May 2015
SE Probability Conference
Duke University

Random walks on
the Random graph

Eyal Lubetzky
Courant Institute (NYU)

Joint work with
N. Berestycki, Y. Peres, A. Sly




In this talk

* Mixing time of random walk and specifically cutoff
as a gauge for delicate properties of the geometry.

* Compare its behavior between

G(n,p) ( G(n,3)
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Erdés-Renyi random regular graph
random graph and other degree distributions)
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and the effect of the initial state on mixing.
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The Erdds-Rényi random graph

* G(n, p): indicators of the () edges are IID Bernoulli(p).

. “This double “jump” of the size of the largest component... is one of the most striking facts concerning random graphs.”
7 W(ﬁErdé’s and Rényi, 1960)
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The Erdds-Rényi random graph

- Setting: G(n, p) around the critical pointp =1/n.

* “Double jump” phenomenon for order of |C,|:
[Erd6s-Rényi (1960’s)], [Bollobas '84] , [tuczak "90]
' forp = A/n with 1 < 1 fixed.
. at and throughout critical window:
p = (1te)/n fore = 0(n~1/3).
. forp = A/n with 1 > 1 fixed.

* Emerging from the critical window:
(p=(A+e)/nfor N3 e« 1):

|C{| ~ 2&n (giant component gradually forms)
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Measuring convergence to equilibrium

 Total-variation mixing time :

» the mixing time of a Markov Chain on () with transition kernel P to within
distance ¢ from its stationary distribution 7 is defined as

mix(€) = inf{e : max [[PoCxo,) =, <ef

(where [[u — V||, = sup[p(4) —v(A)])

Ac()
(x0) ; i
-2 (&) for a prescribed starting state x.

» Analogous definition of t

* Dependence on ¢ : (cutoff phenomenon [pssi], [as3],[aDS6])
We say there is cutoff & ti, (€) ~ tix (€')  Vixed g, &’
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Cutoff History (Rws on graphs/groups)

* Discovered:

= Random transpositions on S,, [Diaconis, Shahshahani ‘81]
= RW on the hypercube, Riffle-shuffle [Aldous ‘83]
= Named “Cutoff Phenomenon” in top-in-at-random shuffle analysis [Diaconis, Aldous ‘86]

* Nearly 3 decades after its discovery: only example of cutoff for RW on a
bounded-degree graph was the lamplighter on Z2 [Peres & Revelle '04].

« Is this a phenomenon of (mainly) large degree graphs?
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Basic examples: RWs on graphs

(Lazy discrete-time simple random Wa1k>

hypercube {0,1}" : n-cycle:
M cutoff at -nlogn £ 0(n) NG CUtoff.
[Aldous "83] -

* What about mixing on C; of G(n,p)?
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Mixing on the largest component

Critical window Mildly supercritical Supercritical

p=(0xe)/n p = (1+¢e)/n p = (1+¢g)/n
e = 0(n"1/3) nP ek g > 0 fixed

~ 2&Nn ~ 2&n
ixi = log? n
Mixing _3 5, 3 = 108
time on =n = & 108 (8 Tl) Fountoulakis, Reed 08
61 Nachmias, Peres "08 Ding, L., Peres "12 and independently

Benjamini, Kozma, Wormald "13
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Bottlenecks slow the mixing on Cq

- Lower bound t,ix = C log? n immediate: N

= w.h.p. C; contains a path P of clogn
degree-2 vertices.

= escaping P starting from v, at its center i
takes (Slogn)” steps in expectation. N
» large hanging trees have a similar effect. ) /r**’y{. .,

- Dominates mixing (tix = log? n); nocutoff. 7 | oSS L T

* Such bottlenecks should be rare... e |
= faster mixing from a typical initial vertex v;? oAV N

* Indeed: starting from a typical vertex
accelerates the RW & concentrates it (cutoff)!
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- THEOREM [Berestycki, L., Peres, Sly]:

RW from a uniform vertex v; € C; w.h.p. satisfies
tW) () = y-14-1 logn + (logn)t/?+o(1)

mix
= C; = largest componentof G(n,p = A/n) [1 > 1 fixed].
= v = speed of RW on a Po(4)-GW tree.
= d = dimension of harmonic measure Po(4)-GW tree.
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Anatomy of a giant

@EOREM [Ding, L., Peres ‘13]: giantof G(n,p = A/n) is = \

1. @%=5EW - K random graph with (nice) given degrees
(D; ~Po(A—¢|-=3)lIDfori =1,...,N)

2. (RIS : edges — paths of lengths IID Geom(1 — &)
3. @EEA : attach 11D Po(e;)-Galton-Watson trees -

a typical v; € C; will be
“far” from the bottlenecks:
what is t,,;x from a typical
vertex on an expander?
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RWSs on expanders

- DEFINITION [regular expander]:

(sequence of d-regular graphs (d = 3 fixed) such that
| the relaxation time (1/spectral-gap) of SRW is 0(1). |

* Since t..] = O(1) the “product condition” of Peres (2004) holds
and we expect cutoff...

» Specifically, convergence of RW on such a graph occurs anng
t € [clogn,c’ logn] — )
(not too gradual: ‘pre-cutoff’). N

* Consider a (an expander w.h.p.)
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RWSs on random regular graphs

* G(n,d) = uniformly chosen d-regular n-vertex graph.
Its study pioneered by Bollobas in early 80’s.

* W.h.p. G ~G(n,d)ford = 3isan |
expander [Pinsker "73], [Broder, Shamir '87]. B

* THEOREM [Berestycki, Durret '08]:

RW on G(n, 3) after c log, n steps is w.h.p. /
at distance ~ (/3 A 1) log, n from origin.

* CONJECTURE [Durrett '07]: ‘ 2]

Mixing time of the lazy RW on the random
cubic graph G(n, 3) is w.h.p. ~6log, n..
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Cutoff for RW on G(n, d)

 As Durrett and Peres conjectured, 3 cutoff almost always:
* THEOREM |[L., Sly “10]:
Let G ~ G(n,d) ford = 3 fixed. The SRW on G
d . - Fan@Sz‘ 2
w.h.p. has cutoff at = log,;_; n with window ./logn LOSsiple,

* e.qg., ford = 3: tmix(€) = 3log, n — (2V6 + 0(1) ) d~1(e)4/log, n

* NBRW (does not traverse same edge twice in a row)
also has cutoff, earlier and with a constant window!
* THEOREM [L., Sly “10]:

LetG ~ G(n,d) for d = 3 fixed. The NBRW on G
w.h.p. has cutoff at log,; 1 (dn) with window O(1).
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Simulations of RWs on G(n, d)
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Insight: cutoff for SRW & NBRW

 Consider a d-regular tree, rooted at the starting point of the RW

(mixes upon hitting leaves).
» Height of NBRW vs. SRW: @j
= NBRW cannot backtrack up the tree
= hits bottom after precisely log;_, n steps.

» SRW = biased 10 RW with speed v = 472/,
= hits bottom after —logd 1n+ 0p(y/logn) steps.

- In both cases: cutoff once the entropy of Pt (v,,")
1
reaches log n, which occurs at t =

log n.

v log(d—1)

D (average distance)
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Mixing vs. the distance from the origin

* Mixing on irregular graphs is delayed beyond the stabilization of the distance,
since the rate at which entropy drops further involves the dimension d :
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New results: RW on the giant

* Setup:
= C; = largest componentof G(n,p = A/n) [A > 1 fixed].
= v = speed of RW on a Po(4)-GW tree.
" d = dlmen5|on of harmonic measure Po(4)-GW tree

= lim —log— where (¢,) = LERW and 6(x) = probability it visits x.
t—oot 6(&e)

- THEOREM [Berestycki, L., Peres, Sly]:

RW from a uniform vertex v; € C; w.h.p. satisfies
1)(8) =v-1d llogn + (logn)1/2+o(1)

mIX

* Cutoff from a typical starting point!
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Dimension of harmonic measure

as. 4. 1 1
d = lim >log s
where (¢;) = LERW

and 0 (x) = probability it visits x.

.'7.._.
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Dimension of harmonic measure

as. 1. 1 !
For a.e. GW-tree: d = P_)I?O t log 0($t)

where (¢;) = LERW and 6 (x) = probability it visits x.

* Can be written as an integral w.r.t. to the measure on effective
conductance in the GW-tree.

* Pioneering work [Lyons, Pemantle, Peres ‘94] g
showed that d < log EZ for a.e. GW-tree ! Density ofthe (o 1)

Cess distribution : iy

1 1/3
forZ ~<2 1/3

3 1/3

v = 20 [20 1B g (e)u(s) with = dist. of Cegr(p, o). 1 |

01+s—14¢~1
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RW on random graphs with given degrees

« Random graph with given degrees = 3 (e.g., half 3 half 4):
similarly, dimension reduction due to irregularity of degrees... -

« THEOREM [Berestycki, L., Peres, Sly]:

Let G be a uniformly chosen graph with degree frequencies (py) s.t.
7 with P(Z = k) « k py, satisfies EZ = 0(1), 2 < Z < e(logm'/*™°

Then RW from a uniform vertex of v; € G w.h.p. satisfies

tr(:ilx) (&) =vidtlogn+0 (w/log n)
and the same statement holds for NBRW (from typical/worst v,).
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Proof ingredients for G(n, p)

* The correct cutoff window requires sharp fluctuation
estimates on log 6(&;) for 6 = harmonic measure.

= Build on arguments of [Lyons, Pemantle, Peres '95, ‘96] and
[Dembo, Gantert, Peres, Zeitouni ‘02].

* Exploit fact (using the structure theorem for C,) that
bottlenecks are rare/spread-out to help expansion.

- Additional difficulties: delays from hanging trees,
coupling the walk on the tree to that on the graph, ...

* Proof extends to random graphs with given degrees.

= NBRW directly analyzed by an adaptation of the random
regular graph proof (sharp cutoff window).
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Open problems

* What is the dimension d of harmonic measure on a Po(A1)-GW-tree?

* Does RW exhibit cutoff on every family of transitive 3-regular expanders?
[conjectured to be true by Y. Peres]

* Does RW exhibit cutoff on any family of transitive 3-regular expanders?
(explicit / probabilistic)

Thank you }
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