


The Erdés—Rényi random graph
“This double ‘jump’ of the size of the largest component... is one ;
of the most striking facts concerning random graphs.” (E-R 1960)J v

G(n, p): indicators of the (5) edges are IID Bernoulli(p).
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Definition (bond percolation G,)
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G(n, p): the special case where G = K}, (complete graph).
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Bond percolation on the complete graph

Definition (bond percolation G,)

keep (open) edges of G via IID Bernoulli(p) variables.
G(n, p): the special case where G = K}, (complete graph).

> “Double jump” for the order of |Cy| around p. = 1/n:
([Erd8s-Rényi (1960's)], [Bollobas '84], [Luczak '90])
©  O(logn) for p=2A/nwith A <1 fixed;

’ ° & O(n?/3) atp= 1/m;

(and within the critical window p = =20y

©(n) for p=2A/nwith A >1 fixed.

» Emerging from the critical window:

o ~2n whenp==1=for nP << 1.
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Percolation on expanders

Definition (edge (b, d)-expander)
sequence of graphs with maximum degree < d and \}
conductance ® > b (for d > 3, b > 0 fixed), where

= min IEGS. VA S)] or :M
¢(G)_S:w<S)S% (5) for m(3) = =5E0))

> [Alon, Benjamini, Stacy '04] studied G, for an expander G: =
e Uniqueness of the giant for all p.

o Characterization of the critical point for the appearance of a
giant component in high girth d-regular expanders: p. =

1
d-1-
» [Benjamini, Peres, Nachmias '09] extended high girth regular

expanders to sparse graphs with a Benjamini—-Schramm limit.




Percolation on expanders (ctd.)

Theorem (Alon, Benjamini, Stacey '04) uniqueness of giant

If G is a (b, d)-expander on n vertices, then 3w = w(b,d) <1 :

Vp=pn,  P(C2AGp)| > n*) = o(1).




Percolation on expanders (ctd.)

Theorem (Alon, Benjamini, Stacey '04)

If G is a (b, d)-expander on n vertices, then 3w = w(b,d) <1 :

Vp=pn,  P(C2AGp)| > n*) = o(1).

v

Let G be a regular (b, d)-expander on n vertices with girth — co.
If p> 715 then 3¢ > 0:

P(IC1(Gp)| > en) =1 —o(1),

whereas if p < ﬁ then Yc > 0:

P(|C1(Gp)| > cn) = o(1).

Theorem (Alon, Benjamini, Stacey '04) q

/ I\




Percolation on random regular graphs

Recall: |C1] in the Erdés—Rényi graph G(n,p = %) for fixed A is w.h.p.

of a Po(\)-G-W tree

O(logn) | ©(n*/3) | (¢ + o(1))n

A<1 | A=1 | A>1 J ¢ = survival probab.
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Percolation on random regular graphs

Recall: |C1] in the Erdés—Rényi graph G(n,p = %) for fixed A is w.h.p.

A<1 1 A=1 1 A>1 ¢ = survival probab.
@(|Og n) | @(n2 3) | (C"F O(l))ﬂ of a Po(\)-G-W tree

How does G, behave for G € G(n, d), a uniformly chosen d-regular
graph on n vertices for d > 3 fixed?

Theorem ([Pittel '08], [Nachmias, Peres '10])
Fixd >3 and p = 22;. W.h.p., |C1| in G, for G ~ G(n, d) satisfies | |

ALl | A=1 | A>1 01 = probab. of inf. path in
l @(|og n) | @(n2/3) | (01 + o(l))n p-percolation on a d-reg tree

v

/N
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Well-known: G ~ G(n,d) is w.h.p. an expander; what about an
arbitrary expander? Does G, in that case also mirror G(n, p)?

A TN > 4




Percolation on K, vs. G(n, d) vs. high girth expanders

Comparing G, on a d-regular graph G at p = % for A > 1:
‘ G =K, (G(n,p)) ‘ G ~G(n,d) ‘ G =high girth expander
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Percolation on K|, vs. G(n, d) vs. high girth expanders

Comparing G, on a d-regular graph G at p = % for A > 1:
‘ G =K, (G(n,p)) ‘ G ~G(n,d) ‘ G =high girth expander

‘le ~Cn ~ 61n > C(b, d, )\)n asymp.?
|C2| O(log n) O(log n) < pt-w(b,d)

sharp?

Additional geometric features — degree profile? 2-core? excess?
For instance:

Behavior at A =1+ ¢ for ¢ < 1:

‘ G =K, (G(n,p)) ‘ G=high girth expander
IC1] ~ 2en > c(b,d,e)n
2-core ~ 2e°n ?

excess ~ %53n ?
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Let G be a regular n-vertex (b, d)-expander (b > 0, d > 3 fixed)
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New results: the giant

Let G be a regular n-vertex (b, d)-expander (b > 0, d > 3 fixed)
with girth — oo, and fix ﬁ <p<l.

Recall: w.h.p., 3¢ >0 : |C1(Gp)| > cn ([Alon, Benjamini, Stacey '04]).
New results include:
Theorem (Krivelevich, L., Sudakov)

Let 01 :=1—q(l—p+pq), m:= %pd(l —q?), where0 < g < 1
is the unique solution of ¢ = (1 — p+ pq)9~t. Then w.h.p.,
|V(C1)| = (01 +o0(1)n,  |E(C1)| = (m + o(1))n,

\ il

. q is the extinction probability on a Bin(d — 1, p)-G-W-tree;
01 is the probability of p-percolation on a d-reg tree.

1 is the fraction of edges which are open, and the
1 Bin(d — 1, p)-G-W-tree from at least one of their endpoints survived.




New results: the giant

Theorem (Krivelevich, L., Sudakov)

Fix d > 3 and ﬁ < p<1. Foreverye >0 and b > 0 there exist
some ¢, C, R > 0 such that, if G is a regular (b, d)-expander on n

vertices with girth at least R, then w.h.p., G ~ G, has

v —91’ <é,

YE@)|-m|<e, ()
LIE(C?)] —nz‘ <e.

w

Ly(c®)| - 92\ <e,

In particular, w.h.p.
P ! P 0< g<1solvesq=(1—p+pg)?!

excess(C1) &~ (m — 01)n,

and 01 :=1—g(1 — p) — pqg? m = Lpd(1 — ¢?) i
0 :=1—q— (d — 1)pg(l — T
< excess(CP) ~ (2 — 62)n. 2 9 )pa(1 — q) n2 = 3pd(1 — q)




Example: asymptotics for large d

[Recall: w.h.p. 2|C1(G(n, 2))| ~ ¢ = P(survival of a Po(\)-G-W-tree).]
Limiting behavior of G, for large d agrees with G(n, d) and G(n, p):
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Example: asymptotics for large d

[Recall: w.h.p. 2|C1(G(n, 2))| ~ ¢ = P(survival of a Po(\)-G-W-tree).]
Limiting behavior of G, for large d agrees with G(n, d) and G(n, p):
Example

1 — g = P(survival of a Bin(d — 1, p)-G-W tree) converges to
P(survival of a Po())-G-W-tree) as d — oo, hence 1|Cy| — ¢.

Example

| For p=H£ with 0 < e <« 1, onehasq—>1—2s+0(62)and =

01 — 2+ 0(e?), m — 2+ O(¢?), — 6, — %53 + 0(e"),
0y — 2e% + 0(e3), m — 22+ 0(63), — 0y — 53 + 0(e).
‘ G = Kp (G(n, p)) | G=high girth expander
[C1]
2-core ~ 2¢2n ~ 2e%n

excess




Degree distributions of the giant and the 2-core

Let Dy be the number of degree-k vertices in C; and let Dy be the
number of degree-k vertices in its 2-core ng).
Theorem (Krivelevich, L., Sudakov)
Fixd>3,1<A<d-1 p= ﬁ, and q as above; define
ak = (§)p*(1 = p)T*(1 - g¥) (k=1,...,d),
Be= (DpPA-g*Q—-p+pg)?* (k=2,....d).
For all b,e > 0 there exist some ¢, R > 0 so that, if G is a regular

(b, d)-expander on n vertices with girth at least R, w.h.p.,
|2~y <e VI<k<d and |25 <e V2<k<d.

v




Degree distributions of the giant and the 2-core

Let Dy be the number of degree-k vertices in C; and let Dy be the
number of degree-k vertices in its 2-core ng).

Theorem (Krivelevich, L., Sudakov)
Fixd>3,1<A<d-1 p= ﬁ, and q as above; define
ak = (§)p*(1 = p)T*(1 - g¥) (k=1,...,d),
Be= (DpPA-g*Q—-p+pg)?* (k=2,....d).
For all b,e > 0 there exist some ¢, R > 0 so that, if G is a regular
(b, d)-expander on n vertices with girth at least R, w.h.p.,
|2~y <e VI<k<d and |25 <e V2<k<d.

v

(1= 10k, m=330 1 kar, 02=30 5Bk, m=2130%,kBk)
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Example: the giant in percolation on cubic expanders

Asymptotic degree distribution in G, for d =3 and 3 < p < 1:
w.h.p., the giant has (ax + o(1))n vertices of degree k € {1,2,3};
its 2-core has (B + o(1))n vertices of degree k € {2,3}.

1.0F
0.8
0.6

! ! B
’ 0.4
0.2

0.6 0.7 0.8 0.9 1.0

a1 =2 —pP2p—1) a2 = H(1 - p)(1 —4p+6p° - 4p37)/~g3p3 (1- (1_T,,)e)
 P=g0 2P -p) | gy (%)3 ,,




The second largest component

Recall: w.h.p., 3w(b,d) >0 : [C2(G,)| < n*~* ([Alon et al. '04]).

| 6=Kn(G(n,p) | G~ G(nd) | G =high girth expander

[C1l ~¢n ~ 01n ~ 01n
(]

O(log n) O(log n) < pt=w(bd)

y /=




The second largest component

Recall: w.h.p., 3w(b,d) >0 : [C2(G,)| < n*~* ([Alon et al. '04]).

‘ G = K, (G(n, p)) ‘ G ~ G(n,d) ‘ G =high girth expander

[C1l ~¢n ~ 01n ~ 01n
[Cal ©(log n) ©(log n) < ptmwlbd)

Perhaps surprisingly, the n'=* from above is essentially tight:
Theorem (Krivelevich, L., Sudakov)
Foreveryd >3, R>1, p € (g4,1) and a € (0,1) there exist

b > 0 and a regular (b, d)-expander G on n vertices with girth at
least R where G ~ G, has |V(C2)| 2 n® w.h.p.




The second largest component

Recall: w.h.p., 3w(b,d) >0 : [C2(G,)| < n*~* ([Alon et al. '04]).

‘ G = K, (G(n, p)) ‘ G ~ G(n,d) ‘ G =high girth expander
[C1] ~¢n ~ 01n ~ 01n
ICa| ©(log n) ©(log n) < ptmwlbd)

Perhaps surprisingly, the n'=* from above is essentially tight:

Theorem (Krivelevich, L., Sudakov)

Foreveryd >3, R>1, p € (g4,1) and a € (0,1) there exist
b > 0 and a regular (b, d)-expander G on n vertices with girth at
least R where G ~ G, has |V(C2)| 2 n® w.h.p.

Similarly, for any fixed sequence 0 < a; < ap < ... <, <1

one can construct an expander G such that w.h.p. G ~ G, has

components with sizes ©(n®1),...,0O(n%) plus the giant.



A related question of Benjamini: predicting a giant

Question (Benjamini '13)

Let G be a bounded degree expander. Further assume that there is
a fixed vertex v € G, so that G ~ G ), satisfies

P(diam(C,(G)) > 4 diam(G)) > 3.
Is there a giant component w.h.p.?




A related question of Benjamini: predicting a giant

Question (Benjamini '13)
Let G be a bounded degree expander. Further assume that there is
a fixed vertex v € G, so that G ~ G ), satisfies

P(diam(C,(G)) > 4 diam(G)) > 3.

Is there a giant component w.h.p.?

Variant of our construction for Cy gives a negative answer to this:
Theorem (Krivelevich, L., Sudakov)

For every ¢ > 0 and 0 < p < 1 there exist b,d,d > 0 and, for
infinitely many values of n, a (b, d)-expander G on n vertices with
a prescribed vertex v, such that the graph G ~ G, satisfies

P(diam(Cy(G)) > (1 — &) diam(G)) > 1 —¢,

yet there are no components of size larger than n*=% in G w.h.p.

v




Proof ideas: the giant

Sprinkling argument of [Alon et. al '04] can be used to characterize
nearly all edges in the giant: most components that are suitably
large should join the giant once we sprinkle some extra edges.
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large should join the giant once we sprinkle some extra edges.

Definition (local predictor for the giant)

the component of either x or y
Ei(H) = € E(H) :
1(H) = (v (H) in H\ {xy} has size at least R }

Vi(H) == {x € V(H) : xy € Ei(H) for some y} i




Proof ideas: the giant

Sprinkling argument of [Alon et. al '04] can be used to characterize

nearly all edges in the giant: most components that are suitably
large should join the giant once we sprinkle some extra edges.
Definition (local predictor for the giant)
the component of either x or y
Ei(H) :={xy € E(H) : | _
in H\ {xy} has size at least R

Vi(H) := {x € V(H) : xy € Ei(H) for some y}

\VE

Proposition
Vb,e >0 3R, c > 0 s.t., if G is a regular (b, d)-expander on n
vertices with girth greater than 2R, and G ~ G, then w.h.p.

|E1(G) AE(C1(G))| <en  and  |V4(G) A V(Ci(G))| <en.




Proof of giant edge and vertex characterization

Upper bound on V(C1) A Vi and E(C1) A E; is trivial:

U{E(C) : Cis a conn. component of H with |C| > 2R} C E;(H)
U{V(C) : Cis a conn. component of H with |C| > dR} C V;i(H)

First step in lower bound: via Hoeffding—Azuma,

P (‘EI(H)l —]E[|E1(H)|]’ > a) < e—#/(4dn(d—17F) )

and similarly for ||V4(H)| — E[|Va(H)[]|.

Together, these imply that if p’ = p — ¢ then G’ ~ G w.h.p. has
|E(G)] = (3P'd(1 = ¢%) —e)n,
V(G =1 -d 1 -p +pq)—e)n.




Proof of giant edge and vertex characterization (2)
Claim

For every ¢, b, d > 0 there exist ¢, R > 0 such that, if
» G is a regular (b, d)-expander with n vertices,
> (Si) are disjoint vertex subsets of G with |Sj| > R Vi,

and H ~ G, then w.h.p. there are no disjoint sets A = | J;c;Sjand | |
B = Uje, Sj with |A[, B| > en and no path between them in H.




Proof of giant edge and vertex characterization (2)

Claim
For every ¢, b, d > 0 there exist ¢, R > 0 such that, if

» G is a regular (b, d)-expander with n vertices,
> (Si) are disjoint vertex subsets of G with |Sj| > R Vi,

and H ~ G, then w.h.p. there are no disjoint sets A = | J;; S; and
B = Ujc, Sj with |A[, B| > en and no path between them in H.

| Proof. ! B

= By Menger's Theorem: 3 > [£2n] edge-disjoint paths of length < | £ |
between such A, B in G. The probability that none survive in H is at most

Lpen
(1 _ Ed/(b5)> S < exp [—%bs”d/bsn} .
A union bound over at most 22"/ R subsets of the S;'s:

exp [(R*12 log2 — %be”d/bs) n} . O




Proof of giant edge and vertex characterization (3)

Corollary

For every e, b, d > 0 there exist ¢, R > 0 s.t., if G is a regular

(b, d)-expander on n vertices with girth greater than 2R, then
w.h.p. there 3 a connected component C of G’ U G. containing all
but at most 2en of the vertices V4 (G').

Proof.
Let S; be the connected components in G’ of all y € V4 = V4(G’), and :
form U by collecting connected components in G of (arbitrary) S;'s until

[UNVi| >en,
soen < [UN V| <en+|CnN V| for some connected component C in G.
If |CN Vi < |Vi| — 2en, the cut (UN Vi, Vi \ U) violates the claim. [




Proof ideas: the 2-core

Intuition: if both endpoints of an edge are suitably large, then

sprinkling should form a cycle through it...
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Definition (local predictor for the 2-core)

the component of both x and
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in H\ {xy} has size at least R

Vo(H) :={x € V(H) : xy € Ex(H) for some y}
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Intuition: if both endpoints of an edge are suitably large, then
sprinkling should form a cycle through it...
Definition (local predictor for the 2-core)
the component of both x and
Ex(H):={xy e E(H) = 000 )
in H\ {xy} has size at least R

Vo(H) :={x € V(H) : xy € Ex(H) for some y}

- | Goal: mimic the analysis of the giant to show: e a-gp =

Proposition Lo
Vb,e >0 3R, c > 0s.t., if G is a regular (b, d)-expander on n
vertices with girth greater than 2R, and G ~ G, then w.h.p.

|E(G) AE(CP(G))| <en and  |Va(G) A V(CP(G))| <en.




Proof ideas: the 2-core

Intuition: if both endpoints of an edge are suitably large, then

sprinkling should form a cycle through it...

Definition (local predictor for the 2-core)

the component of both x and
Ex(H) := {xy € E(H) : 2 _ Y
in H\ {xy} has size at least R

}

Vo(H) :={x € V(H) : xy € Ex(H) for some y}

- | Goal: mimic the analysis of the giant to show: e a-gp =

Proposition Lo

Vb,e >0 3R, c > 0s.t., if G is a regular (b, d)-expander on n
vertices with girth greater than 2R, and G ~ G, then w.h.p.
|E(G) AE(CP(G))| <en and  |Va(G) A V(CP(G))| <en.

Problem: sprinkling may reuse the edge xy and not create a cycle!
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> Partition the edge set of G randomly (independently) into blue
and red, where the probability of an edge to be blue is €.
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» Modify the definition of E3(G) to include blue edges xy where
the red clusters of x and y in G\ {xy} are suitably large.
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and red, where the probability of an edge to be blue is €.

» Modify the definition of E3(G) to include blue edges xy where
the red clusters of x and y in G\ {xy} are suitably large.

» Sprinkling red edges should connect most such clusters.

This should imply there are (roughly) > ep(1 — q)?|E(G)| blue
edges in the 2-core, thus > p(1 — q)?|E(G)| that are blue or red.




Proof ideas: the 2-core (ctd.)

Remedy to the “illegal sprinkling” obstacle: random coloring:

> Partition the edge set of G randomly (independently) into blue
and red, where the probability of an edge to be blue is €.

» Modify the definition of E3(G) to include blue edges xy where
the red clusters of x and y in G\ {xy} are suitably large.

» Sprinkling red edges should connect most such clusters.

.| This should imply there are (roughly) > ep(1 — q)?|E(G)| blue
edges in the 2-core, thus > p(1 — q)?|E(G)| that are blue or red.

Problem: red graph is no longer an expander—e.g., it typically has

linearly many isolated vertices—sprinkling argument fails...




Proof ideas: the 2-core (ctd.)

Recall: the edges pf G are randomly partitioned into blue and red, where

the probability of an edge to be blue is ¢ (independently of other edges).

Definition (k-thick subsets)

A subset S C V/(H) is k-thick if there exists disjoint connected
subsets of H, {S;}, each of size at least k, such that S =JS;.

| Key: although the red graph is not an expander, w.h.p., sets that

’ are k-thick do maintain edge expansion in it:

There exists k(e, b, d) such that, with probability 1 — O(27¢"),

#{red (x,y) € E(G) : x€ S,y € S} > 1p|$|
for every k-thick S C V(G) with en < |S| < n/2.







