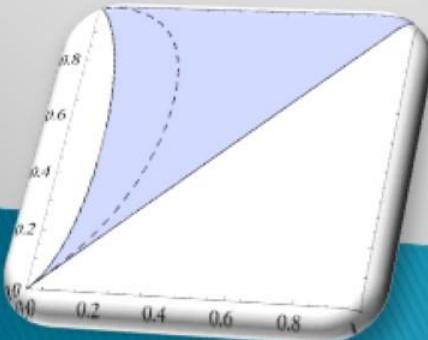
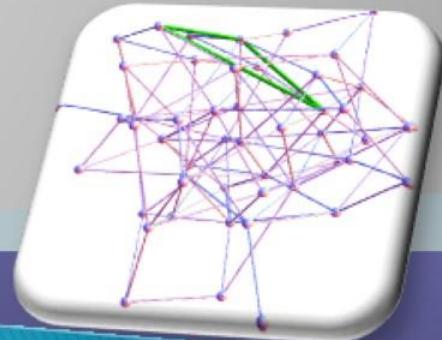


Large deviations in random graphs: revisiting the infamous upper tail



Eyal Lubetzky
Microsoft Research



Based on joint works with Yufei Zhao

Large deviations in random graphs

► QUESTION [Chatterjee and Varadhan (2011)]:

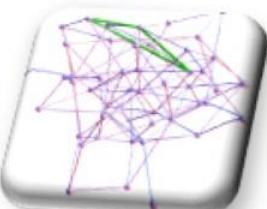
- Fix $0 < p < r < 1$.
- Take $G \sim \mathcal{G}(n, p)$ conditioned on having at least as many triangles as a typical $\mathcal{G}(n, r)$.
- Is $G \approx \mathcal{G}(n, r)$, namely, are they close in cut-distance?

► Possibilities: extra triangles due to

replica symmetry

1. (yes) overwhelming # edges, uniformly distributed.
2. (no) fewer edges, arranged in a special structure.

symmetry breaking

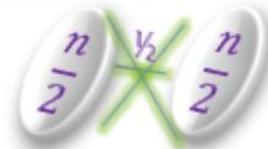


cut distance between G_n and $\mathcal{G}(n, r)$:

$$\delta_{\square}(G_n, r) = \max_{A, B \subset V} \frac{1}{n^2} |e(A, B) - r|A||B||$$

Related example: triangle-free $\mathcal{G}(n, p)$

- Let $G \sim \mathcal{G}(n, 1/2)$ conditioned on triangle-free:
[Erdős, Kleitman, Rothschild '76]: w.h.p. G bipartite.



- Let $G \sim \mathcal{G}(n, m)$ conditioned on triangle-free:

➤ [Osthus, Prömel, Taraz '03]: bipartite w.h.p. if $\sqrt{\frac{3 \log n}{16n}} \leq \frac{m}{\binom{n}{2}} < 1$.

- Sparse $G \sim \mathcal{G}(n, p)$ ($p \ll 1$):

➤ $p \asymp 1/n$: Poisson approximation [Bollobás '81].

➤ $p \geq \frac{\log n}{n}$: how can we make G triangle free?

i. force a given bipartition: $(1 - p)^{n^2/4} \approx e^{-n^2p/4}$

ii. every triplet must miss an edge: $(1 - p^3)^{n^3/6} \approx e^{-\frac{1}{6}n^3p^3}$

Is a typical triangle-free bipartite for $p \gtrsim 1/\sqrt{n}$?

Chatterjee–Varadhan breakthrough

- ▶ Powerful new framework for large deviation principle in $\mathcal{G}(n, p)$ using Szemerédi's regularity & graph limits.
- ▶ In particular, for upper tails of triangles:
 - Q: Let $G \sim \mathcal{G}(n, p)$ conditioned on $\geq \frac{1}{6}n^3r^3$ triangles for $0 < p < r < 1$. Is $G \approx \mathcal{G}(n, r)$, namely, is $\delta_{\square}(G, r)$ small?
 - A: depends on (p, r) ...
 - Bounds for symmetry replica region.
 - $p \geq \frac{2}{2+e^{3/2}} \approx 0.31$: always symmetric.
 - Multiple phase transitions for small p .
 - e.g., $p = 1/4$ and $r = 1/2$?

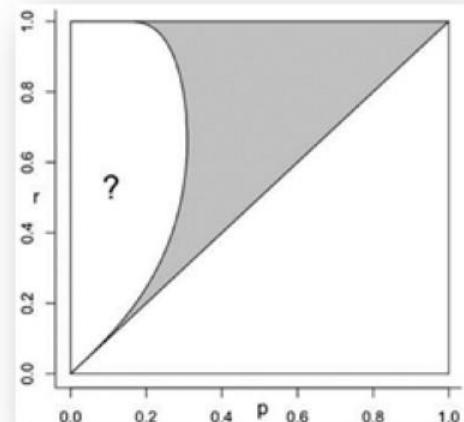


figure from
[Chatterjee–Dey '10]

The rate function

- ▶ Intimately related (and preliminary) question:
 - Fix $0 < p < r < 1$, let $G \sim \mathcal{G}(n, p)$ and $X = \# \text{ triangles in } G$.
What is $\mathbb{P}(X \geq \frac{1}{6}n^3r^3)$?
 - e.g., for $p = \frac{1}{4}$ and $r = \frac{1}{2}$ is it $\exp\left[-\left(\frac{1}{4}\log 2 + \frac{1}{4}\log \frac{2}{3} + o(1)\right)n^2\right]$?
- ▶ Replica symmetric candidate:
 - $G \sim \mathcal{G}(n, M)$ for $M \sim \text{Bin}\left(\binom{n}{2}, p\right)$.
 - $\frac{1}{6}n^3r^3$ triangles with probability $\geq e^{-(1-o(1))I_p(r)}$ for

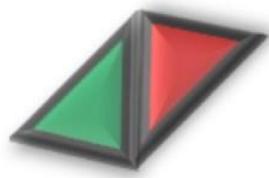
$$\begin{aligned} I_p(r) &= r \log \frac{r}{p} + (1-r) \log \frac{1-r}{1-p} \\ &= -\lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{P}(\text{Bin}(N, p) \geq N r) . \end{aligned}$$
- ▶ When does $-\frac{1}{\binom{n}{2}} \log \mathbb{P}(X \geq \frac{1}{6}n^3r^3) \xrightarrow{n \rightarrow \infty} I_p(r)$?

Sparse random graphs

- ▶ Rate function in the *sparse* regime? e.g.,
 - Let $G \sim \mathcal{G}(n, p)$ for $p \ll 1$.
 - Let $X = \# \text{ triangles in } G$ and write

$$\mathbb{P}(X \geq 2 \mathbb{E}X) = \exp[-R(n, p)].$$
 - What is $R(n, p)$? [Generally, $R(n, p, \delta)$ for $X \geq (1 + \delta) \mathbb{E}X$].
- ▶ For intuition, consider lower tails:
 - we saw: $\mathbb{P}(X = 0) \geq e^{-c \min\{n^2 p, n^3 p^3\}}$
 - [Janson (1990)]'s Poisson large deviation inequality:

$$\mathbb{P}(X < (1 - \delta) \mathbb{E}X) \leq e^{-c\delta \frac{(\mathbb{E}X)^2}{\Delta + \mathbb{E}X}}$$
 matching upper bound!
 - $\Rightarrow R(n, p, \delta) \asymp \min\{n^2 p, n^3 p^3\}$ (transition at $p \asymp 1/\sqrt{n}$.)
- ▶ Similar treatment for upper tail?



The infamous upper tail

- ▶ No known generic tool to tackle the upper tail...

The infamous upper tail

$$\mathbb{P}(X \geq (1 + \delta) \mathbb{E}X) = \exp[-R(n, p, \delta)]$$

S Janson, A Ruciński - Random Structures & Algorithms, 2002 - Wiley Online Library

- ▶ [Janson, Oleszkiewicz, Rucinski '04], [Bollobás '81, '85],
 [Janson Luczak, Rucinski '00], [Janson, Rucinski '02, '04a, '04b],
 [Vu '01], [Kim, Vu '04], [Chatterjee-Dey '10], ... ,
 via Hoeffding-Azuma ineq./ Talagrand ineq./ Stein's method/ ...
- ▶ For $\frac{\log n}{n} \leq p \ll 1$: $n^2 p^2 \lesssim R(n, p, \delta) \lesssim n^2 p^2 \log(1/p)$
- ▶ Order of $R(n, p, \delta)$ finally resolved in [Chatterjee '11] and [DeMarco, Kahn '11], independently showing

$$R(n, p, \delta) \asymp n^2 p^2 \log(1/p)$$
- ▶ Leading order asymptotics unknown for any δ ...

The Chatterjee–Varadhan solution

- ▶ The LDP is reduced to a variational problem on *graphons* $f: [0,1]^2 \rightarrow [0,1]$ (symmetric measurable):
 - Set:
 - $I_p(f) = \int_{[0,1]^2} I_p(f(x,y)) dx dy$.
 - Subgraph count (H with $V(H) = [m]$) in f :

$$t(H, f) = \int_{[0,1]^m} \prod_{ij \in E(H)} f(x_i, x_j) dx_1 \cdots dx_m$$
 - Variational problem for upper tails:

$$\phi(p, r) = \inf \{ I_p(f) : t(H, f) \geq r \}.$$
- ▶ [CV11]: solution gives the rate function; moreover, w.h.p. $(\mathcal{G}(n, p) \mid t(H, \cdot) \geq r)$ close (in δ_{\square}) to minimizer.

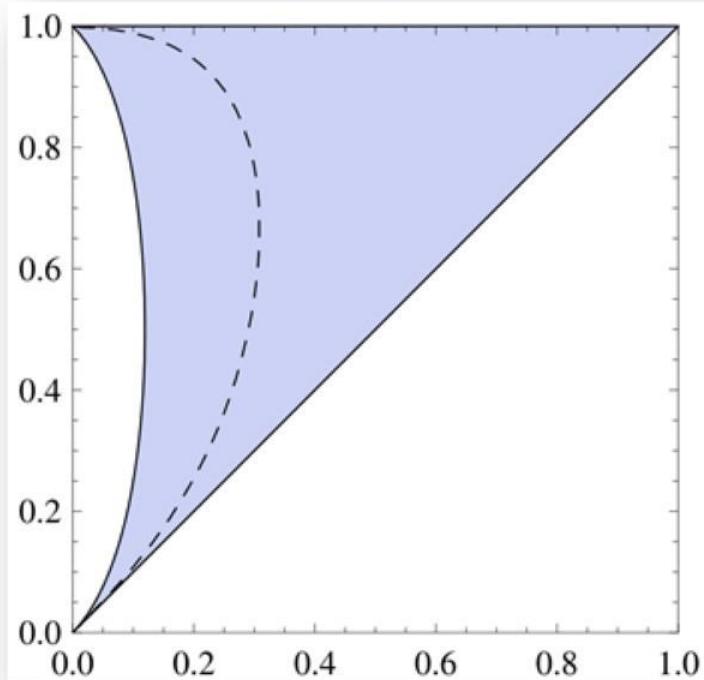
Phase diagram for triangles

- ▶ [CD10, CV11]:
 - $\phi(p, r)$ minimized by $f \equiv r$ (symmetry) if $(r^3, I_{p(r)})$ lies on convex-minorant of $x \mapsto I_p(x^{1/3})$ (the natural guess).
 - Full phase diagram? One or more phase transitions?
- ▶ THEOREM: ([L., Zhao '14+])

Symmetry replica for upper tails of triangles occurs iff

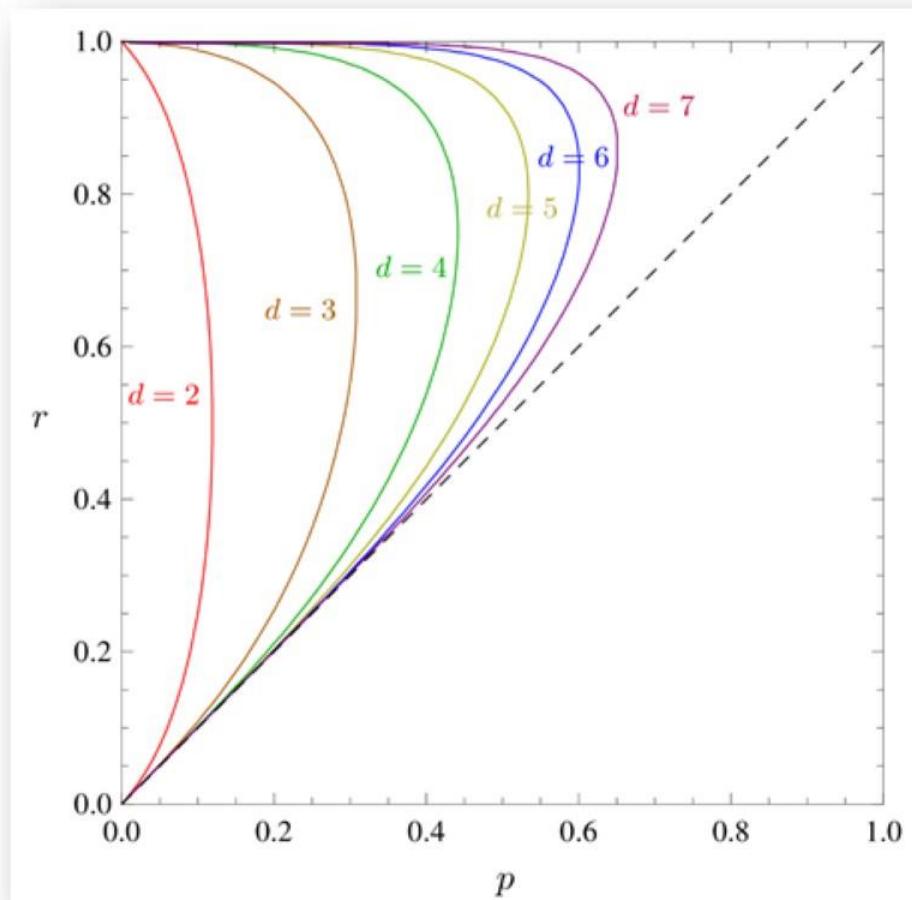
$$p < [1 + (r^{-1} - 1)^{1/(1-2r)}]^{-1}$$

- Coincides with the convex minorant of $x \mapsto I_p(x^{1/2})$



Phase diagram for regular graphs

- ▶ More generally:
 - Fix $0 < p < r < 1$ and a d -regular graph H .
 - Minimizer is $f \equiv r$
 $\Leftrightarrow (r^d, I_p(r))$ lies on the convex-minorant of $x \mapsto I_p(x^{1/d})$.

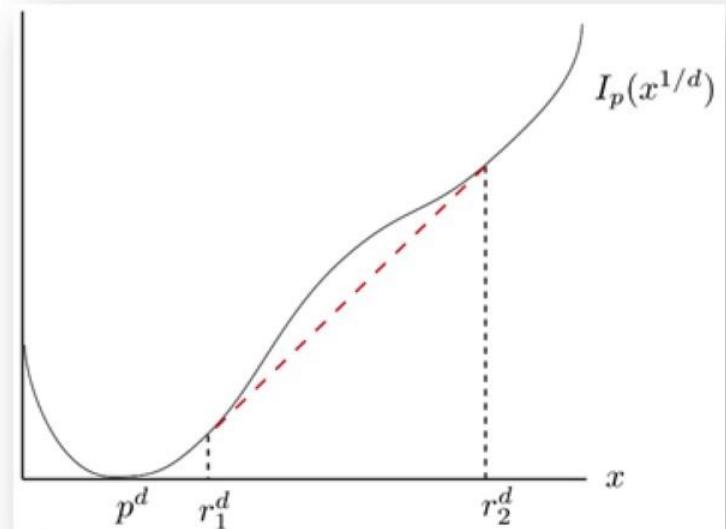


Key to upper bound

- ▶ Where does the convex-minorant enter?
 - ▶ Let $\psi(x) = I_p(x^{1/d})$ and $\hat{\psi}$ be its convex-minorant.
 - ▶ Then by Jensen:

$$I_p(f) = \int \psi(f^d) dx dy \geq \int \hat{\psi}(f^d) dx dy \geq \hat{\psi}(\int f^d).$$
 - ▶ So, if $\int f^d \geq r^d$ and $\psi(r^d) = \hat{\psi}(r^d)$ then

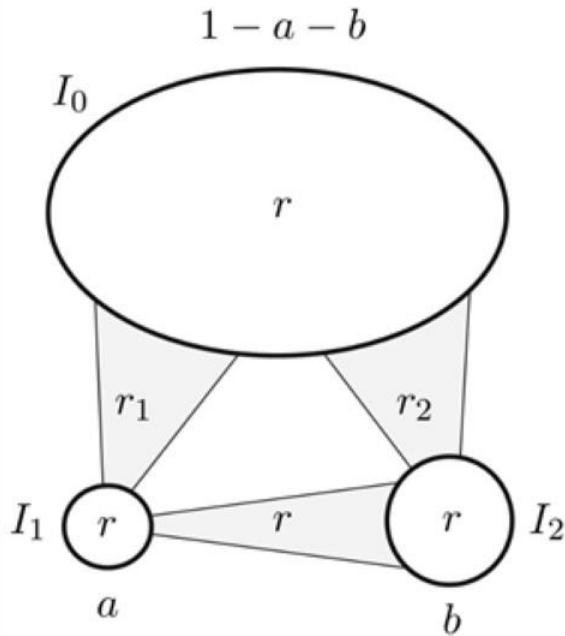
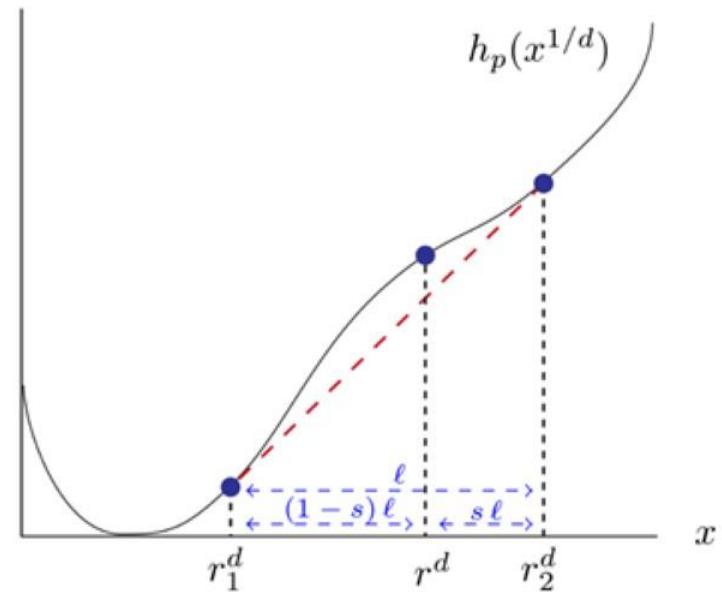
$$I_p(f) \geq \psi(r^d) = I_p(r)$$



- ▶ Want $\int f^d \geq r^d$ given LD:
 - ▶ [CD10], [CV11]: Hölder; yet one can exploit subgraph structure...
 - ▶ Generalized Hölder [Finner '92] gives the correct phase.

A matching lower bound

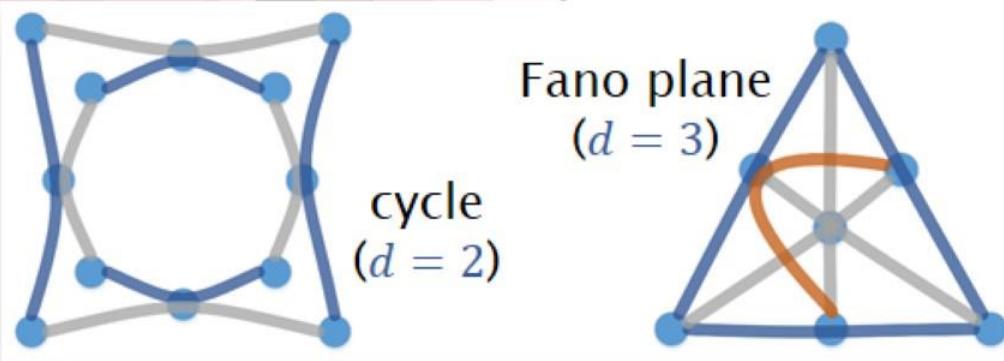
- ▶ Tri-partite construction:



- ▶ Choice of $a = s\epsilon^2$ and $b = (1 - s)\epsilon^2 + \epsilon^3$ for small enough ϵ beats the constant function $f \equiv r$.

Analogs of phase-diagram result

- d -regular linear hypergraphs:

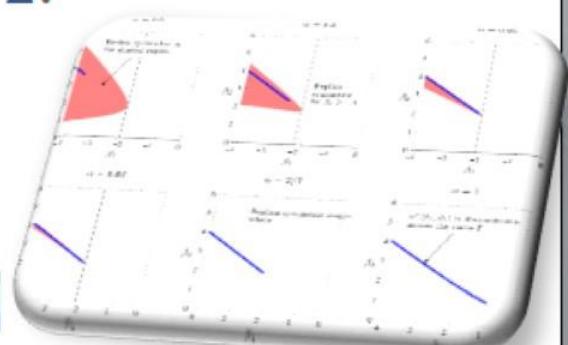


- Leading eigenvalue:
 $G \sim \mathcal{G}(n, p)$ conditioned on $\lambda_1(G) \geq nr$.
- phase diagram coincides with $d = 2$.

- Exponential random graphs

$$\mathbb{P}(G) \propto e^{\binom{n}{2}(\beta_1 t(K_2, G) + \beta_2 t(K_3, G))}$$

(building on [Chatterjee-Diaconis'13])



Revisiting the sparse regime

$$\mathbb{P}(X \geq (1 + \delta) \mathbb{E}X) = \exp[-R(n, p, \delta)]$$

- ▶ [Chatterjee, Dembo '14]: recent new breakthrough: for $p \gg n^{-\alpha}$ one has $R(n, p, \delta) \sim \phi(n, p, \delta)$ where

$$\phi(n, p, \delta) = \inf \{ I_p(G) : t(K_3, G) \geq (1 + \delta)p^3 \}$$

over $G \in \mathfrak{G}_n$, *weighted undirected graphs* on n vertices.

- ▶ Plausibly: extends throughout $\frac{\log n}{n} \ll p \ll 1$.
- ▶ (for $p \geq (\log n)^{-c}$: follows from weak regularity.)
- ▶ Opens the door to first asymptotic LDP results for the sparse random graph...

New results in the sparse regime

► THEOREM: ([L., Zhao '15+])

Fix $\delta > 0$. If $n^{-1/2} \ll p \ll 1$ then

$$\lim_{n \rightarrow \infty} \frac{\phi(n, p, \delta)}{n^2 p^2 \log(1/p)} = \min \left\{ \frac{\delta^{2/3}}{2}, \frac{\delta}{3} \right\}$$

whereas if $n^{-1} \ll p \ll n^{-1/2}$ then

$$\lim_{n \rightarrow \infty} \frac{\phi(n, p, \delta)}{n^2 p^2 \log(1/p)} = \frac{\delta^{2/3}}{2}.$$

► COROLLARY:

For any $\delta > 0$, if $n^{-1/42} \log n \leq p \ll 1$ then

$$\mathbb{P}(X \geq (1 + \delta)p^3) = e^{-(1-o(1)) \min \left\{ \frac{\delta^{2/3}}{2}, \frac{\delta}{3} \right\} n^2 p^2 \log \left(\frac{1}{p} \right)}$$

Ideas from the proofs

- ▶ For the lower bound on

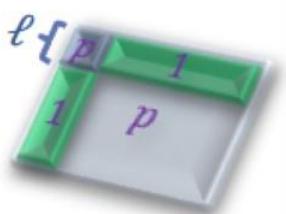
$$\mathbb{P}(X \geq (1 + \delta)p^3) = e^{-(1-o(1)) \min\left\{\frac{\delta^{2/3}}{2}, \frac{\delta}{3}\right\} n^2 p^2 \log\left(\frac{1}{p}\right)}$$

- ▶ Take an arbitrary set on $k = \delta^{1/3} np$ vertices and force it to be a *clique*:

$$p^{\binom{k}{2}} = p^{\left(\delta^{2/3}/2 + o(1)\right) n^2 p^2}$$

- ▶ Or, a set of $\ell = \frac{1}{3}\delta np^2$ vertices and force it to be connected to all other vertices:

$$p^{\ell(n-\ell)} = p^{(\delta/3 + o(1)) n^2 p^2}$$



- ▶ Latter is preferable iff $\delta < 27/8$.
- ▶ For the upper bound: reduce to a continuous variational problem; divide and conquer...

Extension to cliques

► THEOREM: ([L., Zhao '15+])

Fix $\delta > 0$ and $k \geq 3$. If $n^{-1/(k-1)} \ll p \ll 1$ then

$$\lim_{n \rightarrow \infty} \frac{\phi_{K_k}(n, p, \delta)}{n^2 p^{k-1} \log(1/p)} = \min \left\{ \frac{\delta^{2/k}}{2}, \frac{\delta}{k} \right\}$$

whereas if $n^{-2/(k-1)} \ll p \ll n^{-1/(k-1)}$ then

$$\lim_{n \rightarrow \infty} \frac{\phi_{K_k}(n, p, \delta)}{n^2 p^{k-1} \log(1/p)} = \frac{\delta^{2/k}}{2}.$$

► COROLLARY:

$\forall k \geq 3 \ \exists \alpha_k > 0$: For any $\delta > 0$, if $n^{-\alpha_k} \leq p \ll 1$ then

$$\mathbb{P} \left(X_k \geq (1 + \delta) p^{\binom{k}{2}} \right) = e^{-(1-o(1)) \min \left\{ \frac{\delta^{2/k}}{2}, \frac{\delta}{k} \right\} n^2 p^{k-1} \log \left(\frac{1}{p} \right)}$$

Some upper tail open problems

► Dense regime:

- ? ► Phase diagram for general (non-regular) graphs.
- ? ► What is the solution in a single point within the symmetry breaking regime?
(at no such pt. can we calculate the rate function...)
- ? ► Uniqueness symmetry-breaking solution?
- ? ► Are the symmetry-breaking solutions bipartite?
or \exists countable # phase transitions (# parts)?

► Sparse regime:

- ? ► Push the [Chatterjee-Dembo'14] result to $p \geq \frac{\log n}{n}$.

Some lower tail open problems

- ▶ For some graphs, lower tail is simple
- ? ▶ e.g.: if H is bipartite & Sidorenko's conjecture holds for it, then there is *symmetry everywhere in the dense regime*.
- ▶ Triangles: *inglorious lower tail*: very little is known:
 - ? ▶ Dense regime: phase diagram for symmetry replica?
 - ? ▶ Sparse regime: solution of the variational problem?

In addition to:

- ▶ all of the above open problems for the upper tail...

Thank you

