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The (static) 2D Potts model

» Underlying geometry: G = finite 2D grid.

> Set of possible configuration:

(each site receives a color). 4




The (static) 2D Potts model

» Underlying geometry: G = finite 2D grid.

> Set of possible configuration:

(each site receives a color).

Definition (the g-state Potts model on G) [Domb '51] )
Probability distribution pp on €5 given by the Gibbs measure:

1
pp(0) = == 7, P (5 > ﬂ{o(x)—a(y)})

X~y

(8 > 0 is the inverse-temperature; Z is the partition function)




Glauber dynamics for the Potts model

1
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A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model

RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3545 J
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Specialized to the Potts model:

» Update sites via IID Poisson(1) clocks

» An update at x € V replaces o(x) by
a new spin ~ pp(a(x) € - [ o [v\(x})-
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Glauber dynamics for the Potts model

1
Recall: pe(o) = — exp (5 Z Lfo(x)=a( )})

X~y

A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model

RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3545 J

Specialized to the Potts model:

» Update sites via IID Poisson(1) clocks

» An update at x € V replaces o(x) by

a new spin ~ pp(a(x) € - [ o [v\(x})-

META QUESTION: How long does it take to converge to u?




Glauber dynamics for the 2D Potts model

Glauber dynamics, 3-color Potts model on a 250 x 250 torus
for =05~ 5=2.01~ g =1.01.

Q.1 FixpB>0and T > 0. Does continuous-time Glauber
dynamics (o¢)¢>0 for the 3-color Potts model on an n x n torus
attain max,, Py, (07(x) = BLUE) at og which is ALL-BLUE?

=d



The (static) 2D Fortuin—Kasteleyn model

» Underlying geometry: G = finite 2D grid.

> Set of possible configuration:
Qe ={w:wC E(G)}J

(equiv., each edge is open/closed).




The (static) 2D Fortuin—Kasteleyn model

» Underlying geometry: G = finite 2D grid.

> Set of possible configuration:

Qe ={w:wC E(G)}J

(equiv., each edge is open/closed).

Definition (the (p, g)-FK model on G) (EEEIERECEEEINEY
Probability distribution pp on Qg given by the Gibbs measure:

. 1 p || r(w)
ple) = 7 (755) @

(Zex is the partition function; k(w) = # connected components in w)

Well-defined for any real (not necessarily integer) g > 1.




Glauber dynamics for the FK model
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A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model

RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3545 J

edge prob I‘
p

Specialized to the FK model: I—. I—I
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Glauber dynamics for the FK model

1 |w]
Recall: _ - P r(w)
pex (w) 7 (1 — p) q

A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model

RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3545 J

Specialized to the FK model: I—. I—I S, l‘
» Update sites via IID Poisson(1) clocks I [ I P |

» An update at e € E replaces Licc.)

by a new Spin ~ HFK(e cw | w \ {e}) I—‘ I_I edge prob

2l
p+(1—p)g

v




Coupling of (Potts,FK), Swendsen—Wang dynamics

[Edwards—Sokal '88]: coupling of (e, trk):
1 p ||
VG pqlo,w) = 7 <1T> H Lio(x)

p e=xycE

=o(y)} - ‘




Coupling of (Potts,FK), Swendsen—Wang dynamics

[Edwards—Sokal '88]: coupling of (e, trk): I—‘ 't
1 p [l I*I
V6 pq(o,w) = Vi <1Tp> H L=ty - r{*"

e=xycE

SW dynamics: = to 0 — (o,w) — (¢/,w) — ¢’ via this coupling:

Definition (Swendsen—Wang dynamics)

» Take p=1—eb.

\VE

»

> Given o € Qp, generate a configuration w € Qux via bond
percolation on {e = xy € E : 0(x) = o(y)} with parameter p.

> Color V connected component of w by an IID uniform color
out of {1,...,q} to form ¢’ € Q5.




Measuring convergence to equilibrium in Potts/FK

Measuring convergence to the stationary distribution 7 of a
discrete-time reversible Markov chain with transition kernel P:

> Spectral gap / relaxation time:

gap=1-X and te =gap

where the spectrum of Pis 1 =MX1 > Ao > .. ..

» Mixing time (in total variation):

P tmix = inf {t : max ||P¥(00, ) — 7||rv < 1/(2e)}
S

(Continuous time (heat kernel Hy = et“): gap in spec(£), and replace Pt by H;.)

For most of the next questions, these will be equivalent.




Measuring convergence to equilibrium in Potts/FK (ctd.)

[Ullrich "13, '14]: related gap of discrete-time Glauber dynamics
for Potts/FK and Swendsen—-Wang on any graph G with maximal
degree A (no boundary condition):

c(q,8,2) gap, < gapyy
c(p, q) gapi < gapsy < Cgapyy |E|log|E|.

(Extended to any real g > 1 by [Blanca, Sinclair '15].) I

Up to polynomial factors: FK Glauber and SW are equivalent, and
are at least as fast as Potts Glauber.

Q- 2) Is gapgy > c(q,8,4) gap<°™ on V G with max degree A?J




Dynamical phase transitions on 72




Dynamical phase transition
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Prediction for Potts Glauber dynamics on the torus
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Dynamical phase transition

s o e

Prediction for Potts Glauber dynamics on the torus
3 Be(q)
5
1.2
4
_____________ t
]
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"
constant "
power
law q
1 2 3 4

Swendsen—Wang: expected to be fast also when 5 > (..
» [Guo, Jerrum '17]: for g = 2: fast on any graph G at any §.
> [Gore, Jerrum '97]: for g > 3: slow on complete graph at fc...




Intuition from the complete graph

Mixing time for Potts Glauber on the complete graph:

> [Ding, L., Peres '09a, '09b], [Levin, Luczak, Peres '10]: full picture for g = 2.
> [Cuff, Ding, L., Louidor, Peres, Sly '12]: full picture for g > 3.

Mixing time for Swendsen—\Wang on the complete graph:
> [Cooper, Frieze '00], [Cooper, Dyer, Frieze, Rue '00],
[Long, Nachmias, Ning, Peres '11]: full picture for Ising (g = 2).
> [Cuff, Ding, L., Louidor, Peres, Sly '12] full picture for g > 3.
> [Gore, Jerrum '99]: eV at B, for q > 3; [Galanis, Stefankovic, Vigoda '15] and
[Blanca, Sinclair '15]: picture of SW/CM for 8 ¢ (Bs, Bs), e<V™ at B € (Bs, Bs); I
[Gheissari, L., Peres '18]: extended the eV to ecn,

7~
eCBII o
B V) o————-=- == )
cn1/3 .
] log n C——
c
B | N
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Results on Z? off criticality
B » ewrrel

> High temperature:

o [Martinelli,Olivieri '94a,'94b],[Martinelli,Olivieri, Schonmann '94c]:
gap; " = O(1) Vj < fB. at g = 2; extends to g > 3 via
| [Alexander '98], [Beffara,Duminil-Copin '12]. 1

[Blanca, Sinclair '15]: rapid mixing for FK Glauber V8 < ., q > 1.

[Huber '99],[Cooper,Frieze '00]: SW is fast for g = 2 and 3 small.

VB < Bc
Vg>2

[Blanca, Caputo, Sinclair, Vigoda '17]: gapg. = O(1)

[Nam, Sly '18]: cutoff for SW for small enough g.




Results on Z? off criticality

e o sl

> Low temperature:
o [Chayes, Chayes, Schonmann '87], [Thomas '89], [Cesi, Guadagni,
Martinelli, Schonmann '96]: e(s+°()" mixing V3 > . at q = 2.

o [Martinelli '92]: O(log™ n) mixing for SW at g = 2 and S large.

o [Blanca, Sinclair '15]: rapid mixing for FK Glauber ¥ > ., q > 1,
implies tix = n°W for SW via [Ullrich '13,'14]. =

o [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu '99] and
[Borgs, Chayes, Tetali '12]: e“" mixing at 5 > (. and large g.

(Result applies to the d-dimensional torus for any d > 2 provided g > Qo(d).)

Q. 3. Show that gapy+ = O(1) and that Swendsen-Wang
dynamics on an n X n torus has tyix = O(logn) V3 > B. Vg > 2.




Phase coexistence at criticality




Dynamics on an n x n torus at criticality for g > 4

Prediction: ([Li, Sokal '91],...)

Potts Glauber and Swendsen—-Wang on the |7 ,
torus each have tyix < exp(cg n) at B¢ if |” :
the phase-transition is discontinuous.

08
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Dynamics on an n x n torus at criticality for g > 4

Prediction: ([Li, Sokal '91],...)
Potts Glauber and Swendsen—Wang on the

1.2

1.0

torus each have tyix < exp(cg n) at fc if
the phase-transition is discontinuous.

08

Intuition: Swendsen—Wang easily switches between
ordered phases, yet the order/disorder transition is a

bottleneck, as on the complete graph for 5 € (8s, 8s).

Rigorous bounds: [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu '99],
followed by [Borgs, Chayes, Tetali '12], showed this for g large enough:

Theorem
If q is sufficiently large, then both Potts Glauber and

Swendsen—Wang on an n X n torus have tyix > exp(cn).




Slow mixing in coexistence regime on (Z/nZ)?

Building on the work of [Duminil-Copin, Sidoravicius, Tassion "15]:

Theorem (Gheissari, L. '18)
For any g > 1, if 3 multiple infinite-volume FK measures then the
Swendsen-Wang dynamics on an n X n torus has tmix > exp(cqn).

In particular, via [Duminil-Copin,Gagnebin,Harel, Manolescu, Tassion]: |

|
= Corollary

For any q > 4, Potts Glauber, FK Glauber and Swendsen—Wang on
the n x n torus at § = ¢ all have tmix > exp(cq n).

\VE




Proof of lower bound: an exponential bottleneck
Define the bottleneck set S := ?:1 SiNSj where
Sr= {w :Ix s.t. (x,0) «— (x, n) in [@ 21 x (o, n]} ,

5,’;::{w:3ys.t. (0,y) «— (n,y) in [0, n]><[(’ 1)n m}.

T
L




The torus vs. the grid (periodic vs. free b.c.)

Recall: for g =2 and 8 > f.:

> Glauber dynamics for the Ising model both on an n x n grid

(free b.c.) and on an n X n torus has tyix > exp(cn).

y /
/1
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The torus vs. the grid (periodic vs. free b.c.)

Recall: for g =2 and 8 > f.:

> Glauber dynamics for the Ising model both on an n x n grid
(free b.c.) and on an n X n torus has tyix > exp(cn).

> In contrast, on an n x n grid with plus boundary conditions
it has i < 90981 [Martinelli '94], [Martinelli, Toninelli '10],
[L., Martinelli, Sly, Toninelli '13].

When the phase transition for Potts is discontinuous, at 8 = (.:
the dynamics under free boundary conditions is fast:




The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where tyix > exp(cn), on the grid SW is fast:
Theorem (Gheissari, L. '18)

For large q, Swendsen—-Wang on an n x n grid (free b.c.) at (¢
has tmix < exp(n"(l)). The same holds for red b.c.
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The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where tyix > exp(cn), on the grid SW is fast:

Theorem (Gheissari, L. '18)

For large q, Swendsen—-Wang on an n x n grid (free b.c.) at (¢
has tmix < exp(n"(l)). The same holds for red b.c.

Intuition: free/red b.c. destabilize all but one phase

A bound of exp(n'/2+°(1)) on FK Glauber a la [Martinelli '94]:

Interface fluctuations in the FK model are normal. ‘
A block dynamics with blocks of width \/n can push the z
interface gradually and couple ALL-WIRED and ALL-FREE.

\

Caution: canonical paths upper bound of exp(cut — width(G))
fails under arbitrary b.c. A recent result of [Blanca, Gheissari,

Vigoda] shows that planar b.c. do not have this issue.




The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where tyix > exp(cn), on the grid SW is fast:

Theorem (Gheissari, L. '18)

For large q, Swendsen—-Wang on an n x n grid (free b.c.) at (¢
has tmix < exp(n"(l)). The same holds for red b.c.

Intuition: free/red b.c. destabilize all but one phase

A bound of exp(n'/2+°(1)) on FK Glauber a la [Martinelli '94]:

Interface fluctuations in the FK model are normal. |
A block dynamics with blocks of width \/n can push the z
interface gradually and couple ALL-WIRED and ALL-FREE.

Caution: canonical paths upper bound of exp(cut — width(G))
fails under arbitrary b.c. A recent result of [Blanca, Gheissari,
Vigoda] shows that planar b.c. do not have this issue.

To improve this to exp(no(l)), one employs the framework of

[Martinelli, Toninelli '10], along with cluster expansion.




Sensitivity to boundary conditions

Toprid mixing on the torus; sub-exponential mixing on the grid.

Classifying boundary conditions that interpolate between the two?
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Sensitivity to boundary conditions

Toprid mixing on the torus; sub-exponential mixing on the grid.

Classifying boundary conditions that interpolate between the two?

Theorem ([Gheissari, L. 18'+] (two of the classes, informally))
For large enough q, Swendsen—\Wang satisfies:
1. Mixed b.c. on 4 macroscopic intervals induce tyix > exp(cn).

2. Dobrushin b.c. with a macroscopic interval: tyix = eo(n.

“» Boundary Swendsen—Wang z

Periodic/Mixed T 1 ) <: tmix > €

Dobrushin L—\I

J p < enl/2+o(1)
mix =




Questions on the discontinuous phase transition regime

Q. 4, Let g > 4. Is Swendsen-Wang (or FK Glauber) on the
n x n grid (free b.c.) quasi-polynomial in n? polynomial in n?

known: exp(n°Y)) for g > iy

Q. 5| Let g > 4. Is Potts Glauber on the n x n grid (free b.c.)
sub-exponential in n? quasi-polynomial in n? polynomial in n? I

Q. 61 Let g > 4. Is Swendsen—Wang on the n x n grid with
Dobrushin b.c. sub-exponential in n? quasi-poly(n)? poly(n)?

known: exp(n'/2+°M) for g > 1




Unique phase at criticality




Prediction:

Potts Glauber and Swendsen—Wang on the
torus each have tyix < n® for a
lattice-independent z = z(q).

Dynamics on an n x n torus at criticality for 1 < g < 4
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1.2

Potts Glauber and Swendsen—Wang on the

torus each have tyix < n® for a N

lattice-independent z = z(q). -

The exponent z is the “dynamical critical exponent”; various works

in physics literature with numerical estimates, e.g., z(2) ~ 2.18.




Dynamics on an n x n torus at criticality for 1 < g < 4

Prediction: N

Potts Glauber and Swendsen—Wang on the |*

torus each have tyix < n® for a N

lattice-independent z = z(q). -

The exponent z is the “dynamical critical exponent”; various works
in physics literature with numerical estimates, e.g., z(2) ~ 2.18.

Rigorous bounds:
Theorem (L., Sly '12)

Continuous-time Glauber dynamics for the Ising model (g = 2) on

an n x n grid with arbitrary b.c. satisfies n"/* < tmix S n.

Bound tyix < n¢ extends to Swendsen—Wang via [Ullrich '13,'14].



Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. '18)

Cont.-time Potts Glauber dynamics at B:(q) on an n x n torus has
1 atg=3: Qn) < tyix < n9D);
Ooatg=4: Qn) < tpix < nCloen)
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Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. '18)

Cont.-time Potts Glauber dynamics at B:(q) on an n x n torus has
atg=3: Q(n) < tyix < n%)
atg=4: Q(n) < tpix < nOlogn)

The argument of [L., Sly '12] for ¢ = 2 hinged on an
RSW-estimate of [Duminil-Copin, Hongler, Nolin "11].

Proof extends to ¢ = 3 via RSW-estimates (V1 < g < 4) by
[Duminil-Copin, Sidoravicius, Tassion '15] but not to FK Glauber...

The case g = 4 is subtle: crossing probabilities are believed to
no longer be bounded away from 0 and 1 uniformly in the b.c.




FK Glauber for noninteger g

Obstacle in FK Glauber: macroscopic disjoint boundary bridges

prevent coupling of configurations sampled under two different b.c.




FK Glauber for noninteger g

Obstacle in FK Glauber: macroscopic disjoint boundary bridges

prevent coupling of configurations sampled under two different b.c.

Theorem (Gheissari, L.)

For every 1 < q < 4, the FK Glauber dynamics at 8 = .(q) on an| |
n X n torus satisfies ty < n<'°8".

\

One of the key ideas: establish the
exponential tail beyond some clog n for

# of disjoint bridges over a given point.




Questions on the continuous phase transition regime

Q. 7. Let g =4. Establish that Potts Glauber on an n x n torus
(or a grid with free b.c.) satisfies tmix < n°.

known: n©(ogn)

Q. 8 Let g =2.5. Establish that FK Glauber on an n x n torus
(or a grid with free b.c.) satisfies tmix < n°.

known: n©(ogn)

Q. 9 Is g gap, decreasing in g € (1,4)? Similarly for gapSW?J
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