CUTOFF PHENOMENA IN RANDOM WALKS ON RANDOM REGULAR GRAPHS Eyal Lubetzky **Microsoft Research**

Joint work with Allan Sly (UC Berkeley)

Apr 2009

Oberwolfach workshop on Combinatorics and Probability

🗡 The Cutoff Phenomenon

 Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity.

Steady convergence it takes a while to reach distance $\frac{1}{2}$ from π , then a while longer to reach distance $\frac{1}{4}$, etc. Abrupt convergence the distance from π quickly drops from 1 to 0

Why is cutoff important?

Consider an MCMC sampler (e.g., heat-bath Glauber dynamics for the Ising Model) with a mixing-time of order *f*(*n*).

• Cutoff $\Leftrightarrow \exists \text{ some } c > 0 \text{ so that:}$

- We must run the chain for at least ~ c · f(n) steps to get anywhere near stationarity.
- Running it any longer than that is essentially redundant.

Proofs usually require (and thus provide) a deep understanding of the chain (its reasons for mixing).
 Many natural chains are *believed* to have cutoff, yet proving cutoff can be extremely challenging.

Stochastic Ising model

- Underlying geometry: finite graph G = (V,E).
- Set of possible configurations: $\Omega = \{\pm 1\}^V$ (*spins*).
- Probability of a configuration $\sigma \in \Omega$ is given by the *Gibbs distribution* (no external field):

$$\mu_{G}(\sigma) = \frac{1}{Z(\beta)} \exp\left(\beta \sum_{xy \in E} \sigma(x) \sigma(y)\right)$$

β = inverse-temperature: as β ↑ → μ_G favors configurations with aligned neighboring spins.
 Heat-bath Glauber dynamics for μ_G (MC on Ω): Choose x∈V u.a.r. and update its spin according to μ_G conditioned on remaining spins.

Cutoff for Stochastic Ising

Ising model on the complete graph:

- High temperature: [Levin, Luczak, Peres '08]
 Complete picture: [Ding, L., Peres '10]
 Key element in analysis:
 Birth-and-death chains:
 - [Ding, L. , Peres '09]
- Extensions to *q*-state Potts model :
 [Cuff, Ding, L., Louidor, Peres, Sly]

Curie-Weiss model: Scaling window in the mixing-time evolution

Mean-field Potts model, q=3

 $\beta < \beta_m \approx 2.746$: Fast mixing with cutoff $\beta = \beta_m$: Power law mixing $(n^{4/3})$

Between (β_m, β_c) : Exponential mixing, but Fast "essential mixing" with cutoff

$\beta \ge \beta_c \approx 2.773$: Exponential mixing (well known)

Cutoff Definition

The total-variation mixing time of (X_t) w.r.t. some 0 < ε < 1 is t_{mix}(ε) = min{t: d_{TV}(t) < ε}.
 A family (Xⁿ_t) has *cutoff* if the following holds:
 $\lim_{n \to \infty} \frac{t_{mix}(ε)}{t_{mix}(1-ε)} = 1 \text{ for any } 0 < ε < 1.$

• A sequence (w_n) is called a *cutoff window* if $w_n = o(t_{\min}(\frac{1}{4}))$, $t_{\min}(\varepsilon) - t_{\min}(1 - \varepsilon) = O_{\varepsilon}(w_n)$ for any $0 < \varepsilon < 1$.

 $d_{\mathrm{TV}}(t) = \max_{x \in \Omega} \sup_{A \subseteq \Omega} \left| \mathbf{P}_{x}(X_{t} \in A) - \pi(A) \right|$

Cutoff for Random Walks on G(n,d)

Consider the *Simple Random Walk* (SRW) on a uniformly chosen 3-regular graph on *n* vertices.
 Well known: the mixing-time is whp O(log *n*).
 New precise results include:

SRW on random 3-regular *n*-vertex graph whp has $t_{\text{mix}}(s) = 3\log_2 n - (2\sqrt{6} + o(1))\Phi^{-1}(s)\sqrt{\log_2 n}$.

If we forbid *backtracking* (NBRW) then whp $t_{mix}(1-\varepsilon) \ge \lceil \log_2(3n) \rceil - \lceil \log_2(1/\varepsilon) \rceil,$ $t_{mix}(\varepsilon) \le \lceil \log_2(3n) \rceil + 3 \lceil \log_2(1/\varepsilon) \rceil + 4.$

 $\log_2 n + O(1)$

Simulations of RWs / NBRWs

Graphs
 sampled via the pairing model:

10

5

1.0

0.8

0.6

0.4

0.2

SRW 6-regular graph on 5000 vertices

15

20

25

Cutoff History

Discovered:

Random transpositions on S_n [Diaconis, Shahshahani '81] RW on the hypercube, Riffle-shuffle [Aldous '83] Named "Cutoff Phenomenon" in the top-in-atrandom shuffle analysis [Diaconis, Aldous '86]. Cutoff for RW on finite groups ([Saloff-Coste '04]). Unfortunately: relatively few rigorous examples, compared to many important chains that are believed to exhibit cutoff.

Example: RW on a hypercube

Vertices are binary vectors {0,1}ⁿ and there is an edge between any pair of vectors with Hamming distance 1.
 Lazy chain: holds its position with probability ½. Here: uniformly choose a coordinate and a {0,1} update.
 Projecting onto the Hamming weights gives the classical "Ehrenfest's Urn" (a birth & death chain).
 The Coupon Collector approach:

 n log n+c_en, whereas

 $t_{\min}(1-\varepsilon) \ge \frac{1}{2}n\log n - c'_{\varepsilon}n.$ $\square \quad [Aldous '83]: lower bound is tight: \frac{1}{2}n\log n + O(n) steps suffice!$

Determining cutoff

Merely deciding whether or not there is cutoff can already be highly involved (Diaconis ['96]). ■ In 2004, Peres suggested the "product-condition" $\bigotimes \operatorname{gap} \cdot t_{\min}(\frac{1}{4}) \to \infty$ Cutoff as a cutoff criterion. Necessary for cutoff in a reversible chain. Not always sufficient... ([Aldous '04, Pak '06]) Peres nevertheless conjectured that for many natural chains, cutoff occurs iff gap $t_{mix}(\frac{1}{4}) \rightarrow \infty$; cf. [Chen, Saloff-Coste '07], [Diaconis, Saloff-Coste '06], [Ding, L., Peres '09].

SRW on expander graphs

- Expanders of fixed degree d : graphs where λ is uniformly bounded away from d.
- SRW has rapid (logarithmic) convergence to stationarity.

2nd largest (in abs. value) eigenvalue of the adj. matrix

- Numerous applications, e.g., de-randomization, space efficient algorithms, etc.
- [Chen, Saloff-Coste '08]: cutoff when measuring convergence under other notions (e.g., L²-norm).
 Total-variation cutoff (L¹-norm) for any family of transitive expanders remains open.

SRW on random regular graphs

■ SRW on $G \sim G(n,d)$ for fixed $d \ge 3$ whp has

• $t_{\min}(1/4) = \Theta(\log n)$; $gap \ge c > 0$.

- According to the product-criterion of Peres, this chain should exhibit cutoff whp.
- □ [Berestycki, Durret '08]: studied SRW on G (n,3), showing that at time c log₂ n, the walk is at distance ~ (c/3 ∧ 1)log₂ n from its starting point.
 □ Conjecture [Durrett '07]:

The mixing time of the lazy RW on the random 3-regular *n*-vertex graph is asymptotically $6 \log_2 n$.

New results: SRW

We confirm the above conjecture of Durrett, as well as Peres' product-criterion for G (n,d) :
 <u>Theorem [L., Sly]</u>:

Let $G \sim G(n,d)$ for $d \ge 3$ fixed. Then **whp**, the SRW on G has cutoff at $\frac{d}{d-2}\log_{d-1}n$ with window of order $\sqrt{\log n}$.

Furthermore, for any fixed 0 < s < 1, whp: $t_{\min}(s) = \frac{d}{d-2} \log_{d-1} n - \left(\frac{2\sqrt{d(d-1)}}{(d-2)^{3/2}} + o(1)\right) \Phi^{-1}(s) \sqrt{\log_{d-1} n}$ where Φ is the c.d.f. of the standard normal.

The non-backtracking walk

 Non-Backtracking Random Walk (NBRW): does not traverse the same edge twice in a row.
 Reveals the actual behavior of SRWs on G (n,d): cutoff occurs earlier, with constant window!
 <u>Theorem [L., Sly]</u>:

Let $G \sim G(n,d)$ for $d \ge 3$ fixed. Then **whp**, the NBRW on *G* has cutoff at $\log_{d-1}(dn)$ with O(1) window.

More precisely, for any fixed $0 < \varepsilon < 1$, whp: $t_{\min}(1-\varepsilon) \ge \left\lceil \log_{d-1}(dn) \right\rceil - \left\lceil \log_{d-1}(1/\varepsilon) \right\rceil$, $t_{\min}(\varepsilon) \le \left\lceil \log_{d-1}(dn) \right\rceil + 3 \left\lceil \log_{d-1}(1/\varepsilon) \right\rceil + 4$.

Asymptotic behavior of the RWs

Bounds on $d_{TV}(t)$ following the
above theorems:

Insight: cutoff for SRW & NBRW

• Consider a *d*-regular tree, rooted at the starting point of the RW, where the walk mixes precisely upon hitting one of the leaves. NBRW cannot backtrack up the tree \Rightarrow reaches a leaf after precisely $\log_{d-1} n$ steps. • Height of SRW ~ biased 1D RW with speed $\frac{d-2}{d}$ \Rightarrow expected hitting time to a leaf = $\frac{d}{d-2}\log_{d-1}n$ with std. dev. of $O(\sqrt{\log n})$.

NBRWs do mix faster

- Formally: MC on the set of *d n* directed edges.
 In most applications: project onto the *n* vertices.
- [Alon, Benjamini, L., Sodin '08]: compared the *mixing rate* (spectral parameter) of this projection vs. the SRW on expanders ("NBRWs mix faster").
- Unclear how that spectral data translates into a direct comparison of the two mixing times.
- New results: NBRW is indeed d/(d-2) times faster, even for the original chain (on directed edges).
- Moreover, we pinpoint the cutoff location up to a window of order $\log_{d-1}(1/\varepsilon)$.

Graphs with unbounded degree

■ <u>Q</u>: Recalling the cutoff window of log_{d-1}(1/ε) for NBRWs, what would happen if d → ∞?
 <u>A</u>: "non-mixed" → "mixed" transition in 2 steps!
 ■ <u>Theorem [L., Sly]</u>:

Let $G \sim G(n,d)$ for $d = n^{o(1)}$, where $d \to \infty$ with n. Then for any fixed 0 < s < 1, the NBRW on G whp satisfies $t_{\min}(s) \in \{ \log_{d-1}(dn) \rceil, \log_{d-1}(dn) \rceil + 1 \}$. Cutoff within transferred to the steps!

■ Here *d* is largest possible: if $d = n^{\delta}$ for some $\delta > 0$ then $t_{mix} = O(1)$ and we cannot discuss cutoff.

Analogous result for SRW

□ <u>Corollary [L., Sly]</u>:

The SRW on $G \sim \mathcal{G}(n,d)$ for $d = n^{o(1)}$, $d \to \infty$ with n, **whp** has cutoff at $\frac{d}{d-2}\log_{d-1}n$ with window $\sqrt{\frac{\log n}{d \log d}}$ If also $\frac{\log \log n}{\log n}d \to \infty$, the results for NBRWs apply.

Window becomes narrower with *d*, and as it turns *o*(1), the SRW coincides with the NBRW.
 ⇒ For 𝔅 (2^m, m) we expect to have cutoff whp at ~ (log 2)m/log m with a 2 step window!
 Compare to the hypercube: there the lazy RW has cutoff at ½ m log m with window of O(m) ...

Proof ideas

	Exploration Process via the configuration model.
1	Burn in period for a new locally-tree-like starting pt.
SRW)	Analyze local geometry: neighborhoods & cuts.
Thm	<u>$O(1)$-window challenge</u> : only $O(1)$ burn-in allowed, and typical cuts have $O(1)$ size (no large deviation argument).
2 NBRW)	<u>Solution</u> : amplify the cuts analysis with a one vs. many <i>Poissonization</i> argument; delicate analysis of local geometry
Thm 3	Obtain error bounds to beat ~ $\exp(-d^2)$ probability of the configuration graph producing a non-simple graph.
42/1)	

 $\partial B(u,r_1)$

11

 $\partial B(v,r_2)$

0

Additional results: testing cutoff

- How can we tell whether our G ~ G (n, d) is "typical" and the RW indeed exhibits cutoff?
 We provide a randomized algorithm that given any 0 < ε < 1/2 has
 - Runtime: Õ_ε(n t_{mix} (ε)) [optimal up to poly-log factors].
 Returns estimates so that whp:

 [t_{mix} (ε)] ≤ t̃(ε)] ≤ t_{mix} (ε/2)

$$t_{\min}(1 - \frac{\varepsilon}{2}) \le \tilde{t}(1 - \varepsilon) \le t_{\min}(\varepsilon)$$

$$\frac{t_{\min}(\varepsilon)}{t_{\min}(1-\varepsilon)} \to 1 \quad \Leftrightarrow \quad \frac{\tilde{t}(\varepsilon)}{\tilde{t}(1-\varepsilon)} \to 1$$

■ Cutoff ⇔

Explicit constructions: SRW cutoff

• Mimicking the structure of a typical $G \sim G(n, d)$ \Rightarrow explicit construction of *d*-regular graphs where the SRW exhibits cutoff (at essentially any prescribed location):

For any fixed $d \ge 3$ and any sequence t_n of order between (log n, n^2), there \exists an explicit family of d-regular graphs where the SRW has cutoff at t_n .

Order of Imix (1/4) is always at least log n and at most n²...

Explicit cutoff construction (ctd.)

Recent progress: Ising on lattices

□ <u>Theorem</u> [L., Sly]:

Let $\beta_c = \frac{1}{2}\log(1+\sqrt{2})$ be the critical inverse-temperature for the Ising model on \mathbb{Z}^2 . Then the continuous-time Glauber dynamics for the Ising model on $(\mathbb{Z}/n\mathbb{Z})^2$ with periodic boundary conditions at $0 \le \beta < \beta_c$ has cutoff at $(1/\lambda)\log n$, where λ is the spectral gap of the dynamics on the infinite volume lattice.

■ Analogous result holds for *any* dimension *d* ≥ 1...
 [Previously: even pre-cutoff was only known for the "simpler" 1D case (there with a factor of 2)]

Recent progress on lattices (ctd.)

- Main result hinges on an L¹-L² reduction, enabling the application of log-Sobolev inequalities.
- Extending this method gives further results on:
 - Arbitrary external field and non-uniform interactions.
 - Boundary conditions (including free, all-plus, mixed).
 - Other lattices (e.g., triangular, graph products).

Other models:

Anti-ferromagnetic Ising; Gas Hard-core Potts (ferro./anti-ferro.); Coloring; Spin-glass.

Open problems

 Does the SRW on any family of transitive 3-regular expanders exhibit cutoff?
 Specifically, does this hold for LPS-expanders?

How does the NBRW behave on such a family of graphs (e.g., cutoff pt., window etc.)?

THANK YOU.

Apr 2009

Oberwolfach workshop on Combinatorics and Probability