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Lower bounds via conductance

» Recall from last lecture:

> For a chain with transition kernel P and stationary
distribution 7 detine:

Aay) & w(@)Pey) : QA2 3 Q) |8

x€A,yeB
| » The conductance (or bottleneck ratio) of a set Sis

and the conductance (Cheeger constant) of the chain is

[CD — mm @(S)]

» THEOREM:
lEvery Markov chain satisfies £ (5) > —.
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Bottlenecks in Glauber for Ising

» Recall the definition of the dynamics:

> Update sites via iid Poisson(1) clocks

> Each update replaces a spinat u €V

by a new one ~ 1 conditioned
on V \{u} (heat-bath version).

» How fast does it converge to equilibrium?

> Can be exponentially slow in the size of the system:
At low temp. (large 3) there may be a bottleneck

between “plus” and “minus” states (see tutorial).
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General (believed) picture for
the Glauber dynamics

» Setting: Ising model on the lattice (Z/nZ)<.
Belief: For some critical inverse-temperature g3, :

CEXD)

» Low temperature:

gap™ and t_;, are exponential in the surface area.
» Critical temperature: =N

gap? and ¢t ;, are polynomial in the surface area.
» High temperature:

> Rapid mixing: gap ' = O(1) and ?_;, < log n

mix

» Mixing occurs abruptly, i.e. there is cutoff.
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Gap/mixing-time evolution for
Ising on the complete graph

(Scaling window established in [Ding, L., Peres "09])

Eyal Lubetzky, Microsoft Research




PIMS Probability Summer School 2010

Glauber dynamics for colorings 6

Bottleneck in sampling colorings

» A legal coloring of an undirected graph G=(V,E) is a
mapping ¢: V—N such that p(u) = ¢(v) for all (u,v) €F.

» Problem definition: |
> Input: Undirected graph G=(V,E) and integer q. -

> Goal: Sample a uniform legal coloring via g colors.

» Is there even a single legal coloring?
» In general this is NP-complete to determine.

> Main interest: graphs that are k-colorable for some
small £ (e.g. graphs with maximal degree A =0(1)).

» How can we sample a coloring uniformly?
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Sampling recipe for legal colorings

» Glauber dynamics for colorings :
> Markov chain on §2 = legal colorings (2 C [¢]").

> Start at an arbitrary legal coloring. ﬁ
» Transition rule: NS

= Choose a uniform vertex ve V.
= Replace its color by a uniformly chosen color out | =
of all legal ones (i.e. not occupied by neighbors). |

» Reversible with respect to the uniform distribution 7
since the transition kernel is symmetric.

» How long does it take the chain to converge to 7 ?
> (We will later see that t,;,,= O(| V|log| V]) when ¢>2A)
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Slow mixing with large degrees

» PROPOSITION:

| The Glauber dynamics for colorings of the n-vertex

( star via ¢ > 3 colors has ¢ > =0 en/ -y

» Few colors here analogous to low temperature Ising...

» In this example we can easily color the graph using |
2 colors yet sampling a 100-coloring uniformly via |
Glauber is exponentially slow in n...

| » Where is the bottleneck? .\
9, > Let S be all colorings assigning

the color 1 to middle vertex... u/‘ \U
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Slow coloring of the star (ctd.)

» Def.:. S={oceQ:0(v,)=1}. ( [S|=¢"")

» Forall o €5, 0’ €5°we have (o, 0')=0 unless:
> o(v) = 1land o/(yy) = 1, '
> o(u) = o(u) for every leaf v, and S

> o(u) € {1, d'(vy)} for every leaf u . |
» Since there are (¢—1)(¢—2)" ! such pairs, each -
satisfying Q(o, 0/) < 1/(\Q]n), we get |
Q(S5,5°) < -D(g-2""
and so
Q(5,5°)
(5) n(g—1)"" n(q —2)
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Path cou pling (=upper bound for coloring)

» Detf.: a premetric on €2 is a connected undirected graph
H=(),E) with positive edge weights w: E—R" so that

> If e=(z,y)€ E then w(e)<w(T") V path I" between =,y .
» Let dy denote the metric extending the premetric A.
» THEOREM: [Bubley,Dyer "97]

| | | §
’ﬁ‘ Let H=(Q2,Ey) be a premetric for € and suppose that for %
- some p>0and V x,y € F; there 4 a coupling such that
B A Then there 3 such a coupling for Va,y € €. N
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Path coupling bounds mixing

» COROLLARY:

Let H=(S2,E}) be a premetric for €2 with integer weights.
Suppose that for some p>0 and V 2,y € E; there exists a
coupling such that

E[d )X =5 _y] 1—p)d, (z,y). B
Then the mixing time of (X,) satisfies :

-
t o (€) < %[1og(diam(9))+1og(§)], { L
~where diam(2) 2 max{d, (z,y): 2,y € Q}.
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Path coupling (ctd.)

» PROOF:

/Let z,y € () (not necessarily adjacent in H), and let \
I'=(z=u,u,..,u =y
be a shortest path between x,y in H.

Couple X, Y, started at z,y by composing couplings:

> Base: couple X, Y started at (z,u,) satisfying .= .

» Extend a coupling of (X, Y) from (x,u,) to a coupling of
(X,2) from (z,u,. ) via a coupling of (Y,Z2) from (u,u,. )
[generate (X, Y;) then generate ( Y,,Z;) conditioned on Y;].

» This satisfies J since:

E:c,um [dH(Xl’Zl)] = E:cu [dH (Xl’yl)] + Eui.uiﬂ [dH (Yl’Zl)]

¢ - \ @) d, (1%, (- My ) W)
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Example: Sampling legal coloring

» THEOREM: ([Jerrum "95], [Salas, Sokal "97])
Let G be a graph on n vertices with maximum degree A.

If ¢ > 2A then the Glauber dynamics for legal colorings

of G via gcolorshas t_ (g) < qq__QAA nllog(n) + log(1)].

» PROOF:

/Premetric: connect z,y € [q|" (possibly illegal) in H iff they\
differ 1n a single coordinate (extends to Hamming distance). ||

The statement of the theorem will follow from providing a :

fi .
path coupling satisfying the conthX)tion o Where: i
q — | l
P = : |
(g —A)n J ‘

9 |
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Sampling legal colorings (ctd.)

K A contracting coupling on H: \
Take two states z,y that differ only at vertex v.

> Update the vertex v itself : coalesce (G
> Update some u not adjacent to v : identity. G

> Update u adjacent to v : available color lists are
C,= C\ 2(v) and C, = C\ y(v) for some C C [q].
= If|C,| =|C,| € C:coupleC,, C,via swapping
z(v),y(v) and the identity-coupling elsewhere.

g

= Else: w.lo.g. |C,|=|C,|—1. Let /(u) € C, uniformly.

| = If /(u) = 2(v) then reuse it for 2/(u). GG
; » Else: Let 2/(u) € C, uniformly. @@ /
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Sampling legal colorings (ctd.)

i
o |

- p
» Accounting;:
O > Eliminating a disagreement < Updating v . 1/ o
_, e > New disagreement < Updating v ~ v A1
| and selecting the color z(v) for ¢/(u) . n g
|| » Altogether:
B B[4, 1) <1-1(1-2)=1- 4222
y nt  g—A (¢ —A)n
b
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