Contact
Email: gaoyong.zhang@nyu.edu
Office: WWH 523; 2MTC 852
Research Interests
Convex Geometry, Geometric Analysis
Distinctions
Fellow of the American Mathematical Society
Education
- Doctor of Philosophy, Mathematics
Temple University, 1995 - Bachelor of Science, Mathematics
Wuhan University of Science and Technology, 1982
Professional Experience
- New York University
Professor
January 2014 to present - Polytechnic University
Professor
September 2000 to December 2013 - Polytechnic University
Assistant Professor
September 1997 to August 2000 - University of Pennsylvania
Rademacher Lecturer
September 1995 to July 1997 - Institute for Advanced Study
Member
January 1996 to August 1996 - Wuhan University of Science and Technology
Lecturer
September 1986 to August 1991
Selected Papers
[42] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao, The dual Minkowski problem for symmetric convex bodies, Adv. Math. 356 (2019), 106805.
[41] Y. Huang, E. Lutwak, D. Yang, G. Zhang, The L_p-Aleksandrov problem for L_p-integral curvature, J. Differential Geom. 110 (2018), no. 1, 1--29.
[41] E. Lutwak, D. Yang, G. Zhang, L_p dual curvature measures, Adv. Math. 329 (2018), 85--132.
[40] A. Li, D. Xi, G. Zhang, Volume inequalities of convex bodies from cosine transforms on Grassmann manifolds, Adv. Math. 304 (2017), 494--538.
[39] Y. Huang, E. Lutwak, D. Yang, and G. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math. 216 (2016), 325--388.
[38] A. Colesanti, K. Nystrom, P. Salani, J. Xiao, D. Yang, and G. Zhang, The Hadamard variational formula and the Minkowski problem for p-capacity, Adv. Math. 285 (2015), 1511--1588.
[37] K. J. Boroczky, E. Lutwak, D. Yang, and G. Zhang, Affine images of isotropic measures, J. Differential Geom. 99 (2015), 407--442..
[36] A. Cianchi, E. Lutwak, D. Yang, and G. Zhang, A unified approach to Cramer-Rao inequalities, IEEE Trans. Info. Theory 60 (2014), 643--650.
[35] E. Lutwak, S. Lv, D. Yang, and G. Zhang, Affine moments of a random vector, IEEE Trans. Info. Theory 59 (2013), 5592--5599.
[34] K. J. Boroczky, E. Lutwak, D. Yang, and G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013), 831--852.
[33] K. J. Boroczky, E. Lutwak, D. Yang, and G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), 1974--1997.
[32] E. Lutwak, S. Lv, D. Yang, and G. Zhang, Extensions of Fisher information and Stam's inequality, IEEE Trans. Info. Theory 58 (2012), 1319--1327.
[31] E. Lutwak, D. Yang, and G. Zhang, The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. Appl. Math. 48 (2012), 407--413.
[30] G. Bianchi, D. Klain, E. Lutwak, D. Yang, and G. Zhang, A countable set of directions is sufficient for Steiner symmetrization, Adv. Appl. Math. 47 (2011), 869--873.
[29] M. Ludwig, J. Xiao, and G. Zhang, Sharp convex Lorentz-Sobolev inequalities, Math. Ann. 350(2011), 169--197.
[28] C. Haberl, E. Lutwak, D. Yang, and G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224(2010), 2485--2510.
[27] E. Lutwak, D. Yang, and G. Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), 365--387.
[26] E. Lutwak, D. Yang, and G. Zhang, A volume inequality for polar bodies, J. Differential Geom. 84 (2010), 163--178.
[25] E. Lutwak, D. Yang, and G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), 220--242.
[24] A. Cianchi, E. Lutwak, D. Yang, and G. Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calculus of Variations and PDEs 36 (2009), 419--436.
[23] E. Lutwak, D. Yang, and G. Zhang, Moment-entropy inequalities for a random vector, IEEE Trans. Info. Theory 53 (2007), 1603--1607.
[22] E. Lutwak, D. Yang, and G. Zhang, Volume inequalities for isotropic measures, Amer. J. Math. 129 (2007), 1711--1723.
[21] E. Lutwak, D. Yang, and G. Zhang, Optimal Sobolev norms and the Lp Minkowski problem, International Math. Res. Notices (2006), No. 1, 1--21.
[20] D. Hug, E. Lutwak, D. Yang, and G. Zhang, On the L_p Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005), 699--715.
[19] E. Lutwak, D. Yang, and G. Zhang, L_p John ellipsoids, Proc. London Math. Soc. 90 (2005), 497--520.
[18] E. Lutwak, D. Yang, and G. Zhang, Cramer-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information, IEEE Trans. Info. Theory 51 (2005), 473--478.
[17] E. Lutwak, D. Yang, and G. Zhang, Volume inequalities for subspaces of L_p, J. Differential Geom. 68 (2004), 159--184.
[16] B. Rubin and G. Zhang, Generalizations of the Busemann-Petty problem for sections of convex bodies, J. Funct. Anal. 213 (2004), 473--501.
[15] E. Lutwak, D. Yang, and G. Zhang, On the L_p-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), 4359-4370.
[14] E. Lutwak, D. Yang, and G. Zhang, Moment-entropy inequalities, Annals of Prob. 32 (2004), 757--774.
[13] E. Lutwak, D. Yang, and G. Zhang, Sharp affine L_p Sobolev inequalities, J. Differential Geom. 62 (2002), 17--38.
[12] E. Lutwak, D. Yang, and G. Zhang, The Cramer--Rao inequality for star bodies, Duke Math. J. 112 (2002), 59--81.
[11] E. Lutwak, D. Yang, and G. Zhang, A new affine invariant for polytopes and Schneider's projection problem, Trans. Amer. Math. Soc. 353 (2001), 1767--1779.
[10] E. Lutwak, D. Yang, and G. Zhang, L_p affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111--132.
[9] E. Lutwak, D. Yang, and G. Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), 375--390.
[8] J. Bourgain and Gaoyong Zhang, On a generalization of the Busemann-Petty problem, Convex geometric analysis (Berkeley, CA, 1996), 65--76, Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999.
[7] E. Grinberg and Gaoyong Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. 78 (1999), 77--115.
[6] Gaoyong Zhang, Dual kinematic formulas, Trans. Amer. Math. Soc. 351 (1999), 985--995.
[5] Gaoyong Zhang, A positive solution to the Busemann-Petty problem in R^4, Ann. of Math. (2) 149 (1999), 535--543.
[4] Gaoyong Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), 183--202.
[3] R. J. Gardner and Gaoyong Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), 505--528.
[2] P. Goodey and Gaoyong Zhang, Inequalities between projection functions of convex bodies, Amer. J. Math. 120 (1998), 345--367.
[1] E. Lutwak and Gaoyong Zhang, Blaschke-Santalo inequalities, J. Differential Geom. 47 (1997), 1--16.