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Subgraphs in the Erdos-Rényi RG

ulli(p).

» G(n,p): indicators of N = () edges: i.i.d. Berno
& )

» Let
» G, ~ G(n,p) for fixed 0 < p < 1.
» X, = # copies of a fixed graph H in G,

| Ruciniski ‘88]: ( 2P >N (0,1) w
JVar(X,) no®

» Prototypical example: X;, = # triangles in G,,.
» Large deviations:

\x

(eStimate (P(Xn = (1+ 6)IEXn)]for fixed 6 > 0. Ao




Large deviations

» Underlying space: i.i.d. Y, ..., Yy (e.g., edge indicators).

» Cramér’s Theorem: address probability of rare events
under mild assumption (on A(1) = log E[e*1]):
lim tlog P(32;Y; = (1 + 8)EY;) = —I(6)

n—)OO

with the rate function /() = sup{Ar — A(1)}.
2

> E.g.:ift ¥; ~ Ber(p) (the sum ~ Bin(N, p)):
[ I(r)=rlog1%+(1—1”)10{;}_;;9 ]

> Hoetfding’s inequality: for all a > 0,
{ P(Z;Y; = aN) < il/%f{e‘(/la—/\(ﬂ))l\’} _ e—z(@zﬂ

(optimizing the best A in Hoeffding gives limit of the log-prob).




Large deviations

» Underlying space: i.i.d. Y, ..., Yy (e.g., edge indicators).

» Cramér’s Theorem: address probability of rare events
under mild assumption (on A(1) = log E[e*1]):
lim tlog P(32;Y; = (1 + 8)EY;) = —I(6) N

n—>00

with the rate function /() = sup{Ar — A(1)}.
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» What about dependent random variables?

A

> One of simplest systems of dependent r.v.’s:
» Q1 (“how often”): find the rate function
> Q2 (“why”): typical behavior cond on LD o



Upper tails in random graphs

| X=#triangles in G(n,p)
» Upper tail rate function: R(n, p, §) such that

[P(X 2 (1+6) EX) = exp[-R(n,p, 8)] |

» | The infamous upper tail
S Janson, A Rucinski - Random Structures & Algorithms, 2002 - Wiley Online Library

[Janson, Oleszkiewicz, Rucinski '04], [Bollobas ‘81, "85],
[Janson Luczak, Rucinski ‘00], [Janson, Rucinski "02, '04a, ‘04b],

[Vu “01],[Kim, Vu '04], [Chatterjee-Dey “10], ...,
via Hoeffding-Azuma ineq./ Talagrand ineq./ Stein’s method/ ...
| n*p? S R(n,p,8) < n°p?log(1/p) |
> Order of R(n, p, §) finally resolved in [Chatterjee “12]
and [DeMarco, Kahn “12], independently showing

[ R(n,p,6) =n?p*log(1/p) |

> leading order asymptotics?
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Large deviations in random graphs

» QUESTION [Chatterjee and Varadhan (2011)]:
(> Fix0<p<r<l. A

> Take G ~ G(n,p) conditioned on having at least as
many triangles as a typical G(n, 7).

L )

R

> Is G = G(n, 1), namely, are they close in cut-distance?

p » Possibilities: extra triangles due to replica symmetry |
1. (yes) overwhelming # edges, uniformly distributed.

2. (no) fewer edges, arranged in a special structure.
symmetry breaking

<! cut distance between G,, and G(n, r):
SLAK ¢ 1
50(Gn 1) = max — e(4,B) — rlAlIB|




Upper tails of triangles in G(n, p)

.
» Q:[Let G ~ G(n,p) conditioned on > (731)13 triangles for
0<p<r<1.IsG = G(nr), namely, is §5(G,r) small?

» A: depends on (p,7)...

e
-

[Chatterjee-Dey “10]: Stein’s method

0
o

06

4 [Chatterjee-Varadhan “11]: LDP via
r - Szemerédi’s regularity & graph limits.

04

0.2

i > p 2 ~ 0.31: always symmetric.

2+e3/2
i > = 2 phase transitions for small p.

I I 1 I I
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Phase diagram for triangles
» [Chatterjee-Dey “10, Chatterjee-Varadhan “11]:

> Replica sym. if (13, 1,,(,y) € convex-minorant of x = [,(x*/3).

> Full phase diagram? One or more phase transitions?

» THEOREM: ([L., Zhao “15])

1.0

KSymmetry replica  for upper\
tails of triangles occurs iff iy

p<[1+ @ t-1nYa-20]"" |

. . . 0.4
> Coincides with the convex

minorant of x = I,(+/x) 0.2




Phase diagram for regular graphs

» More generally:

>»Fix0<p<r<l1
and a d-regular
graph H.

>Minimizeris f = r
& (r?,1,(r)) lies on

the convex-minorant
of x = L,(x?).




Variational problem (triangles)

» For each pair of vertices (i, j):
adjust its probability to w;; = p at a cost of I, (wi j).

» Optimization problem:

{Minimize Y Ip(wi)) W

subject to Yk WijWjkWig =17

OPT = rate function R(n,p,r) ~ —log IP(X > (g)r?’)

> [Chatterjee-Varadhan “11]: dense RG (fixed p).

> [Chatterjee-Dembo “16]: sparse RG (p = n~(1=0(1)/42)
* [Eldan "18+]: extended region (p = n~(170(1)/18)

= (very) slowly decaying p: weak regularity.




Example: slowly decaying p

» For each pair of vertices (i, j):
adjust its probability to w;; = p at a cost of I, (wi j).

» Optimization problem

{Minimize Y Ip(wi)) W

subject to Qi jx WijWjg Wi = r3

OPT = rate function R(n,p,7) ~ —log P(X = (n)r?’)
» PROPOSITION:
KLetO<n<5<1and0<p<1.Then
P(t(Ks,G(n,p) > (1 + 8)p°) < M"e M e~ ¢pS—m)
where € = np3/6 and M = 41/€”,

> useful for p » (logn)1/°.




Variational problem (triangles)
» Graphons: symmetric measurable W:[0,1]* - [0,1].
» Optimization problem | Min 25y (wij)

subj to Zi,j,k WijWjk Wik = r3

reformulated [CV'11] as

Min f[0,1]2 L,(W (x,y))dxdy
subj to f[o s W IW (v, 2)W (x, 2)dxdydz > r3

> minimum achieved by compactness (Lovasz-Szegedy).

» [CV'11]: solution gives the rate function; moreover,
w.h.p. (G(n,p) | t(H,”) = 1) close (in 65) to minimizer.

> in general, intractable...




Variational problem (general H)

» The LDP is reduced to a variational problem on
graphons f:[0,1]* - [0,1] (symmetric measurable):

> Set:
- Ip(f) - f[0,1]2 Ip(f(x: Y))dxdy-
= Subgraph count (H with V(H) = [m])in f:
t(H,f) = j 1_[ f(x;, x])dxl -dx,,

l JEE(H)
= Variational problem for upper tails:

Cp@.r) = inf{ L,(F) s t(H, ) 27}, |




Phase diagram for triangles

» THEOREM: ([L., Zhao “15])
‘Let 0<p<r<1. The constant graphon W =p
minimizes [ . I,(W (x,y))dxdy subject to

W (x, VYW (y, 2)W (x, z)dxdydz > r3
[0,1]3

1ff (rz, i (r)) lies on the convex minorant of x = L,(:/x)

Z—

0.8

> Symmetry breaking phase:
perturbative analysis...

> Where does the

0.6

0.4

0.2

convex-minorant enter?

0.0 : : : :
00 02 04 06 08 10




Key to sym. replica phase

» Where does the convex-minorant enter?

> Let Y (x) = I,(x*/*) and 1 be its convex-minorant.
> Then by Jensen:

L(f) = [ p(f*)dxdy = [P (f*)dxdy = ([ f5) .
> So, if [ f¥ = r¥and (r*) = P(r¥) then

L(f) 2 y(r*) = I,()

Ly(z"/4)
» For example, if t(Ks, f) = r3:
> [CD’10],[CV'11]: [ £3 = r3 by Holder.
> One can exploit subgraph structure:

generalized Holder [Finner ‘92]
gives | f? > r?: correct phase.




Matching the sym. breaking phase

» Tri-partite construction:

> Choice of a = se? and b = (1 — 5)&? + €3 for small
enough ¢ beats the constant function f = r.




Analogs of phase-diagram result
4 [d-regular linear hypergraphs: ]

Fano plane

(d =3)
cycle

(d =2)

4 [Leading eigenvalue:
G ~ G(n,p) conditioned on A,(G) = nr.

> phase diagram coincides with d = 2.

) ﬂExponential random graphs] nitiinl
[ P(G) x e (2)(B1t(K2,6)+B2t(K3,6)) ] / ;,-4
(building on [Chatterjee-Diaconis’13] . .

2 2



Parallel: the edge-triangle model

» For fixed edge and triangle densities (p,r) € (0,1)%:
what is the minimum entropy of such a graph?

> already finding the feasible region is nontrivial:

Vil

1

upper curve: r = p3/2
(special case of Kruskal-Katona)

lower curve: much harder;
[Razborov “08]: flag algebras.

. figure from L. Lovasz’s book
0 1 1 “Large networks and graph limits”




Parallel: the edge-triangle model

» For fixed edge and triangle densities (p,r) € (0,1)%:
what is the minimum entropy of such a graph?

> Variational problem:

Y@ = inf{ Lo ()  tH, ) = 7,60 ) = ).

> Extension of [CV'11] (cf. [Radin, Sadun “13]): if

Qs = uniform distribution over graphs G
such that |E(G) —m| < 6n? for m = |(}))p]

and X = # triangles in G then

{ lim lim —(—}l)log Qs5(X = n3r3) = yY(p,7)

0l0 n—>oo




Parallel: the edge-triangle model

» For fixed edge and triangle densities (p,r) € (0,1)%:
what is the minimum entropy of such a graph?

> Variational problem:

[ Y(p, 1) = inf{ 11/2(f) t(H, f) =71,t(K,, f) = p}_ ]

> |[Kenyon, Radin, Ren, Sadun “16]: solution is bipodal
for r € (p3,p> + &) (more generally: cliques, stars).

> See also: [Kenyon, Radin, Ren, Sadun "17a] on stars
(M-podal for some finite M and solved for < 30 nodes),
[Kenyon, Radin, Ren, Sadun "17b] (numerics), ...




Variational problem in G(n, m)

» Edge-triangle variational problem:

( M

\ Y(p,r) =inf{ L, (f) : t(H, f) =7, t(Ky, f) = p}.
lim lim —(—,ﬁ)log Qs(X = n®r®) = y(p,1) + C,

0l0 n—>oo

\

» Natural guess: Y (p,r) is the rate function for G(n, m).

» THEOREM: ([Dembo, L. "18+])

: A
Forae 0<p<r<1landH,ifm= (p+0(1)(}) then
1. the rate function for {t(H,) = r}in G(n,m) is Y(p, 7).
2. whyp. (G(n,m) | t(H,”) =1) close in 6y to OPT.




Large deviations in G(n, p):
the sparse regime

nes~d.
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Sparse random graphs

» Rate function in the sparse regime? e.g.,

> LetG ~ G(n,p) forp < 1.

> Let X = # triangles in G and write

[ P(X = 2 EX) = exp[—R(n,p)] ]
> Whatis R(n,p)? [Generally, R(n,p,d) for X = (1 + ) EX |.
» For intuition, consider lower tails:

> easy tosee: P(X =0)=>e™¢ min{n“p, n’p?}

> [Janson (1990)]’s Poisson large deviation inequality: '
(EX)*
P(X < (1 —8)EX) < e “OA+EX

matching upper bound!
> =>[R(n, p,8) = min{n?p, n3p3}] (transition at p = 1/y/n.)

» Similar treatment for upper tail?




The sparse regime

[ P(X > (1 + 6) EX) = exp[-R(n, p, 8)]

2

» [Chatterjee, Dembo "16]: breakthrough result:
for p » n~% one has R(n,p,6) ~ p(n,p,5) where
 ¢p,8) =inf{,(6) : t(K5, 6) = (1 + 6)p} |

over G € &, weighted undirected graphs on n vertices.
» Plausibly: extends throughout 2™ « p < 1.

n

» (for p = (logn)™¢ : follows from weak regularity.)

» Opens the door to first asymptotic LDP results for the
sparse random graph...

> Recent: new alternative proof by [Eldan “16] with a
better resulting constant a > 0 (for triangles: a = ).

18




Results in the sparse regime
» THEOREM: ([L., Zhao “17])

(Fix 6> 0 Ifn Y2 & p < 1 then N
¢(n,p,0) . {52/3 5}
= min

g ,
" 2’3

n—onp?log(1/p)
whereas if n~! < p < n~? then
_ ¢(n,pd) &3
lim =
n-c n?p?log(1/p) 2

» COROLLARY: (with @ = — [CD’16] or @ = — [Eldan “16])

—-(1- o(1))rn1n{§321i o

Forany § > 0, ifn %logn < p < 1 then
}n D log( )

| PX=>1+6)p3)=e




ldeas from the proofs
» For the lower bound on

{ P(X > (1+8)pY) = W) min{?3— §hn?o? 1og(3) W

> Take an arbitrary set on k = §/3np vertices and
force it to be a clique : kf

J(5) _ (o)

» Or,asetof £ = §5np2 vertices and force it to be
connected to all other vertices:

27
pf(n—f) _ p(6/3+o(1))n2p2 g
> Latter is preferable iff § < 27/8.

» For the upper bound: reduce to a continuous
variational problem; divide and conquer...



Extension to cliques
» THEOREM: ([L., Zhao “17])

/Fix §>0andk > 3. Ifn V%D &« p < 1 then \
. ¢k, (n,p,90) _(6%/k &
s n2pk-1log(1/p) - M

whereas if n=?/*"D « p « n=V/ &= thep
bk, (N, D, 0) 52/k
lim
noonZpk—tlog(1/p) 2

» COROLLARY:

b (1, = 1+ £ypl) = o (O mnfE Pt )

{Vk>3 day, > 0: Forany § > 0, ifn~% < p K 1 then 1




Upper tails for general graphs

» THEOREM: ([Bhattacharya, Ganguly, L., Zhao “17])
@ix 8 > 0 and H, and let X= # copies of H in G ~ G(n, p)\
Ifn~YEIEED ogn < p < 1 then

P(X > (1 + 8)EX) = p(ca@®+om)pin®
with A = maximum degree of H and an explicit cy(5) > 0.

> e.g
»H= /\ : cy(6) = min{%52/3,§5}
> H = : cy(8) = min {%61/2, (1+%6)1/2—1}
> H = : cy(6) = min{%al/z,%a}
»H=% cy(8) = 1+6)Y/2-1

> H = : cy(8) = Ss+avi+s — 2

2




Upper tails for general graphs

» THEOREM: ([Bhattacharya, Ganguly, L., Zhao “17])
@ix 8 > 0 and H, and let X= # copies of H in G ~ G(n, p)\
Ifn~YEIEED ogn < p < 1 then

P(X > (1 + §)EX) = plcu(@®+o)pin?
with A = maximum degree of H and an explicit cy(5) > 0.

» Independence polynomial: Py (x) = Xindep x Ml
set ]
> H* = induced subgraph of H on max-degree vertices

» 6 > 0 is the solution to Py+«(6) = 1 + 6.
Then - 1o/ V) -
( e (8) = {mm{@, 58 } H is regular 1

6 H is irregular




Upper tails for general graphs

» E.g.: LD for cycles:

Py(x) = % indep.setxll|

0>0st.Py,(0)=1+6

— mi 1o2/1v)
Pir(a) o lcu(8) = min{6, 26%/! l}
. ,
6
v 4
2 1
o 20 30 40 50 0 5
i o
'35 :
: 0.8
39 06 A\ Cs [ 1Ce
25 | >Cai G
2.0 o4 (7Cs (O Cs
15 0.2




Some upper tail open problems

» Dense regime:

a > Phase diagram for general (non-regular) graphs.

a > What is the solution in a single point within the
symmetry breaking regime?
(at no such pt. can we calculate the rate function...)

a > Uniqueness symmetry-breaking solution?

a > Are the symmetry-breaking solutions bipartite?
or 3 countable # phase transitions (# parts)?

» Sparse regime:

logn
ey

a > Push nonlinear large deviation results to p >







