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Random Walks on graphs

 Random walk on G:

 Simple to analyze:

 Mixes quickly to stationary distribution.

 efficient sampling of the vertices.

 Numerous applications, e.g.:
 Volume computation and enumeration

 Space efficient algorithms for STCONN.

 De-randomization and conservation of 
random bits.

satisfying some 

natural properties
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 Randomized algorithm A :

 Requires an n-bit seed.

 One sided error with fixed probability                  .

 Naïve amplification of      to                     
requires k n random bits.

 Random walks on expanders: 
 W = random walk of length k .

 S = set of vertices of fixed proportion.



 using only n + £(k) bits! 

G
S

De-randomization via random walks
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Non-backtracking random walks

 In many cases (cf. above application)
there is “no sense” in backtracking.

Q: Can we benefit from forbidding the
random walk to backtrack?

Q: What can be said about the distribution
of a set of vertices sampled this way?
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Expanders and random walks

 G = d-regular graph on n vertices.

 RW on G mixes to the stat. dist. ¼
G is connected and non-bipartite.

 Let G have eigenvalues d = ¸1 ¸ … ¸ ¸n:

 ¸2 < d iff G is connected.

 ¸n > {d iff G is non-bipartite.

 ¸ < d , where                             

 How fast does the RW mix in this case?              

some 

fixed 

integer
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Mixing rate of RWs

 = Pr[ RW of length k from u ends in v ].

 The mixing rate of G is defined as:

 If G is an (n, d, ¸)-graph, ½(G) = ¸ /d : 

0

0

Largest eigenvalue of                     

in absolute value is             .

steps
for the           

distance from 
¼ to be        . 
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Non-backtracking RWs mix faster

 Define          analogously for NBRWs.

  is a function of ¸,d , is always · ½, 
and may reach ~½/2 (twice faster)!

3-regular graphs 10-regular graphs
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The mixing rate of NBRWs

 [Alon, Benjamini, L, Sodin ’07]:

 Corollary:
Ramanujan 

graphs
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Computing the mixing rate of NBRWs

 := # k-long NB walks from u to v.

 Goal: determine the spectrum of A(k).

 Claim:

 A(k) is a polynomial 
of A, yet might be 
complicated to analyze:

Adjacency matrix of G

all extensions of the 
walks by 1 edge. 

# of BT walks we counted:
u v v

w
NB k-long walk

d{1 choices
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Chebyshev polynomials of the 2nd kind

Reminds the recursion 
that A(k) satisfies…
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 The polynomials                                satisfy:

 Indeed:

 Result now follows from an asymptotic 
analysis of the behavior of qk(x).

Chebyshev polynomials of the 2nd kind

Reminds the recursion 
that A(k) satisfies…

where:
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Distribution of sampled vertices: RW

 Recall: n-long RW on an expander:

 Costs £(n) random bits.

 Pr[ missing a linear set ] = exp(-­(n)).

 Random setting:

 RW setting: # of visits reaches (log n) … 

(too much)

“right” probability

Q: What about frequencies of visits at vertices?

Classical n balls  n bins

Poisson visits at a given vertex.

Max # visits » log n / log log n .

Large probability of traversing an 
edge back & forth (log n) times
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Distribution of sampled vertices: NBRW

 What about NBRWs and high girth?

 [Alon, Benjamini, L, Sodin ’08]:

 Girth requirement: (log log n) (tight).

 Indeed, maximum = balls & bins setting. 

What about the entire distribution?

Almost 8 NBRW of length n on a high-girth

n-vertex expander has the “right” maximum # of 

visits to a vertex: (1+o(1)) log n / log log n.

Too many visits to a vertexBacktracking Short cycles
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Poisson approximation for NBRW

 Recall:

 [Alon, L]: this requirement is sufficient:

 Moreover, high-girth relative point-wise 
convergence to the Poisson distribution:

Almost 8 NBRW of length n on an n-vertex 

expander of girth g = !(1) makes t visits to 

(1+o(1)) n/(e t!) vertices.

If in addition g = ­(log log n), the above 

holds uniformly over all t up to the “right”

maximum of the distribution.

unbounded girth is necessary for a 
Poisson dist. of visits to vertices.

Brun’s 
Sieve

Stronger 
version of 

Brun’s 
Sieve 
(error 

estimate)
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Open problems

 Recall:

 For which other families of d-regular 
graphs, d ¸ 3, is this maximum            ?

 Does a NBRW on any n-vertex d-regular 
(d ¸ 3) graph visit some vertex w.h.p. 
at least (1+o(1)) times?

Maximum # of visits to a vertex in 
n-long NBRWs on high-girth n-vertex 

expanders is w.h.p. (1+o(1)) .
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