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1e Cutoff Phenomenon

Describes a sharp transition in the convergence
of finite ergodic Markov chains to stationarity.

Steady convergence Abrupt convergence
it takes a while to reach the distance from r quickly
distance V2 from r, then a drops from 1 to 0

while longer to reach
distance Y4, etc.
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Why is cutoff important?

Consider an MCMC sampler (e.g., heat-bath
Glauber dynamics for the Ising Model) with a
mixing-time of order f(n).

Cutoff <> 3 some ¢ > 0 so that:

= We must run the chain for
at least ~ ¢ - f(n) steps to get
anywhere near stationarity.

= Running it any longer than
that is essentially redundant.

Proofs usually require (and thus provide) a deep
understanding of the chain (its reasons for mixing).

Many natural chains are beliecved to have cutoff, yet

ercan be extremely challenging.




T

ochastic Ising model

etry: finite graph G = (V E).
igurations: Q= {+1} (spins).
bility of a configuration c€Q is given by the

distribution (no external field):

1
#e(0) =55 e®(BX, oY)

rse-temperature: as f T e U favors
~configurations with alighed neighboring spins.

= Heat-bath Glauber dynamics for - (MC on Q):
Choose xeV u.a.r. and update its spin according
(o5 conditioned on remaining spins.




Gutoff for Stochastic Ising

= Ising model on the complete graph:

= High temperature:
|[Levin, Luczak, Peres "08]

= Complete picture:
|Ding, L. , Peres “10]

= Key element in analysis:

= Birth-and-death chains:
|[Ding, L., Peres "09]

m Extensions to g-state Potts model : §
= [Cuff, Ding, L., Louidor, Peres,Sly] B
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Curie-Weiss model:
Scaling window in the mixing-time evolution

| 1(n/9)log(*n) |
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Viean-field Potts model, g=3

p < f. = 2.746 :Fast mixing with cutoff
B = B :Power law mixing (n*”)

Between (£, , 5.):
Exponential mixing, but

Fast “essential mixing”
with cutoff

L= f. = 2.773:Exponential mixing |

(well known)




utoff Definition

lation mixing time of (X,) w.r.t.
tic(€) =min{t:d., (1) <&}

utoff if the following holds:
-

=1 foranyO<e&<1.

xt

W)
<1 9

mIX

zence (w,) is called a cutoff window it

_O(tmlx( ))
f __mix(g)_tmix(l_g):Og(Wn) forany O<e<1.

= max sup eA) -1
XeQ A—Q




CUtoff for Random Walks on & (i.d)

imple Random Walk (SRW) on a
n 3-regular graph on n vertices.

ing-time is whp O(log n).

precise results include: 3lo
82 4.

_ (log ),
| W on random 3-regular n-vertex graph whp has g
| t . (s)=3log, n—6g2\%+o(l))cp‘l(s)«/log2 n.
lo
If we forbid backtracking (NBRW) then whp U, ’

t.@—&)=|log,(3n) |- [log,(1/¢)],
3§ ~~ t.(€) <|log,(3n) |+3|log,(1/ &) |+4.

10




e
30

‘f??voo

J
H
!
¢
¢
.
2

del

plec
dalring mo




Cutoff History

b ions on S, [Diaconis, Shahshahani “81]

e hypercu iffle-shuffle [Aldous ‘83]

d “Cutoff Phenomenon” in the top-in-at-
m shuffle analysis [Diaconis, Aldous “86] .

f for RW on finite groups ([Saloff-Coste “04]).

‘@ Unfortunately: relatively few rigorous examples,
~ compared to many important chains that are
~ believed to exhibit cutoff.
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Example: RW on a hypercube

inary vectors {0,1}" and there is an edge
of vectors with Hamming distance 1.

re: uniformly choose a coordinate and a {0,1} update.
jecting onto the Hamming weights gives the classical

(&) = nlogn+c.n, whereas
t. (LI—&)=2nlogn—cn.
= [Aldous "83]: lower bound is tight:

12 n log n + O(n) steps suffice!




Determining cutoff

iding whether or not there is cutoff
> highly involved (Diaconis [’96])

ot always sufficient... ([Aldous '04, Pak "06])

= Peres nevertheless conjectured that for many

natural chains, cutoff occurs iff gap-t . (£) >« ;
cf. [Chen, Saloff-Coste "07],
e laconis, Saloff-Coste "06], [Ding, L., Peres "09].

mix
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h expander graphs

fixed degree d : graphs where A is
ded away fromd. _

W has rapid (logarithmic)

ergence to stationarity.

1erous applications, e.g., de-randomization,
ce efficient algorithms, etc.

= 1, Saloff-Coste "08]: cutoff when measuring

convergence under other notions (e.g., L>-norm).

@ Total-variation cutoff (L-norm) for any family of
| sitive expanders remains open.



n random regular graphs

G (n,d) for tixed d = 3 whp has
; gap=c>0.

cording to the product-criterion of Peres, this
in should exhibit cutoff whp.

stycki, Durret "08]: studied SRW on & (n,3),
ing that at time c log, n, the walk is at
ce ~(<Aal)log,n from its starting point.

\. = Conjecture [Durrett "07]:

The mixing time of the lazy RW on the random
~3-regular n-vertex graph is asymptotically 6 log, 1 .
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New results: SRW

the above conjecture of Durrett, as
oduct-criterion for & (n,d) :

:~ & (n,d) for d = 3 fixed. Then whp, the SRW on G

Furtﬁermore, for any fixed 0 <s <1, whp:

tmix (S) e d = 2 Iogd—l n _(Z(dd_(zd)'o’_/i-) + 0(1))(D_1(S)\/Iogd—l n

where ©® is the c.d.f. of the standard normal.

toff at =4>log, , N with window of order /logn .
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on-backtracking walk

ing Random Walk (NBRW) :
e the same edge twice in a row.

ehavior of SRWs on & (n,d) :

ff occurs earlier, with constant window!

orem [L., Sly]:

‘; ~ & (n,d) for d = 3 fixed. Then whp, the NBRW
on G has cutoff at log, ,(dn) with O(1) window.

More precisely, for any fixed 0 < e<1, whp: 1, Windo,,

Ofar, lf/)”u

mlx(l_g) >|_|Ogd 1(dn)_|—|_|0gd 1(1/5)_| mn i/,
et (8) <[10g 4, (dN) [+3[ log ,, (1/ &) [+4 .

‘I‘ :




ASymptotic behavior of the RWs
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ht: cutoff for SRW & NBRW

regular tree, rooted at the starting
where the walk mixes

RW cannot backtrack up the tree
aches a leaf after precisely log, , n steps.

ight of SRW ~ biased 1D RW with speed *-=

— expected hitting time to a leaf = - log, , n
with std. dev. of O(,/logn) .
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NBRWs do mix faster

on the set of d 1 directed edges.
lons: project onto the 1 vertices.
on, Benjamini, L., Sodin "08]: compared the

ng rate (spectral parameter) of this projection
e SRW on expanders (“NBRWs mix faster”).

ear how that spectral data translates into a
comparison of the two mixing times.

@ New results: NBRW is indeed d/(d-2) times faster,
even for the original chain (on directed edges).

= Moreover, we pinpoint the cutoff location up to a
window of order log,(1/¢) .
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tG~ G (n, d) for d = n°d) , where d — o with n . Then
' ny fixed 0 <s <1, the NBRW on G whp satisfies thl
‘ wix (8) €{[log ., (dn) ].[ log ,_, (dn) ]+1} . cutoff®"

two ‘:»t pb

@ Hered is largest possible: if d =n° for some 6 >0
then .. = O(1) and we cannot discuss cutoff.




T

alogous result for SRW

The SRW on G ~ G (n,d) for d = n°M) , d — oo with n,
~ whp has cutoff at 5l0g, ,n with window \/ 1097 ogd

ﬁ If also Ioal;g "4 > , the results for NBRWs apply.

indow becomes narrower with ¢, and as it
s 0(1), the SRW coincides with the NBRW.

‘ = = For G (2", m) we expect to have cutotf whp at
| ~ (log 2)m/log m with a 2 step window!
= Compare to the hypercube: there the lazy RW
“has-cutoff at '2 m log m with window of O(m) ...
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Proof ideas

= Exploration Process via the configuration model.

/ : : : i
1"” » Burn in period for a new locally-tree-like starting pt.

(ERIY) o Analyze local geometry: neighborhoods & cuts.
= O(1) ~window challenge: only O(1) burn-in allowed, and

Thm  typical cuts have O(1) size (no large deviation argument).

2 = Solution: amplify the cuts analysis with a one vs. many

".N;W) Poissonization argument; delicate analysis of local geometry.

Thm = Obtain error bounds to beat ~ exp(-d2) probability of the
3 configuration graph producing a non-simple graph.

L
L ﬂ bt,) B, )‘V

T

D
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results: testing cutoff

 tell whether our G ~ G (1, d) is

atime: O,(n t,.., (&) [optimal up to poly-log factors].
urns estimates so that whp:
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EXplicit constructions: SRW cutoff

1e structure of a typical G ~ & (n, d)

ruction of d-regular graphs
ibits cutoff (at essentially any

y fixed d = 3 and any sequence f, of order
en (log 1, n?), there 3 an explicit family of
ar graphs where the SRW has cutoff at £, .
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progress: Ising on lattices

Sly]:

Let £, =2log(1l+ J2) be the critical inverse-temperature
for the Ising model on Z°. Then the continuous-time
- Glauber dynamics for the Ising model on (Z/ nZ)2 with
beriodic boundary conditionsat 0< f < £, has cutoff at
(1/2)logn , where A is the spectral gap of the dynamics
on the infinite volume lattice.

= Analogous result holds for any dimensiond > 1...
[Previously: even pre-cutoff was only known for
the “simpler” 1D case (there with a factor of 2)]
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Recent progress on lattices (ctd.)

inges on an L!-L2 reduction, enabling
log-Sobolev inequalities.

g this method gives further results on:

ditrary external field and non-uniform interactions.

ndary conditions (including free, all-plus, mixed).
1er lattices (e.g., triangular, graph products).

1 models:
Anti-ferromagnetic Ising; Gas Hard-core
Potts (ferro./anti-ferro.); Coloring;  Spin-glass.

B L
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Ppen problems

m any family of transitive
_  exhibit cutoff?
fically, does this hold

\/
e 84

LPS-expanders?

oes the NBRW behave on such a family of
e.g., cutoff pt., window etc.)?
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