Stanford University, Jan 2014

RANDOM TRIANGLE REMOVAL

Eyal Lubetzky Microsoft Research

Joint work with Tom Bohman and Alan Frieze

Problem definition

- Stochastic process (random greedy triangle packing):
 - G_0 = complete graph on n vertices.
 - ▶ $G_i \mapsto G_{i+1}$: select a **uniform triangle** in G_i (while \exists) and remove its 3 edges.

QUESTION [Bollobás, Erdős (1990)]:

What is the expected number of edges in the final graph?

Motivation I. packing designs

DEFINITION [Steiner 1853]: a triple system of order *n* is a set of triples $S \subset {[n] \choose 2}$ s.t. \forall pair (x, y) belongs to a unique $A \in \mathcal{S}$.

• e.g. $n = 7: \{1, 2, 4\}, \{2, 3, 5\}, \{1, 3, 6\},$ $\{1, 5, 7\}, \{3, 4, 7\}, \{2, 6, 7\}, \{4, 5, 6\}$

[Kirkman 1847]: exists iff $n \equiv 1, 3 \pmod{6}$.

Thomas Kirkman 806-1895

n	7	9	13	15	19
# 575	1	1	2	80	11084874829

Motivation I. packing designs

- Steiner triple system ≡ partition edges of a complete graph into edge-disjoint triangles.
 - > general Steiner systems: hypergraphs...
 - > constructions: group theory, geometry,...
- Recipe for a near optimal system
 (few pairs not covered) greedy packing:
 - \triangleright Order all $\binom{n}{3}$ triplets uniformly.
 - In this order, add each triplet that does not already intersect an existing one with an edge.
- **Exactly** the triangle removal process...

Packing via triangle removal process

- G_0 = complete graph on n vertices.
- $G_i \mapsto G_{i+1}$: remove edges of a **uniform triangle** in G_i .

$$\tau_0 = \min\{i : G(i) \text{ is triangle free}\}\$$

 $\forall i: |E(G_i)| = \binom{n}{2} - 3i \implies \text{equivalent questions:}$

final number of edges

of steps to terminate

Δ 's packed via random greedy

Motivation II. ∆-free networks

- ▶ What does a typical Δ -free graph on n vertices look like?
 - [Erdős, Kleitman, Rothschild '76]:
 a.e. such graph: bipartite with about n²/8 edges.
 - > [Prömel, Schickinger, Steger '02]:

 a.e. non-bipartite one: can be made bipartite by deleting a vertex.
 - > [Osthus, Prömel, Taraz '03]: specifying the # of edges: a.e. Δ-free graph with $p\binom{n}{2}$ edges: bipartite as long as $\sqrt{\frac{3 \log n}{16 - n}} \le p < 1$.
- Output of *Triangle removal process*: nontrivial distribution on Δ-free graphs.
 - > similar to a random graph G(n, p);
 - > and yet no triangles...

Motivation III. Ramsey theory

- ▶ <u>DEFINITION</u>: R(3,t) = minimum n such that \forall Δ -free graph on n vertices \supset independent set I of size t.
 - ▶ (\equiv): How small can the independence number of a Δ -free graph be?
 - ► [Erdős '61]: $\exists \Delta$ -free graph with **no** I of size $c\sqrt{n} \log n$.
 - > [Ajtai, Komlós, Szemerédi '80]: \forall Δ-free graph ⊃ I of size $c\sqrt{n\log n}$.
 - \triangleright [Kim '95]: ∃ Δ-free graph with **no** *I* of size $C\sqrt{n \log n}$.
- Triangle removal process:
 - Tractable (hopefully) stochastic process ending with a Δ-free graph having (hopefully) many edges.
 - > Towards the leading order constant for R(3,t)?

Sample run of the process

50 vertices, 371 steps, 115 remaining edges

An exponent of 3/2

CONJECTURE [Bollobás, Erdős (1990)]:

Expected final # edges has order $n^{3/2}$.

Béla Bollobás

Paul Erdős 913–1996

- Intuition:
 - G_i should behave like an Erdős-Rényi graph G(n, m) with $m = |E(G_i)| = \binom{n}{2} 3i$ edges.
 - At $m = \varepsilon n^{3/2}$ there are $\sim \frac{4}{3} \varepsilon^3 n^{3/2}$ triangles in $\mathcal{G}(n, m)$
 - ▶ Removing all triangles still leaves $= n^{3/2}$ edges in G_{τ_0} .
- $o(n^2)$ is already nontrivial: implies that *random greedy* constructs a near-optimal Steiner triple system.

Previous work

- [Spencer (1995)] and [Rödl, Thoma (1996)]: Final # edges is $o(n^2)$ with high probability.

Grable (1997):

Final # edges is at most $n^{7/4+o(1)}$ w.h.p.

[S95] [RT96] [W99] + 1.98[G97] + 1.83

[G97] + 1.75

Best known upper bound. No lower bounds known.

- [Gordon, Kuperberg, Patashnik, Spencer ('96)]: simulations supporting the answer $n^{3/2+o(1)}$.
- [Wormald (1999)]:

Final # edges is at most $n^{2-\frac{1}{57}+o(1)}$ w.h.p.

(method applies to general case of random greedy packing in k-uniform hypergraphs.)

Previous work (ctd.)

- ▶ [Alon, Kim, Spencer (1997)]:
 - \gt semi-random variant of the process finds nearly perfect hypergraph matchings. Specialized to Δ' s:

Variant process leaves $O(n^{3/2} \log^{3/2} n)$ final edges w.h.p.

Conjectured that random greedy matches these results: <u>CONJECTURE</u> [Alon, Kim, Spencer (1997)]:

Random greedy for k-tuples w. pairwise intersections $\leq k-2$

has
$$\mathbb{E}[\#uncovered\ (k-1)\text{-tuples}] \le n^{k-1-\frac{1}{k-1}+o(1)}$$
.

"...at the moment we cannot prove that this is the case even for k = 3"

Spencer offered \$200 for a proof of $n^{3/2+o(1)}$.

Main result

► THEOREM [Bohman, Frieze, L.]:

With high probability
$$\tau_0 = n^2/6 - n^{3/2+o(1)}$$
, or equivalently, $|E(G_{\tau_0})| = n^{3/2+o(1)}$.

Simulations: Final # edges over $n^{3/2}$

Self correction

- Goal: maintain concentration of the total number of triangles.
 - > Key: co-degrees.

$$Q = Q(i) = \# triangles in G_i$$

$$Y_{uv} = Y_{uv}(i) = \text{co-degree of } u, v \text{ in } G_i$$

> Co-degree evolution:

$$\mathbb{E}[\Delta Y_{uv} \mid \mathcal{F}_i] = -\frac{1}{Q} \sum_{x \in Y_{uv}} (Y_{ux} + Y_{vx} - \mathbb{I}_{u \sim v})$$

- Similar to the form $\mathbb{E}[dX] \leq -a X$:
 - ➤ the larger *X* is, the bigger the drift towards its mean.

Self correction: the fine print

▶ Re-examining the key: co-degrees.

$$Y_{uv} = Y_{uv}(i) = co\text{-degree of } u, v \text{ in } G_i$$

- 1. once edge density drops to $p \approx \frac{1}{2}$ then $Y_{uv} \approx \text{Bin}(n, p^2)$; STDEV $\approx \sqrt{n}$.
- 2. this will match our mean of np^2 once $p = n^{-1/4}$
- \triangleright Method breaks at $n^{7/4}$ edges...
- Crucial: error estimates improve over time!
- New general framework to support this.
 - ▶ Later used by [Bohman, Keevash] to improve bounds on R(3, t) to within a factor of 4 (independently proved by [Pontiveros $et\ al.$]).

Context: the Δ -free process

- Adding edges instead of deleting them:
 - G'_0 = complete graph on n vertices.
 - ▶ $G'_i \mapsto G'_{i+1}$: add a **uniform edge** that does not add a Δ .
- [Erdős-Suen-Winkler (1995)]: Final # of edges in Δ -free process = $n^{3/2+o(1)}$ w.h.p.
- [Bohman (2010)]: Final # of edges in Δ -free process $\approx n^{3/2} \sqrt{\log n}$ w.h.p.
- Main differences:
 - 1. Triangle-removal goes through $n^2/6 n^{3/2+o(1)}$ steps $vs. n^{3/2+o(1)}$ steps in the Δ -free process.
 - 2. Δ -free is "well behaved" until the very end...

Context: the Δ -free process (ctd.)

- Δ-free process:
 - ➤ Forbidden edges are pairs with a positive co-degree.
 - ➤ These are *negligible* until there are $\approx n^{3/2}$ edges...
 - \triangleright Coupling to $\mathcal{G}(n,m)$ readily gives a lower bound.
- Triangle removal:
 - \gt Already when the edge density is a small **constant** ε # forbidden triangles \gt # legal ones ...
 - \triangleright Tracking the process to $p=n^{-\varepsilon}$ requires delicate control over geometry of remaining triangles.

Proof ingredients

- Starting point: system of martingales tracking the evolution of poly(n) variables w.r.t. G(n, m) values.
- ▶ Self correction: errors *decrease* as process evolves.
- ▶ Objective: track *all* co-degrees followed by the # Δ 's.
 - ➤ Naïve approach breaks at 7/4 matching Grable's result via a very different method (physical barrier).
 - More ingredients help push the exponent further, but eventually subgraphs become too sparse to track...
- Construct canonical family of $e^{O(1/\epsilon)}$ graphs by gluing $O(1/\epsilon)$ triangles in a prescribed manner; track all graph homomorphisms from them.

Triangular ladders

Some of the $\approx 2^{30}$ labeled rooted graphs whose homomorphisms-counts are tracked to imply $|E(G_{\tau_0})| \leq n^{3/2+\varepsilon}$ for $\varepsilon = \frac{1}{10}$.

Triangular ladders

- Controlling one ladder is achieved via longer ones.
- ▶ End game: crucially relies on the ladder's length...
- ▶ Each variable features a self correcting estimate.

Triangular ladders: example

A simple lemma:

If $(x_i)_{i\in I}$ and $(y_i)_{i\in I}$ sat. $|x_i-x|\leq \delta_1$ and $|y_i-y|\leq \delta_2$ for some $x,y\in\mathbb{R}$ and $\forall i\in I$ then

$$\left|\sum_{i\in I} x_i y_i - \frac{1}{|I|} (\sum_{i\in I} x_i) (\sum_{i\in I} y_i)\right| \leq 2|I|\delta_1 \delta_2.$$

E.g.., to control: it suffices to handle:

Simple concrete example

- Recall: $Q(i) \triangleq \# \Delta's$; $Y_{uv}(i) \triangleq co\text{-degree of } u, v$.
- THEOREM:

Suppose
$$|Y_{uv} - np^2| \le n^{3/4}$$
 for all u, v and $i \le i_0$.
Then with high probability $Q \le \frac{1}{6}n^3p^3 + \frac{1}{3}np^2$.

additive error decreases with time!

- Recipe for utilizing self correction:
 - > Estimate expected change in terms of Q itself.
 - \triangleright Set a threshold γ just below desired upper bound Γ .
 - \triangleright Show that while *Q* ∈ [γ, Γ] it is a supermartingale.
 - ▶ Concentrate Q with error probability n^{-100} .

Simple concrete example (ctd.)

- ► GOAL: $Q \le \frac{1}{6}n^3p^3 + \left(\frac{1}{3}np^2\right)$ given $|Y_{uv} np^2| \le n^{3/4} \ \forall u, v$
- PROOF:
 - Analysis of one-step change:

$$\mathbb{E}[\Delta Q \mid \mathcal{F}_i] = -\frac{1}{Q} \sum_{uvw \in Q} (Y_{uv} + Y_{vw} + Y_{uw} - 2) = 2 - \frac{1}{Q} \sum_{uv \in E} Y_{uv}^2$$

► Since $\sum_{uv \in E} Y_{uv}^2 \ge 9Q^2/|E|$:

$$\mathbb{E}[\Delta Q \mid \mathcal{F}_i] = 2 - \frac{1}{Q} \sum_{uv \in F} Y_{uv}^2 \le 2 - \frac{18}{n^2 p} Q.$$

> Suppose
$$Q(i) > \frac{1}{6}n^3p^3 + \frac{1}{4}n^2p$$
. Then
$$\mathbb{E}[\Delta Q \mid \mathcal{F}_i] \leq -3np^2 - \frac{5}{2}.$$

Simple concrete example (ctd.)

- > Suppose Q just entered $[\gamma, \Gamma]$ for $\begin{cases} \gamma = n^2 p/4 \\ \Gamma = n^2 p/3 \end{cases}$.
- > Set $Z = Q (\frac{1}{6}n^3p^3 + \frac{1}{3}n^2p)$.
- As $\Delta p = -6/n^2$ the change in the scaling term is $\sim \frac{6}{n^2} \left[\frac{1}{2} n^3 p^2 + \frac{1}{3} n^2 \right] \sim 3np^2 + 2$
 - Recall: $\mathbb{E}[\Delta Q \mid \mathcal{F}_i] \leq -3np^2 \frac{5}{2}$.
- As long as $Q \in [\gamma, \Gamma]$ we get $\mathbb{E} \left[\Delta Z \mid \mathcal{F}_i \right] \leq -\frac{1}{2} + o(1) < 0,$ a supermartingale.

Simple concrete example (ctd.)

- Next: concentrate $Z = Q \left(\frac{1}{6}n^3p^3 \frac{1}{3}n^2p\right)$.
- ➤ Number of steps remaining: $\leq |E| \approx n^2 p$
- ▶ Deviation considered: $\frac{1}{12}n^2p$.
- Lipschitz constant for one step:
 - *Q* changes by some $-(Y_{uv} + Y_{vw} + Y_{uw}) + O(1)$.
 - Scaling term changes by $\sim 3np^2 + 2$.
 - Together: $O(n^{3/4})$ thanks to co-degree estimates!
- ▶ By Hoeffding's inequality: $\mathbb{P}\big[\exists j : Z(j) Z(0) > \frac{1}{12}n^2p\big] \le \exp(-c\sqrt{n}\,p) \ .$
- \triangleright W.h.p. we will never cross the $[\gamma, \Gamma]$ interval.

Lower bound

▶ THEOREM:

Suppose
$$Y_{uv} \sim np^2$$
 for $\forall u, v$ and all $p \geq p_0 = n^{-1/2+\varepsilon}$.
Then w.h.p. the final $\#$ edges is at least $c n^{3/2-6\varepsilon}$.

PROOF:

➤ Important ingredient: a variant of the upper bound on *Q* with the *correct* additive error:

w.h.p.
$$Q \le \sim \left[\frac{1}{6}n^3p^3 + \frac{1}{6}np^2\right]$$
 at all times.

 \triangleright (we demonstrated an additive error of $\frac{1}{3}np^2$.)

Lower bound (ctd.)

- Assume: $Q \leq \left| \frac{1}{6} n^3 p^3 + \frac{1}{6} n p^2 \right| \forall p$.
- ▶ Consider time $p = p_1 = \delta/\sqrt{n}$ for small enough $\delta > 0$.
 - # edges: $|E| \sim \frac{1}{2}n^2p = \frac{1}{2}\delta n^{3/2}$.
 - # triangles: $Q \leq \frac{1}{6}\delta^3 n^{3/2} + \left[\frac{1}{6}\delta n^{3/2}\right]$.

negligible why $\frac{1}{6}$ mattered: |E|/3

- $ightharpoonup ext{If } Q < \frac{1-\alpha}{6}\delta n^{3/2} ext{ then } Q < \frac{1-\alpha}{2}|E| ext{ and necessarily there}$ will be $cn^{3/2}$ edges at the end of the process (done).
 - ⇒ may assume: $Q \approx \frac{1}{2}|E|$.

Lower bound (ctd.)

- > At time $p = p_1 = \delta/\sqrt{n}$ for small enough $\delta > 0$:
 - # edges: $|E| = c n^{3/2}$; # triangles: $Q \approx \frac{1}{3}|E|$.
- ▶ If $cn^{3/2}$ edges have no triangles on them ⇒ done.
 - \Rightarrow may assume: almost \forall edge incident to a Δ .
- > Combined: almost all triangles are edge-disjoint.

At time p_0 every co-degree is $\sim n^{2\varepsilon}$ \Rightarrow every triangle is incident to $\sim 3n^{2\varepsilon}$ others.

$$p_1 = \delta n^{-1/2}$$

$$p_0 = n^{-1/2 + \varepsilon}$$

At time p_1 there are $cn^{3/2}$ "isolated" triangles.

Lower bound (ctd.)

- Look at triangles just before they became isolated:
 - Mark a triangle once it has an edge with co-degree 1 (no other triangles resting on this special edge.)
 - Filter a subset \mathfrak{X} of marked Δ's where if $R \in \mathfrak{X} \Rightarrow$ no $S \sim R$ (incident triangle) is in \mathfrak{X} nor any $T \sim S$.
 - $|\mathfrak{X}| \ge n^{-4\varepsilon} \times cn^{3/2}$ (pay $n^{2\varepsilon}$ per level by co-degrees).
- ▶ If an arbitrary neighbor S of $R \in \mathfrak{X}$ is drawn before any of its own neighbors: the *special* edge of R survives!
 - \mathbb{P} (this event) $\geq n^{-2\varepsilon}$; events are independent.
 - W.h.p. final # edges is $cn^{-2\varepsilon}|\mathfrak{X}| \ge cn^{3/2-6\varepsilon}$.

Open problems

- 1. Establish the order of the final number of edges.
- 2. Study the graph properties of the final output (a nontrivial distribution over triangle-free graphs).
- 3. Compare final output of the *triangle removal process* with that of the *triangle-free process*.
- 4. Obtain the leading constant for R(3, t).

Stanford University, Jan 2014 Random triangle removal

Thank you

