

La Pietra 2011 Mini course

lecture 1

Cutoff for Ising on the lattice

Eyal Lubetzky

Microsoft Research

Course plan

- Lecture 1: crash course on static & stochastic Ising
- Lecture 2: cutoff and two angles on the hypercube
- Lecture 3: reducing L^1 to L^2 mixing.
- Lecture 4: breaking the dependencies: update supports
- Lecture 5: existence of cutoff and summary.

▶ Bibliography:

- 1. F. Martinelli, Lectures on Glauber dynamics for discrete spin models Lectures on probability theory and statistics, Saint-Flour, 1997
- 2. L. Saloff-Coste, *Lectures on finite Markov chains* Lectures on probability theory and statistics, Saint-Flour, 1996
- 3. D. Levin, Y. Peres & E. Wilmer, *Markov chains and mixing times* American Mathematical Society, 2008

Definition: the classical Ising model

- Underlying geometry: Λ = finite 2D grid.
- Set of possible configurations:

$$\Omega = \left\{ \pm 1 \right\}^{\Lambda}$$

(each site receives a plus/minus spin)

▶ Probability of a configuration $\sigma \in \Omega$ given by the *Gibbs distribution*:

The classical Ising model

$$\qquad \qquad \bullet \left(\mu(\sigma) \propto \exp\left(\beta \sum_{x \sim y} \sigma(x) \sigma(y) \right) \text{ for } \sigma \in \Omega = \{\pm 1\}^{\Lambda} \right)$$

- Larger β favors configurations with aligned spins at neighboring sites.
- ➤ Spin interactions ≈ local, justified by the rapid decay of magnetic force with distance.

▶ The *magnetization* is the (normalized) sum of spins:

$$M(\sigma) = \left| \Lambda \right|^{-1} \sum_{x \in \Lambda} \sigma(x)$$

 \triangleright Distinguishes between disorder ($M \approx 0$) and order.

The Ising phase-transition

- Ferromagnetism in this setting: [recall $M(\sigma) = \frac{1}{|\Lambda|} \sum \sigma(x)$]
 - Condition on the boundary sites all having *plus* spins.

What is the typical $M(\sigma)$ for large $|\Lambda|$? Does the effect of *plus* boundary vanish in the limit?

The Ising phase-transition (ctd.)

- Ferromagnetism in this setting: [recall $M(\sigma) = \frac{1}{|\Lambda|} \sum \sigma(x)$]
 - Condition on the boundary sites all having *plus* spins.
 - ▶ Let the system size $|\Lambda|$ tend $\to \infty$

• Expect: phase-transition at some critical β_c :

High temperatures

▶ <u>Def.</u> ([Martinelli & Olivieri '94]) property $SM(\Lambda, c, C)$ holds for a set $\Lambda \subset \mathbb{Z}^d$ and c, C > 0 iff $\forall \Delta \subset \Lambda$:

$$\left\| \sup_{\substack{\tau \in \{\pm 1\}^{\Lambda} \\ y \in \partial \Lambda}} \left\| \mu_{\Lambda}^{\tau} \right\|_{\Delta} - \mu_{\Lambda}^{\tau^{y}} \right\|_{\Delta} \right\|_{\mathrm{TV}} \leq C e^{-c \operatorname{dist}(y, \Delta)}$$

Strong spatial mixing holds iff $\exists c, C, L > 0$ so that $\mathbf{SM}(Q, c, C)$ holds for all **cubes** Q of side length L.

- $ightharpoonup Here \ \left\| arphi
 u
 ight\|_{\mathrm{TV}} = \sup_{A \subset \Omega} \left[arphi \left(A
 ight)
 u \left(A
 ight) \right].$
- ► On \mathbb{Z}^2 strong spatial mixing holds for all $\beta < \beta_c$ or whenever $h \neq 0$.
- \triangleright Implies $\mathbb{E}^+[M(\sigma)] \to 0$ (no spontaneous mag)

Low temperatures

- Ingenius combinatorial argument due to [Peierls '36].
- ▶ Key idea: represent Ising configurations as *contours* in the *dual graph*: the edges are dual to disagreeing edges.

Peierls' phase transition argument

▶ When all boundary spins are ⊕ 's the Peierls contours are all closed [marking "islands" containing of

▶ Goal: show that the fraction of sites inside such components is bounded away from $\frac{1}{2}$.

Peierls' phase transition argument

- ▶ Setting: $\Lambda \subset \mathbb{Z}^2$ is an $n \times n$ box with all-plus boundary.
- Fix a contour C of length ℓ .
- For each σ containing C flip all the spins of C and its interior to arrive at a unique σ' :

Proof completed by a first moment argument.

Glauber dynamics / Stochastic Ising

• Glauber dynamics for the Ising model (also known as the *Stochastic Ising model*) introduced in 1963 by Roy J. Glauber (Nobel in Physics 2005).

R.J. Glauber

- \triangleright finite ergodic Markov chain on $\Omega = \{\pm 1\}^{\Lambda}$
- > moves between states by flipping a single site.
- \triangleright converges to the stationary Ising measure μ .
- Intensively studied over the last 30 years:
 - ➤ Natural efficient sampler for the Ising model.
 - ➤ Captures its stochastic evolution.

Glauber dynamics for Ising

• One of the most commonly used MC samplers for the Ising distribution μ :

Heat-bath version given by the generator

$$\mathcal{L}^{\scriptscriptstyle{ au}}_{\scriptscriptstyle{\Lambda}}(f)(\sigma) = \sum_{x \in {\scriptscriptstyle{\Lambda}}} \left[\mu^{\scriptscriptstyle{ au}}_{\scriptscriptstyle{\sigma,x}}(f) - f(\sigma) \right]$$

where
$$\mu_{\sigma,x}^{\tau}(f) = \mu_{\Lambda}^{\tau}(\cdot \mid \sigma_{y}, y \neq x)$$

- Equivalent description:
 - > Update sites via iid Poisson(1) clocks
 - Each update replaces a spin at $u \in V$ by a new spin $\sim \mu$ conditioned on all remaining spins at $V \setminus \{u\}$.

Glauber dynamics for Ising

- One of the most commonly used MC samplers for the Ising distribution μ :
 - ➤ Update sites via *iid* Poisson(1) clocks
 - Each update replaces a spin at $u \in V$ by a new spin $\sim \mu$ conditioned on all remaining spins at $V \setminus \{u\}$.
- ▶ The above is the *heat-bath* version. Other versions of the dynamics include e.g. Metropolis.
- To sample from the Ising model, start at an arbitrary state (e.g. all-plus) run the chain.
 - \triangleright How long does it take it to converge to μ ?

Notions of convergence to equilibrium

- Spectral gap in the spectrum of the generator: gap = smallest positive eigenvalue of $(-\mathcal{L}_t)$ associated with the heat-kernel H_t .
- Mixing time: (according to a given metric).
 - Standard choice: L^1 (total-variation) mixing time to within ε is defined as

$$t_{\mathrm{mix}}(\varepsilon) = \inf \left\{ t : \max_{\sigma} \left\| H_t \left(\sigma, \cdot \right) - \mu \right\|_{\mathrm{TV}} \leq \varepsilon \right\}.$$

where

$$\left\|\mu - \nu\right\|_{\mathrm{TV}} = \sup_{\boldsymbol{A} \subset \Omega} \left[\mu\left(\boldsymbol{A}\right) - \nu\left(\boldsymbol{A}\right)\right] = \frac{1}{2} \sum_{\boldsymbol{x} \in \Omega} \left|\mu(\boldsymbol{x}) - \nu(\boldsymbol{x})\right|.$$

The gap and mixing time

Mixing time decays exponentially:

$$\max_{\boldsymbol{\sigma}} \left\| \boldsymbol{H}_{\boldsymbol{t}} \left(\boldsymbol{\sigma}, \cdot \right) - \boldsymbol{\mu} \right\|_{\mathrm{TV}} \leq e^{-\left[t/t_{\mathrm{mix}} (1/2e) \right]}$$

Dirichlet form characterization for the spectral gap:

$$\operatorname{gap} = \inf_{\substack{f \in L^2(\mu_{\Lambda}^{ au}) \ f
eq 1}} rac{\mathcal{E}_{\Lambda}^{ au}(f)}{\operatorname{Var}_{\Lambda}^{ au}(f)}$$
 where $\mathcal{E}_{\Lambda}^{ au}(f)(\sigma) = \sum_{x \in \Lambda} \mu_{\Lambda}^{ au}(\operatorname{Var}_{\sigma,x}^{ au}(f))$

Relating the gap to total-variation mixing:

$${\rm gap}^{^{-1}} \leq t_{\rm mix}(1\,/\,2e) \leq {\rm gap}^{^{-1}} \log(2e\,/\,\mu_{\rm min})$$

Coupling

▶ Well-known tool to bound total-variation distance:

$$\|\mu - \nu\|_{\text{TV}} \le \mathbb{P}(X \ne Y)$$

for \forall coupling (X,Y) with $X \sim \mu$, $Y \sim \nu$, and there

- ∃ a **maximal** coupling achieving equality.
- Monotone coupling for Glauber dynamics:
 - \gt If $X_t \gt Y_t$ then $X_{t+1} \gt Y_{t+1}$
 - Consequently:

$$\max_{\boldsymbol{x}} \left\| \mathbb{P}_{\boldsymbol{x}}(X_{\boldsymbol{t}} \in \cdot) - \mu \right\|_{\mathrm{TV}} \leq \mathbb{P}_{+,-}(X_{\boldsymbol{t}} \neq Y_{\boldsymbol{t}})$$

Example: fast mixing at high temp

 \triangleright When all \triangle neighbors of a site are plus, probability of minus is

robability of minus is
$$\frac{1}{2}(1-\tanh(\beta\Delta)) = \frac{e^{-\beta\Delta}}{e^{\beta\Delta} + e^{-\beta\Delta}} = \frac{1}{2} - \varepsilon$$

$$\left(-1+2\varepsilon\left(\Delta+1\right)\right)\frac{k}{n}$$

Glauber dynamics for critical Ising

▶ How fast does the dynamics converge?

- > 256 x 400 square lattice w. boundary conditions:
 - (+) at bottom
 - (-) elsewhere.
- > Frame every $\sim 2^{30}$ steps, *i.e.* \sim 2¹³ updates/site.

General (believed) picture for the Glauber dynamics

- Setting: Ising model on the lattice $(\mathbb{Z}/n\mathbb{Z})^d$. Belief: For some critical inverse-temperature β_c :
- Low temperature: $(\beta > \beta_c)$ gap⁻¹ and t_{mix} are *exponential* in the surface area.
- Critical temperature: $(\beta = \beta_c)$ gap⁻¹ and t_{mix} are *polynomial* in the surface area.
 - Exponent of gap⁻¹ is universal (the *dynamical* critical exponent z).
- High temperature:
 - **Rapid** mixing: gap⁻¹ = O(1) and $t_{\text{mix}} \approx \log n$
 - Mixing occurs abruptly, *i.e.* there is *cutoff*.

The Cutoff Phenomenon

Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity.

Steady convergence it takes a while to reach distance ½ from stationarity then a while longer to reach distance ¼, etc.

Abrupt convergence distance from equilibrium quickly drops from 1 to 0

Example: mixing picture for Ising on the complete graph

Curie-Weiss model

(Scaling window established in [Ding, L., Peres '09])

Critical slowdown

- Intuition: low temperature
 - Exponential mixing due to a bottleneck between the "mostly-plus" and the "mostly-minus" states

- \triangleright At $\beta = 0$ there is complete independence.
- For very small $\beta > 0$ a spin is likely to choose the same update given 2 very different neighborhoods (weak "communication" between sites).
- > States can be coupled quickly, hence rapid mixing.
- Intuition: critical power-law:
 - ➤ Doubling the box incurs a constant factor in mixing...

Mixing for Ising on the 2D lattice

- ▶ Fast mixing at high temperatures:
 - [Aizenman, Holley '84]
 - [Dobrushin, Shlosman '87]
 - [Holley, Stroock '87, '89]
 - [Holley '91]
 - [Stroock, Zegarlinski '92a, '92b, '92c]
 - [Zegarlinski '90, '92]
 - [Lu, Yau '93]
 - [Martinelli, Olivieri '94a, '94b]
 - [Martinelli, Olivieri, Schonmann '94]
- Slow mixing at low temperatures:
 - [Schonmann '87]
 - [Chayes, Chayes, Schonmann '87]
 - [Martinelli '94]
 - [Cesi, Guadagni, Martinelli, Schonmann '96].

The gap and log-Sobolev const

$$\begin{array}{c} \textbf{Recall: } \mathrm{gap} = \inf_{f \in L^2(\mu_{\Lambda}^{\tau})} \frac{\mathcal{E}_{\Lambda}^{\tau}(f)}{\mathrm{Var}_{\Lambda}^{\tau}(f)} \text{ where} \\ \\ \mathcal{E}_{\Lambda}^{\tau}(f)(\sigma) = \sum_{x \in \Lambda} \mu_{\Lambda}^{\tau}(\mathrm{Var}_{\sigma,x}^{\tau}(f)). \end{array}$$

▶ The *log-Sobolev constant* is given by

$$lpha_{_{\mathrm{s}}} = \inf_{\substack{f \in L^2(\mu_{\Lambda}^{ au}) \ f
ot\equiv 1}} rac{\mathcal{E}_{\Lambda}^{ au}(f)}{\mathrm{Ent}_{\Lambda}^{ au}(f)}$$

where
$$\operatorname{Ent}_{\Lambda}^{\tau}(f) = \mathbb{E}_{\mu_{\Lambda}^{\tau}} \big[f^2(\sigma) \log \big(f^2(\sigma) \, / \, \mathbb{E}_{\mu_{\Lambda}^{\tau}} f^2(\sigma) \big) \big].$$

Relating the gap to L^2 mixing:

$$\left\|\mathbb{P}_{\boldsymbol{x}}(X_s \in \cdot) - \nu\right\|_{L^2(\nu)} \leq \exp\left[1 - \operatorname{gap}\left(s - \frac{1}{4\alpha_s}\log_+\log\frac{1}{\nu(x)}\right)\right]$$

Mixing on the square lattice

- High temperature regime: if there is strong spatial mixing (on \mathbb{Z}^2 this covers $\forall \beta < \beta_c$):
 - \triangleright O(1) inverse spectral-gap constant.
 - \triangleright O(1) inverse log-Sobolev constant and as a result $O(\log n)$ total-variation mixing.
- Dynamics conjectured to exhibit cutoff [Peres'04].

Cutoff for the Glauber dynamics

- Till recently: *only* spin-systems where cutoff was verified are Ising and Potts models on the *complete graph* [Levin, Luczak, Peres '10], [Ding, L., Peres '09], [Cuff, Ding, L., Louidor, Peres, Sly]
- Conjectured to believe at high temperatures for:
- Ising on the lattice, e.g. with periodic or free boundary.
- Potts model on the lattice.
- Gas Hard-core model on lattices.
 - Colorings of lattices.
 - Arbitrary boundary conditions / external field.
 - Anti-ferromagnetic Ising/Potts models, Spin-glass, Other lattices / amenable transitive graphs,...

Cutoff for Ising on lattices

► THEOREM [L., Sly]:

Let $\beta_c = \frac{1}{2}\log(1+\sqrt{2})$ be the critical inverse-temperature for the Ising model on \mathbb{Z}^2 . Then the continuous-time Glauber dynamics for the Ising model on $(\mathbb{Z}/n\mathbb{Z})^2$ with periodic boundary conditions at $0 \le \beta < \beta_c$ has cutoff at $(1/\lambda_\infty)\log n$ where λ_∞ is the spectral gap of the dynamics on the infinite volume lattice.

- ▶ Analogous result holds for *any* dimension $d \ge 1$:
 - ightharpoonup Cutoff at $(d/2\lambda_{\infty})\log n$.
 - > *E.g.*, cutoff at $[2(1-\tanh(2\beta))]^{-1} \log n$ for d = 1.

Cutoff for Ising on the lattice

- Main result hinges on an L^1 - L^2 reduction, enabling the application of log-Sobolev inequalities.
- Generic method gives further results on many other models conjectured to have cutoff:
- ✓ Ising on the lattice, e.g. with periodic or free boundary.
- Potts model on the lattice.
- Gas Hard-core model on lattices.
- Colorings of lattices.
- Arbitrary boundary conditions / external field.
- Anti-ferromagnetic Ising/Potts models, Spin-glass, Other lattices / amenable transitive graphs,...

Key tool: breaking dependencies...

