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The Erdős–Rényi random graph

“This double ‘jump’ of the size of the largest component... is one

of the most striking facts concerning random graphs.” (E–R 1960)

G(n, p): indicators of the
(n

2

)
edges are IID Bernoulli(p).
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n = 1000
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n = 1000
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Bond percolation on the complete graph

Definition (bond percolation Gp)

keep (open) edges of G via IID Bernoulli(p) variables.

G(n, p): the special case where G = Kn (complete graph).

I “Double jump” for the order of |C1| around pc = 1/n:

([Erdős-Rényi (1960’s)], [Bollobás ’84], [ Luczak ’90])

• Θ(log n) for p = λ/n with λ < 1 fixed;

• Θ(n2/3) at p = 1/n;

(and within the critical window p = 1±O(n−1/3)
n )

• Θ(n) for p = λ/n with λ > 1 fixed.

I Emerging from the critical window:
• ∼ 2εn when p = 1+ε

n for n−1/3 � ε� 1.
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Anatomy of a giant component

Theorem (Ding, L., Peres ’14)

Giant component of G(n, p = λ/n) is ≈ (contiguity):

1. kernel : K random graph with (nice) given degrees

(Di ∼ Po(λ− cλ | · ≥ 3) IID for i = 1, . . . ,N)

2. 2-core : edges  paths of lengths IID Geom(1− cλ).

3. giant : attach IID Po(cλ)-Galton–Watson trees

[cλ → 0 as λ→∞, and cλ ≈ 1− ε when λ = 1 + ε for ε = o(1).]

I Proof builds on

[Wormald–Pittel ’05]

(the key local CLT)

and [ Luczak ’91].

behavior at p = 1+ε
n

giant ≈ 2εn

2-core ≈ 2ε2n

excess ≈ 2
3
ε3n
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Percolation on expanders

Definition (edge (b, d)-expander)

sequence of graphs with maximum degree ≤ d and

conductance Φ ≥ b (for d ≥ 3, b > 0 fixed), where

Φ(G ) = min
S :π(S)≤ 1

2

|E (S ,V \ S)|
π(S)

for π(S) =

∑
v∈S deg(v)

2|E (G )|

I [Alon, Benjamini, Stacy ’04] studied Gp for an expander G:

• Uniqueness of the giant for all p.

• Characterization of the critical point for the appearance of a

giant component in high girth d-regular expanders: pc = 1
d−1 .

I [Benjamini, Peres, Nachmias ’09] extended high girth regular

expanders to sparse graphs with a Benjamini–Schramm limit.
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Percolation on expanders (ctd.)

Theorem (Alon, Benjamini, Stacey ’04)

If G is a (b, d)-expander on n vertices, then ∃ω = ω(b, d) < 1 :

∀p = pn , P(|C2(Gp)| > nω) = o(1) .

uniqueness of giant

Theorem (Alon, Benjamini, Stacey ’04)

Let G be a regular (b, d)-expander on n vertices with girth →∞.

If p > 1
d−1 then ∃c > 0:

P(|C1(Gp)| > cn) = 1− o(1) ,

whereas if p < 1
d−1 then ∀c > 0:

P(|C1(Gp)| > cn) = o(1) .

existence of giant

E. Lubetzky 6



Percolation on expanders (ctd.)

Theorem (Alon, Benjamini, Stacey ’04)

If G is a (b, d)-expander on n vertices, then ∃ω = ω(b, d) < 1 :

∀p = pn , P(|C2(Gp)| > nω) = o(1) .

uniqueness of giant

Theorem (Alon, Benjamini, Stacey ’04)

Let G be a regular (b, d)-expander on n vertices with girth →∞.

If p > 1
d−1 then ∃c > 0:

P(|C1(Gp)| > cn) = 1− o(1) ,

whereas if p < 1
d−1 then ∀c > 0:

P(|C1(Gp)| > cn) = o(1) .

existence of giant

E. Lubetzky 6



Percolation on random regular graphs

Recall: |C1| in the Erdős–Rényi graph G(n, p = λ
n ) for fixed λ is w.h.p.

λ < 1 λ = 1 λ > 1

Θ(log n) Θ(n2/3) (ζ + o(1))n

ζ = survival probab.

of a Po(λ)-G–W tree

How does Gp behave for G ∈ G(n, d), a uniformly chosen d-regular

graph on n vertices for d ≥ 3 fixed?

Theorem ([Pittel ’08], [Nachmias, Peres ’10])

Fix d ≥ 3 and p = λ
d−1 . W.h.p., |C1| in Gp for G ∼ G(n, d) satisfies

λ < 1 λ = 1 λ > 1

Θ(log n) Θ(n2/3) (θ1 + o(1))n

θ1 = probab. of inf. path in

p-percolation on a d-reg tree

Well-known: G ∼ G(n, d) is w.h.p. an expander; what about an

arbitrary expander? Does Gp in that case also mirror G(n, p)?

E. Lubetzky 7



Percolation on random regular graphs

Recall: |C1| in the Erdős–Rényi graph G(n, p = λ
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Percolation on Kn vs. G(n, d) vs. high girth expanders

Comparing Gp on a d-regular graph G at p = λ
d for λ > 1:

G = Kn (G(n, p)) G ∼ G(n, d) G =high girth expander

|C1| ∼ ζn ∼ θ1n ≥ c(b, d , λ)n

|C2| Θ(log n) Θ(log n) ≤ n1−ω(b,d)

asymp.?

sharp?

Additional geometric features — degree profile? 2-core? excess?

For instance:

Behavior at λ = 1 + ε for ε� 1:

G = Kn (G(n, p)) G=high girth expander

|C1| ∼ 2εn ≥ c(b, d , ε)n

2-core ∼ 2ε2n ?

excess ∼ 2
3ε

3n ?
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New results: the giant

Let G be a regular n-vertex (b, d)-expander (b > 0, d ≥ 3 fixed)

with girth →∞, and fix 1
d−1 < p < 1.

Recall: w.h.p., ∃c > 0 : |C1(Gp)| > cn ([Alon, Benjamini, Stacey ’04]).

New results include:

Theorem (Krivelevich, L., Sudakov)

Let θ1 := 1− q(1− p + pq), η1 := 1
2pd(1− q2), where 0 < q < 1

is the unique solution of q = (1− p + pq)d−1. Then w.h.p.,∣∣V (C1)
∣∣ = (θ1 + o(1))n ,

∣∣E (C1)
∣∣ = (η1 + o(1))n ,

I q is the extinction probability on a Bin(d − 1, p)-G–W-tree;

I θ1 is the probability of p-percolation on a d-reg tree.

I η1 is the fraction of edges which are open, and the

Bin(d − 1, p)-G–W-tree from at least one of their endpoints survived.
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New results: the giant

Theorem (Krivelevich, L., Sudakov)

Fix d ≥ 3 and 1
d−1 < p < 1. For every ε > 0 and b > 0 there exist

some c ,C ,R > 0 such that, if G is a regular (b, d)-expander on n

vertices with girth at least R, then w.h.p., G ∼ Gp has∣∣∣ 1
n

∣∣V (C1)
∣∣− θ1

∣∣∣ < ε ,
∣∣∣ 1
n

∣∣E (C1)
∣∣− η1

∣∣∣ < ε , (1)∣∣∣ 1
n

∣∣V (C(2)
1 )
∣∣− θ2

∣∣∣ < ε ,
∣∣∣ 1
n

∣∣E (C(2)
1 )
∣∣− η2

∣∣∣ < ε . (2)

In particular, w.h.p.,

excess(C1) ≈ (η1 − θ1)n,

and

excess(C(2)
1 ) ≈ (η2 − θ2)n.

0 < q < 1 solves q = (1− p + pq)d−1

θ1 := 1− q(1− p)− pq2 η1 := 1
2
pd(1− q2)

θ2 := 1− q − (d − 1)pq(1− q) η2 := 1
2
pd(1− q)2

E. Lubetzky 10



Example: asymptotics for large d

[Recall: w.h.p. 1
n |C1(G(n, λn ))| ∼ ζ = P(survival of a Po(λ)-G–W-tree).]

Limiting behavior of Gp for large d agrees with G(n, d) and G(n, p):

Example

1− q = P(survival of a Bin(d − 1, p)-G–W tree) converges to

P(survival of a Po(λ)-G–W-tree) as d →∞, hence 1
n |C1| → ζ.

Example

For p = 1+ε
d−1 with 0 < ε� 1, one has q −−−→

d→∞
1− 2ε+O(ε2) and

θ1 → 2ε+ O(ε2) , η1 → 2ε+ O(ε2) , η1 − θ1 → 2
3ε

3 + O(ε4) ,

θ2 → 2ε2 + O(ε3) , η2 → 2ε2 + O(ε3) , η2 − θ2 → 2
3ε

3 + O(ε4) .

G = Kn (G(n, p)) G=high girth expander

|C1| ∼ 2εn ≥ c(b, d, ε)n

∼ 2εn

2-core ∼ 2ε2n ?

∼ 2ε2n

excess ∼ 2
3
ε3n ?

∼ 2
3
ε3n
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Degree distributions of the giant and the 2-core

Let Dk be the number of degree-k vertices in C1 and let D∗k be the

number of degree-k vertices in its 2-core C(2)
1 .

Theorem (Krivelevich, L., Sudakov)

Fix d ≥ 3, 1 < λ < d − 1, p = λ
d−1 , and q as above; define

αk =
(d
k

)
pk(1− p)d−k(1− qk) (k = 1, . . . , d) ,

βk =
(d
k

)
pk(1− q)k(1− p + pq)d−k (k = 2, . . . , d) .

For all b, ε > 0 there exist some c ,R > 0 so that, if G is a regular

(b, d)-expander on n vertices with girth at least R, w.h.p.,∣∣Dk
n − αk

∣∣ < ε ∀1 ≤ k ≤ d and
∣∣D∗k

n − βk
∣∣ < ε ∀2 ≤ k ≤ d .

(θ1 =
∑d

k=1 αk , η1 = 1
2

∑d
k=1 kαk , θ2 =

∑d
k=2 βk , η2 = 1

2

∑d
k=2 kβk .)
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Example: the giant in percolation on cubic expanders

Asymptotic degree distribution in Gp for d = 3 and 1
2 < p < 1:

w.h.p., the giant has (αk + o(1))n vertices of degree k ∈ {1, 2, 3};
its 2-core has (βk + o(1))n vertices of degree k ∈ {2, 3}.

0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1.0

α1

α2

α3

β3

β2

α1 = 3
p

(1− p)2(2p − 1) α2 = 3
p2 (1− p)(1− 4p + 6p2 − 4p3) α3p

3
(

1−
(

1−p
p

)6 )
β2 := 3

p3 (1− 2p)2(1− p) β3 :=
(

2p−1
p

)3
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The second largest component

Recall: w.h.p., ∃ω(b, d) > 0 : |C2(Gp)| < n1−ω ([Alon et al. ’04]).

G = Kn (G(n, p)) G ∼ G(n, d) G =high girth expander

|C1| ∼ ζn ∼ θ1n ∼ θ1n

|C2| Θ(log n) Θ(log n) ≤ n1−ω(b,d)

Perhaps surprisingly, the n1−ω from above is essentially tight:

Theorem (Krivelevich, L., Sudakov)

For every d ≥ 3, R ≥ 1, p ∈ ( 1
d−1 , 1) and α ∈ (0, 1) there exist

b > 0 and a regular (b, d)-expander G on n vertices with girth at

least R where G ∼ Gp has |V (C2)| & nα w.h.p.

Similarly, for any fixed sequence 0 < α1 ≤ α2 ≤ . . . ≤ αk < 1

one can construct an expander G such that w.h.p. G ∼ Gp has

components with sizes Θ(nα1 ), . . . ,Θ(nαk ) plus the giant.
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A related question of Benjamini: predicting a giant

Question (Benjamini ’13)

Let G be a bounded degree expander. Further assume that there is

a fixed vertex v ∈ G, so that G ∼ G1/2 satisfies

P
(

diam(Cv (G )) > 1
2 diam(G)

)
> 1

2 .

Is there a giant component w.h.p.?

Variant of our construction for C2 gives a negative answer to this:

Theorem (Krivelevich, L., Sudakov)

For every ε > 0 and 0 < p < 1 there exist b, d , δ > 0 and, for

infinitely many values of n, a (b, d)-expander G on n vertices with

a prescribed vertex v, such that the graph G ∼ Gp satisfies

P
(

diam(Cv (G )) ≥ (1− ε) diam(G)
)
≥ 1− ε ,

yet there are no components of size larger than n1−δ in G w.h.p.

E. Lubetzky 15



A related question of Benjamini: predicting a giant

Question (Benjamini ’13)

Let G be a bounded degree expander. Further assume that there is

a fixed vertex v ∈ G, so that G ∼ G1/2 satisfies

P
(

diam(Cv (G )) > 1
2 diam(G)

)
> 1

2 .

Is there a giant component w.h.p.?

Variant of our construction for C2 gives a negative answer to this:

Theorem (Krivelevich, L., Sudakov)

For every ε > 0 and 0 < p < 1 there exist b, d , δ > 0 and, for

infinitely many values of n, a (b, d)-expander G on n vertices with

a prescribed vertex v, such that the graph G ∼ Gp satisfies

P
(

diam(Cv (G )) ≥ (1− ε) diam(G)
)
≥ 1− ε ,

yet there are no components of size larger than n1−δ in G w.h.p.

E. Lubetzky 15



Proof ideas: the giant

Sprinkling argument of [Alon et. al ’04] can be used to characterize

nearly all edges in the giant: most components that are suitably

large should join the giant once we sprinkle some extra edges.

Definition (local predictor for the giant)

E1(H) :=
{
xy ∈ E (H) :

the component of either x or y

in H \ {xy} has size at least R

}
V1(H) :=

{
x ∈ V (H) : xy ∈ E1(H) for some y

}
Proposition

∀b, ε > 0 ∃R, c > 0 s.t., if G is a regular (b, d)-expander on n

vertices with girth greater than 2R, and G ∼ Gp, then w.h.p.∣∣E1(G )4E (C1(G ))
∣∣ ≤ εn and

∣∣V1(G )4V (C1(G ))
∣∣ ≤ εn .
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Proof of giant edge and vertex characterization

Upper bound on V (C1)4V1 and E (C1)4E1 is trivial:⋃
{E (C) : C is a conn. component of H with |C| ≥ 2R} ⊆ E1(H)⋃
{V (C) : C is a conn. component of H with |C| > dR} ⊆ V1(H)

First step in lower bound: via Hoeffding–Azuma,

P
(∣∣∣E1(H)| − E[|E1(H)|]

∣∣∣ ≥ a
)
≤ e−a

2/(4dn(d−1)2R)

and similarly for
∣∣|V1(H)| − E[|V1(H)|]

∣∣.
Together, these imply that if p′ = p − ε then G ′ ∼ Gp′ w.h.p. has

|E1(G ′)| ≥ ( 1
2p
′d(1− q′2)− ε)n ,

|V1(G ′)| ≥ (1− q′(1− p′ + p′q′)− ε)n .
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Proof of giant edge and vertex characterization (2)

Claim

For every ε, b, d > 0 there exist c ,R > 0 such that, if

I G is a regular (b, d)-expander with n vertices,

I (Si ) are disjoint vertex subsets of G with |Si | ≥ R ∀i ,
and H ∼ Gε, then w.h.p. there are no disjoint sets A =

⋃
i∈I Si and

B =
⋃

j∈J Sj with |A|,B| ≥ εn and no path between them in H.

Proof.

By Menger’s Theorem: ∃ ≥
⌈
bε
2 n
⌉

edge-disjoint paths of length ≤
⌊

d
bε

⌋
between such A,B in G. The probability that none survive in H is at most(

1− εd/(bε)
) 1

2 bεn ≤ exp
[
− 1

2bε
1+d/bεn

]
.

A union bound over at most 22n/R subsets of the Si ’s:

exp
[(

R−12 log 2− 1
2bε

1+d/bε
)
n
]
.
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Proof of giant edge and vertex characterization (3)

Corollary

For every ε, b, d > 0 there exist c ,R > 0 s.t., if G is a regular

(b, d)-expander on n vertices with girth greater than 2R, then

w.h.p. there ∃ a connected component C of G ′ ∪ Gε containing all

but at most 2εn of the vertices V1(G ′).

Proof.

Let Si be the connected components in G ′ of all y ∈ V1 = V1(G ′), and

form U by collecting connected components in G of (arbitrary) Si ’s until

|U ∩ V1| ≥ εn ,
so εn ≤ |U ∩ V1| < εn + |C ∩ V1| for some connected component C in G .

If |C ∩ V1| ≤ |V1| − 2εn, the cut (U ∩ V1,V1 \ U) violates the claim.
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Proof ideas: the 2-core

Intuition: if both endpoints of an edge are suitably large, then

sprinkling should form a cycle through it...

Definition (local predictor for the 2-core)

E2(H) :=
{
xy ∈ E (H) :

the component of both x and y

in H \ {xy} has size at least R

}
V2(H) :=

{
x ∈ V (H) : xy ∈ E2(H) for some y

}
Goal: mimic the analysis of the giant to show:

Proposition

∀b, ε > 0 ∃R, c > 0 s.t., if G is a regular (b, d)-expander on n

vertices with girth greater than 2R, and G ∼ Gp, then w.h.p.∣∣E2(G )4E (C(2)
1 (G ))

∣∣ ≤ εn and
∣∣V2(G )4V (C(2)

1 (G ))
∣∣ ≤ εn .

Problem: sprinkling may reuse the edge xy and not create a cycle!
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Proof ideas: the 2-core (ctd.)

Remedy to the “illegal sprinkling” obstacle: random coloring:

I Partition the edge set of G randomly (independently) into blue

and red, where the probability of an edge to be blue is ε.

I Modify the definition of E2(G) to include blue edges xy where

the red clusters of x and y in G \ {xy} are suitably large.

I Sprinkling red edges should connect most such clusters.

This should imply there are (roughly) ≥ εp(1− q)2|E (G)| blue

edges in the 2-core, thus ≥ p(1− q)2|E (G)| that are blue or red.

Problem: red graph is no longer an expander—e.g., it typically has

linearly many isolated vertices—sprinkling argument fails...
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Proof ideas: the 2-core (ctd.)

Recall: the edges pf G are randomly partitioned into blue and red, where

the probability of an edge to be blue is ε (independently of other edges).

Definition (k-thick subsets)

A subset S ⊂ V (H) is k-thick if there exists disjoint connected

subsets of H, {Si}, each of size at least k , such that S =
⋃
Si .

Key: although the red graph is not an expander, w.h.p., sets that

are k-thick do maintain edge expansion in it:

Claim

There exists k(ε, b, d) such that, with probability 1− O(2−εn),

#{red (x , y) ∈ E (G) : x ∈ S , y ∈ Sc} ≥ 1
2b|S |

for every k-thick S ⊂ V (G) with εn ≤ |S | ≤ n/2.
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Thank you!


