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A random metric model:
andom iid edge-weights on an expander

b -expa"der if the Simple Random Walk
ctral-gap bounded away from 0.

licat for sparse expanders
mputer Science. )
=

Percolatlon), heaviest 51mp1e paths,

- We will be interested in this question for G(n , 3) ,
a random uniform 3-regular graph on n vertices.
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ample: Exp(1) weights on a ™*"
andom cubic graph

G(1000.3)"

Shortest path: Lightest path:

6 hops, weight 6.59 14 hops, weight 5.36
Typical length SR
Typical weight JE2GEER I8 SRSl ~ log n =~ 0.7 log, n
Worst length

RN

Worst weight 1.2 logy n
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=rdos-Renyi random graphs

around the critical point p =1/n .
phenomenon for order of G
ollobas '84] , [Euczak "90]

m forp— C/n o

.mﬁ: at crlhcallty, and throughout the
'j_;j'f",j__;,}'j,ndozv p= (1%ec)/n for e = O(n1/3) .

&a g from the critical window:

(€3n—>oo and € — 0):|C| ~ 2en
\ ___'Z.zant component is gradually formed...
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anding G(n,p) beyond criticality

studied geometric properties:
ertices, edges), e.g. |C,|.
maximal (diameter).

ot 1c proflle

..... ters interplaying with graph geometry:
| ver time of the random walk.
ing time of the random walk.
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=merging from the window

Wmdow [Nachmias, Peres "08].

/n with € > 0 fixed.
sympt g Femholz Ramachandran "07]
d by f[lollobas, ]anso , Riordan "07].

time of the random walk on C;:
) at critical window [Nachmias, Peres "08].
1) for p = (14+€)/n with € > 0 fixed.

yuntoulakis, Reed ‘08] and independently by
[Ben]amlm, Kozma, Wormald].

What does the transition look like when e — 0 ?
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ing from the window

Critical window

Mildly supercritical Strictly Supercritical
p =(lxe)/n p =(14¢€)/n p=(1+¢€)/n
e = O(w'/3)) en— oo ,e — 0 e > 0 fixed

O(nl/3) | : : O(log n)
[NP08] [CL'01], [FR’07],

diam (C 1 ) not concentrated - [BIR"07]
' : ,_-' precise asymptotics

| Mixing time O(n) S | A l O(log? n)
of random [NP'08] [FR’08], [BKW]
walk on C1 tree-like behavior | | weak-expansion
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ing from the window

Critical window Mildly supercritical Strictly Supercritical
=(1xe)/n =(14¢)/n =(14¢)/n
e = O(w'/3)) en— oo ,e — 0 e > 0 fixed

O(nl/?) (1/¢) log(g3n) ) O(log n)
[NP08] [ES], [RW] [CL'01], [FR'07],
dialll(cl) not concentrated precise asymptotics [BJR07]

except for very slow =°n precise asymptotics

| Mixing time O(n) ? O(log? n)
of random [NP'08] Hard to interpolate [FR'08], [BKW]

tree-like behavior between the regimes weak-expansion

190 Dzameter asymptotics throughout intermediate regime?
Qe @f the mzxzng time in that regime?



Eyal Lubetzky, Microsoft Research

ing from the window

Critical window Mildly supercritical Strictly Supercritical
=(1xe)/n =(14¢)/n =(14¢)/n
e = O(w'/3)) en— oo ,e — 0 e > 0 fixed

O(nl/?) (1/¢) log(g3n) ) O(log n)
[NP08] [ES], [RW] [CL'01], [FR'07],
dialll(cl) not concentrated precise asymptotics [BJR07]

xcept for very slow z3n precise asymptotics
| (34+0(1)(1/¢g) log(e’n)
| Mixing time O(n) ? O(log? n)
of random [NP'08] Hard to interpolate [FR'08], [BKW]

tree-like behavior between the reginies weak-expansion
O( (1/€%) log?(e’n) )
L Dzameter asymptotics throughout intermediate regime?
2L TFrier @f the mzxzng time in that regime?




Eyal Lubetzky, Microsoft Research
Feb 2010

characterizing the supercritical C,

i:ﬂ.()sition theorem:s:

L is a random multigraph on a certain
ce, which is almost entirely cubic.
al CLT for C, and 2-core.

nj I(ozma, Wormald]. Supercritical C; as an
sxpander ”decorated” by trees of up to logarithmic size.

j ,r ce enough; e.g., for mixing time order.

sult: complete characterization of C, .

'.-;_I;n_ste.ad of' decomposing C,, we construct it:
We define a simple model contiguous to it.




Eyal Lubetzky, Microsoft Research
. Feb 2010
Back to the giant component: .

Lonstructing the young giant

B el I G(IV.3) with N ~ (4/3) &%n
2. 2-core :edges — paths of lengths iid Geom(e) .

: attach Poisson(1 — £)-Galton-Watson trees.

C, in C/(n D)
)/ n

S — 00. — 0
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> o8 ,?:f,,,t 2= o(n ") .

deﬁned as follows

‘ph on. N 21 Z J vertices.

1 ges of K by paths of lengths iid Geom(g).

3. Attach iid Poisson(1 —)-Galton-Watson trees to vertices.
That is, P(C, € A) — 0 implies P(C. € A) — 0 forany A.
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Reading off key features

> kernel, 2-core and “ P

1 ices
ength of a 2-path in 2-core ~ (1/¢)log(e%n)

= Distances in the 2-core «~ First Passage Percolation.

= E.g, typical distance in the 2-core obtained from a result of
~ [Bhamidi, Hooghiemstra, van der Hofstad].
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structure result

1.V A ~ N (1 + e — p,(en) ), and assign mdependent

‘Poisson(A) variables {D, : uc[n]} to the vertices. Let K be a
 random multigraph on degrees > 3 (cond. the sum is even,).
2. Replace edges of K by paths of lengths iid Geom(1 — p).

-

_Attach iid Poisson(u)-Galton-Watson trees to vertices.
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diameter of C,

Jing, Kim, L., Peres]:
he largest co »,onent of the random graph G(n,p)

_:'am(C) — (3 =T 0(1))(1 [ €)log(e’n),
N diam(C®) = 2+ o)1/ )los(="n).
tc{:; (u,v) = (3 + o(1))(1/ €)log(e’n).

k- Followmg this result, [Riordan, Wormald] extended
- their estlmate of d1am(Cl) to all of the above regime.
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King time on C,

)i L., PEI'ES] :

''''''''

| transition from ©(n) in critical window
and € .(log‘@n) for the strictly supercritical case.
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