ANATOMY OF A YOUNG GIANT COMPONENT IN THE RANDOM GRAPH

Eyal Lubetzky Microsoft Research

Based on joint works with J. Ding, J.H. Kim and Y. Peres

N(S)

A random metric model: random *iid* edge-weights on an expander

- A graph K is an *expander* if the Simple Random Walk on it has a spectral-gap bounded away from 0.
- Numerous applications for sparse expanders in Mathematics and Computer Science.
- - E.g.: diameter, typical distance (equivalent to First Passage Percolation), heaviest simple paths, ...
- We will be interested in this question for $\mathcal{G}(n,3)$, a random uniform 3-regular graph on n vertices.

Feb 2010

Example: Exp(1) weights on a random cubic graph

Shortest path: 6 hops, weight 6.59

Typical length $\sim \log_2 n$ $\sim \log_2 n$ Typical weight Worst length $\sim \log_2 n$

Lightest path: 14 hops, weight 5.36

 $\sim 2\log n \approx 1.4\log_2 n$ Typical length $\sim \log n \approx 0.7 \log_2 n$ Typical weight $\sim \frac{5}{3} \log n \approx 1.2 \log_2 n$ Worst weight

Erdős-Rényi random graphs

- Setting: G(n,p) around the critical point p=1/n.
- "Double jump" phenomenon for order of $|\mathcal{C}_1|$: [Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90]
 - $lacksquare \log n$ for p=c/n , c<1 fixed.
 - or p = c/n, c > 1 fixed.
 - $n^{2/3}$ at criticality, and throughout the critical window: $p=(1\pm\varepsilon)/n$ for $\varepsilon=\mathrm{O}(n^{-1/3})$.
- Emerging from the critical window:

$$(\varepsilon^3 n \to \infty \text{ and } \varepsilon \to 0): |\mathcal{C}_1| \sim 2\varepsilon n$$
 giant component is gradually formed...

Understanding G(n,p) beyond criticality

- Commonly studied geometric properties:
 - Component sizes (vertices, edges), e.g. $|C_1|$.
 - Distances: typical, maximal (diameter).
 - Expansion and isoperimetric profile.
 - Long simple paths and cycles.
 -
- Parameters interplaying with graph geometry:
 - Cover time of the random walk.
 - Mixing time of the random walk.
 - ...

- lacksquare diam (\mathcal{C}_1) :
 - $\Theta(n^{1/3})$ at critical window [Nachmias, Peres '08].
 - $\Theta(\log n)$ for $p = (1+\varepsilon)/n$ with $\varepsilon > 0$ fixed. Asymptotics obtained by [Fernholz, Ramachandran '07] and by [Bollobás, Janson, Riordan '07].
- $lue{}_{\square}$ Mixing time of the random walk on \mathcal{C}_1 :
 - $\Theta(n)$ at critical window [Nachmias, Peres '08].
 - $\Theta(\log^2 n)$ for $p = (1+\varepsilon)/n$ with $\varepsilon > 0$ fixed. [Fountoulakis, Reed '08] and independently by [Benjamini, Kozma, Wormald].
- What does the transition look like when $\varepsilon \to 0$?

Prior to this work:

Prior to this work:

	Critical window	Mildly supercritical	Strictly Supercritical
	$p=(1\pmarepsilon)/n \ arepsilon=O(n^{-1/3}))$	$p = (1+\varepsilon)/n$ $\varepsilon^3 n \to \infty , \varepsilon \to 0$	p=(1+arepsilon)/n $arepsilon>0$ fixed
$\operatorname{diam}(\mathcal{C}_1)$	$\Theta(n^{1/3})$ [NP'08] not concentrated	$\Theta(\ (1/\varepsilon) \log(\varepsilon^3 n)\)$ [ŁS], [RW] precise asymptotics except for very slow $\varepsilon^3 n$	$\Theta(\log n)$ [CL'01], [FR'07], [BJR'07] precise asymptotics
Mixing time of random walk on \mathcal{C}_1	$\Theta(n)$ [NP'08] tree-like behavior	? Hard to interpolate between the regimes	$\Theta(\log^2 n)$ [FR'08], [BKW] weak-expansion

- 1. Q: Diameter asymptotics throughout intermediate regime?
- 2. Q: Order of the mixing time in that regime?

• New results:

- 1. Q: Diameter asymptotics throughout intermediate regime?
- 2. Q. Order of the mixing time in that regime?

Characterizing the supercritical $\mathcal{C}_{\scriptscriptstyle 1}$

- Notable decomposition theorems:
 - [Łuczak '91]: Kernel is a random multigraph on a certain degree sequence, which is almost entirely cubic.
 - [Pittel, Wormald '05]: Local CLT for C_1 and 2-core.
 - [Benjamini, Kozma, Wormald]: Supercritical C_1 as an expander "decorated" by trees of up to logarithmic size.
- Not precise enough; e.g., for mixing time order.
- lacksquare New result: complete characterization of \mathcal{C}_1 .
- Instead of decomposing C_1 , we construct it:
 We define a simple model contiguous to it.

Feb 2010

Back to the giant component: Constructing the young giant

- 1. kernel: $\mathcal{K} \sim \mathcal{G}(N,3)$ with $N \sim (4/3) \varepsilon^3 n$
- 2. 2-core : edges \rightarrow paths of lengths *iid* Geom(ε).
- 3. C_1 : attach Poisson (1ε) -Galton-Watson trees.

 $egin{aligned} \mathcal{C}_1 & ext{in } \mathcal{G}(n,p) \ p = & (1+arepsilon)/n \ arepsilon^3 n
ightarrow \infty, \ arepsilon
ightarrow 0 \end{aligned}$

Structure of the young giant

Theorem 1 [Ding, Kim, L., Peres]:

Let C_1 be the largest component of the random graph G(n,p) for $p=rac{1+arepsilon}{n}$, where $arepsilon^3 n o\infty$ and $arepsilon=o(n^{-1/4})$.

Then C_1 is contiguous to the model $\tilde{C_1}$ defined as follows:

- 1. Let $Z \sim \mathcal{N}(\frac{2}{3}\varepsilon^3 n, \varepsilon^3 n)$, and let \mathcal{K} be a random 3-regular (multi)graph on $N=2 \mid Z \mid$ vertices.
- 2. Replace edges of K by paths of lengths iid $Geom(\varepsilon)$.
- 3. Attach iid Poisson $(1-\varepsilon)$ -Galton-Watson trees to vertices. That is, $\mathbb{P}(\tilde{\mathcal{C}}_1 \in \mathcal{A}) \to 0$ implies $\mathbb{P}(\mathcal{C}_1 \in \mathcal{A}) \to 0$ for any \mathcal{A} .

Reading off key features

- Steps 1,2,3 \leftrightarrow kernel, 2-core and \mathcal{C}_1 resp.
- Some examples:
 - Size of 2-core $\sim 2 \varepsilon^2 n$
 - Size of kernel $\sim (4/3) \varepsilon^3 n$ vertices
 - Max length of a 2-path in 2-core $\sim (1/\varepsilon)\log(\varepsilon^3 n)$
 - \exists simple cycle in 2-core of length $\sim (4/3) \ \varepsilon^2 n$
- - E.g., typical distance in the 2-core obtained from a result of [Bhamidi, Hooghiemstra, van der Hofstad].

General structure result

■ Theorem 2 [Ding, Kim, L., Peres]:

Let C_1 be the largest component of the random graph $\mathcal{G}(n,p)$ for $p=\frac{1+\varepsilon}{n}$, where $\varepsilon^3 n \to \infty$ and $\varepsilon=o(1)$. Let $\mu<1$ be the conjugate of ε , i.e. $\mu \operatorname{e}^{-\mu}=(1+\varepsilon)\operatorname{e}^{-(1+\varepsilon)}$.

Then C_1 is contiguous to the model $\widetilde{C_1}$ defined as follows:

- 1. Let $\Lambda \sim \mathcal{N}(1 + \varepsilon \mu, (\varepsilon n)^{-1})$, and assign independent Poisson(Λ) variables $\{D_u : u \in [n]\}$ to the vertices. Let \mathcal{K} be a random multigraph on degrees ≥ 3 (cond. the sum is even).
- 2. Replace edges of K by paths of lengths iid Geom (1μ) .
- 3. Attach iid Poisson(μ)-Galton-Watson trees to vertices.

The diameter of C_1

Theorem 3 [Ding, Kim, L., Peres]:

Let C_1 be the largest component of the random graph G(n,p) for $p = \frac{1+\varepsilon}{n}$, where $\varepsilon^3 n \to \infty$ and $\varepsilon = o(1)$. Let $C_1^{(2)}$ be the 2-core of C_1 and K be its kernel. Then w.h.p., $\operatorname{diam}(C_1) = (3+o(1))(1/\varepsilon)\log(\varepsilon^3 n),$ $\operatorname{diam}(C_1^{(2)}) = (2+o(1))(1/\varepsilon)\log(\varepsilon^3 n),$ $\max_{u,v\in K} \operatorname{dist}_{C_1^{(2)}}(u,v) = (\frac{5}{3}+o(1))(1/\varepsilon)\log(\varepsilon^3 n).$

• Following this result, [Riordan, Wormald] extended their estimate of $diam(C_1)$ to all of the above regime.

Mixing time on \mathcal{C}_1

Theorem 4 [Ding, L., Peres]:

Let C_1 be the largest component of the random graph G(n,p) for $p = \frac{1+\varepsilon}{n}$, where $\lambda = \varepsilon^3 n \to \infty$ and $\lambda = o(n)$. The mixing time of the lazy random walk on C_1 is w.h.p. of order $(n/\lambda) \log^2 \lambda$.

■ Note the transition from $\Theta(n)$ in critical window and $\Theta(\log^2 n)$ for the strictly supercritical case.

THANK YOU.