

Summer school in Probability

Markov Chain Minicourse

lecture 4

Eyal Lubetzky

Microsoft Research

The Cutoff Phenomenon

Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity.

Steady convergence it takes a while to reach distance ½ from stationarity then a while longer to reach distance ¼, etc.

Abrupt convergence distance from equilibrium quickly drops from 1 to 0

Cutoff: formal definition

A family of chains (X_t^n) is said to have *cutoff* if:

$$\lim_{n\to\infty} \frac{t_{\text{mix}}(\varepsilon)}{t_{\text{mix}}(1-\varepsilon)} = 1 \quad \forall \ 0<\varepsilon<1.$$

i.e.,
$$t_{\text{mix}}(\alpha) = (1+o(1))t_{\text{mix}}(\beta)$$
 for any $0 < \alpha$, $\beta < 1$.

• A sequence (w_n) is called a *cutoff window* if

$$\begin{split} w_{_{n}} &= o(t_{_{\text{mix}}}(\frac{1}{4})) \;, \\ t_{_{\text{mix}}}(\varepsilon) - t_{_{\text{mix}}}(1-\varepsilon) &= O_{_{\varepsilon}}(w_{_{n}}) \quad \forall \; 0 < \varepsilon < 1 \;. \end{split}$$

Basic examples

Lazy discrete-time simple random walk

On the hypercube $\{0,1\}^n$:

Exhibits cutoff at

 $\frac{1}{2} n \log n + O(n)$

[Aldous '83]

On the *n*-cycle:

No cutoff.

The importance of cutoff

- Suppose we run Glauber dynamics for the Ising Model satisfying $t_{\text{mix}} \approx f(n)$ for some f(n).
- ▶ Cutoff $\Leftrightarrow \exists$ some $c_0 > 0$ so that:
 - Must run the chain for at least $\sim c_0 \cdot f(n)$ steps to even reach distance (1ε) from μ .
 - Running it any longer than that is essentially redundant.

- ▶ Proofs usually require (and thus provide) a deep understanding of the chain (its reasons for mixing).
- Many natural chains are *believed* to have cutoff, yet proving cutoff can be extremely challenging.

Cutoff History

- Random walks on graphs and groups:
 - Discovered:
 - Random transpositions on S_n [Diaconis, Shahshahani '81]
 - RW on the hypercube, Riffle-shuffle [Aldous '83]
 - ➤ Named "Cutoff Phenomenon" in the top-in-at-random shuffle analysis [Diaconis, Aldous '86]
 - > RWs on finite groups [Saloff-Coste '04]
 - > RWs on random regular graphs [L., Sly '10]
- One-dimensional Markov chains:
 - Birth-and-Death chains [Diaconis, Saloff-Coste '06], [Ding, L., Peres '09]
- No proofs of cutoff except when stationary distribution is completely understood and has many symmetries [till recently]

Peres' Product Criterion

- ▶ QUESTION [Diaconis '96]: How can we determine whether a given Markov chain exhibits cutoff?
- OBSERVATION [Peres '04]: if a reversible chain has cutoff then $gap \cdot t_{mix}(\frac{1}{4}) \to \infty$ or equivalently: $t_{rel} = o(t_{mix}(\frac{1}{4}))$.
- PROOF:
- Key fact: every reversible Markov chain satisfies

$$t_{\text{mix}}(\varepsilon) \ge (t_{\text{rel}} - 1) \log(\frac{1}{2\varepsilon}).$$

- \triangleright Assume that $t_{\rm rel} \ge 1 + \delta t_{\rm mix}(\frac{1}{4})$ for some $\delta > 0$.
- ► It follows that $t_{\text{mix}}(\varepsilon) \ge f(\varepsilon) \cdot t_{\text{mix}}(\frac{1}{4})$ where $f(\varepsilon) \underset{\varepsilon \to 0}{\longrightarrow} \infty$ ⇒ No (pre) cutoff.

Peres' Product Criterion (ctd.)

- ▶ The condition is necessary for cutoff.
 Is it also sufficient, giving a method to determine the existence of cutoff?
- ▶ [Aldous '04]: unfortunately *not*: the product-condition does not imply cutoff (explicit construction).
- Even so, Peres conjectured that for many natural families of chains, *cutoff* occurs iff
 (e.g., holds for birth-and-death chains [Ding, L., Peres '09]).

$$\operatorname{gap} \cdot t_{\operatorname{mix}}(\frac{1}{4}) \to \infty$$
 cutoff

Notable conjectured | Ising on lattices; Potts model on lattices; Gas Hard-core model on lattices; lattice Colorings; Anti-ferromagnetic Ising / Potts model, Spin-glass, Arbitrary boundary conditions / external field; ...

Recently: cutoff for Ising on lattices

► THEOREM [L., Sly]:

Let $\beta_c = \frac{1}{2}\log(1+\sqrt{2})$ be the critical inverse-temperature for the Ising model on \mathbb{Z}^2 . Then the continuous-time Glauber dynamics for the Ising model on $(\mathbb{Z}/n\mathbb{Z})^2$ with periodic boundary conditions at $0 \le \beta < \beta_c$ has cutoff at $(1/\lambda_\infty)\log n$ where λ_∞ is the spectral gap of the dynamics on the infinite volume lattice.

- ▶ Analogous result holds for *any* dimension $d \ge 1$:
 - ightharpoonup Cutoff at $(d/2\lambda_{\infty})\log n$.
 - > *E.g.*, cutoff at $[2(1-\tanh(2\beta))]^{-1} \log n$ for d = 1.

Random walk on the hypercube

- ▶ Glauber dynamics for infinite temperature (β =0) Ising \equiv lazy RW on the hypercube $\{-1,1\}^n$:
 - > Stationary distribution is uniform.
 - > Spins evolve independently.
- ▶ [Aldous '83]: Cutoff at $\frac{1}{2}n\log n + O(n)$.
 - > Twice faster than trivial upper bound.
 - > Constant window in continuous time version.

Cutoff for RW on hypercube (ctd.)

- ightharpoonup Symmetry \Rightarrow Start at the all-plus state.
- Symmetry \Rightarrow Mixing of magnetization $S_t = \sum_{i=1}^n X_t(i)$ [a birth & death chain] determines entire mixing:

$$\left\|\mathbb{P}_+(X_t\in\cdot)-\pi\right\|_{\mathsf{TV}} = \left\|\mathbb{P}_+(S_t\in\cdot)-\pi_{\scriptscriptstyle S}\right\|_{\mathsf{TV}}.$$

- \triangleright To bound the coupling-time of this 1d chain it thus suffices to couple it from its extreme ends + , .
- ▶ Magnetizations contract to within \sqrt{n} from each other:

$$\mathbb{E}_+[S_{\scriptscriptstyle t}] = n(1-\frac{1}{\scriptscriptstyle n})^{\scriptscriptstyle t} \ , \ \mathbb{E}_-[S_{\scriptscriptstyle t}] = -n(1-\frac{1}{\scriptscriptstyle n})^{\scriptscriptstyle t} \, .$$

- At time $t = \frac{1}{2} n \log n$ the expected distance between the chains is $O(\sqrt{n})$.
- ▶ Afterwards: distance is a biased RW drifting towards 0. Comparing to SRW \Rightarrow takes O(n) further steps to hit 0.