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The models: static and dynamical



The (static) 2D Ising model

I Underlying geometry: G = finite 2d grid.

I Set of possible configuration:

Ωi = {−1, 1}V (G)

(each site receives a plus/minus spin).

Definition (the Ising model on G)

Probability distribution µi on Ωi given by the Gibbs measure:

µi(σ) =
1

Zi
exp

(
β
∑
x∼y

1{σ(x)=σ(y)}

)
[Lenz 1920]

(β ≥ 0 is the inverse-temperature; Zi is the partition function)
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The (static) 2D Ising model: phase transition

I Underlying graph: G = finite 2d grid.

I Set of possible configuration: Ωi = {−1, 1}V (G)

I Probability of a configuration: µi(σ) ∝ exp
(
β
∑

x∼y δσ(x),σ(y)

)
Local (nearest-neighbor) interactions can have macroscopic effects:

Ising model on a 1000× 1000 torus

β = 0.75 β = 0.88 β = 1
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The (static) 2D Ising model: phase transition (ctd.)

Ising model on a 2D torus

β = 0.75 β = 0.88 β = 1

Noisy majority model on a 2D torus: Ising universality class?

p = 0.25 p = 0.15 p = 0.10
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The (static) 2D Potts model

Generalizes the Ising model from 2-state spins to q-state spins:

I Underlying geometry: G = finite 2d grid.

I Set of possible configuration:

Ωp = {1, . . . , q}V (G)

(each site receives a color).

Definition (the q-state Potts model on G)

Probability distribution µp on Ωp given by the Gibbs measure:

µp(σ) =
1

Zp
exp

(
β
∑
x∼y

1{σ(x)=σ(y)}

)
[Domb 1951]

(β ≥ 0 is the inverse-temperature; Zp is the partition function)
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Glauber dynamics for the Potts model

Recall: µp(σ) =
1

Zp
exp

(
β
∑
x∼y

1{σ(x)=σ(y)}

)
A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Specialized to the Potts model:

I Update sites via IID Poisson(1) clocks

I An update at x ∈ V replaces σ(x) by

a new spin ∼ µp(σ(x) ∈ · | σ �V \{x}). e3β

1

1

eβ

Meta question: How long does it take to converge to µ?
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Glauber dynamics for the 2D Potts model

Glauber dynamics, 3-color Potts model on a 250× 250 torus

for β = 0.5 β = 2.01 β = 1.01.

. . . . . .

Q. 1 Fix β > 0 and T > 0. Does continuous-time Glauber

dynamics (σt)t≥0 for the 3-color Potts model on an n × n torus

attain maxσ0 Pσ0 (σT (x) = blue) at σ0 which is all-blue?
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The (static) 2D Fortuin–Kasteleyn model

I Underlying geometry: G = finite 2d grid.

I Set of possible configuration:

Ωfk = {ω : ω ⊆ E (G )}

(equiv., each edge is open/closed).

Definition (the (p, q)-FK model on G)

Probability distribution µp on Ωfk given by the Gibbs measure:

µfk(ω) =
1

Zfk

( p

1− p

)|ω|
qκ(ω)

[Fortuin, Kasteleyin ’69]

(Zfk is the partition function; κ(ω) = # connected components in ω)

Well-defined for any real (not necessarily integer) q ≥ 1.

E. Lubetzky 9



The (static) 2D Fortuin–Kasteleyn model

I Underlying geometry: G = finite 2d grid.

I Set of possible configuration:

Ωfk = {ω : ω ⊆ E (G )}

(equiv., each edge is open/closed).

Definition (the (p, q)-FK model on G)

Probability distribution µp on Ωfk given by the Gibbs measure:

µfk(ω) =
1

Zfk

( p

1− p

)|ω|
qκ(ω)

[Fortuin, Kasteleyin ’69]

(Zfk is the partition function; κ(ω) = # connected components in ω)

Well-defined for any real (not necessarily integer) q ≥ 1.

E. Lubetzky 9



Glauber dynamics for the FK model

Recall: µfk(ω) =
1

Zfk

(
p

1− p

)|ω|
qκ(ω) where κ(ω) is the # conn. comp. in ω.

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Specialized to the FK model:

I Update sites via IID Poisson(1) clocks

I An update at e ∈ E replaces 1{e∈ω}
by a new spin ∼ µfk(e ∈ ω | ω \ {e}).

edge prob

p

edge prob

p
p+(1−p)q
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Coupling of the Potts and FK models

[Edwards–Sokal ’88]: coupling of (µp, µfk) for p = 1− e−β :

ΨG ,p,q(σ, ω) =
1

Z

(
p

1− p

)|ω| ∏
e=xy∈E

1{σ(x)=σ(y)}

(
µp(σ) ∝

(
1

1−p

)#{x∼y :σ(x)=σ(y)}
, µfk(ω) ∝

(
p

1−p

)|ω|
qκ(ω)

)

Simple method to move between Potts & FK: [Swendsen–Wang ’87]

σ ∼ µp (σ, ω) ∼ Ψ ω ∼ µfk

p-percolation

on color clusters

project

IID color

∀ conn. comp.

project

Continuum analog [Miller, Sheffield, Werner ’17]: CLE percolations.
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Measuring convergence to equilibrium in Potts/FK

Measuring convergence to the stationary distribution π of a

discrete-time reversible Markov chain with transition kernel P:

I Spectral gap / relaxation time:

gap = 1− λ2 and trel = gap−1

where the spectrum of P is 1 = λ1 > λ2 > . . ..

I Mixing time (in total variation):

tmix = inf

{
t : max

σ0∈Ω
‖Pt(σ0, ·)− π‖tv < 1/(2e)

}
(Continuous time (heat kernel Ht = etL): gap in spec(L), and replace Pt by Ht .)

For most of the next questions, these will be equivalent.
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Measuring convergence to equilibrium in Potts/FK (ctd.)

[Ullrich ’13, ’14]: related gap of discrete-time Glauber dynamics for

Potts and FK on any graph G = (V ,E ) with maximal degree ∆:

gap−1
fk ≤ Cβ,∆,q gap−1

p |E | log |E | .

I Glauber for FK is as fast as for Potts up to polynomial factors.

(NB: gap of Swendsen–Wang is comparable up to poly factors to gapfk.)

I Glauber for FK can be exponentially faster (in |V |) than Potts.

When are the Glauber dynamics for Potts and FK both fast on Z2?

both slow? FK fast and Potts slow?

Q. 2 Is gap−1
fk ≤ Cβ,∆,q gap−1

p on ∀ G with max degree ∆?

E. Lubetzky 13



Dynamical phase transitions on Z2



Dynamical phase transition

Prediction for Potts Glauber dynamics on the torus

●

●

●

●

●

●

●

0.8 1.0 1.2 1.4
1

2

3

4

5

6

7

8

Fast at high temperatures, exponentially slow at low temperatures.

Critical slowdown: as a power law or exponentially slow?

FK Glauber: expected to be fast also when β > βc .
I [Guo, Jerrum ’17]: for q = 2: fast on any graph G at any β.
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Results on Z2 off criticality

I High temperature:

• [Martinelli,Olivieri ’94a,’94b],[Martinelli,Olivieri,Schonmann ’94c]:

gap−1
p = O(1) ∀β < βc at q = 2; extends to q ≥ 3 via

[Alexander ’98], [Beffara,Duminil-Copin ’12].

• [Blanca, Sinclair ’15]: rapid mixing for FK Glauber ∀β < βc , q > 1

(tmix = O(log n) and gap−1
fk = O(1) ).
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Results on Z2 off criticality

I Low temperature:

• [Chayes, Chayes, Schonmann ’87], [Thomas ’89], [Cesi, Guadagni,

Martinelli, Schonmann ’96]: gap−1
p = e(cβ+o(1))n ∀β > βc , q = 2.

• [Blanca, Sinclair ’15]: result that gap−1
fk = O(1) ∀β < βc , q > 1

transfers to ∀β > βc by duality.

• [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu ’99] and

[Borgs, Chayes, Tetali ’12]: gap−1
p & ecn at β > βc and large q.

(Result applies to the d-dimensional torus for any d ≥ 2 provided q > Q0(d).)
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Phase coexistence at criticality



Dynamics on an n × n torus at criticality for q > 4

Prediction: ([Li, Sokal ’91],...)

Potts Glauber and FK Glauber on the

torus each have tmix � exp(cq n) at βc if

the phase-transition is discontinuous.
● ● ● ● ● ● ● ● ●●●●●

●●
●●
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●●
●●
●●
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Intuition: FK does not suffer from the “predominantly

one color” bottleneck (has only one ordered phase), yet

it does have an order/disorder bottleneck.

Rigorous bounds: [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu ’99],

followed by [Borgs, Chayes, Tetali ’12], showed this for q large enough:

Theorem

If q is sufficiently large, then Glauber dynamics for both the Potts

and FK models on an n× n torus have gap−1 ≥ exp(cn) at β = βc .
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Slow mixing in coexistence regime on (Z/nZ)2

Building on the work of [Duminil-Copin, Sidoravicius, Tassion ’15]:

Theorem (Gheissari, L. ’18)

For any q > 1, if ∃ multiple infinite-volume FK measures at

β = βc on an n × n torus then gap−1
fk ≥ exp(cqn).

In particular, via [Duminil-Copin,Gagnebin,Harel,Manolescu,Tassion]:

Corollary

For any q > 4, both Potts and FK on the n × n torus at β = βc

have gap−1 ≥ exp(cq n).
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Proof sketch: an exponential bottleneck
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The torus vs. the grid (periodic vs. free b.c.)

Recall: for q = 2 and β > βc :

I Glauber dynamics for the Ising model both on an n × n grid

(free b.c.) and on an n × n torus has gap−1 ≥ exp(cn).

I In contrast, on an n × n grid with plus boundary conditions

it has gap−1 ≤ nO(log n) [Martinelli ’94], [Martinelli, Toninelli ’10],

[L., Martinelli, Sly, Toninelli ’13].

When the phase transition for Potts is discontinuous, at β = βc :

the dynamics under free boundary conditions is fast:

500 1000 1500 2000 2500 3000
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The torus vs. the grid (periodic vs. free b.c.)

On the grid, unlike the torus (where gap−1
fk ≥ exp(cn) at β = βc):

Theorem (Gheissari, L. ’18)

For large q, FK Glauber on an n × n grid ( free b.c.) at βc has

gap−1
fk ≤ exp(no(1)) .

I Intuition: free b.c. destabilizes the wired phase (and bottleneck).

I Proof employs the framework of [Martinelli, Toninelli ’10], along

with cluster expansion.
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Sensitivity to boundary conditions

Toprid mixing on the torus; sub-exponential mixing on the grid.

Classifying boundary conditions that interpolate between the two?

Theorem ([Gheissari, L. 18’] (two of the classes, informally))

For large enough q, Swendsen–Wang satisfies:

1. Mixed b.c. on 4 macroscopic intervals: gap−1 ≥ exp(cn).

2. Dobrushin b.c. with a macroscopic interval: gap−1 = eo(n).

Boundary Swendsen–Wang

Periodic/Mixed

||

||
gap−1 ≥ ecn

Dobrushin gap−1 ≤ en
1/2+o(1)
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Questions on the discontinuous phase transition regime

Q. 3 Let q > 4. Is FK Glauber on the n × n grid (free b.c.)

quasi-polynomial in n? polynomial in n?

known: exp(no(1)) for q � 1

Q. 4 Let q > 4. Is Potts Glauber on the n × n grid (free b.c.)

sub-exponential in n? quasi-polynomial in n? polynomial in n?
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Unique phase at criticality



Dynamics on an n × n torus at criticality for 1 < q < 4

Prediction:

Potts Glauber and FK Glauber on the

torus each have gap−1 � nz for a

lattice-independent z = z(q).
● ● ● ● ● ● ● ● ●●●●●
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The exponent z is the “dynamical critical exponent”; various works
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Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. ’18)

Cont.-time Potts Glauber dynamics at βc(q) on an n× n torus has

1. at q = 3: Ω(n) ≤ gap−1 ≤ nO(1) ;

2. at q = 4: Ω(n) ≤ gap−1 ≤ nO(log n) .

I The argument of [L., Sly ’12] for q = 2 hinged on an

RSW-estimate of [Duminil-Copin, Hongler, Nolin ’11].

I Proof extends to q = 3 via RSW-estimates (∀1 < q < 4) by

[Duminil-Copin, Sidoravicius, Tassion ’15] but not to FK Glauber...

I The case q = 4 is subtle: crossing probabilities are believed to

no longer be bounded away from 0 and 1 uniformly in the b.c.

E. Lubetzky 25



Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. ’18)

Cont.-time Potts Glauber dynamics at βc(q) on an n× n torus has

1. at q = 3: Ω(n) ≤ gap−1 ≤ nO(1) ;

2. at q = 4: Ω(n) ≤ gap−1 ≤ nO(log n) .

I The argument of [L., Sly ’12] for q = 2 hinged on an

RSW-estimate of [Duminil-Copin, Hongler, Nolin ’11].

I Proof extends to q = 3 via RSW-estimates (∀1 < q < 4) by

[Duminil-Copin, Sidoravicius, Tassion ’15] but not to FK Glauber...

I The case q = 4 is subtle: crossing probabilities are believed to

no longer be bounded away from 0 and 1 uniformly in the b.c.

E. Lubetzky 25



Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. ’18)

Cont.-time Potts Glauber dynamics at βc(q) on an n× n torus has

1. at q = 3: Ω(n) ≤ gap−1 ≤ nO(1) ;

2. at q = 4: Ω(n) ≤ gap−1 ≤ nO(log n) .

I The argument of [L., Sly ’12] for q = 2 hinged on an

RSW-estimate of [Duminil-Copin, Hongler, Nolin ’11].

I Proof extends to q = 3 via RSW-estimates (∀1 < q < 4) by

[Duminil-Copin, Sidoravicius, Tassion ’15] but not to FK Glauber...

I The case q = 4 is subtle: crossing probabilities are believed to

no longer be bounded away from 0 and 1 uniformly in the b.c.

E. Lubetzky 25



Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. ’18)

Cont.-time Potts Glauber dynamics at βc(q) on an n× n torus has

1. at q = 3: Ω(n) ≤ gap−1 ≤ nO(1) ;

2. at q = 4: Ω(n) ≤ gap−1 ≤ nO(log n) .

I The argument of [L., Sly ’12] for q = 2 hinged on an

RSW-estimate of [Duminil-Copin, Hongler, Nolin ’11].

I Proof extends to q = 3 via RSW-estimates (∀1 < q < 4) by

[Duminil-Copin, Sidoravicius, Tassion ’15] but not to FK Glauber...

I The case q = 4 is subtle: crossing probabilities are believed to

no longer be bounded away from 0 and 1 uniformly in the b.c.

E. Lubetzky 25



FK Glauber for noninteger q

Obstacle in FK Glauber: macroscopic disjoint boundary bridges

prevent coupling of configurations sampled under two different b.c.

Theorem (Gheissari, L.)

For every 1 < q < 4, the FK Glauber dynamics at β = βc(q) on an

n × n torus satisfies gap−1 ≤ nc log n.

One of the key ideas: establish the

exponential tail beyond some c log n for

# of disjoint bridges over a given point.
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Questions on the continuous phase transition regime

Q. 5 Let q = 4. Establish that Potts Glauber on an n× n torus

(or a grid with free b.c.) satisfies gap−1 ≤ nc .

known: nO(log n)

Q. 6 Let q = π. Establish that FK Glauber on an n × n torus

(or a grid with free b.c.) satisfies gap−1 ≤ nc .

known: nO(log n)

Q. 7 Is q 7→ gapp decreasing in q ∈ (1, 4)? Similarly for gapfk?

And lastly: prove something at criticality or

low temperature for the noisy majority model...
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Thank you!
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