Shannon capacity and related problems in Information Theory and Ramsey Theory

Eyal Lubetzky

Based on Joint work with Noga Alon and Uri Stav

Shannon capacity - Introduction

- Transmission over a noisy channel C:
 - Input alphabet: $V = \{1, \ldots, n\}$
 - Output alphabet: $U = \{1, \ldots, m\}$
 - C : V → P(U) maps each input letter to a set of possible output letters.

Goal ([Shannon '56]):

What is the maximal rate of zero-error

transmission over a given noisy channel \mathcal{C} ?

Single letter transmission over $\ensuremath{\mathcal{C}}$

Define the characteristic graph of a channel ${\cal C}$:

• G = (V, E) where $ij \in E \iff \mathcal{C}(i) \cap \mathcal{C}(j) \neq \emptyset$.

- The set S ⊂ V guarantees zero error ⇔
 S is an independent set of G.
- $\operatorname{OPT} = \alpha(G)$ for a single use of $\mathcal C$.

Strong graph powers - definition

<u>Q</u>: Can we benefit from sending longer words over \mathcal{C} ?

- Define G^k, the kth strong graph power of G:
 V(G^k) = V(G)^k
 - $(u_1, \ldots, u_k) \neq (v_1, \ldots, v_k)$ are adjacent \iff for all *i*, either $u_i = v_i$ or $u_i v_i \in E(G)$.
- When G is the characteristic graph of C, $uv \in E(G^k) \iff u$ and v are confusable in C.

Strong graph powers - application

<u>Q</u>: Can we benefit from sending longer words over C? A: YES

- OPT= $\alpha(G^k)$ for sending k-letter words via $\mathcal C$.
- Block-coding shows $\alpha(G^k) \ge (\alpha(G))^k$.
- A strict inequality $\alpha(G^k) > (\alpha(G))^k$ is possible!

Shannon capacity - definition

The Shannon Capacity of G is defined to be: $c(G) = \lim_{k \to \infty} (\alpha(G^k))^{1/k} = \sup_k (\alpha(G^k))^{1/k}$

$$\alpha(G^{k+l}) \ge \alpha(G^k)\alpha(G^l) \Longrightarrow \exists \lim = \sup$$

- c(G) is the effective alphabet-size of C when sending zero-error transmission.
- E.g., if c(G) = 7, then for k ≫ 1 we can send ~ 7^k
 k-letter words via C without danger of confusion.

Shannon capacity: some bounds

- [Shannon '56]: α(G) ≤ c(G) ≤ χ_f(G).
 Smallest graph unsettled by this was C₅.
 (Motivated [Berge '60] to study perfect graphs; WPGT proved by [Lovász '72], SPGT by [CRST '02].)
- [Haemers '78, '79]: algebraic upper bounds.
- [Lovász '79]: $c(G) \le \vartheta(G)$ (the Lovász ϑ func.), giving $c(C_5) = \sqrt{5}$.
- c(G) remains unknown even for simple and small graphs, e.g. C₇.

Shannon capacity: original bounds

Shannon '56]: $\alpha(G) \le c(G) \le \chi_f(\overline{G})$. By definition.

Similar to proving that $c(G) \leq \chi(\overline{G})$:

If r cliques cover the vertices of G, then G^k can be covered by r^k cliques.

Shannon capacity: algebraic bound

• $A = (a_{ij}) \in M_n(\mathbb{F})$ represents G over \mathbb{F} iff:

- Diagonal entries are non-zero: $a_{ii} \neq 0 \quad \forall i \in [n]$
- Off diagonal entries $a_{ij} = 0$ whenever $(i, j) \notin E$
- [Haemers '78, '79]:

If A represents G over \mathbb{F} , then $c(G) \leq \operatorname{rank}_{\mathbb{F}}(A)$.

Proof:

- *I* independent set of $G \implies A[I:I] = \begin{pmatrix} \neq 0 & 0 \\ 0 & \neq 0 \end{pmatrix}$ $\implies \alpha(G) \le \operatorname{rank}_{\mathbb{F}}(A)$
- Higher powers: by definition, $A^{\otimes k}$ represents G^k : $\implies \alpha(G^k) \leq \operatorname{rank}_{\mathbb{F}}(A^{\otimes k}) = (\operatorname{rank}_{\mathbb{F}}(A))^k$

full rank

 $n \times n$ matrices

Where is c(G) attained?

- Shannon's χ bound gives examples of graphs where $c(G) = \alpha(G)$: 1-letter words are optimal.
- Lovász's ϑ function gives examples of graphs where $c(G) = \sqrt{\alpha(G^2)}$: 2-letter words are optimal.
- No known G with other finite optimal word-length.

<u>Q</u>: Can we approximate c(G) by $\alpha(G), \ldots, \alpha(G^k)$ for some large finite k?

<u>A:</u> No, not even after we witness any finite number of improvements...

Rate increases between powers

[Alon+L '06]: There can be any finite number of rate increases at any arbitrary locations:

For every fixed $k_1 < k_2 < \ldots < k_s$ and $\varepsilon > 0$ there is a graph G so that for all j, $\max_{t < k_j} \alpha(G^t)^{\frac{1}{t}} \leq \left(\alpha(G^{k_j})^{\frac{1}{k_j}}\right)^{\varepsilon}$.

Nevertheless, we can deduce some bound on $\alpha(G^{k+1})$ given $\alpha(G^k)$, using Ramsey Theory.

Shannon capacity and Ramsey No.

The Ramsey number r(k, k) is the minimal integer r so that every 2-edge-coloring of the complete graph K_r has a monochromatic K_k .

- Suppose $\alpha(G) = 5$. Then $\alpha(G^2) < 165$ (!).
- [Erdős+McEliece+Taylor '71]: A tight bound of:

If
$$\alpha(G) = k$$
, then $\alpha(G^2) \le r(k+1, k+1) - 1$.

Proof: color the edges of an independent set of G² according to the disconnected coordinate.

Sum of channels

- 2 senders combine separate channels, \mathcal{C}_1 and \mathcal{C}_2 :
 - Each letter can be sent from either of the 2 channels.
 - Letters from C_1 are never confused with those from C_2 .
- Characteristic graph is G₁ + G₂. Disjoint union of individual char. graphs
 [Shannon '56]: c(G + H) ≥ c(G) + c(H), and conjectured that (=) always holds.

How can adding a separate channel C_2 increase the capacity by more than $c(G_2)$?

The Shannon capacity of a union

- [Alon '98] disproved Shannon's conjecture:
 - $\exists G, H: c(G) \le k, c(H) \le k, c(G+H) \ge k^{\Omega(\frac{\log k}{\log \log k})}$
- Proof outline:
 - Suppose for some G = ([n], E): $\begin{cases} c(G) \le n^{o(1)}, & \alpha(G) \ll n \\ c(\overline{G}) \le n^{o(1)}, & \omega(G) \ll n \end{cases}$
 - Ind. set $\{(i_G, i_{\overline{G}}) : i \in [n]\}$ implies $c(G + \overline{G}) \ge \sqrt{n}$.
- Such a G is a Ramsey graph!
- Proof applies an algebraic bound to a variant of the Ramsey construction by [Frankl+Wilson '81].

Multiple channels & privileged users

[Alon+L '08]: The following stronger result holds:

For any fixed t and family $\mathcal{F} \subset 2^{[t]}, \exists G_1, \ldots, G_t$ so that: $\forall I \subset [t], c(\sum_{i \in I} G_i)$ is "large" if I contains some $F \in \mathcal{F}$, and is "small" otherwise.

- E.g., $\mathcal{F} = \{F \subset [t] : |F| = k\}$ ensures that:
 - Any k senders combined have a high capacity.
 - Any group of k-1 senders has a low capacity.

Ramsey Theory revisited

By-product: explicit construction for a Ramsey graph with respect to "rainbow" sub-graphs:

For any (large) n and $t \leq \sqrt{\frac{2 \log n}{(\log \log n)^3}}$ there is an explicit t-edge-coloring of K_n , so that every induced subgraph on $\exp(O(\sqrt{\log n \log \log n}))$ vertices contains all t colors.

Ramsey Constructions

Index Coding - Problem Definition

[Birk+Kol '98],[Bar-Yossef+Birk+Jayram+Kol '06]:

- Server broadcasts data to n receivers, R_1, \ldots, R_n .
- Input data: $x \in \{0, 1\}^n$.
- Each R_i is interested in x_i, and knows some subset of the remaining bits.
- Goal: design a code of minimal word length, so that: for every input word x, every R_i will be able to recover the bit x_i (using his side-information).

Motivation: Informed Source Coding

Content broadcast to cashing clients:

Limited individual storage

Slow backward channel

- Clients inform server on known & required blocks.
- Goal: broadcast a short stream, allowing each client to recover its wanted data.

Index coding in terms of graphs

Define the (directed) side-information graph:

• Vertex set: $V = \{1, ..., n\}$.

 $x \in \{0, 1\}^n \quad \longleftrightarrow \quad \blacksquare$

- (i, j) is an edge iff R_i knows the value of x_j .
- An *index code* of length ℓ for G is:
 - An encoding function: $E: \{0,1\}^n \rightarrow \{0,1\}^\ell$,
 - Decoding functions: D_1, \ldots, D_n ,

 \checkmark of R_i in G. so that $\forall i \in [n], \forall x \in \{0, 1\}^n$: $D_i(E(x), x|_{N_{\alpha}^+(i)}) = x_i$

 $\ell(G)$ = minimum length of an index code for G.

Out-neighbors

 $+ x_i$

Index coding Examples

<u>Note:</u> For any graph G, $1 \le \ell(G) \le n$.

- Suppose every R_i knows all the bits except x_i :
 - Side-information graph is the complete graph K_n .
 - A linear index code of length 1: $E(x) = \bigoplus_{i=1}^{n} x_i , D_i(E(x), x|_{\{j:j \neq i\}}) = E(x) \oplus (\bigoplus_{j \neq i} x_j) = x_i .$ • $\Rightarrow \ell(G) = 1.$
- Similarly, if no R_i knows any of the bits:
- Side-information graph is the edgeless graph.
 - Counting argument: code must contain 2^n distinct words, hence $\ell(G) = n$.

A linear index coding scheme

- Set: A_G : the adjacency matrix of G, $\{u_1, \ldots, u_r\}$: basis for $rows(A_G + I)$ over GF(2).
- Encoding: given $x \in \{0, 1\}^n$, send $(u_1 \cdot x, \dots, u_r \cdot x)$.
- Decoding: $((A_G + I)x)_i = x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}$

 $\implies R_i$ can reconstruct x_i .

• Altogether: $\ell(G) \leq \operatorname{rank}_2(A_G + I)$

 x_i

 R_i knows these

bits by definition.

Allows recovering

 $(A_G + I)x$

 $j \in N_G^+(i)$

Optimal linear index codes

<u>Note</u>: For any spanning sub-graph $H \subset G$, $\ell(G) \leq \ell(H)$.

- $\Longrightarrow \ell(G) \le \min_{H \subset G} \operatorname{rank}_2(A_H + I) =: \operatorname{minrk}_2(G)$
- [BBJK '06] showed:
 - $minrk_2(G)$ is the size of the optimal linear index code.
 - In many cases $\ell(G) = \operatorname{minrk}_2(G)$.
- The main conjecture of [BBJK '06]:
- e.g., perfect graphs, acyclic graphs, holes, anti-holes,...

<u>Conj</u>: Linear index coding is always optimal, i.e., $\ell(G) = \min k_2(G)$ for any G.

Beating the linear optimum

[L+Stav]: the conjecture of [BBJK '06] is false in, essentially, the strongest possible way:

For any $\varepsilon > 0$ and (large) $n, \exists G \text{ on } n \text{ vertices so that:}$

- 1. Any linear index code for G requires $n^{1-\varepsilon}$ bits.
- 2. There exists a non-linear index code for G using n^{ε} bits.

Moreover, G is undirected and can be constructed explicitly.

 $\operatorname{minrk}_2(G) \ge n^{1-\varepsilon}$ (hardly improves trivial protocol of sending the entire word x)

 $< n^{\varepsilon}$

G'

Index coding - proof sketch WANTED G such that $minrk_2(G)$ is "large", and $\ell(G)$ is "small".

- Need $\ell(G)$ to be small regardless of $minrk_2(G)$...
- Use higher order fields:
 - Take $A = (a_{ij})$ representing G over \mathbb{F} :

- Encode Ax using $\lceil \operatorname{rank}_{\mathbb{F}}(A) \log_2 |\mathbb{F}| \rceil$ bits.
- Decoding: $a_{ii}^{-1}(Ax)_i = x_i + a_{ii}^{-1} \sum_{j \in N_G^+(i)} a_{ij} x_j$
- Generalizing $\operatorname{minrk}_2(G) \longrightarrow \operatorname{minrk}_{\mathbb{F}}(G)$, we have $\ell(G) \leq \lceil \operatorname{minrk}_{\mathbb{F}}(G) \log_2 |\mathbb{F}| \rceil$.

Index coding - proof sketch

- **TED** G such that $\operatorname{minrk}_2(\overline{G})$ is "small", and $\operatorname{minrk}_p(G)$ is "small".
- Such a G is a Ramsey graph.
- The construction of [Alon '98]: for some large primes $p \neq q$.

- Use Lucas' Theorem to extend this construction to <u>any</u> distinct primes.
- Choosing q = 2 completes the proof.

Beating linear codes over any field

- We constructed graphs where $\ell(G) \ll \min k_2(G)$ using linear codes over higher-order fields.
 - Q: Can $\ell(G)$ beat any linear index coding scheme, i.e., $\forall \mathbb{F} \ \ell(G) \ll \operatorname{minrk}_{\mathbb{F}}(G)$?

<u>A</u>: YES (a corollary of the previous Thm).

• Take $H = G + \overline{G}$ for the previous G:

Multiple round index coding

- $t \ge 1$ rounds (each with its own input & setting): R_i is interested in the i^{th} bit of each word. G_1, \ldots, G_t : side information graphs
- $\ell(G_1, \ldots, G_t)$: minimal length of such an index code.
- Multiple usage can improve the average rate!
- Example:
 - 1st usage: R_i knows the bits $\{x_j : j > i\}$
 - 2nd usage: R_i knows the bits $\{y_j : j < i\}$
 - In this case, $\ell(G_1) = \ell(G_2) = n$, vet $\ell(G_1, G_2) = n + 1$ large

G₁,G₂ are transitive tournaments

yet $\ell(G_1, G_2) = n + 1$, largest possible gap!

Some open problems

Multiple round index coding: Recall that $\ell(G_1, G_2) \leq \ell(G_1) + \ell(G_2)$. How does $\lim_{k \to \infty} \ell(G, \dots, G)/k$ behave?

- Can $minrk_2(G)$ be exponentially larger than $\ell(G)$?
- Generalized setting: multiple receivers may be interested in the same bit.

Thank you.

