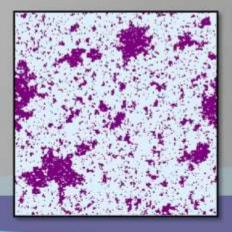
CRITICAL SLOWDOWN FOR THE ISING MODEL ON THE 2D LATTICE

Eyal Lubetzky Microsoft Research



Joint work w. Allan Sly

Ising model

- Underlying geometry: finite graph G=(V,E).
- Set of possible configurations: $Ω = {\pm 1}^V$
- Probability of a configuration $\sigma \in \Omega$ given by the *Gibbs distribution*

$$\mu(\sigma) = \frac{1}{Z(\beta)} \exp\left(\beta \sum_{xy \in E} \sigma(x) \sigma(y)\right) \text{ [no external field]}$$

- Ferromagnetic \iff inverse-temperature $\beta \ge 0$.
- \blacksquare Phase transition as β varies (in some geometries).

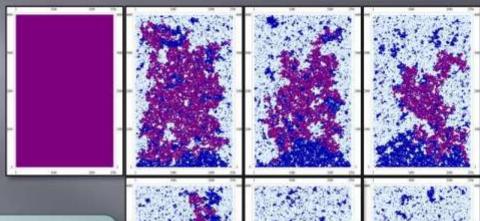
Glauber dynamics for Ising

- One of the most commonly used MC samplers for the Gibbs distribution:
 - Update sites via iid Poisson(1) clocks
 - Each update replaces a spin at u ∈ V by a new one ~ µ conditioned on V \{u} (heat-bath version).

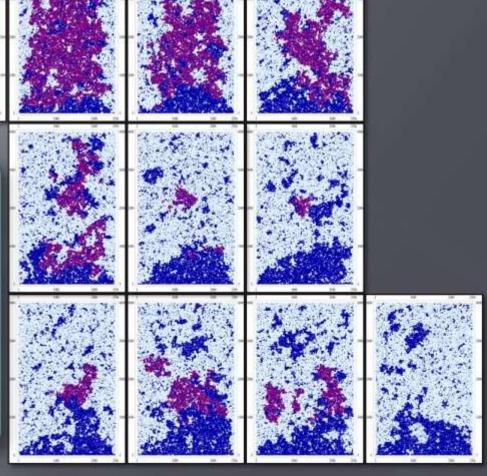
- Introduced by Glauber in 1963. Other versions of the dynamics include e.g. Metropolis.
- How fast does it converge to equilibrium?

Mar 2010

Example: Glauber dynamics for critical Ising on the square lattice



- > 256 x 400 square lattice w. boundary conditions:
 - (+) at bottom
 - (-) elsewhere.
- > Frame every $\sim 2^{30}$ steps, i.e. $\sim 2^{13}$ updates/site.



Rate of convergence to equilibrium

- Spectral gap in the spectrum of the generator: $gap = smallest positive eigenvalue of the heat-kernel <math>H_t$ of the dynamics.
 - Governs convergence in $L^2(\mu)$.
 - Dirichlet-form characterization: gap = $\inf_{f} \frac{\mathcal{E}(f)}{\operatorname{Var}(f)}$ where

$$\mathcal{E}\big(f\big) = \big\langle \mathcal{L}f, f \big\rangle_{L^2(\mu)} = \frac{1}{2} \sum_{\sigma, x} \mu(\sigma) c(x, \sigma) \big[f(\sigma^x) - f(\sigma) \big]^2 \,.$$

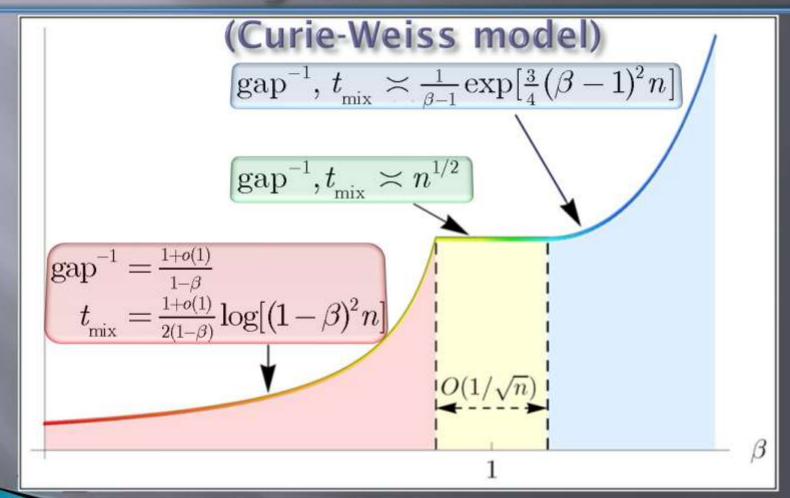
- Mixing time: standard measure of convergence:
 - The L^1 (total-variation) mixing time within ε is

$$t_{\text{mix}}(\varepsilon) = \inf \left\{ t : \max_{\sigma} \left\| H_t \left(\sigma, \cdot \right) - \mu \right\|_{\text{TV}} \leq \varepsilon \right\}.$$

General (believed) picture for Mar 2010 Glauber dynamics

- lacksquare Setting: Ising model on the lattice $(\mathbb{Z}/n\mathbb{Z})^d$. Belief: For some critical inverse-temperature β_c :
- Low temperature: $(\beta > \beta_c)$ gap⁻¹ and t_{mix} are *exponential* in the surface area.
- \blacksquare Critical temperature: $(\beta = \beta)$ gap^{-1} and t_{mix} are *polynomial* in the surface area.
- \blacksquare High temperature: $(\beta < \beta_c)$
 - 1. Rapid mixing: gap⁻¹ = O(1) and $t_{\text{mix}} \times \log n$
 - 2. Mixing occurs abruptly (cutoff phenomenon).

Gap/mixing-time evolution for Mar 2010 Ising on mean-field



Above picture established in [Ding, L., Peres '09].

Mixing time for Ising on lattices: 2010 High temperature regime

- Mixing time of Ising on the lattice at high temp. was established in a series of seminal papers:
 - [Aizenman, Holley '84]
 - [Dobrushin, Shlosman '87]
 - [Holley, Stroock '87, '89]
 - [Holley '91]
 - [Stroock, Zegarlinski '92a, '92b, '92c]
 - [Zegarlinski '90, '92]
 - [Lu, Yau '93]
 - [Martinelli, Olivieri '94a, '94b]
 - [Martinelli, Olivieri, Schonmann '94]
- $\blacksquare \Rightarrow \text{Bounded log-Sobolev constant and } O(\log n)$ mixing.
- In two dimensions this is known for all $\beta < \beta_c$.

Mixing on the square lattice

- \blacksquare High temperature: gap⁻¹ is uniformly bounded, O(log *n*) mixing for all $\beta < \beta_c = \frac{1}{2} \log(1+\sqrt{2})$.

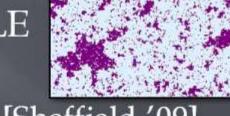
 2) • Dynamics conjectured to exhibit *cutoff* [Peres'04].
 - - Recently confirmed [L., Sly]: $t_{\text{mix}} = \frac{1+o(1)}{\lambda} \log n$
- Low temperature: for $\beta > \beta_c$ both gap⁻¹ and the mixing time are $\exp[(c(\beta)+o(1))n]$.
 - [Schonmann '87], [Chayes, Chayes, Schonmann'87], [Martinelli '94], [Cesi, Guadagni, Martinelli, Schonmann'96].
- \blacksquare Remains to verify power-law at critical $\beta = \beta_c \dots$

Glauber dynamics at criticality

- Polynomial lower bound on gap⁻¹ via the polynomial decay of spin-spin correlation whose asymptotics were established by [Onsager '44] ([cf. Holley '91]).
- Numerical experiments: \exists universal exponent of \sim 2.17
 - [Ito '93], [Wang, Hatano, Suzuki '95], [Grassberger '95],
 [Nightingale, Blöte '96], [Wang, Hu '97],...
- lacksquare Compared to conjectured power-law behavior of gap^{-1} :
- ?) No known sub-exponential upper bounds ...
- Only geometries with proved power-law for critical Ising:
 - Mean-field [Ding, L., Peres '09] (Curie-Weiss model)
 - Regular tree [Ding, L., Peres '10] (Bethe lattice).

Scaling limit of critical Ising

- Understanding of the limit developed emerged with the advent of SLE ([Schramm '00]), CLE and tools to study conformally invariant systems.
- Recent breakthrough results due to [Smirnov] describe full scaling limit of the Ising cluster interfaces as CLE with parameter $\kappa = 3$.



- cf. [Werner '03], [Lawler-Werner '04], [Sheffield '09].
- Important role in the analysis of critical Ising: its counterpart Fortuin-Kasteleyn representation.

Critical FK-Ising Model

- The FK-model is a measure over bond-percolation configurations also factoring in # of clusters.
- Scaling limits initially obtained for FK then converted to Ising.

- E.g., full ensemble of FK cluster interfaces \rightarrow CLE_{16/3}.
- Recent development via the above theory & tools:
 - Russo-Seymour-Welsh type estimates for FK-Ising with various BC due to [Duminil-Copin, Hongler, Nolin '09]
 [Camia, Newman '09], [Chelkak, Smirnov '09].

Main result: power-law at criticality

■ THEOREM [L., Sly]: Critical slowdown verified in \mathbb{Z}^2 :

Consider the critical Ising model on a finite box $\Lambda \subset \mathbb{Z}^2$ of side-length n, i.e. at inverse-temperature $\beta_c = \frac{1}{2}\log(1+\sqrt{2})$. Let $\operatorname{gap}^{\tau}_{\Lambda}$ denote the spectral-gap in the generator of the corresponding Glauber dynamics under an arbitrary fixed boundary condition τ . Then there exists an absolute C>0 (independent of Λ , τ) such that $(\operatorname{gap}^{\tau}_{\Lambda})^{-1} \leq n^C$.

COROLLARY:

Polynomial L^1 (total-variation) mixing time under any fixed boundary condition.

Further bounds on critical gap

- Analogous results for:
 - Free / periodic boundary conditions.
 - Critical anti-ferromagnetic Ising model.
- A new lower bound (previously known lower bound was nearly linear due to [Holley '91]).

THEOREM

Let $\operatorname{gap}_{\Lambda}^{\tau}$ denote the spectral-gap of the Glauber dynamics for critical Ising on a finite box $\Lambda \subset \mathbb{Z}^2$ of side-length n with an arbitrary boundary condition τ . Then $(\operatorname{gap}_{\Lambda}^{\tau})^{-1} \geq c n^{7/4}$ for some absolute c > 0.

Ramifications for sampling

- First rigorous efficient algorithm for approximated sampling of critical 2D Ising (& its partition func.) for arbitrary (e.g. mixed) boundary conditions.
 - For the free boundary an efficient algorithm achieving this was given by [Jerrum Sinclair '93].
- Perfect simulation:
 - Enabled by the [Propp-Wilson '96] famous CFTP.
 - Applied to [JS '93] algorithm by [Randall Wilson '99] when boundary conditions are free/all-plus/all-minus.
 - New results allow rigorous efficient perfect simulation under any arbitrary boundary via CFTP for Glauber dynamics.

Main techniques

- Common approach for analyzing the dynamics:
 - Control rate of mixing via a spatial-mixing result for the influence of individual boundary-spins on distant sites.
 - Use decay of correlation with distance.
- At criticality (Onsager's work, also from "large" conformal loops with positive probability) there are long range correlations foiling this approach.
- Alternative approach:
 - Use conformal invariance to get a spatial-mixing result, combine it with classical ingredients from MC analysis.
 - Analyze effect of an entire face of the boundary on spins (just enough spatial mixing to push this program through...)

Generalized upper bound

THEOREM

Consider critical Ising model on a box $\Lambda \subset \mathbb{Z}^2$ of dimensions $m \times n$. Let $\operatorname{gap}_{\Lambda}^{\tau}$ denote the spectral-gap in the generator of the corresponding Glauber dynamics under an arbitrary fixed boundary condition τ . There exists an absolute C > 0 (independent of Λ, τ) such that for any m = m(n) we have $(\operatorname{gap}_{\Lambda}^{\tau})^{-1} \leq n^C$.

■ Only depends on the shorter side-length, e.g. on an extremely long rectangle of size $n \times \exp(\exp(n))$ we have the exact same n^C bound of given for the square.

Key spatial-mixing result

THEOREM

Let $\Lambda = \llbracket 1,r \rrbracket \times \llbracket 1,r' \rrbracket$ for some integers r,r' satisfying $r'/r \geq \alpha > 0$ with α fixed and let $\Lambda_{\mathrm{T}} = \llbracket 1,r \rrbracket \times \llbracket \rho r,r' \rrbracket$ for some ρ satisfying $\alpha \leq \rho < r'/r$. Let ξ, η be two BC's on Λ that differ only on the bottom boundary $\llbracket 1,r \rrbracket \times \{0\}$. Then $\lVert \mu_{\Lambda}^{\xi}(\sigma(\Lambda_{\mathrm{T}}) \in \cdot) - \mu_{\Lambda}^{\eta}(\sigma(\Lambda_{\mathrm{T}}) \in \cdot) \rVert_{\mathrm{TV}} \leq \exp(-\delta \rho),$ Where $\delta > 0$ is a constant that depends only on α .

 Proof uses the RSW-estimate for critical crossing probabilities in a wired FK-Ising rectangle.

Single site vs. Block dynamics

- Classical tool in the analysis of Glauber dynamics:
 - Cover the sites using blocks $\mathcal{B} = \{B_i\}$.
 - Each block updates via a rate-1 Poisson clock.
 - Updates are \sim stationary given the rest of the system.
- PROPOSITION (see, e.g. [Martinelli '97]):

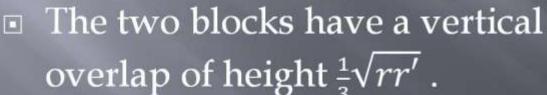
$$(\operatorname{gap}_{\Lambda}^{\tau})^{-1} \leq \frac{\sum_{\sigma} \mu_{\Lambda}^{\tau}(\sigma) \sum_{x \in \Lambda} N_{x} c(x,\sigma) \big[f(\sigma^{x}) - f(\sigma) \big]^{2}}{\sum_{\sigma} \mu_{\Lambda}^{\tau}(\sigma) \sum_{x \in \Lambda} c(x,\sigma) \big[f(\sigma^{x}) - f(\sigma) \big]^{2}} (\operatorname{gap}_{\mathcal{B}}^{\tau})^{-1} \max_{i,\varphi} (\operatorname{gap}_{B_{i}}^{\varphi})^{-1} \sum_{\sigma} \mu_{\Lambda}^{\tau}(\sigma) \sum_{x \in \Lambda} c(x,\sigma) \big[f(\sigma^{x}) - f(\sigma) \big]^{2}$$

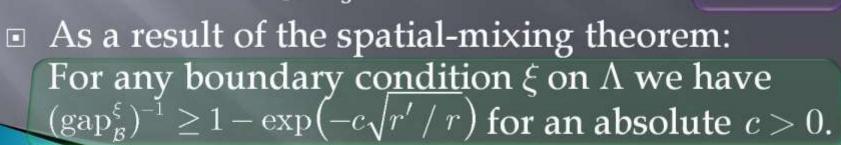
where $(\operatorname{gap}_{\mathcal{B}}^{\tau})^{-1}$ is the gap of the block-dynamics and $N_x = \#\{i : B_i \ni x\}$

Upper bound via spatial-mixing

Consider the following choice of blocks:

$$\begin{split} &\Lambda_{_{\! 1}}(\ell) = \big[\![1,r\big]\!] \times \big[\![\tfrac{1}{3}\,r'\,\tfrac{\ell-1}{3}\,\sqrt{rr'},r'\big]\!],\\ &\Lambda_{_{\! 2}}(\ell) = \big[\![1,r\big]\!] \times \big[\![1,\tfrac{1}{3}\,r'+\tfrac{\ell}{3}\,\sqrt{rr'}\big]\!]\\ &\text{for some }\; \ell \in \big\{1,\ldots,\left\lfloor\sqrt{r'\,/\,r}\,\right\rfloor\!\} \;\;. \end{split}$$



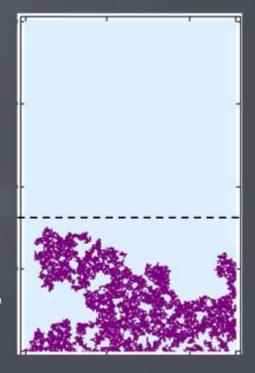


Upper bound via spatial-mixing (ctd.)

- Block dynamics reverts to a smaller block size at the cost of $1/[1 \exp(-c\sqrt{r'/r})]$.
- Average over the blocks to eliminate the contribution of N_x and replace it by $1 + \frac{1}{\sqrt{r'/r}}$.
- Repeated applications yield $r' \leq \frac{2}{3}r$ at the cost of an absolute constant.
- Iterating $\log_{3/2} n$ steps completes the proof.

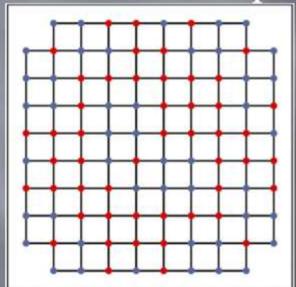
Intuition: spatial mixing proof

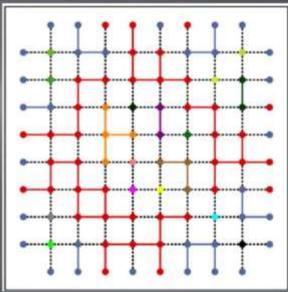
- Suppose that the three identical boundaries are all-minus, and the bottom boundary is all-plus in one measure and all-minus in the other.
 - Ising cluster adjacent to bottom in plus-measure converges to SLE₃, which does not climb past height ρ r with positive probability.
 - In that case, measures can be coupled.
- Actual setting:
 - Arbitrary (mixed) boundary conditions break this argument down...



Solution: reduce to FK Ising

Ising and its FK counterpart are coupled by the Edwards-Sokal coupling:

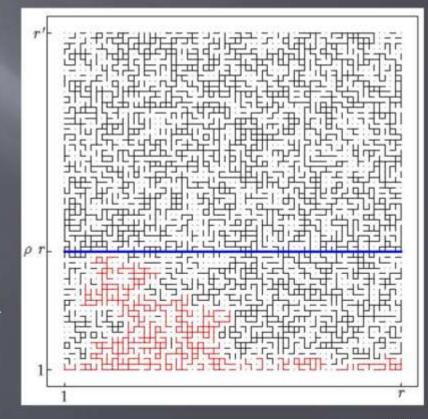




• Under an arbitrary boundary condition ξ one can go from Ising \leadsto FK \leadsto Ising conditioned on some event A_{ξ} which may have exponentially small probability in FK...

Carrying the proof

- \blacksquare Control crossing probabilities in the FK-Ising model conditioned on the event A_{ξ} .
- Utilize the recent RSW-type estimates with the FKG for the FK-model to derive the required coupling.
- Return to Ising via the Edwards-Sokal method to complete the proof.



Open problems

- Calculate the precise (universal) critical dynamical exponent.
- Establish power-law behavior on the lattice in 3 dimensions.

THANK YOU.

