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Shannon capacity -
 

Introduction

Transmission over a noisy channel   : 
Input alphabet:

Output alphabet:

! maps each input letter to a set of 
possible output letters.

Goal ([Shannon ‘56]):
What is the maximal rate of zero-error 
transmission over a given noisy channel ?

 

Goal ([Shannon ‘56]):
What is the maximal rate of zero-error 
transmission over a given noisy channel ?
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Single letter transmission over 

Define the characteristic graph of a channel    :
where .

The set             guarantees zero error 
is an independent set of    .

OPT for a single use of     .
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Strong graph powers -
 

definition

Define     , the   th strong graph power of    :

! are adjacent 
for all   , either             or .

When     is the characteristic graph of    ,
and     are confusable in    .

Q:
 

Can we benefit from sending longer words over     ?Q:
 

Can we benefit from sending longer words over     ?
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Strong graph powers -
 

application

OPT=           for sending k-letter words via     .

Block-coding shows                            .

A strict inequality                            is possible!

{1 , 4}

{11, 14, 41, 44}

{11, 23, 35, 42, 54}

Q:
 

Can we benefit from sending longer words over    ?Q:
 

Can we benefit from sending longer words over    ?

A: YESA: YES
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Shannon capacity -
 

definition

The Shannon Capacity of G is defined to be:

! is the effective alphabet-size of     when 
sending zero-error transmission.

E.g., if               , then for           we can send 
-letter words via    without danger of confusion.
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Shannon capacity: some bounds

[Shannon ‘56]: .
Smallest graph unsettled by this was     .
( Motivated [Berge ‘60] to study perfect graphs;

 WPGT proved by [Lovász
 

‘72], SPGT by [CRST ‘02]. )

[Haemers ‘78, ‘79]: algebraic upper bounds.

[Lovász ‘79]:                     (the Lovász func.), 
giving . 

! remains unknown even for simple and small 
graphs, e.g.      .
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Shannon capacity: original bounds

[Shannon ‘56]: .

By definition.By definition.

Similar to proving that
 

:

If
 

cliques cover the vertices of     , then       can be 
covered by     cliques. 

Similar to proving that
 

:

If
 

cliques cover the vertices of     , then       can be 
covered by     cliques. 

X X

X X
...

Cartesian product of cliques = cliqueCartesian product of cliques = clique
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! represents over     iff:
Diagonal entries are non-zero: 

Off diagonal entries              whenever 

[Haemers ‘78, ‘79]:

Proof:

! independent set of

Higher powers: by definition,        represents      :

Shannon capacity: algebraic bound
matrices

 over

 

matrices

 over

full rankfull rank
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Where is         attained?

Shannon’s     bound gives examples of graphs 
where                     : 1-letter words are optimal.

Lovász’s function gives examples of graphs 
where                          : 2-letter words are optimal.

No known     with other finite optimal word-length.

Q:
 

Can we approximate         by                            for 
some large finite   ?

 

Q:
 

Can we approximate         by                            for 
some large finite   ?

A:
 

No, not even after we witness any finite number of 
improvements…

 

A:
 

No, not even after we witness any finite number of 
improvements…
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Rate increases between powers 

[Alon+L ‘06]: There can be any finite number of 
rate increases at any arbitrary locations:

Nevertheless, we can 
deduce some bound 
on given          , 
using Ramsey Theory.



13

Shannon capacity and Ramsey No.

Suppose                . Then                     (!).

[Erdős+McEliece+Taylor ‘71]: A tight bound of:

Proof: color the edges of an independent set of
according to the disconnected coordinate.

The Ramsey number              is the minimal integer     so that every 
2-edge-coloring of the complete graph       has a monochromatic      .

 

The Ramsey number              is the minimal integer     so that every 
2-edge-coloring of the complete graph       has a monochromatic      .

Ramsey 
Numbers

 

Ramsey 
Numbers
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Sum of channels

2 senders combine separate channels,      and     :
Each letter can be sent from either of the 2 channels.

Letters from      are never confused with those from     .

Characteristic graph is             .

[Shannon ‘56]: , 
and conjectured that     (=) always holds.

. . . אבג. . . אבג

abc…abc…

Q:
 

How can adding a separate 
channel     increase the 
capacity by more than         ?

 

Q:
 

How can adding a separate 
channel     increase the 
capacity by more than         ?

Disjoint union of 
individual char. graphs

 

Disjoint union of 
individual char. graphs
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[Alon ‘98] disproved Shannon’s conjecture:

Proof outline:
Suppose for some                       :

Ind. set                                  implies .

Such a     is a Ramsey graph!
Proof applies an algebraic 
bound to a variant of the 
Ramsey construction 
by [Frankl+Wilson ‘81].

The Shannon capacity of a union

1 1

2 2

3 3

5 5

4 4

in the 2nd

 

power
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Multiple channels & privileged users

[Alon+L ‘08]: The following stronger result holds:

E.g., ensures that:
Any    senders combined have a high capacity.

Any group of           senders has a low capacity.
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Ramsey Theory revisited

By-product: explicit construction for a Ramsey 
graph with respect to “rainbow” sub-graphs:

Ramsey 
Constructions

 

Ramsey 
Constructions
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Index Coding –
 

Problem Definition

[Birk+Kol ‘98],[Bar-Yossef+Birk+Jayram+Kol ‘06]:
Server broadcasts data to     receivers,

Input data:  .

Each      is interested in     , and knows some subset of 
the remaining bits.

Goal: design a code of minimal word length, so that:
for every input word    , every      will be able to recover 
the bit      (using his side-information).

DecDec

Codeword

's side 
information
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Motivation: Informed Source Coding

Content broadcast to cashing clients:

Clients inform server on known & required blocks.

Goal: broadcast a short stream, allowing each 
client to recover its wanted data.

Limited individual storageLimited individual storage Slow backward channelSlow backward channel
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Index coding in terms of graphs

Define the (directed) side-information graph:
Vertex set: . 

! is an edge iff knows the value of . 

An index code of length    for     is:
An encoding function: ,

Decoding functions: ,

so that            ,                  :                         .

Out-neighbors 
of      in    .

 

Out-neighbors 
of      in    .

= minimum length of an index code for   .= minimum length of an index code for   .



22

Index coding Examples

Suppose every      knows all the bits except     :
Side-information graph is the complete graph      .
A linear index code of length 1:

,                                  .

! .

Similarly, if no      knows any of the bits:

Side-information graph is the edgeless graph.

Counting argument: code must contain     distinct words, 

hence                .

Note:
 

For any graph    ,                       .Note:
 

For any graph    ,                       .
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A linear index coding scheme

Set:        : the adjacency matrix of    , 
: basis for                         over           .

Encoding: given                 , send                         .

Decoding:

can reconstruct      .

Altogether: 
Allows recoveringAllows recovering

knows these 
bits by definition.

 

knows these 
bits by definition.

1

1
1 iff

 

knows
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!

[BBJK ‘06] showed:
is the size of the optimal linear index code.

In many cases .

The main conjecture of [BBJK ‘06]:

Optimal linear index codes

Note:
 

For any spanning sub-graph            ,                      .Note:
 

For any spanning sub-graph            ,                      .

Conj:
 

Linear
 

index coding is always
 

optimal,
 i.e.,

 
for any     .

 

Conj:
 

Linear
 

index coding is always
 

optimal,
 i.e.,

 
for any     .

e.g., perfect graphs, 
acyclic graphs, 

holes, anti-holes,…

 

e.g., perfect graphs, 
acyclic graphs, 

holes, anti-holes,…
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Beating the linear optimum

[L+Stav]: the conjecture of [BBJK ‘06] is false 
in, essentially, the strongest possible way:

(hardly improves trivial protocol 
of sending the entire word    )

 

(hardly improves trivial protocol 
of sending the entire word    )
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such that                 is “large”, and        is “small”.

Index coding -
 

proof sketch 

Need         to be small regardless of                 …

Use higher order fields:

Take               representing over    :

Encode       using                                bits.

Decoding:

Generalizing                                        , 
we have                                          .

if      does

 
not know 
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such that                 is “large”, and                  is “small”.

Index coding -
 

proof sketch

Difficult to provide lower bounds on                …

Use the Shannon capacity:
!

!

!

It follows that for every     on    vertices,
.

must 
be “large”

 
for

 

must 
be “large”

 
for

is an independent setis an independent set

Showing that 
will imply that

 

Showing that 
will imply that
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such that                 is “small”,
 

and                  is “small”.

Index coding -
 

proof sketch

Such a     is a Ramsey graph.

The construction of [Alon ‘98]:
for some large primes          .

Use Lucas’ Theorem to extend this construction 
to any distinct primes.

Choosing            completes the proof.

“small”“small”
“small”“small”
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Beating linear codes over any field

We constructed graphs where
using linear codes over higher-order fields.

!

Take                    for the previous     :

A: YES (a corollary of the previous Thm).A: YES (a corollary of the previous Thm).

Code concatenation:

Q:
 

Can         beat any linear index coding scheme,
 i.e.,                                    ?

 

Q:
 

Can         beat any linear index coding scheme,
 i.e.,                                    ?

“small”“small”“small”“small”
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Multiple round index coding

! rounds (each with its own input & setting):

: minimal length of such an index code.

Multiple usage can improve the average rate!

Example:
1st usage:       knows the bits 

2nd usage:      knows the bits

In this case,                              , 
yet                               , largest possible gap!

is interested in the
 th

 
bit of each word.

 

is interested in the
th

 
bit of each word.

:  side
 information graphs

 

:  side
 information graphs

are 
transitive 

tournaments
 

are 
transitive 

tournaments
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Some open problems

Multiple round index coding:

Recall that                                        .

How does                              behave?  

What is the expected value of             ?

Can                 be exponentially larger than        ?

Generalized setting: multiple receivers may be 
interested in the same bit.

Inequality 
may be strict

 

Inequality 
may be strict
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Thank you.
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