Non-backtracking random




Random Walks on graphs

/\ . .
o Random walk on G I satisfying some |
_ natural properties
o Simple to analyze:

o Mixes quickly to stationary distribution.
o — efficient sampling of the vertices.

o Numerous applications, e.qg.:
e Volume computation and enumeration
o Space efficient algorithms for STCONN.

e De-randomization and conservation of
random bits.




De-randomization via random walks

o Randomized algorithm A :
e Requires an n-bit seed.
e One sided error with fixed probability O < pe < 1.

o Naive amplification of pe to exp(—2(k))
requires k£ n random bits.

o Random walks on expanders:
o W = random walk of length & .
e S = set of vertices of fixed proportion.
o Pr[W misses S] = exp (—Q2(k))
o pe ~ exp(—S2(k)) using only n + ©(k) bits!




Non-backtracking random walks

o In many cases (cf. above application)
there is "no sense” in backtracking.

(Q: Can we benefit from forbidding the
random walk to backtrack?

'Q: What can be said about the distribution
of a set of vertices sampled this way?
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Expanders and random walks

o G = d-regular graph on n vertices.

o RW on G mixes to the stat. dist. 7 <—
(G is connected and non-bipartite.

o Let G have eigenvaluesd=X; > ... > A\ :
o )\ < d iff G is connected.
o A\ > —d iff G is non-bipartite.

0 = A < d,where A = max{As, \n}.

o How fast does the RW mix in this case?



Mixing rate of RWs

O Pigff) = Pr[ RW of length k from v ends in v |.
o The mixing rate of G is defined as:

(log,(8) steps
for the L
distance from
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o If G is an (n, d, \)-graph, p(G) = X /d :

S d ifuwwe E (G)'
d g 0 otherwise.

Largest eigenvalue of pP(F) — 1
in absolute value is (\/d)* .
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Non-backtracking RWs mix faster

o Define p(G) analogously for NBRWs.

o p is a function of \,d , is always < p,
and may reach ~p/2 (twice faster)!
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The mixing rate of NBRWs

o [Alon, Benjamini, L, Sodin '‘07]:

@ NBRW on an (n,d,\)-graph with d > 3 and
A < d converges to the uniform distribution with
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Computing the mixing rate of NBRWs

o A% 1= # k-long NB walks from u to v.
o Goal: determine the spectrum of A(),

O Clalm [ A(D) = 4 . < '| AdjacenCY.ma’rr'ix of G '

A2 = A2 _ 45,
At = A4k _ (g —1)Ak=1)

.

walks by 1 edge.
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all extensions of TheJ (" # of BT walks we counted:

o A® is a polynomial
of A, yet might be
complicated to analyze:

Pey1(x) = 2Pi(x) — (d—1)P;_1(x).




Chebyshev polynomials of the 2"d kind

o The polynomials Ui(cos ) = Si”(gi",ﬁgl)e) satisfy:

U = 22U — U, ) l Reminds the recursion l
k+1($) * k(x) k 1($) that A® satisfies...
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Chebyshev polynomials of the 2"d kind

o The polynomials Ui(cos ) = S'”((Sf’,fl)e) satisfy:

U = 22U — U, ) l Reminds the recursion l
k+1($) * k(m) k 1($) that A® satisfies...

where:

o (qv=)

g (z) =y %Uﬁc(iﬂ) — m{ﬂg_g(m) :

o Result now follows from an asymptotic
analysis of the behavior of ¢, (x).
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Distribution of sampled vertices: RW

Recall: n-long RW on an expander:
e Costs ©(n) random bits. rl“r‘igh‘r" pr'obabili‘ry'
e Pr| missing a linear set | = exp(-Q(n)).

l Q: What about frequencies of visits at vertices? '

o Random setting' Poisson visits at a given vertex. '
Classical n balls - n bins ’i Max # visits ~ log n / log log n . l

o RW setting: # of visits reaches Q(log n) ...

(tOO mUCh) Large probability of traversing an ..
edge back & forth Q(log n) fimes © ® ”




Distribution of sampled vertices: NBRW

Backtracking i Too many visits to a vertex " | Short czcles'
o What about NBRWs and high girth?
o [Alon, Benjamini, L, Sodin ‘08]:

-
Almost V NBRW of length n on a high-girth

n-vertex expander has the “right” maximum # of
visits to a vertex: (14-0(1)) log n / log log n.

o Girth requirement: Q(log log n) (tight).
o Indeed, maximum = balls & bins setting.
What about the entire distribution?
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Poisson approximation for NBRW

. 'unbounded girth is necessary for a l
o Recall: Poisson dist. of visits to vertices.

o [Alon, L]: this requirement is sufficient:

(Almost ¥V NBRW of length n on an n-vertex (g
expander of girth ¢ = w(1) makes t visits to
(1+0(1)) n/(et!) vertices.

o Moreover, high-girth — relative point-wise
convergence to the Poisson distribution:

Stronger
version of
Brun's

1f in addition g = Q(log log n), the above
holds uniformly over all £ up to the “right”
maximum of the distribution.

Sieve
(error
estimate)




Open problems

o Recall: |Maximum # of visits to a vertex in
n-long NBRWs on high-girth n-vertex

expanders is w.h.p. (11o1)) 9" .
loglogn

o For which other families of d-regular

graphs, d > 3, is this maximum -~ 29" ?
loglogn

o Does a NBRW on any n-vertex d-regular
(d > 3) graph visit some vertex w.h.p.

at least (1+0(1))'%9" _ times?
log logn
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