2a+ d, |wm| =
(

2 +
d

a
− f(m− 1)

)
· a for m ≥ 2,(31)

where f(m) is defined above. Therefore,

|α(m+1)(p)| = λ

(
a

|wm|

)2p

|α(m)(p)|

= λ

(
1

2 + d
a − f(m− 1)

)2p

|α(m)(p)|

= λ (f(m))2p |α(m)(p)|.

The worst-case scenario, of course, consists of touching disks (d = 0) which are
superconducting (λ = 1). The continued fraction result (30) yields

|α(m+1)(p)| = |α
(1)(p)|
m2p .

Thus, for a 10-term multipole expansion, five reflections cause the highest-order mode
to decay by a factor of approximately 10−14.

To estimate the rate of decay of lower-order multipole moments is a more subtle
task. Contributions to the kth reflected coefficient come from all higher-order mo-
ments of the original multipole series. It is possible to show by similar considerations
that the multipole moments decay roughly at the rate

|α(m)(k)| ≈ λm
 m∏
j=1

f(j)

k |α(1)(k)|.

Rather than prove such a result in detail, however, we introduce a different analytic
tool, based on the observation that the role of the reflection process is simply to ensure
that the flux boundary condition is satisfied for the two-disk interaction.

LEMMA 3.2. Let D1 be a disk of radius a centered at z1 and let

α(m)(k)/(z− z2(m))k
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be a reflected multipole source, where z2(m) is defined in (15). Let δ = |z1− z2(m)|−
a > 0 and let f (m)

k (z) denote the contribution to the flux from this multipole source

fk(z) = λ
∂

∂n

(
α(m)(k)

(z− z2(m))k

)
for z ∈ ∂D1. Given ε > 0, if

|α(m)(k)| < δk+1

kλ
ε,(32)

then

|fk(z)| < ε.(33)

Proof. The maximum of |f (m)
k (z)| is assumed at the point z ∈ ∂D1 at which

|z− z2(m)| = δ. A simple calculation shows that

|fk(z)| < |λ k α(m)(k)|
(|z− z2(m)|)k+1 ,

which yields the desired result.
Remark 3.1. The preceding lemma can clearly be generalized to the case of a

full multipole expansion. However, it can also be used as a dynamic criterion in
order to check, after each reflection, whether multipoles of a given order need to be
retained or can be ignored. For this, let p be the highest-order pole present in the mth
reflection. Given a tolerance ε, all p modes are retained in subsequent reflections until
the criterion (32) is satisfied for k = p. From that point on, only terms of order p− 1
or less are retained. This process is continued until all terms in the image multipole
expansion can be ignored.

In some cases, Lemmas 3.1 and 3.2 can be used to determine a priori the number of
reflections needed to resolve the close-to-touching interaction. Consider, for example,
the two-disk problem described in Lemmas 2.1 and 2.3 with a = 1, d = 10−6, and
λ = 1. Using only the dipole expansion, suppose that we wish to solve this problem to
within an error of ε = 10−6. The initial dipole moment is given by α(1)(1) = a2λ = 1,
so that after N reflections we have from Lemma 3.1

|α(N)(1)| =

 N∏
j=1

f(j)

2

,

where f(j) is defined in (29). It is easy to see that the sequence of continued fractions
is increasing with limit L satisfying

L2 − (2 + d)L+ 1 = 0, L < 1.

Since d is small, a first-order solution is

L ≈ 1−
√
d.

Thus, α(N)(1) can be bounded by

|α(N)(1)| ≤ L2N .(34)
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D
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D
1 2

3

2
D

(1)

FIG. 3. Three closely spaced disks. The charge distribution µ2 on disk D2 is reflected into
the image disk D

(1)
2 inside D1. The number of multipole moments required is determined by the

condition that the field induced on D3 by the image charge distribution on D
(1)
2 be well resolved (see

Lemma 3.3).

According to Lemma 3.2, if we require the truncation error to be less than ε, then we
must have

|α(N)(1)| < δ2ε,(35)

where δ is the distance from the Nth image point, say z2(N) in (15), to D1. This
distance satisfies

δ > δ∞ = |z2(∞)− a| ≥
√
d+ d/2 ≥

√
d.(36)

The condition (35) will be satisfied if we set

L2N < δ2
∞ε,

which requires that

N >
log(dε)
2 logL

≈ log(dε)
2 log(1−

√
d)
.

For d = ε = 10−6, the result from this estimate is 14,000. In other words, 14,000
reflections are enough to resolve the two-disk interaction with an error less than 10−6.
The actual number is less, of course, since we have been pessimistic in our use of the
bounds (36) and (34).

Lemmas 3.1 and 3.2 allow us to rigorously determine the number of reflections
needed to accurately compute two-disk interactions involving finite-order multipole
expansions. The actual number of moments p needed to properly resolve the potential
field, on the other hand, is determined by multidisk interactions. Recall that p = 1
would be sufficient if all second- and higher-order reflections were incorporated into
the definition of the Green function. In our method, however, we need to increase
p in order to capture the effect of these higher-order reflections. The most singular
interaction which we are not accounting for in our Green function is clearly that of the
field induced by a first-order reflection on a third, nearby disk as depicted in Fig. 3.

LEMMA 3.3. Suppose that D1, D2, and D3 are closely spaced disks of radius a,
centered at z1, z2, and z3, respectively. Let

Φ(z) =
p∑
k=0

α
(1)
2 (k)

(z− z2)k
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be the multipole expansion induced by a surface charge density µ2 on disk D2, and let
its reflection in D1 be denoted by

Φ′(z) =
p∑
k=0

α
(2)
2 (k)

(z− z1(2))k
,

where z1(2) is defined in (15) and the coefficients α(2)
2 (k) are defined as in Lemma 2.3.

Then the potential induced by this multipole expansion on the disk D3 can be expanded
as a power series

Φ(z) =
∞∑
l=0

βl · (z− z3)l,(37)

where

βl = α
(2)
2 (0)δ0l +

p∑
k=1

α
(2)
2 (k)

(z1(2)− z3)k+l

(
l + k − 1
k − 1

)
(−1)k(38)

and δ0l is the standard Kronecker delta function. Moreover, the error in truncating
the infinite series (37) at p ≥ 2 is bounded by

Ep =

∣∣∣∣∣Φ(z)−
p∑
l=0

βl · (z− z3)l
∣∣∣∣∣ < ‖µ‖L1

ca

(
1

1 + c

)p
,(39)

where ca denotes the distance between D3 and D(1)
2 and D(1)

2 is the image disk obtained
upon reflection of D2 into D1 (see Fig. 3 and Remark 2.2).

Proof. The proof is straightforward and relies on standard multipole estimates
(see [5]).

In the worst case (touching disks), we can compute from Fig. 3 that

c ≥ 2
3

(
√

7− 2),

so that the truncation error decays at least at the rate (0.7)p.
In summary, using sufficiently many reflections, in accordance with Lemma 3.2

and sufficiently many multipole modes, in accordance with Lemma 3.3, the represen-
tation (24) yields arbitrarily accurate results.

3.2. Periodic boundary conditions. Effective transport properties of bulk
materials are generally computed by considering a unit computational cell containing
some number of inclusions on which one imposes periodic boundary conditions. The
interface problem (1)–(4) is then augmented by the conditions

u(x+ 1, y)− u(x, y) = 1,

u(x, y + 1)− u(x, y) = 0,(40)

rather than (5), to simulate a uniform field Ea = (1, 0) applied in the x-direction [1,
2, 6, 15, 16, 33, 34].

The standard integral equation approach, using a single layer potential, is to
express u as

u(P ) = x+
M∑
j=1

∫
∂Dj

G(P,Q)ρj(Q)ds,(41)
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where G(P,Q) is the doubly periodic Green function rather than the fundamental
solution. There are a number of questions which arise when evaluating such a Green
function which we will not review in detail (see [8, 27, 28]). We will simply observe
that periodicity can be imposed by considering the entire plane to be tiled by copies of
the unit cell, generating a lattice of charge sources. Our integral equation is obtained
from this potential representation, modified in the same way as the infinite medium
equation, namely by incorporating all first-order reflections. That is, we solve the
equation

2λ1n1(P ) = µ1(P )− 2λ1

M∑
j=1

∫
∂Dj

∂Kδ
j

∂n
(P,Q)µj(Q)ds, P ∈ ∂D1,

. . .(42)

2λMn1(P ) = µM (P )− 2λM
M∑
j=1

∫
∂Dj

∂Kδ
j

∂n
(P,Q)µj(Q)ds, P ∈ ∂DM ,

where Kδ
j is the doubly periodic Green function, modified to include the influence

of all first-order reflections generated by interactions with disks (including periodic
images) which lie within a distance δ of Dj .

4. Numerical results. Once the charge density on each inclusion boundary is
expanded as a p-term multipole series, the integral equation (27) or (42) becomes a
finite-dimensional linear system of order Mp, as in the case of the original Fourier
method described by (9). We solve this system iteratively, using the generalized
minimum residual (GMRES) method [29]. At each iteration, we must perform a
dense matrix–vector multiply with the actual cost determined in part by the number
of reflections used in the evaluation of two-disk interactions. That number is in turn
determined by the desired accuracy and Lemma 3.2.

The full algorithm has been implemented in double precision FORTRAN, includ-
ing the reduction in the number of terms used in the reflection process according to
Remark 3.1. Here, we illustrate its performance with a variety of examples. In all
cases, the GMRES iteration was continued until the Euclidean norm of the residual
was less than the desired accuracy.

Example 1. We first consider nine disks in an infinite medium (Fig. 4), each
having the same conductivity but at very high contrast (σj/σe = 108). The closest
distance between disks is denoted by ε, and we examine the behavior of our algorithm
over a range of ε from 10−2 to 10−7 (Table 1). For the last few cases, no previous
direct data are available. In order to measure the actual error, we compare our
computed solutions with those obtained using p = 50 modes per disk and enough
reflections to reduce the flux error in Lemma 3.2 to 10−10. We have also provided
in Table 2 the results for the first two cases using Rayleigh’s method (left group)
and the algorithm of Greengard and Moura [7] (right group). While the speedup
over Rayleigh’s method is modest in these cases, it would be much more dramatic at
smaller values of ε. Unfortunately, Rayleigh’s method is numerically unstable in that
regime. The algorithm of Greengard and Moura, while numerically stable, already
uses 9 × 2000 points for ε = 10−3. It is based on a simple quadrature rule and not
designed for the close-to-touching regime. Thus, we do not have competing methods
available for timing comparisons in the most singular cases.

To show the nearly singular behavior of the electrostatic field at close-to-touching
points, we present a contour plot of the induced potential and a surface plot of the
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E a

FIG. 4. Nine disks in an infinite medium, subject to a uniform applied field (Example 1).
The short separation distance ε, indicated by the arrows, is identical in the vertical and horizontal
directions.

TABLE 1
Performance of the hybrid method on the nine-disk problem of Example 1. The first column

indicates the separation distance ε and the second column indicates the number of Fourier modes p.
The third, fourth, and fifth columns indicate the number GMRES iterations required, the computed
error in the Euclidean norm, and the time required in seconds on an SGI workstation using the
R8000 processor. The last column lists the induced net dipole moment.

ε Modes # iter Error Time Total Dipole

10−2 5 6 10−4 0.25 (−0.39195, 0)

10−3 11 7 10−4 1.14 (−0.43721, 0)

10−4 13 7 10−4 3.25 (−0.44964, 0)

10−5 13 8 10−4 10.34 (−0.45338, 0)

10−6 15 9 10−4 38.13 (−0.45454, 0)

10−7 17 9 10−4 53.54 (−0.45491, 0)

TABLE 2
Performance of Rayleigh’s method (columns 2–5) and the algorithm of Greengard and Moura

(columns 6–9) on the nine-disk problem of Example 1. Times are again given in seconds on a
SPARCstation 10. The sixth column indicates the number of points used in the discretization of
each inclusion boundary (Pts).

ε Modes # iter Error Time Pts # iter Error Time

10−2 40 25 10−4 9.71 500 27 10−8 90.68

10−3 80 50 10−4 50.15 2000 110 10−4 1178.4

absolute value of its gradient in Fig. 5. Figure 6 depicts the contours of the induced
potential and a surface plot of the absolute value of its gradient for the geometry
obtained by rotating the nine disk array of Figure 4 by 45◦.

Example 2. For our second example, we consider seven irregularly placed disks
in an infinite medium (Fig. 7), with conductivity ratio 108. The closest approach
distance is denoted by ε, as in the first example. The results for this configuration
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FIG. 5. A contour plot of the induced potential (right) and a surface plot of the absolute value
of its gradient (left) for the case ε = 10−5.
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FIG. 6. A contour plot of the induced potential (right) and a surface plot of the absolute value
of its gradient (left) for the geometry obtained by rotating the nine-disk array of Example 1 by 45◦.
The separation distance is ε = 10−4.

are reported in Table 3. Figure 8 shows a contour plot of the potential and a surface
plot of the absolute value of the potential gradient for the case ε = 10−4.

Example 3. For benchmarking purposes, we have considered a (periodic) square
arrays of disks. This geometry has been studied for a long time by many researchers,
beginning with Rayleigh [28]. Perrins, McKenzie, and McPhedran [27] have produced
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E a

FIG. 7. The locations of seven disks in an infinite medium, subject to a uniform applied field
(Example 2). The shortest separation distance ε is indicated by the arrows.

TABLE 3
Performance of our method on the seven-disk infinite medium problem (Example 2), with vary-

ing values of ε. The columns are labeled as in Table 1.

ε Modes # iter Error Time Total Dipole

10−2 13 9 10−7 0.41 (−0.32688, 0.02337)

10−3 18 10 10−7 1.25 (−0.36197, 0.02940)

10−4 19 11 10−7 3.49 (−0.37081, 0.03126)

10−5 19 12 10−6 10.53 (−0.37336, 0.03184)

10−6 19 16 10−6 40.28 (−0.37414, 0.03202)

10−7 19 17 10−6 51.56 (−0.37439, 0.03208)

a table which gives the effective conductivity for a wide range of area fractions and
conductivity ratios. Moura [26] also considered these cases using a fast multipole
accelerated integral equation. For smaller separation distances, asymptotic results
have been obtained by McPhedran, Poladian, and Milton [24]. Rather than providing
a complete breakdown of numerical results, we will simply observe that our results
agree with previous direct calculations for modest separation distances and with the
asymptotic results for the close-to-touching case. At a conductivity ratio of 108 and
a separation distance of ε = 2.5× 10−4, 13 Fourier modes and a few seconds of CPU
time on a SPARCstation 10 are required.

Example 4. In our last example, the inclusions of Example 2 are placed in a unit
cell and extented periodically. Table 4 summarizes our computations.

5. Conclusions. We have presented a new integral equation method for the
solution of electrostatic interface problems in systems of close-to-touching cylinders.
It is based on a modified Green function which incorporates information from first-
order reflections in the method of images. Unlike previous asymptotic methods, it is
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FIG. 8. A contour plot of the induced potential (right) and a surface plot of the absolute value
of its gradient (left) for the case ε = 10−4 in Example 2.

TABLE 4
Performance of our method on the periodic seven-disk configuration of Example 2 with varying

value of ε. The columns are labeled as in Table 1.

ε Modes # iter Error Time Total Dipole

10−2 8 7 10−5 0.47 (−0.10072, 0.00548)

10−3 9 10 10−5 0.99 (−0.12758, 0.00891)

10−4 9 11 10−5 1.88 (−0.13460, 0.01009)

10−5 9 14 10−5 5.40 (−0.13661, 0.01046)

10−6 10 13 10−5 14.41 (−0.13722, 0.01058)

10−7 13 8 10−5 18.48 (−0.13741, 0.01062)

not limited to regular geometries, and unlike previous direct numerical methods, it
does not break down as the separation distance decreases toward zero.

In order to treat large numbers of inclusions, the algorithm described here, which
treats neighboring interactions efficiently, should be coupled with the fast multipole
method [8], which treats far field interactions efficiently. Results from such simulations
will be reported at a later date.
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