CUTOFF FOR THE ISING MODEL ON THE LATTICE

Eyal Lubetzky Microsoft Research

Joint work w. Allan Sly

Ising model

- Underlying geometry: finite graph G=(V,E).
- Set of possible configurations: $Ω = {\pm 1}^V$
- Probability of a configuration $\sigma \in \Omega$ given by the *Gibbs distribution*

$$\mu(\sigma) = \frac{1}{Z(\beta)} \exp \left(\beta \sum_{xy \in E} \sigma(x) \sigma(y)\right) \text{ [no external field]}$$

- Ferromagnetic \iff inverse-temperature $\beta \ge 0$.
- \blacksquare Phase transition as β varies (in some geometries).

Glauber dynamics for Ising

- One of the most commonly used MC samplers for the Gibbs distribution:
 - Update sites via iid Poisson(1) clocks
 - Each update replaces a spin at $u \in V$ by a new one $\sim \mu$ conditioned on $V \setminus \{u\}$ (heat-bath version).
- lacksquare Ergodic reversible MC with stationary measure μ .
- Introduced by Glauber in 1963. Other versions of the dynamics include e.g. Metropolis.
- How fast does it converge to equilibrium?

Mar 2010

Example: Glauber dynamics for critical Ising on the square lattice

- > 256 x 400 square lattice w. boundary conditions:
 - (+) at bottom
 - (-) elsewhere.
- > Frame after 2²⁰ steps, i.e. \sim 10 updates per site.

Rate of convergence to equilibrium

- Mixing time : standard measure of convergence:
 - The L^1 (total-variation) mixing time within ε is

$$t_{\text{mix}}(\varepsilon) = \inf \left\{ t : \max_{\sigma} \left\| H_t \left(\sigma, \cdot \right) - \mu \right\|_{\text{TV}} \leq \varepsilon \right\}$$

where H is the heat-kernel.

- "Mixing time" usually taken as $t_{mix}(\frac{1}{4})$ by convention.
- Spectral gap : governs convergence in $L^2(\mu)$: gap = smallest positive eigenvalue of the kernel H.

General (believed) picture for Mar 2010 Glauber dynamics

- lacksquare Setting: Ising model on the lattice $(\mathbb{Z}/n\mathbb{Z})^d$. Belief: For some critical inverse-temperature β_c :
- Low temperature: $(\beta > \beta_c)$ gap⁻¹ and t_{mix} are *exponential* in the surface area.
- \blacksquare Critical temperature: $(\beta = \beta)$ gap^{-1} and t_{mix} are *polynomial* in the surface area.
- \Box High temperature: $(\beta < \beta_c)$
 - 1. Rapid mixing: gap⁻¹ = O(1) and $t_{mix} \times \log n$
 - 2. Mixing occurs abruptly, i.e., there is *cutoff*.

The Cutoff Phenomenon

Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity.

Steady convergence

it takes a while to reach distance ½ from stationarity then a while longer to reach distance 1/4, etc.

Abrupt convergence distance from equilibrium quickly drops from 1 to 0

Mar 2010

Gap/mixing-time evolution for Ising on the complete graph

Above picture established in [Ding, L., Peres '09].

Mar 2010

Mixing time for Ising on lattices:[™] High temperature regime

- Mixing time of Ising on the lattice at high temp. was established in a series of seminal papers:
 - [Aizenman, Holley '84]
 - [Dobrushin, Shlosman '87]
 - [Holley, Stroock '87, '89]
 - [Holley '91]
 - [Stroock, Zegarlinski '92a, '92b, '92c]
 - [Zegarlinski '90, '92]
 - [Lu, Yau '93]
 - [Martinelli, Olivieri '94a, '94b]
 - [Martinelli, Olivieri, Schonmann '94]
- $\blacksquare \Rightarrow \mathsf{Bounded\ log} ext{-}\mathsf{Sobolev\ constant\ and\ } \mathrm{O}(\log\ n)$ mixing.
- In two dimensions this is known for all $\beta < \beta_c$.

Mixing on the square lattice

- High temperature: O(1) log-Sobolev constant and O(log n) mixing for all $\beta < \beta_c = \frac{1}{2}\log(1+\sqrt{2})$.
- ? Dynamics conjectured to exhibit cutoff [Peres'04].
- Low temperature: for β > β both gap⁻¹ and the mixing time are exp[(c(β)+o(1))n].
 [Schonmann '87], [Chayes, Chayes, Schonmann'87], [Martinelli '94], [Cesi, Guadagni, Martinelli, Schonmann'96].
- Critical temperature: No known sub-exponential
- ?) upper bounds at $\beta = \beta_c$ for mixing or gap⁻¹ ...

Cutoff: formal definition

■ A family of chains (X_t^n) is said to have *cutoff* if:

$$\lim_{n\to\infty} \frac{t_{\text{mix}}(\varepsilon)}{t_{\text{mix}}(1-\varepsilon)} = 1 \quad \forall \ 0<\varepsilon<1.$$

i.e.,
$$t_{\text{mix}}(\alpha) = (1 + o(1))t_{\text{mix}}(\beta)$$
 for any $0 < \alpha$, $\beta < 1$.

lacktriangle A sequence (w_n) is called a *cutoff window* if

$$\begin{split} w_{_n} &= o(t_{_{\text{mix}}}(\frac{1}{4})) \;, \\ t_{_{\text{mix}}}(\varepsilon) - t_{_{\text{mix}}}(1 - \varepsilon) &= O_{_{\varepsilon}}(w_{_n}) \quad \forall \, 0 < \varepsilon < 1 \;. \end{split}$$

Basic examples

Lazy discrete-time simple random walk

On the hypercube $\{0,1\}^n$:

☑ Exhibits cutoff at

[Aldous '83]

On the n-cycle:

The importance of cutoff

- Suppose we run Glauber dynamics for the Ising Model satisfying $t_{\text{mix}} \approx f(n)$ for some f(n).
- Cutoff $\Leftrightarrow \exists$ some $c_0 > 0$ so that:
 - Must run the chain for at least $\sim c_0 \cdot f(n)$ steps to even reach distance (1ε) from μ .
 - Running it any longer than that is essentially redundant.

- Proofs usually require (and thus provide) a deep understanding of the chain (its reasons for mixing).
- Many natural chains are believed to have cutoff, yet proving cutoff can be extremely challenging.

Cutoff History

- Random walks on graphs and groups:
 - Discovered:
 - Random transpositions on S_n [Diaconis, Shahshahani '81]
 - RW on the hypercube, Riffle-shuffle [Aldous '83]
 - Named "Cutoff Phenomenon" in the top-in-at-random shuffle analysis [Diaconis, Aldous '86]
 - RWs on finite groups [Saloff-Coste '04]
 - RWs on random regular graphs [L., Sly '10+]
- One-dimensional Markov chains:
 - Birth-and-Death chains
 [Diaconis, Saloff-Coste '06], [Ding, L., Peres '09]
- No proofs of cutoff except when stationary distribution is completely understood and has many symmetries.

Cutoff for the Glauber dynamics

- So far *only* spin-systems where cutoff was verified are Ising and Potts models on the *complete graph* [Levin, Luczak, Peres '10], [Ding, L., Peres '09], [Cuff, Ding, L., Louidor, Peres, Sly]
- Conjectured to believe at high temperatures for:
- Ising on the lattice, e.g. with periodic or free boundary.
- Potts model on the lattice.
- ? Gas Hard-core model on lattices.
- ? Colorings of lattices.
- Arbitrary boundary conditions / external field.
- ? Anti-ferromagnetic Ising/Potts models, Spin-glass, Other lattices / amenable transitive graphs,...

Cutoff for Ising on the lattice

Theorem [L., Sly]:

Let $\beta_c = \frac{1}{2}\log(1+\sqrt{2})$ be the critical inverse-temperature for the Ising model on \mathbb{Z}^2 . Then the continuous-time Glauber dynamics for the Ising model on $(\mathbb{Z}/n\mathbb{Z})^2$ with periodic boundary conditions at $0 \le \beta < \beta_c$ has cutoff at $(1/\lambda_\infty) \log n$, where λ_∞ is the spectral gap of the dynamics on the infinite volume lattice.

- Analogous result holds for any dimension $d \ge 1$:
 - Cutoff at $(d/2\lambda_{\infty}) \log n$
 - E.g., cutoff at $[2(1-\tanh(2\beta))]^{-1}\log n$ for d=1.

Cutoff for Ising on the lattice

- Main result hinges on an L^1 - L^2 reduction, enabling the application of log-Sobolev inequalities.
- Generic method gives further results on many other models conjectured to have cutoff:
- Ising on the lattice, e.g. with periodic or free boundary.
- Potts model on the lattice.
- Gas Hard-core model on lattices.
- Colorings of lattices.
- Arbitrary boundary conditions / external field.
- Anti-ferromagnetic Ising/Potts models, Spin-glass,
 Other lattices / amenable transitive graphs,...

Recent development: Critical Ising on square lattice

■ Theorem [L., Sly]: Critical slowdown verified in \mathbb{Z}^2 :

Consider the critical Ising model on a finite box $\Lambda \subset \mathbb{Z}^2$ of side-length n, i.e. at inverse-temperature $\beta_c = \frac{1}{2}\log(1+\sqrt{2})$. Let $\operatorname{gap}^{\tau}_{\Lambda}$ denote the spectral-gap in the generator of the corresponding Glauber dynamics under an arbitrary fixed boundary condition τ . Then there exists an absolute C > 0 (independent of Λ, τ) such that $(\operatorname{gap}^{\tau}_{\Lambda})^{-1} \leq n^C$.

More on this in the next Harvard probability seminar Thursday (Mar 11) 3:10pm, Science Center 232.

Proving Cutoff for Ising: Toy example: cutoff at $\beta = 0$

- No interactions:
 - Stationary distribution is uniform.
 - Spins evolve via independent cont.-time MCs.
- Equivalent to the lazy RW on the hypercube $\{0,1\}^n$.
- [Aldous '83]: Cutoff at $\frac{1}{2} \log n + O(1)$
 - Constant window
 - Twice faster than trivial upper bound.

Proving Cutoff for Ising: $^{Mar 2}$ Toy example: cutoff at $\beta = 0$ (ctd.)

- Magnetization is a birth-and-death chain:
 - By symmetry start at the all-plus state.
 - # of +'s at time t is $\sim \text{Bin}(n, \frac{1}{2}(1+e^{-t}))$.
 - # of +'s under stationary measure $\sim \text{Bin}(n, \frac{1}{2})$ which has Gaussian fluctuations of $O(\sqrt{n})$.

• Mixing occurs when $\frac{1}{2} e^{-t} \approx \sqrt{n}$.

$L^{1}\!\!-\!L^{2}$ reduction for product chains

Setup: general family of ergodic product chains:

$$\begin{aligned} (X_{t(n)}) &= \{X_{t(n)}^{i(n)} \colon i = 1, \dots, m(n)\} \\ \lim_{n \to \infty} \left\| \mathbb{P}(X_t^i \in \cdot) - \pi^i \right\|_{\infty} &= 0 \end{aligned}$$

■ Define:
$$M \triangleq \sum_{1}^{m} \left\| \mathbb{P}(X_t^i \in \cdot) - \pi^i \right\|_{L^2(\pi^i)}^2$$

The following then holds:

lacksquare For the hypercube m=n and we want to drop the individual L^2 distances ($symp e^{-t}$) below $1/\sqrt{n}$.

L^{1} - L^{2} reduction for Ising

- Framework:
 - (X_t) : continuous-time Glauber dynamics for \mathbb{Z}_n^d
 - (X_t^*) : continuous-time Glauber dynamics on a smaller lattice: \mathbb{Z}_r^d for $r=3\log^3 n$.
 - B : smaller box within \mathbb{Z}_r^d of side-length $2\log^3 n$.
- Define:

$$\mathbf{m}_{\scriptscriptstyle t} \triangleq \max_{\boldsymbol{x}_{\scriptscriptstyle 0}} \left\| \mathbb{P}_{\boldsymbol{x}_{\scriptscriptstyle 0}}(\boldsymbol{X}_{\scriptscriptstyle t}^*(\boldsymbol{B}) \in \cdot) - \boldsymbol{\mu}_{\scriptscriptstyle B}^* \right\|_{L^2(\boldsymbol{\mu}_{\scriptscriptstyle B}^*)}$$

measuring the L² convergence of the projection of (X_t^*) onto the box B.

L^{1} - L^{2} reduction for Ising (ctd.)

■ Recall:

$$\left\|\mathbf{m}_{_{t}}\triangleq\max_{x_{_{0}}}\left\|\mathbb{P}_{_{x_{_{0}}}}(\boldsymbol{X}_{_{t}}^{^{*}}(\boldsymbol{B})\in\cdot)-\boldsymbol{\mu}_{\boldsymbol{B}}^{^{*}}\right\|_{L^{2}(\boldsymbol{\mu}_{\boldsymbol{B}}^{^{*}})}$$

Theorem:

Let
$$s = s(n)$$
 and $t = t(n)$ satisfy
$$(10d / \alpha_s^*) \log \log n \le s < \log^{4/3} n ,$$

$$(20d / \alpha_s^*) \log \log n \le t < \log^{4/3} n ,$$
 where α_s^* is the infimum over log-Sobolev constants.
$$(n / \log^5 n)^d \mathfrak{m}_t^2 \to 0 \ \Rightarrow \limsup_{n \to \infty} \max_{x_0} \left\| \mathbb{P}_{x_0}(X_{t+s} \in \cdot) - \mu \right\|_{\mathrm{TV}} = 0$$

$$(n / \log^3 n)^d \mathfrak{m}_t^2 \to \infty \Rightarrow \liminf_{n \to \infty} \max_{x_0} \left\| \mathbb{P}_{x_0}(X_t \in \cdot) - \mu \right\|_{\mathrm{TV}} = 1$$

Translates L^1 mixing to L^2 mixing (to within a finer scale) on projections in smaller boxes.

Existence of cutoff

- Log-Sobolev inequalities ensure that $t^*=O(\log n)$.
- Take $s = (10d / \alpha_s^*) \log \log n$.
 - $\Rightarrow (n / \log^5 n)^d \mathfrak{m}_{t^*}^2 = \log^{1-2d} n = o(1)$
 - Theorem implies L^1 -distance of o(1) by time t^*+s .
- Since $t^* \approx \log n \implies t^* \geq (20d / \alpha_s^*) \log \log n$.
 - $\Rightarrow (n / \log^3 n)^d \mathfrak{m}_{_{t^*}}^2 = \log n \to \infty$
 - Theorem implies L^1 -distance of 1-o(1) at time t^* .

Ideas from the proof: $L^{1}\!\!\!-\!L^{2}$ reduction & cutoff location

- Additional effort needed to establish cutoff location in terms of λ_{∞} :
 - Express cutoff location in terms of the spectral-gaps on the smaller \mathbb{Z}_x^d and show these converge to λ_{∞} .
- Reduction is enabled by the following:
 - Information spreads at rate 1 while mixing is $O(\log n)$: No time for information to spread...
 - Consider the (random) "update support": the smallest set of spins whose value at time t is needed in order to determine the state at time t+s.
 - Geometric properties of support \Rightarrow product chain.

Random support of update seq.

THANK YOU.

