CRITICAL SLOWDOWN, FOR THE
ISING MODEL ON THE 2D LATTICE
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~ Ising model

cometry: finite graph G=(V,E ) .

ssible configurations:

RSl

ybability of a configuration o€()
1 by the Gibbs distribution

. i _ - eXp ( ﬁzmye | a(:L')a(y)) [no external field]
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= Ferromagnetic ~~ inverse-temperature 3> 0.

= Phase transition as [ varies (in some geometries).
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Glauber dynamics for Ising

t commonly used MC samplers for
uton:

da n(1) clocks
ach ”'[pdate-replaces a spi 1‘u t u €V by

3 f th Verswn)

'*1 Ergodic reversible MC with stationary measure .

trodu 2d by Glauber in 1963. Other versions of
the dynamics include e.g. Metropolis.

= How fast does it converge to equilibrium?
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le: Glauber dynamics for

Ising on the square lattice
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~ 256 x 400 square lattice
w. boundary conditions:
(+) at bottom
() elsewhere.

» Frame every ~2°steps,
i.e. ~2 updates/site.
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e of cor Ivergence to equilibrium

in the spectrum of the generator:
allest positive eigenvalue of the
R nel H, of the dynamics.

Vern: nvér n L 1) .

1 -ferm c_haractenza- ion: gap = inf V)

ere ! Var(f)
L), =32 (o)l o)|f (o)~ £ (o IE

Eh ng time : standard measure of convergence:
The 7 (total-varlatlon) mixing time within ¢ is

i (e)= 1nf{t . max ”Ht ,- — y,”W < &:} :
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al (believed) picture for
Glauber dynamics

g model on the lattice (Z/nZ)?

for some critical inverse-temperature /3,

Sl G N IR (S :
OW temperature: > 2,

zap ' and ¢, are exponential in the surface area.
'l‘temperature (r——chy

and 7, are polynomial in the surface area.

m E m  temperature: (B <B.)

1. Rapid mixing: gap ' = O(1) and ¢, < log n

- 2. Mixing occurs abruptly (cutoff phenomenon).
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Gap/mixing-time evolution for™="
Ising on mean-field

(Curie-Weiss model)
[gap", ¢ = S exp[2(6 —1)°n]

Abowe, picture established in [Ding, L., Peres ’09].’
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Vlixing time for Ising on lattices™

digh temperature regime

f Ising on the lattice at high temp. was
a series of seminal papers:

5 = Boﬁnded log-SoboleV constant and O(log n) mixing.
= Intwedi " this is known for all 3 < 3, .
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Vlixing on the square lattice

g_._a,p‘1 is uniformly bounded,
" O(log n) mixing for all ﬁ . = log(1+\/— )
@ @ Dynamics conjectured to exhibit cutoﬁ' [Peres’04].

Recen ly conf1rme L., Sly]: t = ;( ogn

temperature: for 8.>.0. both gap ! and the
mixing time are exp[(c(5)+o(1))n|.

schonmann ‘87], [Chayes, Chayes, Schonmann’87],
Ma 'elh 94], [Cesi, Guadagni, Martinelli, Schonmann’96].

Remains to Venfy power-law at critical 3=0, ..
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Glauber dynamlcs at criticality

ywer bound on gap ! via the polynomial
y of spin-spin « orrelation whose asymptotics were
blished by [Onsager "44] ([cf. Holley "91]).
ci’,ff. | expenmen ts: 3 universal exponent of ~2.17
], [Wang, Hatano, Suzuki "95], [Grassberger "95],
Nigh ,jgale, Blote '96], [Wang, Hu "97],..
= Comp: ;ed to conjectured power-law behav1or of gap 1
2 No knowr sub-exponential upper bounds ...
M’nly geometries with proved power-law for critical Ising:
= Mean-field [Ding, L., Peres "09] (Curie-Weiss model)
-Rgg‘\gi‘t:ee [Ding, L., Peres "10] (Bethe lattice).
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Scali ng limit of critical Ising

of the limit developed emerged

\ A S
Yy
hiv =4

breakthrou gh results due to
, nov] describe full scaling limit .3

-- e Ismg cluster interfaces as CLE $8# "
1 parameter k=3 . o) w2
s cf [\/Verner ‘03], [Lawler-Werner "04], [Sheffleld 09]

= Important role in the analysis of critical Ising: its
counterpart Fortuin-Kasteleyn representation.

11
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Critical FK-Ising Model

| then converted to Ising.
E.g., full ensemble of FK cluster interfaces — CLE g3 .

& Recent development via the above theory & tools:

= Russo-Seymour-Welsh type estimates for FK-Ising with
various BC due to [Duminil-Copin, Hongler, Nolin "09]
[Camia, Newman "09], [Chelkak, Smirnov “09].

12
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Viain result: power-law at criticality

ngth 7, ie. at inverse-temperature 3 = sloo(l + V2 Y

T

' denote the spectral-gap in the generator of the

. Polynomial L' (total-variation) mixing time under
any fixed boundary condition.
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esults for:
<undary conditions.
wti-ferromagnetic Ising model.
lower boun (pre reviously known lower
nd was nearly linear due to [Holley "91)).

*V

. ~ for cntléal Ismg on a finite box A C Z? of side- length n with
‘an arbitrary boundary condition 7. Then ( ga,pA) > en'/
for some absolute ¢ > 0.

14
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Ramifications for sampling

ke ficient algorithm for approximated
f critica 2D Ising (& its partition func.)
v (e.g 7. m d) boundary conditions.

e ﬁ'ee boundary efficient algorithm achieving this
ven by [Jerrum Smc”lalr (93]
g__s_lmulatlon.

- TE ‘ li"'f. by the [Propp-Wilson "96] famous CFTP .
d to [JS "93] algorithm by [Randall Wilson "99]
When boundary conditions are free/all-plus/all-minus.

- = New results allow rigorous efficient perfect simulation under
any arbitrary boundary via CFTP for Glauber dynamics.

v‘. "
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Main techniques

oach for analyzing the dynamics:

ixing via a spatial-mixing result for the
a 'boundary-spms on distant sites.
1 with distance.

rit it cty (Onsager’ work, also from “large”
iformal loops with positive probability) there are
iﬁige correlations foiling this approach.

Alternative approach:
. se onformal invariance to get a spatial-mixing result,
combine it with classical ingredients from MC analysis.

= Analyze effect of an entire face of the boundary on spins
(just enough spatial mixing to push this program through...)

"— e
i) EI -
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seneralized upper bound

Consider critical :Isihg model on a box A C Z? of dimensions
Let ga,p denote the spectral-gap in the generator of

- i1 dary condition 7. There exists an absolute C' > 0
~ (independent of A, 7) such that for 2 m—m( n) we have
(gap}) ' <nf

1 Only depends on the shorter side-length, e.g. on an
extremely long rectangle of size n x exp(exp(n)) we

ham\eszsame n“ bound of given for the square.

\'.——.l'-" St

-y — —
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ey spatial-mixing result

et A = l[l, r]] [[L*r for some integers r,r satlsfym

> o > w1th v flxed and let A = [1 r|x[pr,r'] for
B St e a<p<r/r. Let §, n be two BC’s on A
« }er only on the bottom boundary [1,7]x {0}. Then

| l;’" _.A(J(AT) & (oA e )"TV < exp(—dp),
Nhere 6 > 0 is a constant that depends only on « .

>roof uses the RSW-estimate for critical crossing

robabilities in a wired FK-Ising rectangle.
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Single site vs. Block dynamics

;analysis of Glauber dynamics:
> b o(:ks B=1{B.}.

bdates te-l Poisson clock.

‘;EQ statlo ?’”‘ée n the rest of the system.

POSITION (see, €.g. [Martmelh '97]):

(gapT ) < @)Y N clw,0)|f(0") — | (")]
| Tl % %m(a)zmc(x o)[f(0%) - f(a)]

hiere (gap,) ' is the gap of the block-dynamicsand N = #{i: B, > z}

(apy;) ™" max (gapj; )"

19
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Jpper bound via spatial-mixing

e following choice of blocks:
l.. 7", g_l ’I“’I", 7",‘

_|_£

3 ’I’F

2 two blocks have a vertical
overlap of height vrr'".
As a result of the spatial-mixing theorem:

' For any boundary condition £ on A we have
(gapy) ' >1— eXp?, —cyr’ / ) for an absolute ¢ > 0.

20
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U,),)-srl!- ound via spatial-mixing
(ctd.)

aics reverts to a smaller block size

:, b — exp(—c\/rﬁ‘ ) ]

nofN an lace ltby1+m

' < 2r at the cost

of an absolute constant.
= Iterating log; ,n steps completes the proof.

21
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iAtuition: spatial mixing proof

. Suppose that the three identical boundaries are
al -mlnus, and the bottom boundary is all-plus
in one measure and all-minus in the other.

= Ising cluster adjacent to bottom in
plus-measure converges to SLE;,
which does not climb past height

~ p r with positive probability.

= In that case, measures can be coupled.
= Actual setting:

= Arbitrary (mixed) boundary conditions
—__break this argument down...
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Solution: reduce to FK Ising

= Ising and its FK counterpart are coupled by the
Edwards-Sokal coupling:

= Under an arbitrary boundary condition £ one can go from
Ising ~» FK ~ Ising conditioned on some event A, which

may-have exponentially small probability in FK...

23
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Carrying the proof

= Control crossing probabilities in the FK-Ising
model conditioned on the event Ag :

= Utilize the recent
RSW-type estimates
with the FKG for the
FK-model to derive
the required coupling.

= Return to Ising via the
Edwards-Sokal method
to complete the proof.
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problems

ate the precise (universal) critical

ablish power-law behavior on the
ce in 3 dimensions.

25



Harvard Probability Seminar




