

Summer school in Probability

Markov Chain Minicourse

lecture 3

Eyal Lubetzky

Microsoft Research

Lower bounds via conductance

- ▶ Recall from last lecture:
 - For a chain with transition kernel P and stationary distribution π define:

$$Q(x,y) \triangleq \pi(x)P(x,y) \; ; \; Q(A,B) \triangleq \sum_{x \in A, y \in B} Q(x,y).$$

 \triangleright The conductance (or bottleneck ratio) of a set S is

$$\Phi(S) \triangleq \frac{Q(S, S^c)}{\pi(S)}$$

and the conductance (Cheègér constant) of the chain is

$$egin{pmatrix} \Phi riangleq \min_{S:\pi(S) \leq rac{1}{2}} \Phi(S). \end{pmatrix}$$

THEOREM:

Every Markov chain satisfies
$$t_{\text{mix}}(\frac{1}{4}) \ge \frac{1}{4\Phi}$$
.

Bottlenecks in Glauber for Ising

- ▶ Recall the definition of the dynamics:
 - ➤ Update sites via *iid* Poisson(1) clocks
 - Each update replaces a spin at $u \in V$ by a new one $\sim \mu$ conditioned on $V \setminus \{u\}$ (heat-bath version).

- ▶ How fast does it converge to equilibrium?
 - \triangleright Can be exponentially slow in the size of the system: At low temp. (large β) there may be a bottleneck between "plus" and "minus" states (see tutorial).

General (believed) picture for the Glauber dynamics

- Setting: Ising model on the lattice $(\mathbb{Z}/n\mathbb{Z})^d$. Belief: For some critical inverse-temperature β_c :
- Low temperature: $(\beta > \beta_c)$ gap⁻¹ and t_{mix} are *exponential* in the surface area.
- Critical temperature: $(\beta = \beta_c)$ gap⁻¹ and t_{mix} are *polynomial* in the surface area.
- High temperature: $(\beta < \beta_c)$
 - > **Rapid** mixing: gap⁻¹ = O(1) and $t_{\text{mix}} \times \log n$
 - Mixing occurs abruptly, i.e. there is *cutoff*.

Gap/mixing-time evolution for Ising on the complete graph

(Scaling window established in [Ding, L., Peres '09])

Bottleneck in sampling colorings

- ▶ A *legal coloring* of an undirected graph G=(V,E) is a mapping $\varphi:V\to\mathbb{N}$ such that $\varphi(u)\neq\varphi(v)$ for all $(u,v)\in E$.
- Problem definition:
 - ▶ Input: Undirected graph G=(V,E) and integer q.
 - ➤ Goal: Sample a uniform legal coloring via *q* colors.
- Is there even a single legal coloring?
 - ➤ In general this is **NP-complete** to determine.
 - Main interest: graphs that are k-colorable for some small k (e.g. graphs with maximal degree $\Delta = O(1)$).
- How can we sample a coloring uniformly?

Sampling recipe for legal colorings

- ▶ Glauber dynamics for colorings :
 - \triangleright Markov chain on $\Omega = \text{legal colorings} (\Omega \subseteq [q]^V)$.
 - > Start at an arbitrary legal coloring.
 - > Transition rule:
 - Choose a uniform vertex $v \in V$.
 - Replace its color by a uniformly chosen color out of all legal ones (i.e. not occupied by neighbors).
- Reversible with respect to the uniform distribution π since the transition kernel is symmetric.
- ▶ How long does it take the chain to converge to π ?
 - \triangleright (We will later see that $t_{\text{mix}} = O(|V|\log|V|)$ when $q > 2\Delta$)

Slow mixing with large degrees

PROPOSITION:

The Glauber dynamics for colorings of the n-vertex star via $q \ge 3$ colors has $t_{\text{mix}} \ge \frac{1}{16} n \, \mathrm{e}^{n/(q-1)}$.

- ▶ Few colors here analogous to low temperature Ising...
- In this example we can easily color the graph using 2 colors yet sampling a 100-coloring uniformly via Glauber is exponentially slow in n...
- ▶ Where is the bottleneck?
 - ➤ Let *S* be all colorings assigning the color **1** to middle vertex...

Slow coloring of the star (ctd.)

- ▶ Def.: $S = \{ \sigma \in \Omega : \sigma(v_0) = 1 \}$. ($|S| = q^{n-1}$)
- ▶ For all $\sigma \in S$, $\sigma' \in S^c$ we have $Q(\sigma, \sigma') = 0$ unless:
 - $\triangleright \sigma(v_0) = 1 \text{ and } \sigma'(v_0) \neq 1$,
 - $\triangleright \sigma(u) = \sigma(u)$ for every leaf u, and
 - $\triangleright \sigma(u) \not\in \{1, \sigma'(v_0)\}$ for every leaf u.
- Since there are $(q-1)(q-2)^{n-1}$ such pairs, each satisfying $Q(\sigma, \sigma') \le 1/(|\Omega|n)$, we get

$$Q(S, S^c) \le \frac{1}{|\Omega| n} (q-1)(q-2)^{n-1},$$

and so

$$\frac{Q(S,S^c)}{\pi(S)} \le \frac{(q-1)(q-2)^{n-1}}{n(q-1)^{n-1}} \le \frac{(q-1)^2}{n(q-2)} e^{-n/(q-1)}.$$

Path coupling (>upper bound for coloring)

- ▶ <u>Def.</u>: a *premetric* on Ω is a connected undirected graph H=(Ω ,E) with positive edge weights w:E→ \mathbb{R} ⁺ so that
 - ▶ If $e=(x,y)\in E$ then $w(e)\leq w(\Gamma)$ ∀ path Γ between x,y.
- ▶ Let d_H denote the metric extending the premetric H.
- ► THEOREM: [Bubley, Dyer '97]

Let $H=(\Omega, E_H)$ be a premetric for Ω and suppose that for some $\rho>0$ and $\forall x,y\in E_H$ there \exists a coupling such that

$$\mathbb{E}\Big[d_{\scriptscriptstyle H}(X_{\scriptscriptstyle 1},Y_{\scriptscriptstyle 1}) \; \big| \; X_{\scriptscriptstyle 0} = x, Y_{\scriptscriptstyle 0} = y\Big] \leq (1-\rho)d_{\scriptscriptstyle H}(x,y).$$

Then there \exists such a coupling for $\forall x,y \in \Omega$.

Path coupling bounds mixing

COROLLARY:

Let $H=(\Omega, E_H)$ be a premetric for Ω with integer weights. Suppose that for some $\rho>0$ and $\forall \ x,y\in E_H$ there exists a coupling such that

$$\mathbb{E}\left[d_{H}(X_{1},Y_{1}) \mid X_{0} = x, Y_{0} = y\right] \leq (1-\rho)d_{H}(x,y).$$

Then the mixing time of (X_t) satisfies

$$t_{\text{mix}}(\varepsilon) \leq \frac{1}{\rho} \left[\log(\text{diam}(\Omega)) + \log(\frac{1}{\varepsilon}) \right],$$

where $\operatorname{diam}(\Omega) \triangleq \max\{d_{H}(x,y) : x,y \in \Omega\}.$

Path coupling (ctd.)

PROOF:

Let $x,y \in \Omega$ (not necessarily adjacent in H), and let

$$\Gamma = (x = u_0, u_1, ..., u_k = y)$$

be a shortest path between x,y in H.

Couple X_1, Y_1 started at x, y by composing couplings:

- \triangleright Base: couple X, Y started at (x, u_1) satisfying \bigcirc .
- Extend a coupling of (X,Y) from (x,u_i) to a coupling of (X,Z) from (x,u_{i+1}) via a coupling of (Y,Z) from (u_i,u_{i+1}) [generate (X_1,Y_1) then generate (Y_1,Z_1) conditioned on Y_1].
- > This satisfies since:

$$\begin{split} \mathbb{E}_{x,u_{i+1}} \left[d_{H}(X_{1},Z_{1}) \right] &\leq \mathbb{E}_{x,u_{i}} \left[d_{H}(X_{1},Y_{1}) \right] + \mathbb{E}_{u_{i},u_{i+1}} \left[d_{H}(Y_{1},Z_{1}) \right] \\ &\leq (1-\rho) \Big(d_{H}(x,u_{i}) + d_{H}(u_{i},u_{i+1}) \Big) = (1-\rho) d_{H}(x,u_{i+1}). \end{split}$$

Example: Sampling legal coloring

- THEOREM: ([Jerrum '95], [Salas, Sokal '97])

 Let G be a graph on n vertices with maximum degree Δ .

 If $q > 2\Delta$ then the Glauber dynamics for legal colorings of G via q colors has $t_{\text{mix}}(\varepsilon) \leq \frac{q-\Delta}{q-2\Delta} n[\log(n) + \log(\frac{1}{\varepsilon})]$.
- PROOF:

Premetric: connect $x,y \in [q]^n$ (possibly illegal) in H iff they differ in a single coordinate (extends to Hamming distance).

The statement of the theorem will follow from providing a path coupling satisfying the contraction where:

$$\rho = \frac{q - 2\Delta}{(q - \Delta)n}$$

Sampling legal colorings (ctd.)

- A contracting coupling on *H*: Take two states x,y that differ only at vertex v.
 - \triangleright Update the vertex v itself : coalesce

 \triangleright Update some u not adjacent to v: identity.

- \triangleright Update u adjacent to v: available color lists are $C_x \triangleq C \setminus x(v)$ and $C_y \triangleq C \setminus y(v)$ for some $C \subseteq [q]$.
 - If $|\mathcal{C}_x| = |\mathcal{C}_y| \in \mathcal{C}$: couple \mathcal{C}_x , \mathcal{C}_y via swapping x(v),y(v) and the identity-coupling elsewhere.

- Else: w.l.o.g. $|\mathcal{C}_x| = |\mathcal{C}_y| 1$. Let $y'(u) \in \mathcal{C}_y$ uniformly.
 - If $y'(u) \neq x(v)$ then reuse it for x'(u).
 - Else: Let $x'(u) \in \mathcal{C}_x$ uniformly.

Sampling legal colorings (ctd.)

- Accounting:
- \bigcirc > Eliminating a disagreement \Leftrightarrow Updating v.

New disagreement \Leftrightarrow Updating $u \sim v$ and selecting the color x(v) for y'(u).

$$\leq \frac{\Delta}{n} \cdot \frac{1}{q - \Delta}$$

Altogether:

$$\mathbb{E}_{x,y}\left[d_{H}(X_1,Y_1)\right] \leq 1 - \frac{1}{n}\Big(1 - \frac{\Delta}{q-\Delta}\Big) = 1 - \frac{q-2\Delta}{(q-\Delta)n}. \quad \blacksquare$$