

La Pietra 2011 Mini course

lecture 2

Cutoff for Ising on the lattice

Eyal Lubetzky

Microsoft Research

The Cutoff Phenomenon

Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity.

Steady convergence it takes a while to reach distance ½ from stationarity then a while longer to reach distance ¼, etc.

Abrupt convergence distance from equilibrium quickly drops from 1 to 0

Cutoff: formal definition

A family of chains (X_t^n) is said to have *cutoff* if:

$$\lim_{n\to\infty} \frac{t_{\text{mix}}(\varepsilon)}{t_{\text{mix}}(1-\varepsilon)} = 1 \quad \forall \ 0<\varepsilon<1.$$

i.e.,
$$t_{\text{mix}}(\alpha) = (1+o(1))t_{\text{mix}}(\beta)$$
 for any $0 < \alpha, \beta < 1$.

• A sequence (w_n) is called a *cutoff window* if

$$\begin{split} & w_{\scriptscriptstyle n} = o(t_{\scriptscriptstyle \text{mix}}(\frac{1}{4})) \;, \\ & t_{\scriptscriptstyle \text{mix}}(\varepsilon) - t_{\scriptscriptstyle \text{mix}}(1-\varepsilon) = O_{\scriptscriptstyle \varepsilon}(w_{\scriptscriptstyle n}) \quad \forall \, 0 < \varepsilon < 1 \;. \end{split}$$

Basic examples

Lazy discrete-time simple random walk

On the hypercube $\{-1,1\}^n$: Exhibits cutoff at

 $\frac{1}{2} \log n + O(1)$ [Aldous '83]

On the n-cycle: No cutoff.

The importance of cutoff

- Suppose we run Glauber dynamics for the Ising Model satisfying $t_{\text{mix}} \approx f(n)$ for some f(n).
- ▶ Cutoff $\Leftrightarrow \exists$ some $c_0 > 0$ so that:
 - Must run the chain for at least $\sim c_0 \cdot f(n)$ steps to even reach distance (1ε) from μ .
 - Running it any longer than that is essentially redundant.

- Proofs usually require (and thus provide) a deep understanding of the chain (its reasons for mixing).
- Many natural chains are *believed* to have cutoff, yet proving cutoff can be extremely challenging.

Cutoff History

- Random walks on graphs and groups:
 - Discovered:
 - Random transpositions on S_n [Diaconis, Shahshahani '81]
 - RW on the hypercube, Riffle-shuffle [Aldous '83]
 - ➤ Named "Cutoff Phenomenon" in the top-in-at-random shuffle analysis [Diaconis, Aldous '86]
 - > RWs on finite groups [Saloff-Coste '04]
 - > RWs on random regular graphs [L., Sly '10]
- One-dimensional Markov chains:
 - Birth-and-Death chains [Diaconis, Saloff-Coste '06], [Ding, L., Peres '09]
- No proofs of cutoff except when stationary distribution is completely understood and has many symmetries [till recently]

Peres' Product Criterion

- ▶ QUESTION [Diaconis '96]: How can we determine whether a given Markov chain exhibits cutoff?
- OBSERVATION [Peres '04]: if a reversible chain has cutoff then $gap \cdot t_{mix}(\frac{1}{4}) \to \infty$ or equivalently: $t_{rel} = o(t_{mix}(\frac{1}{4}))$.
- PROOF:
- Key fact: every reversible cont-time MC satisfies

$$t_{\min}(\varepsilon) \ge \operatorname{gap}^{-1} \log(\frac{1}{2\varepsilon}).$$

- \triangleright Assume that $t_{\rm rel} \ge \delta t_{\rm mix}(1/4)$ for some $\delta > 0$.
- ► It follows that $t_{\text{mix}}(\varepsilon) \ge f(\varepsilon) \cdot t_{\text{mix}}(\frac{1}{4})$ where $f(\varepsilon) \underset{\varepsilon \to 0}{\longrightarrow} \infty$ ⇒ No (pre) cutoff.

- ▶ The condition is necessary for cutoff.
 Is it also sufficient, giving a method to determine the existence of cutoff?
- ▶ [Aldous '04]: unfortunately *not*: the product-condition does not imply cutoff (explicit construction).
- Even so, Peres conjectured that for many natural families of chains, *cutoff* occurs iff
 (e.g., holds for birth-and-death chains [Ding, L., Peres '09]).

$$\operatorname{gap} \cdot t_{\operatorname{mix}}(\frac{1}{4}) \to \infty$$
 cutoff

Notable conjectured | Ising on lattices; Potts model on lattices; Gas Hard-core model on lattices; lattice Colorings; Anti-ferromagnetic Ising / Potts model, Spin-glass, Arbitrary boundary conditions / external field; ...

Cutoff for Ising on lattices

► THEOREM [L., Sly]:

Let $\beta_c = \frac{1}{2}\log(1+\sqrt{2})$ be the critical inverse-temperature for the Ising model on \mathbb{Z}^2 . Then the continuous-time Glauber dynamics for the Ising model on $(\mathbb{Z}/n\mathbb{Z})^2$ with periodic boundary conditions at $0 \le \beta < \beta_c$ has cutoff at $(1/\lambda_\infty)\log n$ where λ_∞ is the spectral gap of the dynamics on the infinite volume lattice.

- ▶ Analogous result holds for *any* dimension $d \ge 1$:
 - ightharpoonup Cutoff at $(d/2\lambda_{\infty})\log n$.
 - \triangleright E.g., cutoff at $[2(1-\tanh(2\beta))]^{-1}\log n$ for d=1.

Toy example: cutoff at $\beta = 0$

- Glauber dynamics for infinite temperature (β =0) Ising equivalent to cont.-time RW on the hypercube $\{-1,1\}^n$:
 - > Stationary distribution is uniform.
 - > Spins evolve independently.
- [Aldous '83]: Cutoff at $\frac{1}{2} \log n + O(1)$.
 - > Twice faster than trivial upper bound.
 - > Constant window.

Toy example: cutoff at $\beta = 0$ (ctd.)

- Magnetization is a birth-and-death chain:
 - > By symmetry start at the all-plus state.
 - \blacktriangleright # of +'s at time t is $\sim \text{Bin}(n, \frac{1}{2}(1+e^{-t}))$.
 - ▶ # of +'s under stationary measure $\sim \text{Bin}(n, \frac{1}{2})$ which has Gaussian fluctuations of $O(\sqrt{n})$.

▶ Mixing occurs when ½ $e^{-t} \approx \sqrt{n}$.

Toy example: cutoff at $\beta = 0$ (ctd.)

- ightharpoonup Symmetry \Rightarrow Start at the all-plus state.
- Symmetry \Rightarrow Mixing of magnetization $S_t = \sum_{i=1}^n X_t(i)$ [a birth & death chain] determines entire mixing:

$$\left\|\mathbb{P}_{+}(X_{_{t}}\in\cdot)-\pi\right\|_{\mathrm{TV}}=\left\|\mathbb{P}_{_{+}}(S_{_{t}}\in\cdot)-\pi_{_{S}}\right\|_{\mathrm{TV}}.$$

- \triangleright To bound the coupling-time of this 1d chain it thus suffices to couple it from its extreme ends + , .
- ▶ Magnetizations contract to within \sqrt{n} from each other:

$$\mathbb{E}_{\scriptscriptstyle{+}}[S_{\scriptscriptstyle{t}}] = ne^{\scriptscriptstyle{-t}} \ , \ \mathbb{E}_{\scriptscriptstyle{-}}[S_{\scriptscriptstyle{t}}] = -ne^{\scriptscriptstyle{-t}} \, .$$

- At time $t = \frac{1}{2} \log n$ the expected distance between the chains is $O(\sqrt{n})$.
- ▶ Afterwards: distance is a biased RW drifting towards 0. Comparing to SRW $\Rightarrow O(n)$ extra discrete steps to hit 0.

General result on product chains

PROPOSITION:

Let $X_t = (X_t^1, ..., X_t^n)$ be a product chain where each X_t^i is ergodic with stationary measures π_i and $\pi = \prod_i \pi_i$. Let

$$\mathfrak{M}_{_{t}} = \sum_{\scriptscriptstyle i=1}^{\scriptscriptstyle n} \left\| \mathbb{P}(X_{_{t}}^{\scriptscriptstyle i} \in \cdot) - \pi_{_{i}} \right\|_{L^{2}(\pi_{_{i}})}^{2}.$$

For $\forall \delta > 0$ there $\exists \epsilon > 0$ so that if for some t > 0

$$\max_{i} \left\| \mathbb{P}(X_{t}^{i} \in \cdot) - \pi_{i} \right\|_{L^{\infty}(\pi_{i})} < \varepsilon$$

then

$$\left\|\mathbb{P}(X_{_t}\in\cdot)-\pi\right\|_{\mathrm{TV}}-\left(2\Phi\left(\frac{\sqrt{\mathfrak{M}_{_t}}}{2}\right)-1\right)\right|<\delta\,.$$

Example: the hypercube (once more)

COROLLARY: Aldous' hypercube result:

Let X_t be the lazy random walk on the hypercube $\{\pm 1\}^n$. Then X_t exhibits cutoff at $\frac{1}{2}\log n$ and furthermore, if $t=\frac{1}{2}\log n+c$ for some $c\in\mathbb{R}$ then

$$\| \mathbb{P}(X_t \in \cdot) - \pi \|_{\text{TV}} = 2\Phi(\frac{1}{2}e^{-c}) - 1 + o(1).$$

PROOF:

In the notation of the proposition, the (X_t^i) 's are i.i.d. with stationary measure uniform on $\{\pm 1\}$, thus

$$\left\| \mathbb{P}(X_t^i \in \cdot) - \pi_i
ight\|_{L^2(\pi_i)}^2 = e^{-2t} \ \ ext{and} \ \ \mathfrak{M}_t = n e^{-2t} \, .$$

Pf of product chain proposition

- Let $\nu = \mathbb{P}(X_t \in \cdot)$ and $\nu_i = \mathbb{P}(X_t^i \in \cdot)$ for i = 1, ..., n.
- Let $U_1, ..., U_n$ be independent r.v's $\sim \pi_1, ..., \pi_n$ resp. and $Y_i = Y_i(t) = v_i(U_i)/\pi_i(U_i)$
- ▶ By def. $\mathbb{E}Y_i = 1$ and: $\operatorname{Var}(Y_i) = \sum_{x} \left| \frac{\nu_i(x)}{\pi_i(x)} 1 \right|^2 \pi_i(x) = \left\| \nu_i \pi_i \right\|_{L^2(\pi_i)}^2$
 - and (*) implies that $||Y_i 1||_{\infty} < \varepsilon$ for all i.
- $\Rightarrow \mathbb{E}|Y_i 1|^3 \le ||Y_i 1||_{\infty} \operatorname{Var}(Y_i) < \varepsilon \operatorname{Var}(Y_i)$.
- Set $Z_i = \log Y_i$ and look at a Taylor expansion:

$$\begin{split} \mathbb{E}\mathbf{Z}_{i} &= \mathbb{E}(Y_{i} - 1) - \frac{1}{2} \mathbb{E}(Y_{i} - 1)^{2} + O(\mathbb{E}\left|Y_{i} - 1\right|^{3}) \ \left(-\frac{1}{2} + O(\varepsilon)\right) \operatorname{Var}Y_{i} \\ \mathbb{E}\mathbf{Z}_{i}^{2} &= \mathbb{E}(Y_{i} - 1)^{2} + O(\mathbb{E}\left|Y_{i} - 1\right|^{3}) \end{split} \tag{1 + O(\varepsilon)} \operatorname{Var}Y_{i} \end{split}$$

Pf of product chain (ctd.)

 Z_i' s independent with $||Z_i||_{\infty} = O(\varepsilon)$ and

$$\mathbb{E} Z_{_i} = -\tfrac{1 + O(\varepsilon)}{2} \operatorname{Var} Y_{_i} \quad , \quad \operatorname{Var} Z_{_i} = (1 + O(\varepsilon)) \operatorname{Var} Y_{_i}.$$

and so $\sum_{i=1}^n Z_i \to \mathcal{N}(-\frac{1}{2}\mathfrak{M}_t, \mathfrak{M}_t)$ in dist as $\varepsilon \to 0$.

▶ Relating this to $\|\nu - \pi\|_{TV}$:

$$\begin{split} \left\| \nu - \pi \right\|_{\text{TV}} &= \sum_{x_1, \dots, x_n} \left| \prod_i \frac{\nu_i(x_i)}{\pi_i(x_i)} - 1 \right|^{-} \prod_i \pi_i(x_i) \\ &= \mathbb{E} \left| \prod_i Y_i - 1 \right|^{-} = \mathbb{E} \left| e^{\sum_i Z_i} - 1 \right|^{-}. \end{split}$$

Products of i.i.d.'s

COROLLARY:

Let X_t be a product chain made of n i.i.d. copies of a finite ergodic chain Y_t with spectral-gap and log-Sobolev const gap and α_s resp. and stationary measure φ . If

$$\log \varphi_{\min}^{-1} \leq n^{o(\alpha_{\rm g}/{\rm gap})}$$

then X_t exhibits cutoff at $\frac{1}{2} \operatorname{gap}^{-1} \log n$ with window of order $O(\alpha_s^{-1} \log_+ \log \varphi_{\min}^{-1})$.

Intuition: cutoff on the lattice

- Break up \mathbb{Z}_n^d to cubes of side-length $\log^3 n$. Dynamics on such a cube:
 - $> \alpha_{\rm s}^{-1} = O(1)$
 - $> \log \varphi_{\min}^{-1}(\sigma) = O(\log^{3d} n) = n^{o(1)}$
- Take non-adjacent cubes $Q_1, ..., Q_m$ $(m = (n/\log^3 n)^d)$ and suppose as if the projection on those would predict mixing for the entire system:

 $\log^3 n$

- \triangleright Distance between cubes turn them \approx independent.
- Expect cutoff at $\frac{1}{2\text{gap}}\log m = \frac{1}{2\text{gap}}\log n + O(\log\log n)$ with window $O(\log\log n)$.

Random support of update seq.

