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Random triangle removal

Problem definition

» Stochastic process (random greedy triangle packing):

(» Gy = complete graph on n vertices. R

» G; ~ G;, : select a uniform triangle in G; (while 3) |
| | andremoveits 3 edges i

| ———
/a\

» QUESTION [Bollobas, Erdés (1990)]:
[VVhat is the expected number of edges in the final graph?]
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Random triangle removal

Motivation |. packing designs
fe

Jakob Steiner
. ) i 1796-1863

» [Kirkman 1847]: exists iff n = 1, 3 (mod 6). Q

» DEFINITION [Steiner 1853]: a triple system
of order n is a set of triples § © () s.t.
V pair (x,y) belongs to a unique A € S.

» e.g.n=17:{1,2,4},{2,3,5},{1,3,6},
{17 5; 7}: {3) 4) 7}; {2; 6: 7};

Thomas
Kirkman
806-1895

> n | 7 | 9 |13 ] s | 9

#STSI 1 | 1 | 2 |8o |11084874829
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Random triangle removal

Motivation |. packing designs

» Steiner triple system = partition edges of a
complete graph into edge-disjoint triangles.
> general Steiner systems: hypergraphs...

» constructions: group theory, geometry,..:

» Recipe for a near optimal system
(few pairs not covered) — greedy packing:
> Order all (%) triplets uniformly.

> In this order, add each triplet that does
not already intersect an existing one with an edge.

» Exactly the triangle remouval process...
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Random triangle removal

Packing via triangle removal process

» Go = complete graph on n vertices.
» G; = G4 : Temove edges of a uniform triangle in G;.

| V@~ g ]

’l'n = min{i : G(i) is triangle free}] -

Vi: |[E(G;)| = (72') — 3i = equivalent questions:

/ final number of edges \
# A’s packed via random greedy

Eyal Lubetzky, Microsoft Research
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ndom triangle removal

Motivation Il. A-free networks

» What does a typical A-free graph on n vertices look like? |
» [Erdos, Kleitman, Rothschild “76]: V2 ‘
a.e. such graph: bipartite with about n*/8 edges. = |
‘] > [Promel, Schickinger, Steger “02]:

,4“ a.e. non-bipartite one: can be made bipartite by deleting a vertex. F

> |Osthus, Promel, Taraz "03]: specifying the # of edges:
a.e. A-free graph with p(?) edges: bipartite as long as / SER < p<1. B

» Output of Triangle removal process : S *
nontrivial distribution on A-free graphs, \%—«
> similar to a random graph G(n, p); Ny

> and yet no triangles...
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ndom triangle removal

Motivation lll. Ramsey theory

» DEFINITION: R(3,t) = minimum n such that
V A-free graph on n vertices D independent set I of size t.

> (=): How small can the independence number of a A-free graph be?
> [Erdés ‘61]: 3 A-free graph with no I of size cy/nlogn. P
W > |Ajtai, Komlos, Szemerédi ‘80]: V A-free graph O I of size CW.

> |Kim “95]: 3 A-free graph with no I of size C m.

» Triangle removal process:

> Tractable (hopefully) stochastic process ending with a
A-free graph having (hopefully) many edges.

> Towards the leading order constant for R(3,t) ?
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Random triangle removal

Sample run of the process

/ Nl

50 vertices, 371 steps, 115 remaining edges

Eyal Lubetzky, Microsoft Research
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An exponent of 3/2

» CONJECTURE [Bollobas, Erdés (1990)]:
{Expected final # edges has order n3/2

1913 ]996

| » Intuition: -
| (" G, should behave like an Erd6s-Rényi graph G(n,m) N )
withm = |E(G;)| = (g) — 3i edges.

, _

| | » Atm = en3/? there are ~ . 2 e3n3/2 triangles in G(n, m)

C Removing all triangles still leaves =< n3/? edges in G,

» 0(n?) is already nontrivial: implies that random greedy
constructs a near-optimal Steiner triple system.

Eyal Lubetzky, Microsoft Research
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Random triangle removal

Previous work

b |[Spencer (1995)] and [R6dl, Thoma (1996)]: ©
 Final # edges is o(n®) with high probability. =

» (IGrable (1997)]: v
Final # edges is at most n”/**°M) w.li.p. [G97]
" [G97]

Best known upper bound. No lower bounds known.

» ([Gordon, Kuperberg, Patashnik, Spencer ("96)]: )
| simulations supporting the answer n3/2+°(1),

'(
» | [Wormald (1999)]: )

Final # edges is at most n*~57 w.I.p.
( method applies to general case of random

greedy packing in k-uniform hypergraphs. )

+0(1)
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Random triangle remc

Previous work (ctd.)

» [Alon, Kim, Spencer (1997)]: ‘ . \

» semi-random variant of the process finds nearly pertec
hypergraph matchings. Specialized to A’s: ‘H
3/210g3/% n) final edges w.h.p.)
» Conjectured that random greedy matches these results:
CONJECTURE [Alon, Kim, Spencer (1997)]: |
(Random greedy for k-tuples w. pairwise intersections < k — 21 | 2
_has E[#uncovered (k — 1)-tuples] < n* 1 e=to),

”...at the moment we cannot prove that this is the case even for k = 3"
3/2+0(1)

| Variant process leaves O (n

Ny AR

| » Spencer offered $200 for a proof of n

Eyal Lubetzky, Microsoft Research
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Main result

» THEOREM [Bohman, Frieze, L.]:

With high probability Ty = n?/6 — n3/2t°(),
l or equivalently, |E(G,, )| = n3/?+°®,

Simulations:
Final # edges

over n3/2

Eyal Lubetzky, Microsoft Research
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Self correction

A:0, «—:115

%0 100 150 200 250 300 350
s = 371

Eyal Lubetzky, Microsoft Research
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Self correction

A:2730 , «-:628

» Goal: maintain concentration of
. the total number of triangles.

| > Key: co-degrees. = rzé.:m aal
ﬁz = Q(i) = # triangles in G, ] | ?;h\
[Yuv = Y, (i) = co-degree of u, v in G; ] ’; :”E

| » Co-degree evolution: u>‘ =

-~ . ”
[IE[A Yuv | Fiy | = _EerYuv(Yux + Yox — Ilufvv] o

» Similar to the form E[dX] < —a X:
> the larger X is, the bigger the drift towards its mean.
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Self correction: the fine print

A:2730 , «: 628

» Re-examining the key: co-degrees.

[Yuv = Y, (i) = co-degree of u, v in G; ]

| 1. once edge density drops to p = % ol
W then Y, = Bin(n, p?) ; STDEV = +/n. e \
| 2 e

s+ = 200

this will match our mean of np?

once p = n~1/4
> Method breaks at n”/* edges... 5 i
» Crucial: error estimates improve over time! >x
» New general framework to support this. v

» Later used by [Bohman, Keevash]| to improve bounds on R(3,t) to
within a factor of 4 (independently proved by [Pontiveros et al.]).
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Context: the A-free process

» Adding edges instead of deleting them:

3ze complete graph on n vertices. }
| | » G » G;,,: add a uniform edge that does not add a A. ||
| »[Erd6s-Suen-Winkler (1995)]: il ' |
| | Final # of edges in A-free process = n3/2toW whyp. | |
| ¥ [Bohman (2010)]: B RN
| | Final # of edges in A-free process = n3/2,/logn w.h.p.

» Main differences:

1. Triangle-removal goes through n?/6 — n3/2+°(1)
steps vs. n3/27°(1) gteps in the A-free process.

2. A-free is “well behaved” until the very end...

Eyal Lubetzky, Microsoft Research
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Context: the A-free process (ctd.)

» A-free process:

» Forbidden edges are pairs with a positive co-degree.

> These are negligible until there are = n

3/2 edges...

» Coupling to G(n, m) readily gives a lower bound.

» Triangle removal:

» Already when the edge density is a small constant ¢
# forbidden triangles > # legal ones ...

» Tracking the process to p = n™* requires delicate
control over geometry of remaining triangles.

Eyal Lubetzky, Microsoft Research
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| triangle removal

Proof ingredients

» Starting point: system of martingales tracking the
evolution of poly(n) variables w.r.t. G(n, m) values.

| » Self correction: errors decrease as process evolves. J‘
| » Objective: track all co-degrees followed by the # A’s.

> Naive approach breaks at 7/4 matching Grable’s
result via a very different method (physical barrier).

» More ingredients help push the exponent further, but
eventually subgraphs become too sparse to track...

» Construct canonical family of e?(1/#) graphs by gluing
0(1/¢) triangles in a prescribed manner; track all graph
homomorphisms from them.

3 —(5 —(7)—(9)

(w0
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Triangular ladders

|
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Some of the ~ 2°? labeled rooted graphs whose
homomorphisms-counts are tracked to imply

|E(GT0)| < n3/?* for g = =
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Random triangle removal

Triangular ladders

» Controlling one ladder is achieved via longer ones.

» End game: crucially relies on the ladder’s length...
» Each variable features a self correcting estimate.
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Triangular ladders: example

» A simple lemma:

If (x;);e; and (Vi)ier sat. |x; — x| < 6; and |y; —y| < 52 |

for some x,y € R and Vi € [ then
= 1 8
| .l | Dicr XiVi — ”—l(Ziel %0 }’i)‘ < 2|116,6,. P

» E.g.., to control:

it suffices to handle:

Eyal Lubetzky, Microsoft Research
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Simple concrete example

» Recall: [Q(i) £#A’s ; Y, (i) £ co-degree of u,v . |
» THEOREM:
Suppose |Y,,, — np?| < n3/4for all u,v and i <iig.
[Then with high probability Q < - n3p - np }

e,

| » Recipe for utilizing self correction:

> Estimate expected change in terms of Q itself.
> Set a threshold y just below desired upper bound T
» Show that while Q € |y, T'] it is a supermartingale.

» Concentrate Q with error probability n=1°°.

Eyal Lubetzky, Microsoft Research
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Simple concrete example  (ctd.)

» GOAL: Q < %n3p3 given |Y,, — np?| < n3/* vu,v

» PROOF: |
_‘ / Analysis of one -step change: \ *
‘ [AQ | F; | = Z(Y + ¥y 4 Yoy — 2) = 2 ZYZ L )
ﬂ E = uv W uw = uv :
i | Q '

uvwEQ quE

e » Since QuveE thv = 9Q /IE| -

| B 5 18
E[AQ|T] 2__Zyuv—{_%
UvekE
> Suppose Q(i) > in’p? -n p Then
\ E[AQ | F; ] < —3np? — /

Eyal Lubetzky, Microsoft Research
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Random triangle removal

014

Simple concrete example

(ctd.)

ﬁuppose Q just entered [y, I'] for {)[/‘ z

> Set [Z=Q—( n?p3 + in%p).

]

Dy A

= Recall: E[AQ|F; ] < —3np® —

> Aslong as Q € [y, I'] we get

a supermartingale.

> As Ap = —6/n* the change in the scaling term is
~ = [n®p? + 3n?| ~ 3np?

S gV

~|m

\ E[AZ |F; |<—3+0(1) <0,

™

Eyal Lubetzky, Microsoft Research
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Simple concrete example (ctd.)
/ Next: concentrate [Z Q — (1n3p3 n zp)] \

> Number of steps remaining: < |E| = n®p

» Deviation considered: 1—12n2p.
> Lipschitz constant for one step:
» @ changes by some —(Y,,;, + Yo + Vo) + O(1).
= Scaling term changes by ~ 3np? + 2.
= Together: 0(n3/*) thanks to co-degree estimates!
» By Hoeffding’s inequality:
P[3j:Z(j) — Z(0) > 5n?p| < exp(—cynp) .
\ » W.h.p. we will never cross the [y, '] interval.
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Lower bound

» THEOREM:

» PROOF:

(> Important ingredient: a variant of the upper bound
on Q with the correct additive error:

[w.h.p. Q <~ [%n3p3 - %npz] at all times. ]

» (we demonstrated an additive error of %npz.)

\ /
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Lower bound (ctd.)

/r Assume: l Q < [%n3p3 + %npzl vp. l \

> Consider time p = p; = §/+/n for small enough § > 0.

= # edges: |E| ~ n D= —5n3/2 Bﬁ“

» # triangles:  Q < 153032 + [6n/4. | B
W—/

T negligible )l why = mattered: |E|/3,

> If Q < £2%n°/2 then Q < £Y|E| and necessarily there

3/2

will be cn®/“ edges at the end of the process (done). N

* = may assume: Q = -|E|.

Eyal Lubetzky, Microsoft Research
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Random triangle removal

Lower bound (ctd.)

/r At time p = p; = §/+/n for small enough § > 0: \
= # edges: |E| = cn?/? ; # triangles: Q = }|E]|.

3/2

> If cn”/“ edges have no triangles on them = done. B&

* = may assume: almost V edge incident toa A . | B

» Combined: almost all triangles are edge-disjoint. =

| T At time p, every co-degree is ~ n*®
= every triangle is incident to ~ 3n%¢ others.

~ Py = Sn— 1/2 =
l

-1/2+¢ '

p 0~ In /\
\ E\t time p, there are cn3/? “isolated” triangles.]

7
_-'/

Eyal Lubetzky, Microsoft Research
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Lower bound  (ctd.)
/> Look at triangles just before they became isolated: \

= Mark a triangle once it has an edge with co-degree 1
(no other triangles resting on this special edge.) |

» Filter a subset X of marked A’s whereif R € X =
no S ~ R (incident triangle) is in X nor any T ~ S. I B

= |X] = n™*¢ X cn3/? (pay n? per level by co-degrees). | E
| T > If an arbitrary neighbor S of R € X is drawn before any| |
of its own neighbors: the special edge of R survives!

al  P(this event) = n~% ; events are independent.
» W.h.p. final # edges is cn™2¢|X| > cn3/27¢, |

7
_-'/
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Open problems

1. Establish the order of the final number of edges.

2. Study the graph properties of the final output
(a nontrivial distribution over triangle-free graphs).

3. Compare final output of the triangle removal process
with that of the triangle-free process.

4. Obtain the leading constant for R(3, t).

Eyal Lubetzky, Microsoft Research
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