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The Ising model

» Underlying geometry: finite graph G=(V,E ) .

» Set of possible configurations: ‘g | G«G&
Q={+1}" ) -
» Probability of a configuration o€ At as F
given by the Gibbs distribution CG-6 |
1 D )
‘ (u(g) Z(ﬁ) exp ( ﬁzxyEE )a(y)D [no external field]

) Perromagnetzc ~~ inverse-temperature (> 0.

» Goal: sample the Gibbs distribution efficiently.
Main focus is on lattices at or near a certain critical ..

Eyal Lubetzky, Microsoft Research
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Glauber dynamics for Ising

» One of the most commonly used MC samplers for the
Gibbs distribution:

> Update sites via iid Poisson(1) clocks

> Each update replaces a spinat u €V
by a new one ~ 1 conditioned
on V \{u} (heat-bath version).

» Ergodic reversible MC with stationary measure px.

» Introduced by Glauber in 1963. Other versions of the
dynamics include e.g. Metropolis.

» For >0 we can couple two chains such that one is
always above the other (monotone coupling).

Eyal Lubetzky, Microsoft Research
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Glauber dynamics for critical Ising

» How fast
does the
dynamics
converge?

F

> 256 x 400 square lattice w. |
boundary conditions:
(+) at bottom

(=) elsewhere.

> Frame every ~2% steps,
L.e. ~2B updates/site.
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Example: Glauber dynamics for
critical Ising on the square lattice

\

5256 x 400 square lattice
w. boundary conditions:
(+) at bottom
(-) elsewhere.
»Frame after 2% steps, i.e.
~10 updates per site.




PIMS Probability Summer School 2010

Strong stationary times 6

Strong stationary times

» Recall: Let (X,) be a Markov chain.

> The random mapping representation of (X)) is an i.i.d.
sequence (Z,) and a map f such that X, = (X, ,Z,). |

> We say that 7 is a randomized stopping time for (X,) | =
if it is a stopping time for such a representation (Z7,) .

» Def.: A strong stationary time for a Markov chain (X))
with stationary measure 7 is a randomized stopping
time 7 such that X ~ 7 independent of 7, i.e.

Vi Plr =X =g)=Plr=d1)m(y)-
(& Vt:P(r<t,X =y)=PF <t)n(y). )

Eyal Lubetzky, Microsoft Research
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Bounding the mixing time

» THEOREM: ([Aldous-Diaconis 86, 87]

If 7 1s a strong stationary time for a Markov chain (X))
with stationary distribution 7 then

maXH]P’x(Xt €-)— 7THTV <maxP (1 > 1).

ze() zeC)

» COROLLARY: ‘

Let 7 be a strong stationary time for a Markov chain (X) | B

| with stationary distribution 7 and let #, be an integer such | i

| that maxP (7 >¢)<e. Thent () <t. [
.TEQ mix

= Eyal I;ubetzky,ﬁMicr,oséﬁfR%e;‘L“:hﬂé_-
]
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Example 1: strong stationary times

» Let (X,) be alazy simple RW on the hypercube {0,1}"

» Random mapping representation: Z, = (J,, I,) where
J,£[n| and I, €{0,1} are both independent uniform. m

» Strong stationary time: <8

[Trefresh — TOIn {t : {Jl"”’Jt} — [n]})

» By the coupon collector paradigm: - |

—=C

max P (Tre ., > nlogn + cn)g e,

zES) fr

and so
[tmix (€) < nlogn + log(+)n j

Eyal Lubetzky, Microsoft Research




PIMS Probability Summer School 2010

Strong stationary times 9

Example 2: strong stationary times

» Let (X,) be the top-to-random card shuffle: Start with
n cards, repeatedly insert top into a random position.

» Strong stationary time: 1 step after bottom reaches top: ﬁ

[’r = min {t : X (1) = n} + 1) 8§
> Proof: By induction, given that the cards below
original bottom card (card # n) are {z,...,z,} their
ordering is uniform over S,,.

» Similarly to the coupon collector:
T=74+ 79+ ..+7, 1+ 1 for 7,~ Geom(k/n) ind.

» COROLLARY:
t (e) <nlogn + log(<)n ]

Eyal Lubetzky, Microsoft Research
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Proof (strong stationary times bound)

_ P(X;=y)
. ™(y) ]]

» Proof will follow from showing that: ﬁ

» Use separation distance: [Sep(t) = max
Ty

> Strong stationary times bound separation distance:
[sep(t) < maxP (7 > t)j
zeQ 7

> Separation distance bounds total variation distance:

1&&&}{”1?’37 (X, €-)— 7T||TV < Sep(t).J

z€()

Eyal Lubetzky, Microsoft Research
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» Strong stationary times bound separation distance:
4 p
If 7 1s a strong stationary time then for any x,y € €2 ,

P(X,=y _. BX =471

= == =P (7 > 1)
m(y) (y)
and therefore sep(t) < maxP (7 > 1).
\ =) J =
» Separation distance bounds total variation distance: %
- N
||IP’$ (== 7THTV — Z [’N(y) —P (X = y)] | 2

_ (=)

m(y)>P (X,=y)

i \\and hence rgg)x”l?’x Ul — 7THTV < sep(?).

 Eyal Lubetzky, Microsoft Research
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Lower bounds on mixing

» We have seen that the top-to-random shutffle has
t_(€) <nlogn +log(i)n.

Is this tight? How do we provide lower bounds?

» Direct approach: by definition of TV distance. A

» PROPOSITION: [Aldous-Diaconis "86] %

1 Let (X,) be the top-to-random shuffle on 7 cards. Then |
i for any € > 0 there exists some C' > 0 such that |

d=(mloga—=Cnl =1 =
. In particular, ? (1—¢)>mnlogn —Cn.

 Eyal Lubetzky, Microsoft Research
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Top-to-random lower bound

» Start from the inverse identity X,=(n,...,1).

» Def: Aj - {items 7, 7 —1,...,1 have original relative order} |
Observe: ﬁ

> As long as card j (i.e. j-th from bottom) did not reach |
the top (even +1 step) the event A, necessarily holds!

> Stationary (uniform) probability: m(4,)=1/j!
» Def: 7. =min {t : X, (1) = j}. (j!-bottom ~~ top)
» Proof will follow from showing that for some C(y)>0,
P(r.>t)>1——— , where ¢ =nlogn—Cn,

by choosing a large enough constant ;.

Eyal Lubetzky, Microsoft Research
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Top-to-random lower bound (ctd.)

» Remains to analyze 7, , the time it takes the j'" from
bottom card to hit the top of the deck. As before, 7;is a
sum of independent geometrics:

TP T Z_:Tﬂ y Ty Pelmaie 'R Valj&iT. J< n2/ i’
—1 J>t

» It follows that E[T ] > nlogn —n(1+ log(y)),
Var( <n / 7—1),

and Chebyshev’s mequahty implies that

P(r, <nlogn —Cn) < %
]_

for a choice of C =2+ log(y).

Eyal Lubetzky, Microsoft Research
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Lower bounds via conductance

» Systematic approach: Relate mixing to conductance
([Lawler-Sokal 88, Jerrum-Sinclair "89]) :

> For a chain with transition kernel P and stationary
distribution 7 define: ﬁ

Qa.y) £ w(@)P(x.y) : QAB)E Y Q@y). |

€A, yeB

> The conductance (or bottleneck ratio) of a set S'is |
()
and the conductance (Cheeger constant) of the chain is

(CID — mm @(S)]

» Intuitively: the chain is trapped inside S and this
represents a bottleneck for the mixing.

Eyal Lubetzky, Microsoft Research
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Examples of bottlenecks

» Binary tree on n = 2% — 1 vertices:

- o =<1 |
m " |
g tmix - .

» Two glued 2-dimensional tori on n? vertices each: =
o =< 1/ n’
t  >mn’
mix

Eyal Lubetzky, Microsoft Research
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Lower bound on mixing
» THEOREM:
|
‘ Every Markov chain satisfies *_ () > S
» PROCF:
/Let (¢ be the stationary dist. conditioned on being in S : A
A |
ﬁ pe(z) = m(x) l{xes}/W(S). | §
| | By the triangle inequality zZ
| t t |
“MS_WHTVS'MS_’MSP Tv—l_'uSP ~ My |
‘ > U CLAIM: < Y s
due to 5S¢ This is <t &(5) fort =t (%)

~ Eyal Lubetzky, Microsoft Research
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Lower bound on mixing (ctd.)

/> < tP(9). A

It remains to show H — . P!
Mg — Hg TV

» Key inequality: ||,u5 — 'USPHTV =®(.5) by definition.

» Using the fact HgaP = ¢PHTV = Hg@ = ¢HTV (coupling)
and the triangle inequality: P
V_I_"'_'_H’LLSP_’MSHTV |

Pt = | S|P — P
<td(9).
» It now follows that ¢, (1) ®(S5) > Y. N

5

Eyal Lubetzky, Microsoft Researc
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Bottlenecks in Glauber for Ising

» Recall the definition of the dynamics:

> Update sites via iid Poisson(1) clocks gy

> Each update replaces aspinat u €V |= 4 _
by a new one ~ 1 conditioned % E
on V \{u} (heat-bath version). '-- ” |

» How fast does it converge to equilibrium?

> Can be exponentially slow in the size of the system:
At low temp. (large 3) there may be a bottleneck

between “plus” and “minus” states (see tutorial).

Eyal Lubetzky, Microsoft Research
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General (believed) picture for
the Glauber dynamics

» Setting: Ising model on the lattice (Z/nZ)<.
Belief: For some critical inverse-temperature g3, :

CEXD)

» Low temperature:

gap™ and t_;, are exponential in the surface area.
» Critical temperature: =N

gap? and ¢t ;, are polynomial in the surface area.
» High temperature:

> Rapid mixing: gap ' = O(1) and ?_;, < log n

mix

» Mixing occurs abruptly, i.e. there is cutoff.

Eyal Lubetzky, Microsoft Research
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Gap/mixing-time evolution for
Ising on the complete graph

fgap ', 1, = S expl2(5 1))

[Ding, L., Peres "09])

Eyal Lubetzky, Microsoft Research

(Scaing window established in




