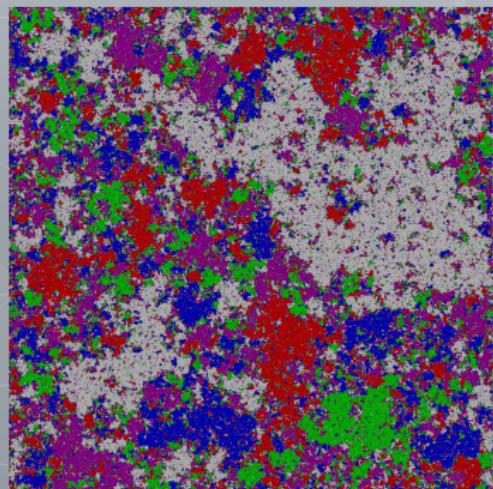


Dynamics for the critical 2D Potts/FK model: many questions and a few answers

Eyal Lubetzky

May 2018

Courant Institute, New York University



Outline

The models: static and dynamical

Dynamical phase transitions on \mathbb{Z}^2

Phase coexistence at criticality

Unique phase at criticality

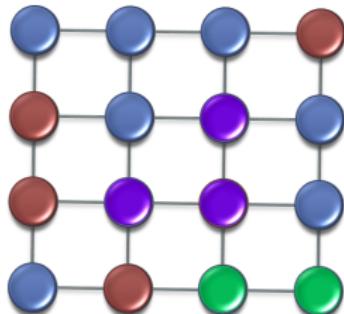
The models: static and dynamical

The (static) 2D Potts model

- ▶ Underlying geometry: G = finite 2D grid.
- ▶ Set of possible configuration:

$$\Omega_P = \{1, \dots, q\}^{V(G)}$$

(each *site* receives a *color*).

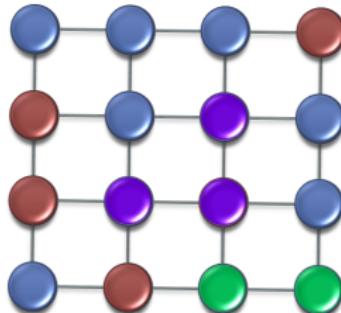


The (static) 2D Potts model

- ▶ Underlying geometry: G = finite 2D grid.
- ▶ Set of possible configuration:

$$\Omega_P = \{1, \dots, q\}^{V(G)}$$

(each *site* receives a *color*).



Definition (the q -state Potts model on G)

[Domb '51]

Probability distribution μ_P on Ω_P given by the **Gibbs measure**:

$$\mu_P(\sigma) = \frac{1}{Z_P} \exp \left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}} \right)$$

($\beta \geq 0$ is the inverse-temperature; Z_P is the partition function)

Glauber dynamics for the Potts model

Recall:
$$\mu_P(\sigma) = \frac{1}{Z_P} \exp \left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}} \right)$$

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Glauber dynamics for the Potts model

Recall:
$$\mu_P(\sigma) = \frac{1}{Z_P} \exp \left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}} \right)$$

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the Potts model:

- ▶ Update sites via IID Poisson(1) clocks
- ▶ An update at $x \in V$ replaces $\sigma(x)$ by a new spin $\sim \mu_P(\sigma(x) \in \cdot \mid \sigma \upharpoonright_{V \setminus \{x\}})$.

Glauber dynamics for the Potts model

Recall:
$$\mu_P(\sigma) = \frac{1}{Z_P} \exp \left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}} \right)$$

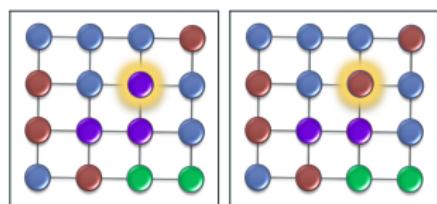
A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the Potts model:

- ▶ Update sites via IID Poisson(1) clocks
- ▶ An update at $x \in V$ replaces $\sigma(x)$ by a new spin $\sim \mu_P(\sigma(x) \in \cdot | \sigma|_{V \setminus \{x\}})$.



Glauber dynamics for the Potts model

Recall:
$$\mu_P(\sigma) = \frac{1}{Z_P} \exp \left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}} \right)$$

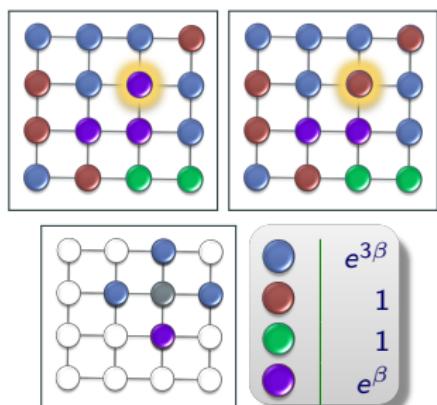
A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the Potts model:

- ▶ Update sites via IID Poisson(1) clocks
- ▶ An update at $x \in V$ replaces $\sigma(x)$ by a new spin $\sim \mu_P(\sigma(x) \in \cdot | \sigma|_{V \setminus \{x\}})$.



Glauber dynamics for the Potts model

Recall:
$$\mu_P(\sigma) = \frac{1}{Z_P} \exp \left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}} \right)$$

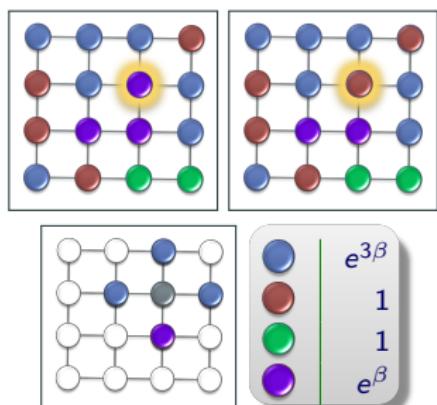
A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the Potts model:

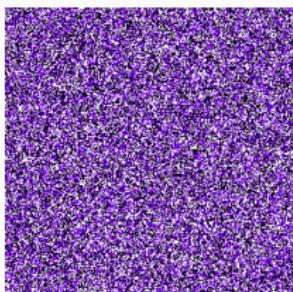
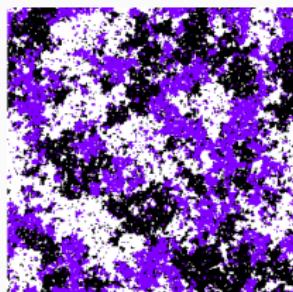
- ▶ Update sites via IID Poisson(1) clocks
- ▶ An update at $x \in V$ replaces $\sigma(x)$ by a new spin $\sim \mu_P(\sigma(x) \in \cdot | \sigma|_{V \setminus \{x\}})$.



META QUESTION: *How long does it take to converge to μ ?*

Glauber dynamics for the 2D Potts model

Glauber dynamics, 3-color Potts model on a 250×250 torus
for $\beta = 0.5 \rightsquigarrow \beta = 2.01 \rightsquigarrow \beta = 1.01$.



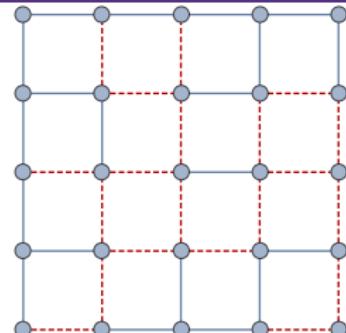
Q. 1 Fix $\beta > 0$ and $T > 0$. Does continuous-time Glauber dynamics $(\sigma_t)_{t \geq 0}$ for the 3-color Potts model on an $n \times n$ torus attain $\max_{\sigma_0} \mathbb{P}_{\sigma_0}(\sigma_T(x) = \text{BLUE})$ at σ_0 which is ALL-BLUE?

The (static) 2D Fortuin–Kasteleyn model

- ▶ Underlying geometry: G = finite 2D grid.
- ▶ Set of possible configuration:

$$\Omega_{\text{FK}} = \{\omega : \omega \subseteq E(G)\}$$

(equiv., each edge is *open/closed*).

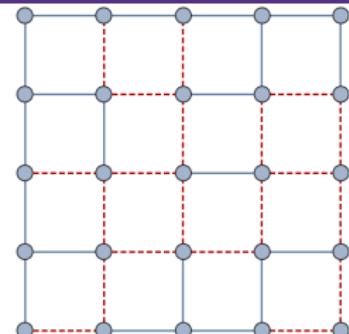


The (static) 2D Fortuin–Kasteleyn model

- ▶ Underlying geometry: G = finite 2D grid.
- ▶ Set of possible configuration:

$$\Omega_{\text{FK}} = \{\omega : \omega \subseteq E(G)\}$$

(equiv., each edge is *open/closed*).



Definition (the (p, q) -FK model on G)

[Fortuin, Kasteleyn '69]

Probability distribution μ_p on Ω_{FK} given by the **Gibbs measure**:

$$\mu_{\text{FK}}(\omega) = \frac{1}{Z_{\text{FK}}} \left(\frac{p}{1-p} \right)^{|\omega|} q^{\kappa(\omega)}$$

(Z_{FK} is the partition function; $\kappa(\omega) = \#$ connected components in ω)

Well-defined for any real (not necessarily integer) $q \geq 1$.

Glauber dynamics for the FK model

Recall:

$$\mu_{\text{FK}}(\omega) = \frac{1}{Z_{\text{FK}}} \left(\frac{p}{1-p} \right)^{|\omega|} q^{\kappa(\omega)}$$

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Glauber dynamics for the FK model

Recall:

$$\mu_{\text{FK}}(\omega) = \frac{1}{Z_{\text{FK}}} \left(\frac{p}{1-p} \right)^{|\omega|} q^{\kappa(\omega)}$$

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the FK model:

- ▶ Update sites via IID Poisson(1) clocks
- ▶ An update at $e \in E$ replaces $\mathbb{1}_{\{e \in \omega\}}$ by a new spin $\sim \mu_{\text{FK}}(e \in \omega \mid \omega \setminus \{e\})$.

Glauber dynamics for the FK model

Recall:

$$\mu_{\text{FK}}(\omega) = \frac{1}{Z_{\text{FK}}} \left(\frac{p}{1-p} \right)^{|\omega|} q^{\kappa(\omega)}$$

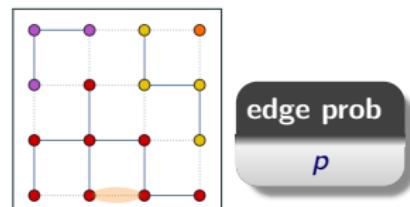
A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the FK model:

- ▶ Update sites via IID Poisson(1) clocks
- ▶ An update at $e \in E$ replaces $\mathbb{1}_{\{e \in \omega\}}$ by a new spin $\sim \mu_{\text{FK}}(e \in \omega \mid \omega \setminus \{e\})$.



Glauber dynamics for the FK model

Recall:

$$\mu_{\text{FK}}(\omega) = \frac{1}{Z_{\text{FK}}} \left(\frac{p}{1-p} \right)^{|\omega|} q^{\kappa(\omega)}$$

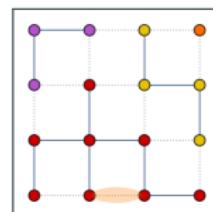
A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

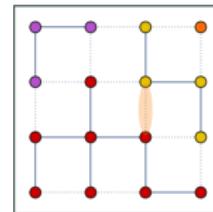
RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3545

Specialized to the FK model:

- ▶ Update sites via IID Poisson(1) clocks
- ▶ An update at $e \in E$ replaces $\mathbb{1}_{\{e \in \omega\}}$ by a new spin $\sim \mu_{\text{FK}}(e \in \omega \mid \omega \setminus \{e\})$.



edge prob
 p

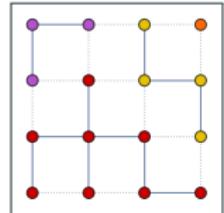


edge prob
 $\frac{p}{p+(1-p)q}$

Coupling of (Potts,FK), Swendsen–Wang dynamics

[Edwards–Sokal '88]: coupling of (μ_P, μ_{FK}) :

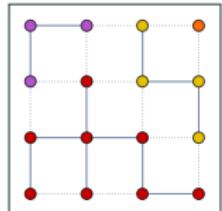
$$\Psi_{G,p,q}(\sigma, \omega) = \frac{1}{Z} \left(\frac{p}{1-p} \right)^{|\omega|} \prod_{e=xy \in E} \mathbb{1}_{\{\sigma(x)=\sigma(y)\}}.$$



Coupling of (Potts,FK), Swendsen–Wang dynamics

[Edwards–Sokal '88]: coupling of (μ_P, μ_{FK}) :

$$\Psi_{G,p,q}(\sigma, \omega) = \frac{1}{Z} \left(\frac{p}{1-p} \right)^{|\omega|} \prod_{e=xy \in E} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}}.$$



SW dynamics: \equiv to $\sigma \mapsto (\sigma, \omega) \mapsto (\sigma', \omega) \mapsto \sigma'$ via this coupling:

Definition (Swendsen–Wang dynamics) [Swendsen–Wang '87]

- ▶ Take $p = 1 - e^{-\beta}$.
- ▶ Given $\sigma \in \Omega_P$, generate a configuration $\omega \in \Omega_{FK}$ via bond percolation on $\{e = xy \in E : \sigma(x) = \sigma(y)\}$ with parameter p .
- ▶ Color \forall connected component of ω by an IID uniform color out of $\{1, \dots, q\}$ to form $\sigma' \in \Omega_P$.

Measuring convergence to equilibrium in Potts/FK

Measuring convergence to the stationary distribution π of a discrete-time reversible Markov chain with transition kernel P :

- ▶ Spectral gap / relaxation time:

$$\text{gap} = 1 - \lambda_2 \quad \text{and} \quad t_{\text{rel}} = \text{gap}^{-1}$$

where the spectrum of P is $1 = \lambda_1 > \lambda_2 > \dots$

- ▶ Mixing time (in total variation):

$$t_{\text{mix}} = \inf \left\{ t : \max_{\sigma_0 \in \Omega} \|P^t(\sigma_0, \cdot) - \pi\|_{\text{TV}} < 1/(2e) \right\}$$

(Continuous time (heat kernel $H_t = e^{t\mathcal{L}}$): gap in $\text{spec}(\mathcal{L})$, and replace P^t by H_t .)

For most of the next questions, these will be equivalent.

Measuring convergence to equilibrium in Potts/FK (ctd.)

[Ullrich '13, '14]: related **gap** of discrete-time Glauber dynamics for Potts/FK and Swendsen–Wang on any graph G with maximal degree Δ (no boundary condition):

$$c(q, \beta, \Delta) \text{gap}_P \leq \text{gap}_{\text{SW}},$$

$$c(p, q) \text{gap}_{\text{FK}} \leq \text{gap}_{\text{SW}} \leq C \text{gap}_{\text{FK}} |E| \log |E|.$$

(Extended to any real $q > 1$ by [Blanca, Sinclair '15].)

Up to polynomial factors: FK Glauber and SW are equivalent, and are at least as fast as Potts Glauber.

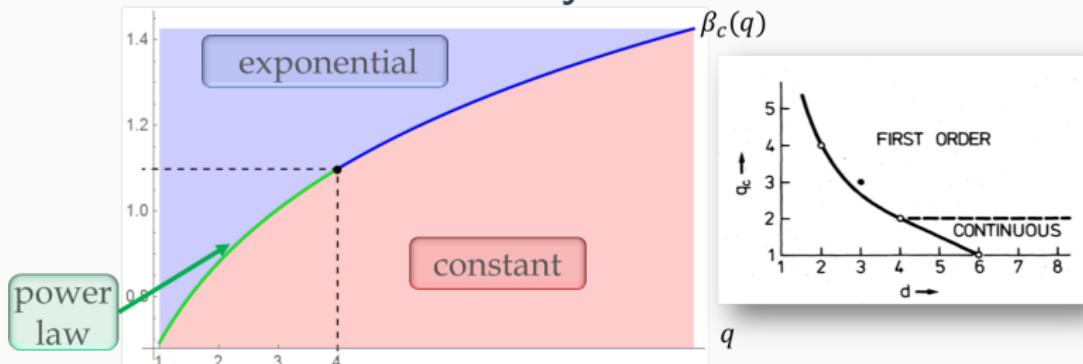
Q. 2

Is $\text{gap}_{\text{SW}} \geq c(q, \beta, \Delta) \text{gap}_P^{\text{cont}}$ on $\forall G$ with max degree Δ ?

Dynamical phase transitions on \mathbb{Z}^2

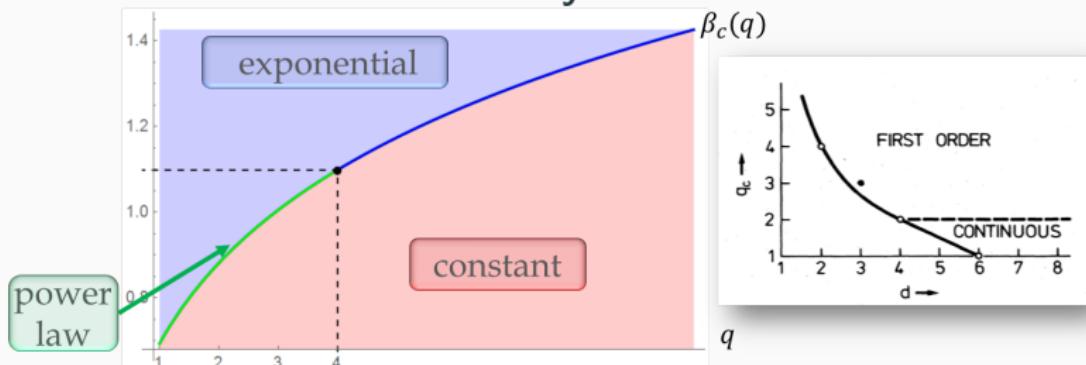
Dynamical phase transition

Prediction for Potts Glauber dynamics on the torus



Dynamical phase transition

Prediction for Potts Glauber dynamics on the torus



Swendsen–Wang: expected to be fast also when $\beta > \beta_c$.

- [Guo, Jerrum '17]: for $q = 2$: **fast** on any graph G at any β .
- [Gore, Jerrum '97]: for $q \geq 3$: **slow on complete graph at β_c** ...

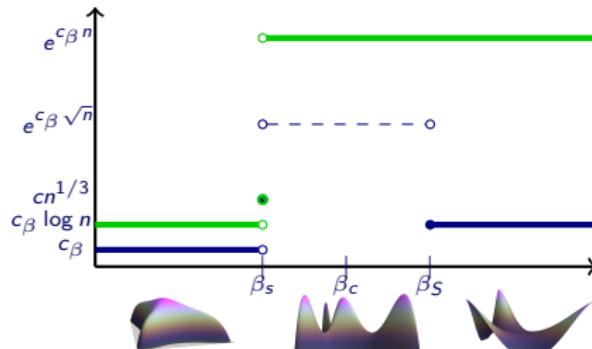
Intuition from the complete graph

Mixing time for **Potts Glauber** on the complete graph:

- ▶ [Ding, L., Peres '09a, '09b], [Levin, Luczak, Peres '10]: full picture for $q = 2$.
- ▶ [Cuff, Ding, L., Louidor, Peres, Sly '12]: full picture for $q \geq 3$.

Mixing time for **Swendsen–Wang** on the complete graph:

- ▶ [Cooper, Frieze '00], [Cooper, Dyer, Frieze, Rue '00], [Long, Nachmias, Ning, Peres '11]: full picture for Ising ($q = 2$).
- ▶ [Cuff, Ding, L., Louidor, Peres, Sly '12] full picture for $q \geq 3$.
- ▶ [Gore, Jerrum '99]: $e^{c\sqrt{n}}$ at β_c for $q \geq 3$; [Galanis, Štefankovic, Vigoda '15] and [Blanca, Sinclair '15]: picture of SW/CM for $\beta \notin (\beta_s, \beta_S)$, $e^{c\sqrt{n}}$ at $\beta \in (\beta_s, \beta_S)$; [Gheissari, L., Peres '18]: extended the $e^{c\sqrt{n}}$ to e^{cn} .



Results on \mathbb{Z}^2 off criticality

► High temperature:

- [Martinelli,Olivieri '94a,'94b],[Martinelli,Olivieri,Schonmann '94c]: $\text{gap}_p^{-1} = O(1)$ $\forall \beta < \beta_c$ at $q = 2$; extends to $q \geq 3$ via [Alexander '98], [Beffara,Duminil-Copin '12].
- [Blanca, Sinclair '15]: rapid mixing for FK Glauber $\forall \beta < \beta_c, q > 1$.
- [Huber '99],[Cooper,Frieze '00]: SW is fast for $q = 2$ and β small.
- [Blanca, Caputo, Sinclair, Vigoda '17]: $\text{gap}_{\text{sw}}^{-1} = O(1)$ $\forall \beta < \beta_c$ $\forall q \geq 2$.
- [Nam, Sly '18]: cutoff for SW for small enough β .

Results on \mathbb{Z}^2 off criticality

► Low temperature:

- [Chayes, Chayes, Schonmann '87], [Thomas '89], [Cesi, Guadagni, Martinelli, Schonmann '96]: $e^{(c_\beta + o(1))n}$ mixing $\forall \beta > \beta_c$ at $q = 2$.
- [Martinelli '92]: $O(\log^\alpha n)$ mixing for SW at $q = 2$ and β large.
- [Blanca, Sinclair '15]: rapid mixing for FK Glauber $\forall \beta > \beta_c, q > 1$; implies $t_{\text{mix}} = n^{O(1)}$ for SW via [Ullrich '13, '14].
- [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu '99] and [Borgs, Chayes, Tetali '12]: e^{cn} mixing at $\beta > \beta_c$ and large q .
(Result applies to the d -dimensional torus for any $d \geq 2$ provided $q > Q_0(d)$.)

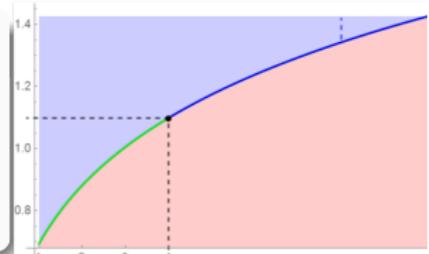
Q. 3 Show that $\text{gap}_{\text{SW}}^{-1} = O(1)$ and that Swendsen–Wang dynamics on an $n \times n$ torus has $t_{\text{mix}} = O(\log n)$ $\forall \beta > \beta_c \ \forall q \geq 2$.

Phase coexistence at criticality

Dynamics on an $n \times n$ torus at criticality for $q > 4$

Prediction: ([Li, Sokal '91],...)

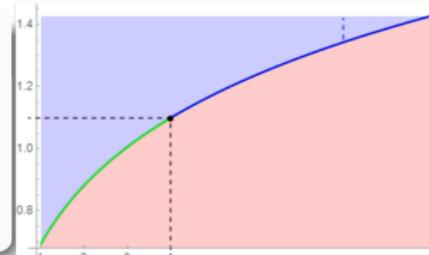
Potts Glauber and Swendsen–Wang on the torus each have $t_{\text{mix}} \asymp \exp(c_q n)$ at β_c if the phase-transition is discontinuous.



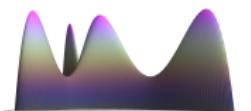
Dynamics on an $n \times n$ torus at criticality for $q > 4$

Prediction: ([Li, Sokal '91],...)

Potts Glauber and Swendsen–Wang on the torus each have $t_{\text{mix}} \asymp \exp(c_q n)$ at β_c if the phase-transition is discontinuous.



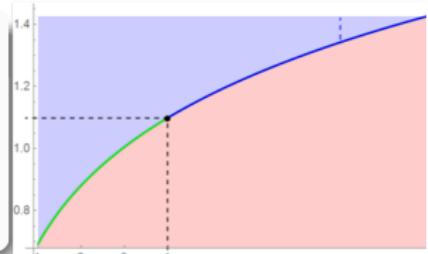
Intuition: Swendsen–Wang easily switches *between ordered phases*, yet the *order/disorder* transition is a bottleneck, as on the complete graph for $\beta \in (\beta_s, \beta_S)$.



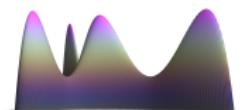
Dynamics on an $n \times n$ torus at criticality for $q > 4$

Prediction: ([Li, Sokal '91],...)

Potts Glauber and Swendsen–Wang on the torus each have $t_{\text{mix}} \asymp \exp(c_q n)$ at β_c if the phase-transition is discontinuous.



Intuition: Swendsen–Wang easily switches *between ordered phases*, yet the *order/disorder* transition is a bottleneck, as on the complete graph for $\beta \in (\beta_s, \beta_S)$.



Rigorous bounds: [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu '99], followed by [Borgs, Chayes, Tetali '12], showed this for q large enough:

Theorem

If q is sufficiently large, then both Potts Glauber and Swendsen–Wang on an $n \times n$ torus have $t_{\text{mix}} \geq \exp(cn)$.

Slow mixing in coexistence regime on $(\mathbb{Z}/n\mathbb{Z})^2$

Building on the work of [Duminil-Copin, Sidoravicius, Tassion '15]:

Theorem (Gheissari, L. '18)

For any $q > 1$, if \exists multiple infinite-volume FK measures then the Swendsen–Wang dynamics on an $n \times n$ torus has $t_{\text{mix}} \geq \exp(c_q n)$.

In particular, via [Duminil-Copin, Gagnebin, Harel, Manolescu, Tassion]:

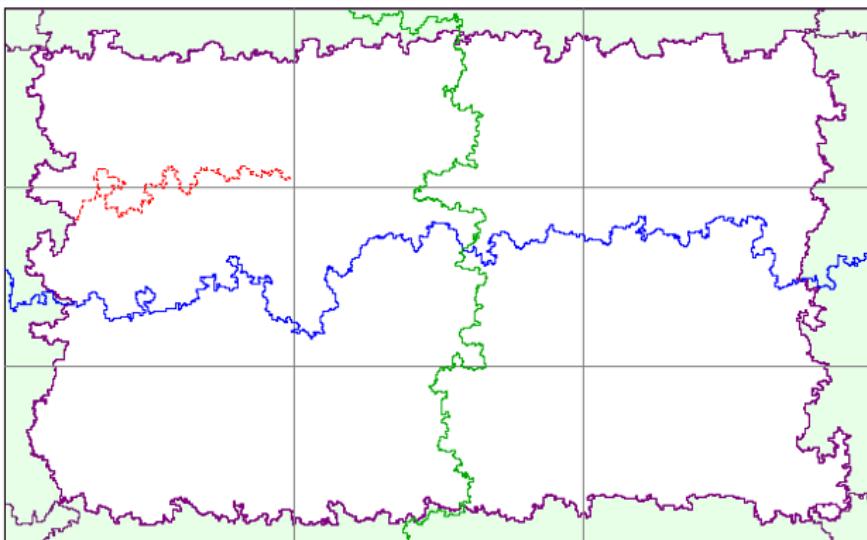
Corollary

For any $q > 4$, Potts Glauber, FK Glauber and Swendsen–Wang on the $n \times n$ torus at $\beta = \beta_c$ all have $t_{\text{mix}} \geq \exp(c_q n)$.

Proof of lower bound: an exponential bottleneck

Define the bottleneck set $S := \bigcap_{i=1}^3 S_v^i \cap S_h^i$ where

$$S_v^i := \left\{ \omega : \exists x \text{ s.t. } (x, 0) \longleftrightarrow (x, n) \text{ in } \left[\frac{(i-1)n}{3}, \frac{in}{3} \right] \times [0, n] \right\},$$
$$S_h^i := \left\{ \omega : \exists y \text{ s.t. } (0, y) \longleftrightarrow (n, y) \text{ in } [0, n] \times \left[\frac{(i-1)n}{3}, \frac{in}{3} \right] \right\}.$$



The torus vs. the grid (periodic vs. free b.c.)

Recall: for $q = 2$ and $\beta > \beta_c$:

- ▶ Glauber dynamics for the Ising model both on an $n \times n$ **grid** (**free** b.c.) and on an $n \times n$ **torus** has $t_{\text{mix}} \geq \exp(cn)$.

The torus vs. the grid (periodic vs. free b.c.)

Recall: for $q = 2$ and $\beta > \beta_c$:

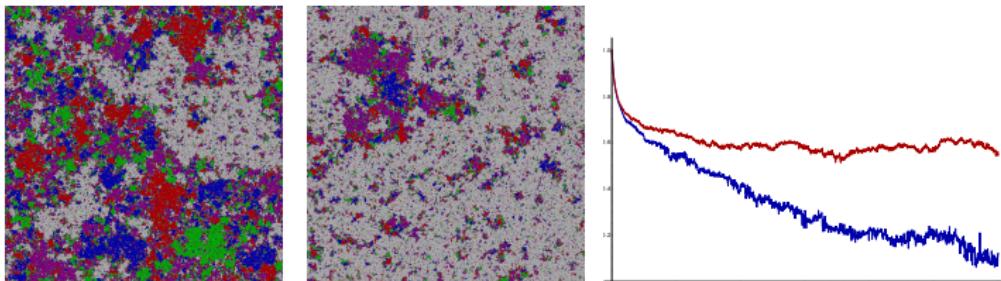
- ▶ Glauber dynamics for the Ising model both on an $n \times n$ **grid** (**free** b.c.) and on an $n \times n$ **torus** has $t_{\text{mix}} \geq \exp(cn)$.
- ▶ In contrast, on an $n \times n$ grid with **plus boundary conditions** it has $t_{\text{mix}} \leq n^{O(\log n)}$ [Martinelli '94], [Martinelli, Toninelli '10], [L., Martinelli, Sly, Toninelli '13].

The torus vs. the grid (periodic vs. free b.c.)

Recall: for $q = 2$ and $\beta > \beta_c$:

- ▶ Glauber dynamics for the Ising model both on an $n \times n$ **grid** (**free** b.c.) and on an $n \times n$ **torus** has $t_{\text{mix}} \geq \exp(cn)$.
- ▶ In contrast, on an $n \times n$ grid with **plus boundary conditions** it has $t_{\text{mix}} \leq n^{O(\log n)}$ [Martinelli '94], [Martinelli, Toninelli '10], [L., Martinelli, Sly, Toninelli '13].

When the phase transition for Potts is discontinuous, at $\beta = \beta_c$:
the dynamics under **free** boundary conditions is **fast**:



The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where $t_{\text{mix}} \geq \exp(cn)$, on the grid SW is fast:

Theorem (Gheissari, L. '18)

For large q , Swendsen–Wang on an $n \times n$ grid (free b.c.) at β_c has $t_{\text{mix}} \leq \exp(n^{o(1)})$. The same holds for red b.c.

The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where $t_{\text{mix}} \geq \exp(cn)$, on the grid SW is fast:

Theorem (Gheissari, L. '18)

For large q , Swendsen–Wang on an $n \times n$ grid (free b.c.) at β_c has $t_{\text{mix}} \leq \exp(n^{o(1)})$. The same holds for red b.c.

- ▶ Intuition: free/red b.c. destabilize all but one phase

The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where $t_{\text{mix}} \geq \exp(cn)$, on the grid SW is fast:

Theorem (Gheissari, L. '18)

For large q , Swendsen–Wang on an $n \times n$ grid (free b.c.) at β_c has $t_{\text{mix}} \leq \exp(n^{o(1)})$. The same holds for red b.c.

- ▶ Intuition: free/red b.c. destabilize all but one phase
- ▶ A bound of $\exp(n^{1/2+o(1)})$ on FK Glauber à la [Martinelli '94]:
 - Interface fluctuations in the FK model are normal.

The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where $t_{\text{mix}} \geq \exp(cn)$, on the grid SW is fast:

Theorem (Gheissari, L. '18)

For large q , Swendsen–Wang on an $n \times n$ grid (free b.c.) at β_c has $t_{\text{mix}} \leq \exp(n^{o(1)})$. The same holds for red b.c.

- ▶ Intuition: free/red b.c. destabilize all but one phase
- ▶ A bound of $\exp(n^{1/2+o(1)})$ on FK Glauber à la [Martinelli '94]:
 - Interface fluctuations in the FK model are normal.
 - A block dynamics with blocks of width \sqrt{n} can push the interface gradually and couple ALL-WIRED and ALL-FREE.

The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where $t_{\text{mix}} \geq \exp(cn)$, on the grid SW is fast:

Theorem (Gheissari, L. '18)

For large q , Swendsen–Wang on an $n \times n$ grid (free b.c.) at β_c has $t_{\text{mix}} \leq \exp(n^{o(1)})$. The same holds for red b.c.

- ▶ Intuition: free/red b.c. destabilize all but one phase
- ▶ A bound of $\exp(n^{1/2+o(1)})$ on FK Glauber à la [Martinelli '94]:
 - Interface fluctuations in the FK model are normal.
 - A block dynamics with blocks of width \sqrt{n} can push the interface gradually and couple ALL-WIRED and ALL-FREE.
 - **Caution:** canonical paths upper bound of $\exp(\text{cut} - \text{width}(G))$ fails under arbitrary b.c. A recent result of [Blanca, Gheissari, Vigoda] shows that planar b.c. do not have this issue.

The torus vs. the grid (periodic vs. free b.c.)

Unlike the torus, where $t_{\text{mix}} \geq \exp(cn)$, on the grid SW is fast:

Theorem (Gheissari, L. '18)

For large q , Swendsen–Wang on an $n \times n$ grid (free b.c.) at β_c has $t_{\text{mix}} \leq \exp(n^{o(1)})$. The same holds for red b.c.

- ▶ Intuition: free/red b.c. destabilize all but one phase
- ▶ A bound of $\exp(n^{1/2+o(1)})$ on FK Glauber à la [Martinelli '94]:
 - Interface fluctuations in the FK model are normal.
 - A block dynamics with blocks of width \sqrt{n} can push the interface gradually and couple ALL-WIRED and ALL-FREE.
 - **Caution:** canonical paths upper bound of $\exp(\text{cut} - \text{width}(G))$ fails under arbitrary b.c. A recent result of [Blanca, Gheissari, Vigoda] shows that planar b.c. do not have this issue.
- ▶ To improve this to $\exp(n^{o(1)})$, one employs the framework of [Martinelli, Toninelli '10], along with **cluster expansion**.

Sensitivity to boundary conditions

Toprid mixing on the torus; sub-exponential mixing on the grid.

Classifying boundary conditions that interpolate between the two?

Sensitivity to boundary conditions

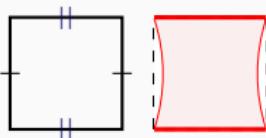
Toprid mixing on the torus; sub-exponential mixing on the grid.

Classifying boundary conditions that interpolate between the two?

Theorem ([Gheissari, L. 18'+] (two of the classes, informally))

For large enough q , *Swendsen–Wang* satisfies:

1. Mixed b.c. on 4 macroscopic intervals induce $t_{\text{mix}} \geq \exp(cn)$.
2. Dobrushin b.c. with a macroscopic interval: $t_{\text{mix}} = e^{o(n)}$.

Boundary	Swendsen–Wang
Periodic/Mixed	 $t_{\text{mix}} \geq e^{cn}$
Dobrushin	$t_{\text{mix}} \leq e^{n^{1/2+o(1)}}$

Questions on the discontinuous phase transition regime

Q. 4 Let $q > 4$. Is **Swendsen–Wang** (or FK Glauber) on the $n \times n$ grid (**free** b.c.) quasi-polynomial in n ? polynomial in n ?

known: $\exp(n^{o(1)})$ for $q \gg 1$

Q. 5 Let $q > 4$. Is **Potts Glauber** on the $n \times n$ grid (**free** b.c.) sub-exponential in n ? quasi-polynomial in n ? polynomial in n ?

Q. 6 Let $q > 4$. Is **Swendsen–Wang** on the $n \times n$ grid with **Dobrushin b.c.** sub-exponential in n ? quasi-poly(n)? poly(n)?

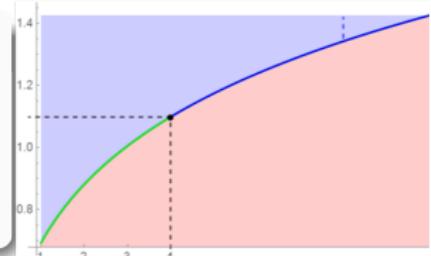
known: $\exp(n^{1/2+o(1)})$ for $q \gg 1$

Unique phase at criticality

Dynamics on an $n \times n$ torus at criticality for $1 < q < 4$

Prediction:

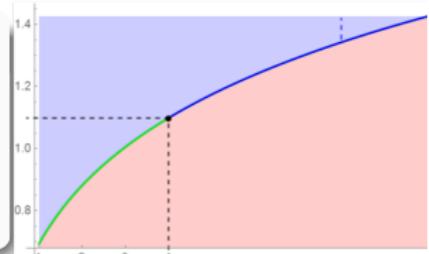
Potts Glauber and Swendsen–Wang on the torus each have $t_{\text{mix}} \asymp n^z$ for a lattice-independent $z = z(q)$.



Dynamics on an $n \times n$ torus at criticality for $1 < q < 4$

Prediction:

Potts Glauber and Swendsen–Wang on the torus each have $t_{\text{mix}} \asymp n^z$ for a lattice-independent $z = z(q)$.

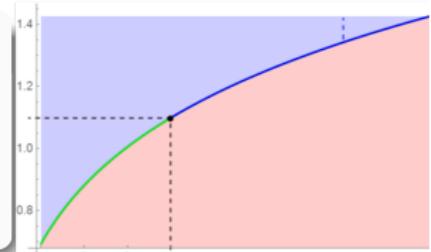


The exponent z is the “*dynamical critical exponent*”; various works in physics literature with numerical estimates, e.g., $z(2) \approx 2.18$.

Dynamics on an $n \times n$ torus at criticality for $1 < q < 4$

Prediction:

Potts Glauber and Swendsen–Wang on the torus each have $t_{\text{mix}} \asymp n^z$ for a lattice-independent $z = z(q)$.



The exponent z is the “*dynamical critical exponent*”; various works in physics literature with numerical estimates, e.g., $z(2) \approx 2.18$.

Rigorous bounds:

Theorem (L., Sly '12)

Continuous-time Glauber dynamics for the Ising model ($q = 2$) on an $n \times n$ grid with arbitrary b.c. satisfies $n^{7/4} \lesssim t_{\text{mix}} \lesssim n^c$.

Bound $t_{\text{mix}} \lesssim n^c$ extends to Swendsen–Wang via [Ullrich '13, '14].

Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. '18)

Cont.-time *Potts Glauber* dynamics at $\beta_c(q)$ on an $n \times n$ torus has

1. at $q = 3$: $\Omega(n) \leq t_{\text{mix}} \leq n^{O(1)}$;
2. at $q = 4$: $\Omega(n) \leq t_{\text{mix}} \leq n^{O(\log n)}$.

Theorem (Gheissari, L. '18)

Cont.-time *Potts Glauber* dynamics at $\beta_c(q)$ on an $n \times n$ torus has

1. at $q = 3$: $\Omega(n) \leq t_{\text{mix}} \leq n^{O(1)}$;
2. at $q = 4$: $\Omega(n) \leq t_{\text{mix}} \leq n^{O(\log n)}$.

- The argument of [L., Sly '12] for $q = 2$ hinged on an RSW-estimate of [Duminil-Copin, Hongler, Nolin '11].

Theorem (Gheissari, L. '18)

Cont.-time *Potts Glauber* dynamics at $\beta_c(q)$ on an $n \times n$ torus has

1. at $q = 3$: $\Omega(n) \leq t_{\text{mix}} \leq n^{O(1)}$;
2. at $q = 4$: $\Omega(n) \leq t_{\text{mix}} \leq n^{O(\log n)}$.

- ▶ The argument of [L., Sly '12] for $q = 2$ hinged on an RSW-estimate of [Duminil-Copin, Hongler, Nolin '11].
- ▶ Proof extends to $q = 3$ via RSW-estimates ($\forall 1 < q < 4$) by [Duminil-Copin, Sidoravicius, Tassion '15] **but not to FK Glauber...**

Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. '18)

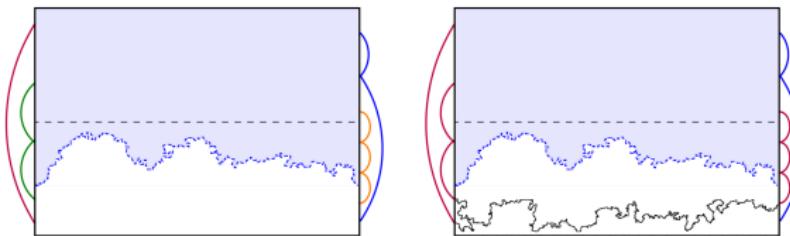
Cont.-time *Potts Glauber* dynamics at $\beta_c(q)$ on an $n \times n$ torus has

1. at $q = 3$: $\Omega(n) \leq t_{\text{mix}} \leq n^{O(1)}$;
2. at $q = 4$: $\Omega(n) \leq t_{\text{mix}} \leq n^{O(\log n)}$.

- ▶ The argument of [L., Sly '12] for $q = 2$ hinged on an RSW-estimate of [Duminil-Copin, Hongler, Nolin '11].
- ▶ Proof extends to $q = 3$ via RSW-estimates ($\forall 1 < q < 4$) by [Duminil-Copin, Sidoravicius, Tassion '15] **but not to FK Glauber...**
- ▶ The case $q = 4$ is subtle: crossing probabilities are believed to no longer be bounded away from 0 and 1 uniformly in the b.c.

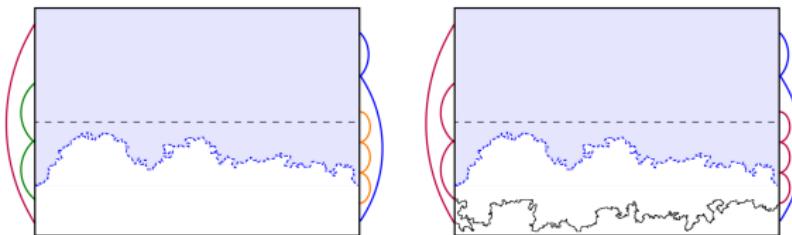
FK Glauber for noninteger q

Obstacle in FK Glauber: macroscopic disjoint boundary bridges prevent coupling of configurations sampled under two different b.c.



FK Glauber for noninteger q

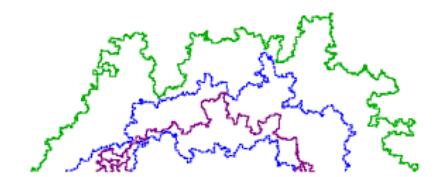
Obstacle in FK Glauber: macroscopic disjoint boundary bridges prevent coupling of configurations sampled under two different b.c.



Theorem (Gheissari, L.)

For every $1 < q < 4$, the FK Glauber dynamics at $\beta = \beta_c(q)$ on an $n \times n$ torus satisfies $t_{\text{mix}} \leq n^{c \log n}$.

One of the key ideas: establish the exponential tail beyond some $c \log n$ for # of disjoint bridges over a given point.



Questions on the continuous phase transition regime

Q. 7 Let $q = 4$. Establish that **Potts Glauber** on an $n \times n$ **torus** (or a grid with free b.c.) satisfies $t_{\text{mix}} \leq n^c$.

known: $n^{O(\log n)}$

Q. 8 Let $q = 2.5$. Establish that **FK Glauber** on an $n \times n$ **torus** (or a grid with free b.c.) satisfies $t_{\text{mix}} \leq n^c$.

known: $n^{O(\log n)}$

Q. 9 Is $q \mapsto \text{gap}_P$ decreasing in $q \in (1, 4)$? Similarly for gap_{SW} ?

