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 Describes a sharp transition in the convergence 
of finite ergodic Markov chains to stationarity.
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Steady convergence
it takes a while to reach 

distance ½ from , then a 
while longer to reach

distance ¼, etc.

Abrupt convergence
the distance from  quickly 

drops from 1 to 0
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 Consider an MCMC sampler (e.g., heat-bath 
Glauber dynamics for the Ising Model) with a 
mixing-time of order f(n).

 Cutoff   some c  0 so that:
 We must run the chain for 

at least ~ c  f(n) steps to get 
anywhere near stationarity.

 Running it any longer than 
that  is essentially redundant.

 Proofs usually require (and thus provide) a deep 
understanding of the chain (its reasons for mixing).

 Many natural chains are believed to have cutoff, yet 
proving cutoff can be extremely challenging.
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 Underlying geometry: finite graph G = (V,E) .

 Set of possible configurations:                     (spins).

 Probability of a configuration  is given by the 
Gibbs distribution (no external field):

  = inverse-temperature: as   G favors 
configurations with aligned neighboring spins.

 Heat-bath Glauber dynamics for G (MC on ):  
Choose xV u.a.r. and update its spin according 
to G conditioned on remaining spins.
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 Ising model on the complete graph:

 High temperature:
[Levin, Luczak, Peres ‟08]

 Complete picture:
[Ding, L. , Peres „10]

 Key element in analysis:

 Birth-and-death chains:
[Ding, L. , Peres ‟09]

 Extensions to q-state Potts model :

 [Cuff, Ding, L., Louidor,  Peres, Sly]
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2.746 :Fast mixing with cutoff 

:Power law mixing ( )
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Between (m , c):
Exponential mixing, but
Fast “essential mixing” 
with cutoff

2.773:Exponential mixingc  
(well known)



 The total-variation mixing time of (Xt) w.r.t. 
some is .

 A family has cutoff if the following holds:

 A sequence (wn) is called a cutoff window if
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 Consider the Simple Random Walk (SRW) on a 
uniformly chosen 3-regular graph on n vertices.

 Well known: the mixing-time is whp O(log n).

 New precise results include:
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SRW on random 3-regular n-vertex graph whp has

  1

mix 2 2( ) 3log 2 6 (1) ( ) log .t s n o s n   

If we forbid backtracking (NBRW) then whp
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 Graphs 
sampled via the
pairing model:
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 Discovered:

 Random transpositions on Sn [Diaconis, Shahshahani „81]

 RW on the hypercube, Riffle-shuffle [Aldous „83]

 Named “Cutoff Phenomenon” in the top-in-at-
random shuffle analysis [Diaconis, Aldous „86] .

 Cutoff for RW on finite groups ([Saloff-Coste „04]).

 Unfortunately: relatively few rigorous examples, 
compared to many important chains that are 
believed to exhibit cutoff.
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 Vertices are binary vectors {0,1}n and there is an edge 
between any pair of vectors with Hamming distance 1.

 Lazy chain: holds its position with probability ½ .
Here: uniformly choose a coordinate and a {0,1} update.

 Projecting onto the Hamming weights gives the classical  
“Ehrenfest‟s Urn” (a birth & death chain).

 The Coupon Collector approach:
whereas

 [Aldous ‟83]: lower bound is tight:
½ n log n + O(n) steps suffice!
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 Merely deciding whether or not there is cutoff 
can already be highly involved (Diaconis [„96]).

 In 2004, Peres suggested the “product-condition”

as a cutoff criterion.

 Necessary for cutoff in a reversible chain.

 Not always sufficient… ([Aldous ‟04, Pak ‟06])

 Peres nevertheless conjectured that for many 
natural chains, cutoff occurs iff ; 
cf. [Chen, Saloff-Coste ‟07], 

[Diaconis, Saloff-Coste ‟06], [Ding, L., Peres ‟09].
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 Expanders of fixed degree d : graphs where  is 
uniformly bounded away from d.

 SRW has rapid (logarithmic) 
convergence to stationarity.

 Numerous applications, e.g., de-randomization, 
space efficient algorithms, etc.

 [Chen, Saloff-Coste ‟08]: cutoff when measuring 
convergence under other notions (e.g., L2–norm).

 Total-variation cutoff (L1-norm) for any family of 
transitive expanders remains open.
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 SRW on G ~  (n,d) for fixed d ≥ 3 whp has

 tmix(¼) = Θ(log n)     ;    gap ≥ c > 0 .

 According to the product-criterion of Peres, this 
chain should exhibit cutoff whp.

 [Berestycki, Durret ‟08]: studied SRW on  (n,3), 

showing that at time  c log2 n, the walk is at 
distance                           from its starting point.

 Conjecture [Durrett ‟07]:
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  23
~ 1 logc n

The mixing time of the lazy RW on the random 
3-regular n-vertex graph is asymptotically 6 log2 n .



 We confirm the above conjecture of Durrett, as 
well as Peres‟ product-criterion for  (n,d) :

 Theorem [L., Sly]:
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Let G ~  (n,d) for d ≥ 3 fixed. Then whp, the SRW on G

has cutoff at                        with window of order              .12
logd

dd
n

log n

Furthermore, for any fixed 0 < s < 1, whp :

where  is the c.d.f. of the standard normal.
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 Non-Backtracking Random Walk (NBRW) : 
does not traverse the same edge twice in a row.

 Reveals the actual behavior of SRWs on  (n,d) :

cutoff occurs earlier, with constant window!

 Theorem [L., Sly]:
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Let G ~  (n,d) for d ≥ 3 fixed. Then whp, the NBRW 

on G has cutoff at                       with O(1) window.1log ( )d dn

More precisely, for any fixed 0 <  < 1, whp :
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 Bounds on dTV(t)
following the
above theorems:
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 Consider a d-regular tree, rooted at the starting 
point of the RW, where the walk mixes 
precisely upon hitting one of the leaves.

 NBRW cannot backtrack up the tree 
 reaches a leaf after precisely steps.

 Height of SRW ~ biased 1D RW with speed 
 expected hitting time to a leaf = 
with std. dev. of                  .
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 Formally: MC on the set of d n directed edges.
In most applications: project onto the n vertices.

 [Alon, Benjamini, L., Sodin ‟08]: compared the 
mixing rate (spectral parameter) of this projection 
vs. the SRW on expanders (“NBRWs mix faster”).

 Unclear how that spectral data translates into a 
direct comparison of the two mixing times.

 New results: NBRW is indeed d/(d-2) times faster, 
even for the original chain (on directed edges).

 Moreover, we pinpoint the cutoff location up to a 
window of order logd-1(1/) .
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 Q: Recalling the cutoff window of  logd-1(1/) for 
NBRWs, what would happen if d  ?

A:  “non-mixed”  “mixed” transition in 2 steps!

 Theorem [L., Sly]:

 Here d is largest possible: if  d = n for some  >0 
then tmix = O(1) and we cannot discuss cutoff.
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Let G ~  (n,d) for d = no(1) , where d  with n . Then 

for any fixed 0 < s < 1, the NBRW on G whp satisfies

 mix 1 1( ) log ( ) , log ( ) 1 .d dt s dn dn        



 Corollary [L., Sly]:

 Window becomes narrower with d, and as it 
turns o(1), the SRW coincides with the NBRW.

  For  (2m, m) we expect to have cutoff whp at 

~ (log 2)m/log m with a 2 step window! 

 Compare to the hypercube: there the lazy RW 
has cutoff at ½ m log m with window of O(m) …
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The SRW on G ~  (n,d) for d = no(1) , d  with n ,

whp has cutoff at                  with window                     .
If also                        , the results for NBRWs apply.
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 Exploration Process via the configuration model.

 Burn in period for a new locally-tree-like starting pt.

 Analyze local geometry: neighborhoods & cuts.

 O(1)-window challenge:  only O(1) burn-in allowed, and 
typical cuts have O(1) size (no large deviation argument).

 Solution: amplify the cuts analysis with a one vs. many 
Poissonization argument; delicate analysis of local geometry.

 Obtain error bounds to beat ~ exp(-d2) probability of the 
configuration graph producing a non-simple graph.



 How can we tell whether our G ~  (n, d) is 

“typical” and the RW indeed exhibits cutoff?

 We provide a randomized algorithm that given
any 0 <  < ½  has

 Runtime: Õ(n tmix ()) [optimal up to poly-log factors].

 Returns estimates so that whp:

 Cutoff  
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 Mimicking the structure of a typical G ~  (n, d) 

 explicit construction of d-regular graphs 
where the SRW exhibits cutoff  (at essentially any 
prescribed location):
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For any fixed d ≥ 3 and any sequence tn of order 
between (log n, n2), there  an explicit family of 
d-regular graphs where the SRW has cutoff at tn .
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 Theorem [L., Sly]:

 Analogous result holds for any dimension d ≥ 1…
[Previously: even pre-cutoff was only known for  
the “simpler” 1D case (there with a factor of 2)]
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Let be the critical inverse-temperature
for the Ising model on . Then the continuous-time
Glauber dynamics for the Ising model on with
periodic boundary conditions at has cutoff at

, where is the spectral gap of the dynamics
on the infinite volume lattice.
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 Main result hinges on an L1-L2 reduction, enabling 
the application of log-Sobolev inequalities.

 Extending this method gives further results on:

 Arbitrary external field and non-uniform interactions.

 Boundary conditions (including free, all-plus, mixed).

 Other lattices (e.g., triangular, graph products).

 Other models:
Anti-ferromagnetic Ising; Gas Hard-core
Potts (ferro./anti-ferro.); Coloring; Spin-glass.
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 Does the SRW on any family of transitive 
3-regular expanders exhibit cutoff?
 Specifically, does this hold for LPS-expanders? 

 How does the NBRW behave on such a family of 
graphs (e.g., cutoff pt., window etc.)?
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