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Definition: the classical Ising model

» Underlying geometry: finite A c Z%.

» Set of possible configurations:
Q={x1}* f
(each site receives a plus/minus spin)

given by the Gibbs distribution:

1
( ua(0) = 7z exp (—/321{%%}) W
N X~y 7

> B = 0: the inverse temperature
> Z(B): the partition function




The Ising model phase transition

> Underlying geometry: A = finite 2D grid.

> Set of possible configurations: Q = {+ 1}A

> Probability of a configuration: pp (o) = Z( 75 &P ( B Xx~y 1{ax¢ay})

Local (nearest-neighbor) interactions have macroscopic effects:

o

B =0.75 B =0.88




Low temperature representation in 2D

» Setting: A C Z* is an nxn box with @-plus boundary

» Draw a dual-edge (u,v)" if o, # o, £

[

> Bijection between a dual-loop collection [oo oleslo s s]e
and the Ising configuration o.
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> Induced distribution on the dual -loops:

ur{re vz, - D) = g e PV
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» |Peierls "36]: proof of a phase transition for f > fy:
1st moment argument on # of sites inside a @)-"island”
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Peierls’ phase transition argument

» Setting: A c Z* is an nxn box with @-plus boundary.
» For any o contammg y tlip all spins in the interior of y :
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uzg(o) =Z(p)~te®
= uj (y belongs to loop collection) < e Blvl,

» For a site x: at most e’ contours y of length £ around x,
and each such y costs e “A?; overall:
ut (o, = —1) < e B0,




2D Ising interfaces

> What does the interface between the
@ and @ phases look like at § > B.?

» uf : Ising model on
> 2D cylinder A = [-n,n] X (Z +2)
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. - half-plane
> Boundary conditions: { upper half~plane :

+ lower half-plane :

> Draw a dual-edge (u, v)* if 0, # 0y.

» Interface: (max) connected set J of dual-edges separating
the infinite + and — components of the boundary.




2D Ising interfaces: roughness

> What does the interface between the
@ and @ phases look like at f > .7

» 2D Ising model w. Dobrushin’s boundary conditions ,uj_{n ;
> Interface has a scaling limit:

IJ(x/n)

C[gn

— Brownian bridge

> Interface is rough: fluctuations of \/n

» Maximum M,, is Op(y/n), and
M,, — E[M,,] is also Op(y/n).

[Higuchi “79], [Dobrushin, Hryniv ‘97], [Hryniv ‘98],
| Dobrushin, Kotecky, Shlosman “92]
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3D Ising Interfaces

» uf : Ising model on
> 3D cylinder A = [-n,n]* X (Z +3)

. = upper half-space
> Boundary conditions: + lower half-space
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» Draw a dual-face (u, v)* if o, # oy,.

» Interface: (max) connected set J of faces separating
the infinite + and — components of the boundary.




3D Ising interfaces: rigidity

» uf : Ising model on
> 3D cylinder A = [-n,n]* X (Z + 3)
— upper half-space

+ lower half—space :? _ -
» THEOREM: [Dobrushin ‘72] (rigidity of the interface) "

> Boundary conditions:

| There exists y > 0 such that VS > B, and Vxq, x5, h,
up (3 3 (x1, x5, h)) < exp(—3 Bh)

» COROLLARY: [Dobrushin ‘72, “73] for f > By:

1. 3 non-translation invariant Z> Gibbs measures

2. Maximum height of 7 is Op(logn).




Plus/minus interface in 3D Ising

» M, = maximum height of the interface 7 in 3D Ising
with Dobrushin’s boundary conditions.

» [Dobrushin ’72]:‘EIC3 s.t. ,uf\(Mn < (Cp logn) - 1. \

> = (via straightforward matching order lower bound)
the maximum of the interface has order logn.

» Asymptotics of the maximum (LLN)? Tightness?
» Structure of interface conditioned on LLDs? -~

> conditioned on (x4, x5, 0) belonging to a “pillar”

reaching height h, what can we say about that pillar, =
e.g., its surface area? its volume?
xy-coords of its tip?



3D Ising Roughening phase transition

onj.: Roughening phase transition in 3D at fr = 0.83:

_ﬁ,_.ﬁ__ﬁ_u_ Br ﬁ>ﬁR

rough ( delocalized) rigid (locahzed)
Var(ht, (7)) - o var(ht, (7)) = 0(1) E
J ~ DGFF max ht, () = logn

“Evidence that Ty < T.(3) strictly was obtained by Weeks et al. (1973) ...
To this day, there still appears to be no proof that Tp < T.(3).” [Abraham ‘86]




Related work on 3D Ising interfaces

» Alternative simpler argument by [van Beijeren "75] for [Dobrushin 72]’s
result on the rigidity of the 3D Ising interface.

» Rigidity argument extended to

> Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri "79a],
[Bricmont, Lebowitz, Pfister “79b, “79c]

> Super-critical percolation / random cluster model conditioned to
have interfaces [Gielis, Grimmett “02]

/

» Tilted interfaces: [Cerf, Kenyon ‘01] (zero temperature, 111 interface),
[Miracle Sole “95] (1-step interface), [Sheffield “03] (|V¢|? models),
many works on the conjectured behavior, related to the (non-)existence
of non-translational invariant Gibbs measures

» Wultf shape, large deviations for the magnetization,
surface tension [Pisztora ‘96], [Bodineau "96],
[Cerf, Pisztora ‘00], [Bodineau "05], [Cerf ‘06]

» Plus/minus phases away from the interface [Zhou "19]




Approximating random surface models

» DEFINITION: (2+1)-dimensional SOS above a wall [Temperley ‘52]

probability measure on height functions ¢ on A = {1, ..., L}*
withA3x - ¢, EZand ¢, = 0 for x & Agivenby

= (53 o

> no bubbles (distribution on interfaces)

> no overhangs (interface = height function) s AN

p
» |V |P model: TA(p) x e™F La-y|®x=dy[" for p=1
(p = 11is SOS; p = 2 is the discrete Gaussian; p = oo is RSOS)



SOS: roughening transition

» (2+1)D surface delocalized (rough) at f < 1:

Var(¢,) = logn,  E ¢y =logle —y|
[Frohlich, Spencer ("81), ("83)]

» (2+1)D surface localized (rigid) at f > 1: .
Var(¢x) =1 ) E¢x¢y o~ e_C |x—y]| T i

|Gallavotti, Martin-Lof, Miracle-Solé ('73)], [Brandenberger, Wayne ('82)]

» Maximum M, of the rigid (2+1)D surface at § > 1:
> [E [M ] L~ o gn [Bricmont, El-Mellouki, Frohlich “86]

> M, = E logn + O(1) (+shape theorem, with and w/o a floor)
[Caputo, L., Martinelli, Sly, Toninelli ‘12, “14, “16]




Maximum dominated by LD at origin

» Maximum governed by co-volume large deviation rate

1
}11_{130 — ﬁlognzz (¢p, = h)

which is tied to the shape of tall pillars:
» [L., Martinelli, Sly “16]: general |[Vg|P surface models:
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LLN for the maximum

» Recall: M;,, = maximum of the interface 7 in 3D Ising with
Dobrushin’s b.c.; [Dobrushin ‘72]: M,, = Op(logn).

» THEOREM: (|Gheissari, L. “19a])

There exists [ such that for all § > [,

M 2
lim —— =—, in probability, %

n-o logn «

where

_ 1 T +
«(B) = Jim —~logus: ((o,o,ow aRZx{h}))
_and satisfies a(B)/f — 4 as f - .

/D

> existence of the limit @ nontrivial: relies on new
results on the interface shape conditioned on LD.




i

Tightness and tails for the maximum

» THEOREM: (|Gheissari, L. "19b])

1. There exists [y such that for all 5 > [,
M, —EM,, = Op(1).
2. There exist C, @, a suchthatVr > 1,
e~ (@+0) < .UE(M > IE[M 1+ 7r) < e —(ar—C)
e ¢ <yt (M, <E[M,]—71) <e ¢
where a/a - 1 as f — oo.

» PROPOSITION: (|Gheissari, L. "19b])

There does not exist a deterministic sequence (m,,) s.t.
(M,, — m,,) converges weakly to a nondegenerate law.




Pillars in the 3D Ising interface

DEFINITION: [P,, the pillar at x € R?x{0}]
1. Fill in all the bubbles to obtain the interface 7
2. Discard R?x (—o0, 0) from the sites below 7 e

Goal: second moment argument for M,, = max ht ()
X

3. The pillar P, is the remaining component above x. /‘,//;E?;—ﬂ;». )




Decomposition of pillars

» DEFINITION: [cutpoint of the pillar]
a cell v; which is the only intersection
of the pillar P, with a horizontal slab.

» DEFINITION: [pillar increment]|
X; = segment of P, bounded between i !/
the cutpoints v;, v; ;1 (inclusively). i ¥

» Decompose P, into:
1. increments (X{, Xy, ..., Xr)
2. base B, = P, N (R*x][0, ht(vy)])




Decomposition of pillars

» Typical increments 3
are perturbations
(with exponential "";

tails) of the trivial of :
increment @ 4

'''''''

But: (rarely)
they can be quite .
complex... 1& | it




[ /\

Key ingredient: shape of tall pillars

» THEOREM: (|Gheissari, L. “19a,"19b])

3 [y s.t. for V5 > [y and every x = (x4, x5, 0) is in the bulk
(distance > h® from dA), conditional on ht(P,) = h,

1. W.h.p. P, has at least (1 — eﬁ)h Increments.

2. Vt,the size of the increment X; has an exponential tail.
3. Base B, has an exponential tail on its diameter, height.

» Used to decorrelate ht(Py) and ht(P)) as
part of the 2nd moment argument.




Cluster expansion & Dobrushin’s approach

» Peierls’ classical phase transition argument eliminates
bubbles, but is not enough to “flatten” the interface.

» Instead: do Peierls on interfaces via cluster expansion:
THEOREM: ([Minlos, Sinai ‘67], [Dobrushin ‘72])

)  xp | ~BI1 + ) (129

fer
where g < Ky and |g(f,7) — g(f',7")| < e CTUALID,

» [Dobrushin 72| decomposed J into groups of walls & ceilings, then
defined a map that deletes a wall around x, flattening 7 (2D analysis).




The interface map ¥y,

Wy i tI:ht(Py) = h, [By| V[ X = 7} > {T:ht(Py) = h} st

1. Energy control: u(J) < e‘cﬁ(|j|_|tpxrt(7)|)u (‘Px,t(ﬂ))

2. Multiplicity control: at most e’ many 7 € W £(7")
such that |7| — |7'| = ¢.




Challenges due to interacting pillars

» The map ¥, ; induces
1. horizontal shifts |
2. vertical shifts (down & up) |

» The pillar P, to hit a nearby P, N 1'
(possibly making the map not well-defined)

» The pillar may get very close to a nearby Py
and heavily interact with it
(destroying the energy control).

[ T/




A basic ¥, for controlling increments

» Target the structureof &1 _— /¥ @l
the increment X; by: == e
SRS e e
> straightening X, if | Lﬁ |
its size is too large. _'t EL__ :
> straightening any un l:} Xy B
other increment X = I
’ for s > t whose size ) Vs (/f /‘
is at least — 7 1
ec|s—t| % f’“‘“ﬁw, | o
(too large w.r.t. Xy). ng -
i) 4




A basic ¥, for controlling increments

» Base is delicate: incorporates interaction with other
nearby pillars in the interface...

» Trying to extend the definition of the base so as to rule

out such interactions gives an O (log h) error on its size: -
sufficient for LLN but not for tightness.
s =




An algorithmic procedure to define W, ;

» Defining W, ; :

> V j = 1, determine whether
to straighten P, at the
increment X;. If so:

= Vy # x, determine
whether this action may
cause P, to draw to

closely to Py, If so,
delete P, as well.

» Delicate balance between
deleting too little (energy
control) and deleting too
much (multiplicity control).

Algorithm 1: The map ¥, ,

1 Let (Wv 1y € Lo} be the standard wall representation of the interface Z\ S;. Also let O,, be the
nested sequence of walls of vy, so that 05:Oy, = 2,,.

// Base modification
2 Mark [z] = {z} U &z and p(v;) for del (where &z d the four faces in Lo adjacent to z).
3 if the interface with standard wall rep ti ﬁ]v' has a cut-height then
Let h' be the height of the highest such cut-height.
L Let y' be the index of a wall that intersects (P \ Oy, ) N Ly and mark y' for deletion.

// Spine modification (A): the 1st increment
4 Set 5, 0 and yj « 0.
for j=1to .7 +1do
Let s - s; and s;4) « 8.
if m(2;)>j-1 then /7 (A1)
| Let 5,5  j. N
if D,(ﬁ’v,j‘ —Vy41,0) € m(Wv) for somey  then // (A2)
| Let s;;) « j and mark for deletion every y for which (A2) holds.
if D.(Wy,j,—vss1,0) < (5 —1)/2 for somey then // (A3)
| Let s;4) < j and let y} be the minimal index y for which (A3) holds.

Let j* + 5.2 and mark y} for deletion.

// Spine modification (B): the {-th increment
5 if ¢ > j* then
Set s, — t — 1 and yj « 0.
fork=tto 7 +1do
Let s ¢ si and sg4 ¢ Sk,
if m(Zy)>k—-t then // (B1)
| Let sg41 « k.
if D, (Wy,j, —vet1, v — vje41) < m(W,) for some y then // (B2)
| Let sg4y < k and mark for deletion every y for which (B2) holds.
if Do(Wy,d, =ves1, v = vjosr) < (k=1)/2  for some y then // (B3)
| Let sg4y < k and let yj be the minimal index y for which (B3) holds.

Let k* - 5742 and mark yj, for deletion.

else
| Let k* « j*.

6 foreach index y € Lo, marked for deletion do delete §, from the standard wall representation (W,).
7 Add a standard wall W7 consisting of ht(v;) — 1 trivial increments above z.
8 Let K be the (unique) interface with the resulting standard wall representation.
9 Denoting by (2i)i>1 the increment sequence of S, set

(Xzyxz ----- Xo, Zjegrsnes 2, Xo, X, Xeufk-u,--.) ift>j*,

N—p— —
ht(vge 1) —ht(ve)
ift<j°.

ht(vye 41)~ht(vs)

10 Obtain ¥, ((Z) by appending the spine with increment sequence S to K at z + (0,0, ht(v,)).




LLN: sub/super-multiplicativity?

» Important ingredient for the LLN: establishing

1 _
EIAim — Elog pux(ht(P,) = h).

» Natural route: establish sub/super-multiplicativity:

1. Move from {ht(®,) = h} to a comparable event in Z3:
Ay = {x;sz{h} in R2x[0, )}

I 74

2. If translation invariant, FKG can typically give
T - T + - -
g5 (05(0,0,hy + hy)) 2 pgs (00,0, hy)) ugs (05(0,0, 1) )

3. But ,Ll;3 is more negative at height h; then at height 0 !




LLN: sub-multiplicativity

» To show that ‘Ugg (ht(P,) = h) is sub-multiplicative:
1. Move from {ht(P,) = h} to a comparable event in Z3:
Ay = {x;sz{h} in R2x[0, )}
2. Condition on the +-cluster of x in R*x[0, h4]. )
|

Note: this cluster contains positive information,
notably in its intersection with R*x{0} ...

» Need to show:

> For LLN: effect of this positive information is e°("1).

> For tightness: effect of this positive information is 0(1) !
» Key: structure of P, conditioned on {ht(P,) = h4}.




2 - 2 maps: mixing and stationarity

» More refined info on shape conditional on ht(®,) = h:

THEOREM: (|Gheissari, L. “19a])

3. (mixing) Vi,j, Cov(X;,X;) < Clj —i|~1%.

4. (stationarity) 3 stationary distribution v on ¥” such that
(s Xny2=1, Xny2, Xnj241s - ) —V

stationarity 2 - 2 map

mixing 2 - 2 map
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CLT for pillar increments

» THEOREM: (|Gheissari, L. “19a])

For every k there exists (k) such that for all 5 > [:

If /: X — R 1s a non-constant functional on increments s.t.
f(X) <explk |X]|] VX

and x = (x4, x,0) 1s in the bulk, then conditional on P,

having at least 1 << T,, << n increments,

— > (F () ~ Ef (t)-5 (0, 0)
Y- | |

for some o (5, f) > 0.

» Proof uses a Stein’s method treatment of stationary mixing
sequences of random variables a la [Bolthausen “82].




CLT for location of tip, volume, surface area

» COROLLARY: (|Gheissari, L. "19al)

Let (Y3, Yy, ht(fo)) be the location of the tip of the pillar 7, .
Conditional on 7, having at least 1 << T}, << n increments,

Y, Yo, ht(P,.) ) — (xq, x5, AT s o o
(1 2 t( x)) (xl X2 n) d) N(O;C’ o 0>)

0 0 (0)2
VIn

for some o,0’ > 0.

» CLT also holds, e.g., for the
surface area and volume of P,.




Open problems

» Open problems on M, :
> How does the LD quantity a depend on 7

(know: a = (4 + 0[;(1)) £.)
Is @ < 4, so Ising interfaces are rougher than SOS? 1

> Asymptotics of E[M,]?
(know: ai logn + o0, (logn).)
B

» Major open problems on the interface J:
> Roughness of tilted interfaces? (conj.: Var(ht, (7)) = logn)

> Roughening phase transition? (conj.: fr > B, < d = 3).
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