

Summer school in Probability

Markov Chain Minicourse

lecture 2

Eyal Lubetzky

Microsoft Research

The Ising model

- ▶ Underlying geometry: finite graph G=(V,E).
- Set of possible configurations:

$$\Omega = \left\{ \pm 1 \right\}^V$$

▶ Probability of a configuration $\sigma \in \Omega$ given by the *Gibbs distribution*

$$\mu(\sigma) = \frac{1}{Z(\beta)} \exp\left(\beta \sum_{xy \in E} \sigma(x)\sigma(y)\right)$$

[no external field]

- Ferromagnetic \iff inverse-temperature $\beta \geq 0$.
- Goal: sample the Gibbs distribution efficiently. Main focus is on lattices at or near a certain critical β_c .

Glauber dynamics for Ising

- One of the most commonly used MC samplers for the Gibbs distribution:
 - ➤ Update sites via *iid* Poisson(1) clocks
 - Each update replaces a spin at $u \in V$ by a new one $\sim \mu$ conditioned on $V \setminus \{u\}$ (heat-bath version).
- Ergodic reversible MC with stationary measure μ .
- Introduced by Glauber in 1963. Other versions of the dynamics include e.g. Metropolis.
- For $\beta \ge 0$ we can couple two chains such that one is always above the other (*monotone coupling*).

Glauber dynamics for critical Ising

How fast does the dynamics converge?

- > 256 x 400 square lattice w. boundary conditions:
 - (+) at bottom
 - (-) elsewhere.
- > Frame every $\sim 2^{30}$ steps, *i.e.* $\sim 2^{13}$ updates/site.

Example: Glauber dynamics for critical Ising on the square lattice

- ➤ 256 x 400 square lattice w. boundary conditions:
 - (+) at bottom
 - (-) elsewhere.
- Frame after 2^{20} steps, i.e. ~ 10 updates per site.

Strong stationary times

- ▶ Recall: Let (X_t) be a Markov chain.
 - The random mapping representation of (X_n) is an i.i.d. sequence (Z_t) and a map f such that $X_t = f(X_{t-1}, Z_t)$.
 - We say that τ is a randomized stopping time for (X_t) if it is a stopping time for such a representation (Z_t) .
- ▶ Def.: A *strong stationary time* for a Markov chain (X_t) with stationary measure π is a randomized stopping time τ such that $X_\tau \sim \pi$ independent of τ , *i.e.*

$$\forall t: \mathbb{P}(\tau=t,X_{_{\tau}}=y) = \mathbb{P}(\tau=t)\,\pi(y).$$

$$(\Leftrightarrow \forall t: \mathbb{P}(\tau\leq t,X_{_{\tau}}=y) = \mathbb{P}(\tau\leq t)\,\pi(y).)$$

Bounding the mixing time

THEOREM: ([Aldous-Diaconis '86,'87]

If τ is a strong stationary time for a Markov chain (X_t) with stationary distribution π then

$$\max_{\boldsymbol{x} \in \Omega} \left\| \mathbb{P}_{\boldsymbol{x}}(X_t \in \cdot) - \boldsymbol{\pi} \right\|_{\mathrm{TV}} \leq \max_{\boldsymbol{x} \in \Omega} \mathbb{P}_{\boldsymbol{x}}(\tau > t).$$

COROLLARY:

Let τ be a strong stationary time for a Markov chain (X_t) with stationary distribution π and let t_0 be an integer such that $\max_{x \in \Omega} \mathbb{P}_x(\tau > t_0) \leq \varepsilon$. Then $t_{\min}(\varepsilon) \leq t_0$.

Example 1: strong stationary times

- ▶ Let (X_t) be a lazy simple RW on the hypercube $\{0,1\}^n$.
- ▶ Random mapping representation: $Z_t = (J_t, I_t)$ where $J_t \in [n]$ and $I_t \in \{0,1\}$ are both independent uniform.
- Strong stationary time:

$$\tau_{\text{refresh}} = \min \left\{ t: \{\boldsymbol{J}_1, ..., \boldsymbol{J}_t\} = [n] \right\}.$$

By the coupon collector paradigm:

$$\max_{x \in \Omega} \mathbb{P}_{x} \left(\tau_{\text{refresh}} > n \log n + cn \right) \leq e^{-c},$$

and so

$$\left[t_{\min}(\varepsilon) \le n \log n + \log(\frac{1}{\varepsilon})n.\right]$$

Example 2: strong stationary times

- Let (X_t) be the top-to-random card shuffle: Start with n cards, repeatedly insert top into a random position.
- ▶ Strong stationary time: 1 step after bottom reaches top:

$$\tau = \min\left\{t: X_t(1) = n\right\} + 1.$$

- Proof: By induction, given that the cards below original bottom card (card # n) are $\{x_1, \ldots, x_k\}$ their ordering is uniform over S_k .
- Similarly to the coupon collector: $\tau = \tau_1 + \tau_2 + ... + \tau_{n-1} + 1$ for $\tau_i \sim \text{Geom}(k/n)$ ind.
- COROLLARY:

$$\left(t_{\text{mix}}(\varepsilon) \le n \log n + \log(\frac{1}{\varepsilon})n.\right)$$

Proof (strong stationary times bound)

▶ Use separation distance:
$$\left[\operatorname{sep}(t) \triangleq \max_{x,y \in \Omega} \left[1 - \frac{\mathbb{P}_x(X_t = y)}{\pi(y)} \right] \right]$$
.

- Proof will follow from showing that:
 - > Strong stationary times bound separation distance:

$$\operatorname{sep}(t) \le \max_{x \in \Omega} \mathbb{P}_{x}(\tau > t).$$

> Separation distance bounds total variation distance:

$$\left\|\max_{\boldsymbol{x}\in\Omega}\left\|\mathbb{P}_{\boldsymbol{x}}(X_{\boldsymbol{t}}\in\cdot)-\boldsymbol{\pi}\right\|_{\mathrm{TV}}\leq \mathrm{sep}(\boldsymbol{t}).\right\|$$

Strong stationary times bound separation distance:

If τ is a strong stationary time then for any $x,y\in\Omega$,

$$1 - \frac{\mathbb{P}_{\boldsymbol{x}}(X_{\boldsymbol{t}} = \boldsymbol{y})}{\pi(\boldsymbol{y})} \leq 1 - \frac{\mathbb{P}_{\boldsymbol{x}}(X_{\boldsymbol{t}} = \boldsymbol{y}, \, \tau \leq \boldsymbol{t})}{\pi(\boldsymbol{y})} = \mathbb{P}_{\boldsymbol{x}}(\tau > \boldsymbol{t})$$

and therefore $\operatorname{sep}(t) \leq \max_{x \in \Omega} \mathbb{P}_{x}(\tau > t)$.

Separation distance bounds total variation distance:

$$\begin{split} \left\| \mathbb{P}_{\boldsymbol{x}}(X_t \in \cdot) - \pi \right\|_{\mathrm{TV}} &= \sum_{\boldsymbol{y} \in \Omega} \left[\pi(\boldsymbol{y}) - \mathbb{P}_{\boldsymbol{x}}(X_t = \boldsymbol{y}) \right] \\ &= \sum_{\boldsymbol{\pi}(\boldsymbol{y}) > \mathbb{P}_{\boldsymbol{x}}(X_t = \boldsymbol{y})} \pi(\boldsymbol{y}) \Big[1 - \frac{\mathbb{P}_{\boldsymbol{x}}(X_t = \boldsymbol{y})}{\pi(\boldsymbol{y})} \Big] \\ &= \max_{\boldsymbol{\pi}(\boldsymbol{y}) > \mathbb{P}_{\boldsymbol{x}}(X_t = \boldsymbol{y})} \pi(\boldsymbol{y}) \Big[1 - \frac{\mathbb{P}_{\boldsymbol{x}}(X_t = \boldsymbol{y})}{\pi(\boldsymbol{y})} \Big] \end{split}$$
 and hence
$$\max_{\boldsymbol{x} \in \Omega} \left\| \mathbb{P}_{\boldsymbol{x}}(X_t \in \cdot) - \pi \right\|_{\mathrm{TV}} \leq \mathrm{sep}(t). \end{split}$$

Lower bounds on mixing

▶ We have seen that the top-to-random shuffle has

$$t_{\min}(\varepsilon) \le n \log n + \log(\frac{1}{\varepsilon})n$$
.

Is this tight? How do we provide lower bounds?

- Direct approach: by definition of TV distance.
- PROPOSITION: [Aldous-Diaconis '86]

Let (X_t) be the top-to-random shuffle on n cards. Then for any $\varepsilon > 0$ there exists some C > 0 such that

$$d_{\scriptscriptstyle \mathrm{TV}}(n\log n - Cn) > 1 - \varepsilon$$
.

In particular, $t_{\text{mix}}(1-\varepsilon) > n \log n - Cn$.

Top-to-random lower bound

- ▶ Start from the inverse identity $X_0 = (n,...,1)$.
- ▶ Def: $A_j \triangleq \{\text{items } j, j-1, ..., 1 \text{ have original relative order}\}$ Observe:
 - As long as card j (*i.e.* j-th from bottom) did not reach the top (even +1 step) the event A_j necessarily holds!
 - > Stationary (uniform) probability: $\pi(A_j) = 1 / j!$
- ▶ Def: $\tau_j = \min\{t : X_t(1) = j\}.$ (jth-bottom \leadsto top)
- ▶ Proof will follow from showing that for some C(j)>0, $\mathbb{P}(\tau_j \geq t_n) \geq 1 \frac{1}{j-1} \text{ , where } t_n \triangleq n \log n Cn,$

by choosing a large enough constant *j*.

Top-to-random lower bound (ctd.)

Remains to analyze τ_j , the time it takes the jth from bottom card to hit the top of the deck. As before, τ_j is a sum of independent geometrics:

$$egin{aligned} au_j &= \sum_{i=j}^{n-1} au_{j,i} \quad, \quad au_{j,i} \sim \operatorname{Geom}(i \, / \, n) \quad \blacktriangleleft \quad \frac{\mathbb{E}[au_{j,i}] = n / i}{\operatorname{Var}(au_{j,i}) < n^2 / i^2} \end{aligned}$$

It follows that $\mathbb{E}[\tau_j] \ge n \log n - n(1 + \log(j)),$ $\operatorname{Var}(\tau_j) \le n^2 / (j-1),$

and Chebyshev's inequality implies that

$$\mathbb{P}(\tau_j < n \log n - Cn) \le \frac{1}{j-1}$$

for a choice of $C = 2 + \log(j)$.

Lower bounds via conductance

- Systematic approach: Relate mixing to conductance ([Lawler-Sokal '88, Jerrum-Sinclair '89]):
 - For a chain with transition kernel P and stationary distribution π define:

$$Q(x,y) \triangleq \pi(x)P(x,y) \; ; \; Q(A,B) \triangleq \sum_{x \in A, y \in B} Q(x,y).$$

 \triangleright The conductance (or bottleneck ratio) of a set S is

$$\Phi(S) \triangleq \frac{Q(S, S^c)}{\pi(S)}$$

and the conductance (Cheèger constant) of the chain is

$$\Phi \triangleq \min_{S:\pi(S) \leq \frac{1}{2}} \Phi(S).$$

Intuitively: the chain is trapped inside *S* and this represents a bottleneck for the mixing.

Examples of bottlenecks

▶ Binary tree on $n = 2^k - 1$ vertices:

▶ Two glued 2-dimensional tori on n^2 vertices each:

$$\begin{pmatrix}
\Phi \approx 1/n^2 \\
t_{\text{mix}} \gtrsim n^2
\end{pmatrix}$$

Lower bound on mixing

THEOREM:

Every Markov chain satisfies $t_{\text{mix}}(\frac{1}{4}) \ge \frac{1}{4\Phi}$.

▶ PROOF:

Let μ_S be the stationary dist. conditioned on being in S:

$$\mu_S(x) \triangleq \pi(x) \mathbf{1}_{\{x \in S\}} / \pi(S).$$

By the triangle inequality

$$\begin{split} & \left\| \mu_{S} - \pi \right\|_{\mathrm{TV}} \leq \left\| \mu_{S} - \mu_{S} P^{t} \right\|_{\mathrm{TV}} + \left\| \mu_{S} P^{t} - \pi \right\|_{\mathrm{TV}}. \\ & \geq \frac{1}{2} \quad \underbrace{\text{CLAIM}:}_{\text{this is}} \leq t \, \Phi(S) \quad \text{for } t = t_{\mathrm{mix}}(\frac{1}{4}) \end{split}.$$

Lower bound on mixing (ctd.)

- It remains to show $\left\|\mu_{S}-\mu_{S}P^{t}\right\|_{\mathrm{TV}}\leq t\,\Phi(S)$.
- Key inequality: $\|\mu_S \mu_S P\|_{\mathrm{TV}} = \Phi(S)$ by definition.
- ▶ Using the fact $\|\varphi P \psi P\|_{\text{TV}} \leq \|\varphi \psi\|_{\text{TV}}$ (coupling) and the triangle inequality:

$$\begin{split} \left\| \mu_{\scriptscriptstyle S} P^{\scriptscriptstyle t} - \mu_{\scriptscriptstyle S} \right\|_{\scriptscriptstyle \mathrm{TV}} & \leq \left\| \mu_{\scriptscriptstyle S} P^{\scriptscriptstyle t} - \mu_{\scriptscriptstyle S} P^{\scriptscriptstyle t-1} \right\|_{\scriptscriptstyle \mathrm{TV}} + \ldots + \left\| \mu_{\scriptscriptstyle S} P - \mu_{\scriptscriptstyle S} \right\|_{\scriptscriptstyle \mathrm{TV}} \\ & \leq t \, \Phi(S). \end{split}$$

It now follows that $t_{\text{mix}}(\frac{1}{4}) \Phi(S) \geq \frac{1}{4}$.

Bottlenecks in Glauber for Ising

- ▶ Recall the definition of the dynamics:
 - ➤ Update sites via *iid* Poisson(1) clocks
 - Each update replaces a spin at $u \in V$ by a new one $\sim \mu$ conditioned on $V \setminus \{u\}$ (heat-bath version).

- ▶ How fast does it converge to equilibrium?
 - \triangleright Can be exponentially slow in the size of the system: At low temp. (large β) there may be a bottleneck between "plus" and "minus" states (see tutorial).

General (believed) picture for the Glauber dynamics

- Setting: Ising model on the lattice $(\mathbb{Z}/n\mathbb{Z})^d$. Belief: For some critical inverse-temperature β_c :
- Low temperature: $(\beta > \beta_c)$ gap⁻¹ and t_{mix} are *exponential* in the surface area.
- Critical temperature: $(\beta = \beta_c)$ gap⁻¹ and t_{mix} are *polynomial* in the surface area.
- High temperature: $(\beta < \beta_c)$
 - > **Rapid** mixing: gap⁻¹ = O(1) and $t_{\text{mix}} \times \log n$
 - Mixing occurs abruptly, i.e. there is *cutoff*.

Gap/mixing-time evolution for Ising on the complete graph

(Scaling window established in [Ding, L., Peres '09])