

La Pietra 2011 Mini course

lectures 3.4

Cutoff for Ising on the lattice

Eyal Lubetzky

Microsoft Research

Recap: product chains $L^1 \rightarrow L^2$ reduction

PROPOSITION:

Let $X_t = (X_t^1, ..., X_t^n)$ be a product chain where each X_t^i is ergodic with stationary measures π_i and $\pi = \prod_i \pi_i$. Let

$$\mathfrak{M}_{_t} = \sum_{_{i=1}}^{^n} \mathfrak{m}_{_t} \quad \text{where} \quad \mathfrak{m}_{_t} = \left\| \mathbb{P}(X_t^i \in \cdot) - \pi_{_i} \right\|_{L^2(\pi_{_i})}^2.$$

For $\forall \delta > 0$ there $\exists \epsilon > 0$ so that if for some t > 0

$$\max_{i} \left\| \mathbb{P}(X_{t}^{i} \in \cdot) - \pi_{i} \right\|_{L^{\infty}(\pi_{i})} < \varepsilon$$

then

$$\left| \left\| \mathbb{P}(X_{_t} \in \cdot) - \pi \right\|_{\mathrm{TV}} - \left(2\Phi \big(\tfrac{1}{2} \sqrt{\mathfrak{M}_{_t}} \big) - 1 \big) \right| < \delta \,.$$

Products of i.i.d.'s

COROLLARY:

Let X_t be a product chain made of n i.i.d. copies of a finite ergodic chain Y_t with spectral-gap and log-Sobolev const gap and α_s resp. and stationary measure φ . If

$$\log \varphi_{\min}^{-1} \le n^{o(\alpha_{\rm g}/{\rm gap})}$$

then X_t exhibits cutoff at $\frac{1}{2} \operatorname{gap}^{-1} \log n$ with window of order $O(\alpha_s^{-1} \log_+ \log \varphi_{\min}^{-1})$.

- Break up \mathbb{Z}_n^d to cubes of side-length $\log^3 n$. Dynamics on such a cube:
 - $> \alpha_{\rm s}^{-1} = O(1)$
 - $> \log \varphi_{\min}^{-1}(\sigma) = O(\log^{3d} n) = n^{o(1)}$
- Take non-adjacent cubes $Q_1, ..., Q_m$ $(m = (n/\log^3 n)^d)$ and suppose as if the projection on those would predict mixing for the entire system:

 $\log^3 n$

- \triangleright Distance between cubes turn them \approx independent.
- Expect cutoff at $\frac{1}{2\text{gap}}\log m = \frac{1}{2\text{gap}}\log n + O(\log\log n)$ with window $O(\log\log n)$.

Making this rigorous: sparse sets

DEFINITION:

The set $\Lambda \subset V$ is *sparse* iff it can be partitioned into (not necessarily connected) components $\{A_i\}$ so that

(i)
$$\operatorname{diam}(A_i) = O(\log^3 n)$$
 (ii) $\operatorname{dist}(A_i, A_j) \ge \log^2 n$

Let $S = \{ \Lambda \subset V : \Lambda \text{ is sparse} \}.$

- Motivation:
 - ➤ Small diameter ~> can embed each component in a small box.
 - ➤ Super logarithmic distances between components ^{^→} essentially independent.

Upper bound via sparse sets

THEOREM:

Let
$$t>0$$
 and $\frac{10d}{\widehat{\alpha}_s}\log\log n \leq s \leq \log^{4/3} n$. Then \exists measure ν on the sparse sets $\mathcal S$ s.t. $\nu(\{\Delta\colon u\in\Delta\})<\log^{-5d} n \ \forall u$ and $\left\|\mathbb P_{\sigma_0}(X_{t+s}\in\cdot)-\mu\right\|_{\mathrm{TV}}\leq \int_{\mathcal S}\left\|\mathbb P_{\sigma_0}(X_t(\Delta)\in\cdot)-\mu\right|_{\Delta}\left\|_{\mathrm{TV}}d\nu(\Delta)+O(n^{-10d})\right\|_{\mathrm{TV}}$

- Assuming theorem, from here we can:
- Box each component A_i (extended a bit) inside B_i then extend to a larger box.
- Couple dynamics to a product chain agreeing on the projections on $\cup B_i$

L^1-L^2 reduction for Ising

- Framework:
 - \triangleright (X_t): Glauber dynamics for \mathbb{Z}_n^d
 - (X_t^*) : Glauber dynamics on \mathbb{Z}_r^d for $r = 3 \log^3 n$.

- \triangleright B: smaller cube within \mathbb{Z}_r^d of side-length $2\log^3 n$.
- Define:

$$\mathbf{m}_{\scriptscriptstyle t} \triangleq \max_{\scriptscriptstyle x_0} \left\| \mathbb{P}_{\scriptscriptstyle x_0}(X_{\scriptscriptstyle t}^*(B) \in \cdot) - \mu^*|_{\scriptscriptstyle B} \right\|_{\scriptscriptstyle L^2(\mu^*|_{\scriptscriptstyle B})}^2$$

(measure L^2 convergence of the projection $(X_t^*) \hookrightarrow B$.)

There are $m = (n/\log^3 n)^d$ such disjoint cubes in \mathbb{Z}_n^d , so as a lower bound take the proposition with

$$\mathfrak{M}_{t} \triangleq (n/\log^{3} n)^{d} \mathfrak{m}_{t}$$

$L^{1}-L^{2}$ reduction for Ising (ctd.)

Recall:

$$\mathbf{m}_{t} \triangleq \max_{x_{0}} \left\| \mathbb{P}_{x_{0}}(X_{t}^{*}(B) \in \cdot) - \mu^{*}|_{B} \right\|_{L^{2}(\mu^{*}|_{B})}^{2}$$

 $2\log^3 n$

THEOREM:

Suppose
$$\begin{cases} 10d \ \hat{\alpha}_{\mathrm{s}}^{-1} \log \log n \leq s < \log^{4/3} n \\ 20d \ \hat{\alpha}_{\mathrm{s}}^{-1} \log \log n \leq t < \log^{4/3} n \end{cases}$$

where $\hat{\alpha}_{s}$ is the infimum over log-Sobolev constants.

Then

$$(n/\log^5 n)^d \mathfrak{m}_t \to 0 \ \Rightarrow \limsup_{n \to \infty} \max_{x_0} \left\| \mathbb{P}_{x_0}(X_{t+s} \in \cdot) - \mu \right\|_{\mathrm{TV}} = 0$$

$$(n/\log^3 n)^d \mathfrak{m}_t \to \infty \Rightarrow \liminf_{n \to \infty} \max_{x_0} \left\| \mathbb{P}_{x_0}(X_t \in \cdot) - \mu \right\|_{\mathrm{TV}} = 1$$

Existence of cutoff

▶ Recall: $\mathfrak{m}_{t} \triangleq \max_{x_{0}} \left\| \mathbb{P}_{x_{0}}(X_{t}^{*}(B) \in \cdot) - \mu^{*} \right\|_{L^{2}(\mu^{*}|_{x})}^{2}$

and choose:
$$\begin{cases} t^{\star} \triangleq \inf \left\{ t : \mathfrak{m}_{t} \leq n^{-d} \log^{3d+1} n \right\}, \\ s \triangleq 10d \, \hat{\alpha}_{s}^{-1} \log \log n \ . \end{cases}$$

- By def.: $\begin{cases} (n/\log^3 n)^d \, \mathfrak{m}_{t^*} = \log n & \to \infty \\ (n/\log^5 n)^d \, \mathfrak{m}_{t^*} = \log^{1-2d} n & \to 0 \end{cases}$
- Remains to check range of t^* :
 - \triangleright Due to log-Sobolev inequalities $t^* \approx \log n$

b By Theorem: entire mixing occurs at interval $(t^*, t^* + s)$ \Rightarrow cutoff at time t^* with window $\leq s$.

Sparse sets upper bound

DEFINITION:

The set $\Lambda \subset V$ is *sparse* ($\Lambda \in S$) if it can be partitioned into (not necessarily connected) components $\{A_i\}$ so that

- 1. diam $(A_i) \le \frac{1}{2} \log^3 n$
- 2. $\operatorname{dist}(A_i, A_j) \ge \log^2 n$

Barrier dynamics

▶ Random map G_s : $\Omega \to \Omega$ (where $\Omega = \{\pm 1\}^V$) coupled to the Glauber dynamics.

DEFINITION

For s > 0 define $G_s(X_0)$ as follows:

- Surround $\forall u \in V$ by $B_u(\log^{3/2} n)$, a ball of radius $\log^{3/2} n$ by graph metric.
- ➤ Impose periodic boundary ("barrier") on each ball.
- \triangleright Run standard dynamics (X_t) till time s and use same site-choices and unit-variables for updates.
- ➤ Output: the spins at centers of $\{B_u(\log^{3/2} n) : u \in V\}$

Working with the barrier dynamics

LEMMA:

The barrier dynamics map G_s can be coupled to the original Glauber dynamics X_t such that

$$\mathbb{P}\left(X_s = \mathcal{G}_s(X_0) \ \forall s \in [0, \log^{4/3} n]\right) \ge 1 - n^{-10d}.$$

- PROOF:
 - > Use implicit coupling defining the barrier dynamics.
 - Disagreement at $u \Rightarrow$ sequence of updates at times $t_1 < \dots < t_\ell < \log^{4/3} n$ connects $u \leftrightarrow \partial B_u(\log^{3/2} n)$:

$$\mathbb{P}\left(\bigcup_{u,t} \{X_t(u) \neq \tilde{X}_t(u)\}\right) \leq n^d \sum_{\ell \geq \log^{3/2} n} (2d)^\ell \, \mathbb{P}(\operatorname{Po}(\log^{4/3} n) \geq \ell)$$

$$\leq C n^d e^{-c \log^{3/2} n} < n^{-10d}.$$

Update support

- Update sequence for the barrier dynamics map G_s in interval [0, s]:
 - > Seq. of triplets (t_i, x_i, u_i)

time site unit var

DEFINITION:

Let W_s = update seq. for barrier dynamics map \mathcal{G}_s . The *support* of W_s is the minimum subset $\Delta_{W_s} \subset V$ s.t. $g_{W_s}(\sigma_0)$ is determined by $\sigma_0(\Delta_{W_s})$ for $\forall \sigma_0$.

▶ Equiv.: $x \in \Delta_{W_s}$ if $\exists \sigma_0$ such that $g_{W_s}(\sigma_0) \neq g_{W_s}(\sigma_0^x)$.

Upper bound via update support

LEMMA:

Let W_s = random update seq. of the barrier dynamics map in the interval (0, s) for some $s \le \log^{4/3} n$. Then $\forall \sigma_0 \ \forall t > 0$

$$\left\|\mathbb{P}_{\sigma_0}(X_{t+s}\in\cdot) - \mu\right\|_{\mathrm{TV}} \leq \int \left\|\mathbb{P}_{\sigma_0}(X_t(\Delta_{W_s})\in\cdot) - \mu|_{\Delta_{W_s}}\right\|_{\mathrm{TV}} d\mathbb{P}(W_s) \left| +O(n^{-10d}) \right|_{\mathrm{TV}} d\mathbb{P}(W_s) \left\| +O(n^{-10d}) \right\|_{\mathrm{TV}} d\mathbb{P}(W_s) \|_{\mathrm{TV}} d\mathbb{P}(W_s) \|_{\mathrm{T$$

PROOF:

- ➤ Couple dynamics to two instances of the barrier dynamics run for time *s*.
- \triangleright Reduce to an integral over L^1 distances between the deterministic barrier-dynamics functions.
- \triangleright Projection can only decrease L^1 distance.

Update support is sparse

- Most supports are sparse:
 - Volume decays exponentially
 - Components separated and small
- As time traverses, the effect of more and more sites becomes 0 (information flow stops at barriers of barrier dynamics).

Random support of update seq.

Update support is sparse (ctd.)

LEMMA:

Let W_s be the random update sequence of the barrier dynamics in the interval (0, s) for some $s \ge \frac{10d}{\alpha_s} \log \log n$.

Then $\mathbb{P}(\Delta_{W_S} \in \mathcal{S}) \ge 1 - O(n^{-10d})$ and $\mathbb{P}(u \in \Delta_{W_S}) \le \log^{-5d} n \ \forall u$.

PROOF:

- Estimate the probability that a full copy $B_u(\log^{3/2} n)$ of the barrier-dynamics is "trivial" (coupling).
- No long ($\varepsilon \log n$) path of nontrivial balls by a first moment argument.

Upper bound via sparse sets

We showed:

$$\forall s \ge \frac{10d}{\alpha_s} \log \log n \ \forall \ W_s : \frac{\mathbb{P}(\Delta_{W_s} \in \mathcal{S}) \ge 1 - O(n^{-10d})}{\mathbb{P}(u \in \Delta_{W_s}) \le \log^{-5d} n \ \forall u}$$

$$\forall s \leq \log^{43} n \ \forall \ t \ \forall \ \sigma_0: \\ \left\| \mathbb{P}_{\sigma_0}(X_{t+s} \in \cdot) - \mu \right\|_{\mathrm{TV}} \leq \int \left\| \mathbb{P}_{\sigma_0}(X_t(\Delta_{W_s}) \in \cdot) - \mu \right|_{\Delta_{W_s}} \left\|_{\mathrm{TV}} d\mathbb{P}(W_s) + O(n^{-10d}) \right\|_{\mathrm{TV}}$$

COROLLARY:

Let t>0 and $\frac{10d}{\widehat{\alpha}_s}\log\log n \leq s \leq \log^{4/3} n$. Then \exists measure ν on the sparse sets \mathcal{S} s.t. $\nu\left(\{\Delta \colon u \in \Delta\}\right) < \log^{-5d} n \ \forall u$ and $\left\|\mathbb{P}_{\sigma_0}(X_{t+s} \in \cdot) - \mu\right\|_{\mathrm{TV}} \leq \int_{\mathcal{S}} \left\|\mathbb{P}_{\sigma_0}(X_t(\Delta) \in \cdot) - \mu\right|_{\Delta} \left\|_{\mathrm{TV}} d\nu(\Delta) + O(n^{-10d})\right\|_{\mathrm{TV}}$

The projection onto a sparse set

LEMMA:

Let $\Delta \in \mathcal{S}$ be a *sparse* set and $A_1, \dots, A_{N_{\Delta}}$ be its component partition. Then for $\forall \sigma_0$ and $t \leq t_0$, $\left\| \mathbb{P}_{\sigma_0}(X_t(\Delta) \in \cdot) - \mu \right\|_{\Delta} \leq \left\| \mathbb{P}_{\sigma_0}(\overline{X}_t^*(\bigcup B_i) \in \cdot) - \mu^* \right\|_{\Box B_i} + O(n^{-10d})$

where (\bar{X}_t^*) is the product chain on N_{Δ} i.i.d. cubes B_i^+

PROOF:

➤ Couple $X_t(\Delta)$ to $\bar{X}_t^*(\Delta)$ via $A_i^+ = B_{A_i}(\log^{3/2} n)$ to agree throughout $t \in [0, \log^{4/3} n]$.

to agree throughout $t \in [0, \log^{4/3} n]$.

> Inspect $\bar{X}_t^*(\Delta)$ started from equilibrium at time $t_0 = \log^{4/3} n$ to couple stationary measures.

▶ Decrease projection from \triangle to $\bigcup B_i$ to conclude proof.

Concluding the upper bound

▶ So far we showed:

Let
$$t \leq \log^{4/3} n$$
 and $\frac{10d}{\widehat{\alpha}_s} \log \log n \leq s \leq \log^{4/3} n$. Then \exists measure ν on \mathcal{S} s.t. $\nu(\{\Delta: u \in \Delta\}) < \log^{-5d} n \ \forall u$ and $\left\|\mathbb{P}_{\sigma_0}(X_{t+s} \in \cdot) - \mu\right\|_{\mathrm{TV}} \leq \int \left\|\mathbb{P}_{\sigma_0}(\bar{X}_t^*(\cup B_i) \in \cdot) - \mu^*\right|_{\cup B_i} \left\|_{\mathrm{TV}} d\nu(\Delta) + O(n^{-10d})\right\|_{\mathrm{TV}}$

▶ For $\Delta \in S$ with N_{Δ} comp. apply Product Proposition:

$$\max_{\sigma_0} \left\| \mathbb{P}_{\sigma_0}(\bar{X}_t^*(\cup B_i) \in \cdot) - \mu^* \right\|_{\cup B_i} \right\|_{\mathrm{TV}} \leq \sqrt{\mathfrak{M}_t}$$
 where $\mathfrak{M}_t = N_{\Delta} \mathfrak{m}_t$ and $\mathfrak{m}_t = \left\| \mathbb{P}_{\sigma_0}(X_t^*(B) \in \cdot) - \mu^* \right\|_{B}^{2} \frac{2\log^3 n}{3\log^3 n}$

Integrate to get:

$$\max_{\sigma_0} \left\| \mathbb{P}_{\sigma_0}(X_{t+s} \in \cdot) - \mu \right\|_{\mathrm{TV}} \leq \left((n/\log^5 n)^d \; \mathfrak{m}_t \right)^{\!1/2} + O(n^{-10d})$$