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The models: static and dynamical



The (static) 2D Potts model

I Underlying geometry: G = finite 2d grid.

I Set of possible configuration:

Ωp = {1, . . . , q}V (G)

(each site receives a color).

Definition (the q-state Potts model on G)

Probability distribution µp on Ωp given by the Gibbs measure:

µp(σ) =
1

Zp
exp

(
β
∑
x∼y

1{σ(x)=σ(y)}

)
[Domb ’51]

(β ≥ 0 is the inverse-temperature; Zp is the partition function)
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Glauber dynamics for the Potts model

Recall: µp(σ) =
1

Zp
exp

(
β
∑
x∼y

1{σ(x)=σ(y)}

)
A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the Potts model:

I Update sites via IID Poisson(1) clocks

I An update at x ∈ V replaces σ(x) by

a new spin ∼ µp(σ(x) ∈ · | σ �V \{x}). e3β

1

1

eβ

Meta question: How long does it take to converge to µ?
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Glauber dynamics for the 2D Potts model

Glauber dynamics, 3-color Potts model on a 250× 250 torus

for β = 0.5 β = 2.01 β = 1.01.

. . . . . .

Q. 1 Fix β > 0 and T > 0. Does continuous-time Glauber

dynamics (σt)t≥0 for the 3-color Potts model on an n × n torus

attain maxσ0 Pσ0 (σT (x) = blue) at σ0 which is all-blue?
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The (static) 2D Fortuin–Kasteleyn model

I Underlying geometry: G = finite 2d grid.

I Set of possible configuration:

Ωfk = {ω : ω ⊆ E (G )}

(equiv., each edge is open/closed).

Definition (the (p, q)-FK model on G)

Probability distribution µp on Ωfk given by the Gibbs measure:

µfk(ω) =
1

Zfk

( p

1− p

)|ω|
qκ(ω)

[Fortuin, Kasteleyin ’69]

(Zfk is the partition function; κ(ω) = # connected components in ω)

Well-defined for any real (not necessarily integer) q ≥ 1.
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Glauber dynamics for the FK model

Recall: µfk(ω) =
1

Zfk

(
p

1− p

)|ω|
qκ(ω)

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the FK model:

I Update sites via IID Poisson(1) clocks

I An update at e ∈ E replaces 1{e∈ω}
by a new spin ∼ µfk(e ∈ ω | ω \ {e}).

edge prob

p

edge prob

p
p+(1−p)q
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Coupling of (Potts,FK), Swendsen–Wang dynamics

[Edwards–Sokal ’88]: coupling of (µp, µfk):

ΨG ,p,q(σ, ω) =
1

Z

(
p

1− p

)|ω| ∏
e=xy∈E

1{σ(x)=σ(y)} .

SW dynamics: ≡ to σ 7→ (σ, ω) 7→ (σ′, ω) 7→ σ′ via this coupling:

Definition (Swendsen–Wang dynamics)

I Take p = 1− e−β.

I Given σ ∈ Ωp, generate a configuration ω ∈ Ωfk via bond

percolation on {e = xy ∈ E : σ(x) = σ(y)} with parameter p.

I Color ∀ connected component of ω by an IID uniform color

out of {1, . . . , q} to form σ′ ∈ Ωp.

[Swendsen–Wang ’87]
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Measuring convergence to equilibrium in Potts/FK

Measuring convergence to the stationary distribution π of a

discrete-time reversible Markov chain with transition kernel P:

I Spectral gap / relaxation time:

gap = 1− λ2 and trel = gap−1

where the spectrum of P is 1 = λ1 > λ2 > . . ..

I Mixing time (in total variation):

tmix = inf

{
t : max

σ0∈Ω
‖Pt(σ0, ·)− π‖tv < 1/(2e)

}
(Continuous time (heat kernel Ht = etL): gap in spec(L), and replace Pt by Ht .)

For most of the next questions, these will be equivalent.
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Measuring convergence to equilibrium in Potts/FK (ctd.)

[Ullrich ’13, ’14]: related gap of discrete-time Glauber dynamics

for Potts/FK and Swendsen–Wang on any graph G with maximal

degree ∆ (no boundary condition):

c(q, β,∆) gapp ≤ gapsw ,

c(p, q) gapfk ≤ gapsw ≤ C gapfk |E | log |E | .

(Extended to any real q > 1 by [Blanca, Sinclair ’15].)

Up to polynomial factors: FK Glauber and SW are equivalent, and

are at least as fast as Potts Glauber.

Q. 2 Is gapsw ≥ c(q, β,∆) gapcontp on ∀ G with max degree ∆?

E. Lubetzky 10



Dynamical phase transitions on Z2



Dynamical phase transition

Prediction for Potts Glauber dynamics on the torus

Swendsen–Wang: expected to be fast also when β > βc .

I [Guo, Jerrum ’17]: for q = 2: fast on any graph G at any β.

I [Gore, Jerrum ’97]: for q ≥ 3: slow on complete graph at βc ...
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Intuition from the complete graph

Mixing time for Potts Glauber on the complete graph:
I [Ding, L., Peres ’09a, ’09b], [Levin, Luczak, Peres ’10]: full picture for q = 2.
I [Cuff, Ding, L., Louidor, Peres, Sly ’12]: full picture for q ≥ 3.

Mixing time for Swendsen–Wang on the complete graph:
I [Cooper, Frieze ’00], [Cooper, Dyer, Frieze, Rue ’00],

[Long, Nachmias, Ning, Peres ’11]: full picture for Ising (q = 2).
I [Cuff, Ding, L., Louidor, Peres, Sly ’12] full picture for q ≥ 3.
I [Gore, Jerrum ’99]: ec

√
n at βc for q ≥ 3; [Galanis, Štefankovic, Vigoda ’15] and

[Blanca, Sinclair ’15]: picture of SW/CM for β /∈ (βs , βS ), ec
√
n at β ∈ (βs , βS );

[Gheissari, L., Peres ’18]: extended the ec
√

n to ecn.

βs βc βS
| | |

cβ

cβ log n
cn1/3

e
cβ

√
n

e
cβn
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Results on Z2 off criticality

I High temperature:

• [Martinelli,Olivieri ’94a,’94b],[Martinelli,Olivieri,Schonmann ’94c]:

gap−1
p = O(1) ∀β < βc at q = 2; extends to q ≥ 3 via

[Alexander ’98], [Beffara,Duminil-Copin ’12].

• [Blanca, Sinclair ’15]: rapid mixing for FK Glauber ∀β < βc , q > 1.

• [Huber ’99],[Cooper,Frieze ’00]: SW is fast for q = 2 and β small.

• [Blanca, Caputo, Sinclair, Vigoda ’17]: gap−1
sw = O(1) ∀β < βc

∀q ≥ 2
.

• [Nam, Sly ’18]: cutoff for SW for small enough β.
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Results on Z2 off criticality

I Low temperature:
• [Chayes, Chayes, Schonmann ’87], [Thomas ’89], [Cesi, Guadagni,

Martinelli, Schonmann ’96]: e(cβ+o(1))n mixing ∀β > βc at q = 2.

• [Martinelli ’92]: O(logα n) mixing for SW at q = 2 and β large.

• [Blanca, Sinclair ’15]: rapid mixing for FK Glauber ∀β > βc , q > 1;

implies tmix = nO(1) for SW via [Ullrich ’13,’14].

• [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu ’99] and

[Borgs, Chayes, Tetali ’12]: ecn mixing at β > βc and large q.

(Result applies to the d-dimensional torus for any d ≥ 2 provided q > Q0(d).)

Q. 3 Show that gap−1
sw = O(1) and that Swendsen–Wang

dynamics on an n × n torus has tmix = O(log n) ∀β > βc ∀q ≥ 2.

E. Lubetzky 14



Phase coexistence at criticality



Dynamics on an n × n torus at criticality for q > 4

Prediction: ([Li, Sokal ’91],...)

Potts Glauber and Swendsen–Wang on the

torus each have tmix � exp(cq n) at βc if

the phase-transition is discontinuous.

Intuition: Swendsen–Wang easily switches between

ordered phases, yet the order/disorder transition is a

bottleneck, as on the complete graph for β ∈ (βs , βS).

Rigorous bounds: [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu ’99],

followed by [Borgs, Chayes, Tetali ’12], showed this for q large enough:

Theorem

If q is sufficiently large, then both Potts Glauber and

Swendsen–Wang on an n × n torus have tmix ≥ exp(cn).
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Slow mixing in coexistence regime on (Z/nZ)2

Building on the work of [Duminil-Copin, Sidoravicius, Tassion ’15]:

Theorem (Gheissari, L. ’18)

For any q > 1, if ∃ multiple infinite-volume FK measures then the

Swendsen–Wang dynamics on an n × n torus has tmix ≥ exp(cqn).

In particular, via [Duminil-Copin,Gagnebin,Harel,Manolescu,Tassion]:

Corollary

For any q > 4, Potts Glauber, FK Glauber and Swendsen–Wang on

the n × n torus at β = βc all have tmix ≥ exp(cq n).

E. Lubetzky 16



Proof of lower bound: an exponential bottleneck

Define the bottleneck set S :=
⋂3

i=1 S
i
v ∩ S i

h where

S i
v :=

{
ω : ∃x s.t. (x , 0)←→ (x , n) in [ (i−1)n

3 , in3 ]× [0, n]
}
,

S i
h :=

{
ω : ∃y s.t. (0, y)←→ (n, y) in [0, n]× [ (i−1)n

3 , in3 ]
}
.
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The torus vs. the grid (periodic vs. free b.c.)

Recall: for q = 2 and β > βc :

I Glauber dynamics for the Ising model both on an n × n grid

(free b.c.) and on an n × n torus has tmix ≥ exp(cn).

I In contrast, on an n × n grid with plus boundary conditions

it has tmix ≤ nO(log n) [Martinelli ’94], [Martinelli, Toninelli ’10],

[L., Martinelli, Sly, Toninelli ’13].

When the phase transition for Potts is discontinuous, at β = βc :

the dynamics under free boundary conditions is fast:
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The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where tmix ≥ exp(cn), on the grid SW is fast:

Theorem (Gheissari, L. ’18)

For large q, Swendsen–Wang on an n × n grid ( free b.c.) at βc

has tmix ≤ exp(no(1)). The same holds for red b.c.

I Intuition: free/red b.c. destabilize all but one phase

I A bound of exp(n1/2+o(1)) on FK Glauber à la [Martinelli ’94]:

• Interface fluctuations in the FK model are normal.

• A block dynamics with blocks of width
√
n can push the

interface gradually and couple all-wired and all-free.

• Caution: canonical paths upper bound of exp(cut− width(G ))

fails under arbitrary b.c. A recent result of [Blanca, Gheissari,

Vigoda] shows that planar b.c. do not have this issue.

I To improve this to exp(no(1)), one employs the framework of

[Martinelli, Toninelli ’10], along with cluster expansion.
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• Interface fluctuations in the FK model are normal.

• A block dynamics with blocks of width
√
n can push the

interface gradually and couple all-wired and all-free.

• Caution: canonical paths upper bound of exp(cut− width(G ))

fails under arbitrary b.c. A recent result of [Blanca, Gheissari,

Vigoda] shows that planar b.c. do not have this issue.

I To improve this to exp(no(1)), one employs the framework of

[Martinelli, Toninelli ’10], along with cluster expansion.
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Sensitivity to boundary conditions

Toprid mixing on the torus; sub-exponential mixing on the grid.

Classifying boundary conditions that interpolate between the two?

Theorem ([Gheissari, L. 18’+] (two of the classes, informally))

For large enough q, Swendsen–Wang satisfies:

1. Mixed b.c. on 4 macroscopic intervals induce tmix ≥ exp(cn).

2. Dobrushin b.c. with a macroscopic interval: tmix = eo(n).

Boundary Swendsen–Wang

Periodic/Mixed

||

||
tmix ≥ ecn

Dobrushin tmix ≤ en
1/2+o(1)
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Questions on the discontinuous phase transition regime

Q. 4 Let q > 4. Is Swendsen–Wang (or FK Glauber) on the

n × n grid (free b.c.) quasi-polynomial in n? polynomial in n?

known: exp(no(1)) for q � 1

Q. 5 Let q > 4. Is Potts Glauber on the n × n grid (free b.c.)

sub-exponential in n? quasi-polynomial in n? polynomial in n?

Q. 6 Let q > 4. Is Swendsen–Wang on the n × n grid with

Dobrushin b.c. sub-exponential in n? quasi-poly(n)? poly(n)?

known: exp(n1/2+o(1)) for q � 1
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Unique phase at criticality



Dynamics on an n × n torus at criticality for 1 < q < 4

Prediction:

Potts Glauber and Swendsen–Wang on the

torus each have tmix � nz for a

lattice-independent z = z(q).

The exponent z is the “dynamical critical exponent”; various works

in physics literature with numerical estimates, e.g., z(2) ≈ 2.18.

Rigorous bounds:

Theorem (L., Sly ’12)

Continuous-time Glauber dynamics for the Ising model (q = 2) on

an n × n grid with arbitrary b.c. satisfies n7/4 . tmix . nc .

Bound tmix . nc extends to Swendsen–Wang via [Ullrich ’13,’14].
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Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. ’18)

Cont.-time Potts Glauber dynamics at βc(q) on an n× n torus has

1. at q = 3: Ω(n) ≤ tmix ≤ nO(1) ;

2. at q = 4: Ω(n) ≤ tmix ≤ nO(log n) .

I The argument of [L., Sly ’12] for q = 2 hinged on an

RSW-estimate of [Duminil-Copin, Hongler, Nolin ’11].

I Proof extends to q = 3 via RSW-estimates (∀1 < q < 4) by

[Duminil-Copin, Sidoravicius, Tassion ’15] but not to FK Glauber...

I The case q = 4 is subtle: crossing probabilities are believed to

no longer be bounded away from 0 and 1 uniformly in the b.c.
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FK Glauber for noninteger q

Obstacle in FK Glauber: macroscopic disjoint boundary bridges

prevent coupling of configurations sampled under two different b.c.

Theorem (Gheissari, L.)

For every 1 < q < 4, the FK Glauber dynamics at β = βc(q) on an

n × n torus satisfies tmix ≤ nc log n.

One of the key ideas: establish the

exponential tail beyond some c log n for

# of disjoint bridges over a given point.
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Questions on the continuous phase transition regime

Q. 7 Let q = 4. Establish that Potts Glauber on an n× n torus

(or a grid with free b.c.) satisfies tmix ≤ nc .

known: nO(log n)

Q. 8 Let q = 2.5. Establish that FK Glauber on an n × n torus

(or a grid with free b.c.) satisfies tmix ≤ nc .

known: nO(log n)

Q. 9 Is q 7→ gapp decreasing in q ∈ (1, 4)? Similarly for gapsw?
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Thank you!
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