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The models: static and dynamical




The (static) 2D Ising model

» Underlying geometry: G = finite 2D grid.

> Set of possible configuration:
Q={-1,1}" |

(each site receives a plus/minus spin).
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The (static) 2D Ising model

» Underlying geometry: G = finite 2D grid.
> Set of possible configuration:
Q= {-1,1}V(© J
(each site receives a plus/minus spin).

Definition (the Ising model on G) [Lenz 1920] )
Probability distribution p; on €; given by the Gibbs measure:
1
(o) = — Z P (ﬂ > ﬂ{a(x)_a(y)}>
x~y

(8 > 0 is the inverse-temperature; Z; is the partition function)




The (static) 2D Ising model: phase transition

> Underlying graph: G = finite 2D grid.

» Set of possible configuration: Q; = {—1,1}V(¢)

> Probability of a configuration: p,(o) o exp (B D xmy (50()()7(,(},))
Local (nearest-neighbor) interactions can have macroscopic effects: I

Ising model on a 1000 x 1000 torus

B =0.75 B =0.88 B=1




D Ising model: phase transition (ctd.)

Ising model on a 2D torus

B =0.75 B =0.88 B=1

Noisy majority model on a 2D torus: Ising universality class?
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The (static) 2D Potts model

Generalizes the Ising model from 2-state spins to g-state spins:

> Underlying geometry: G = finite 2D grid.

> Set of possible configuration:
2 =119 |

(each site receives a color).




The (static) 2D Potts model

Generalizes the Ising model from 2-state spins to g-state spins:

> Underlying geometry: G = finite 2D grid.
> Set of possible configuration:

(each site receives a color).

Definition (the g-state Potts model on G) [Domb 1951] JS l'
Probability distribution up on £, given by the Gibbs measure:

1
pe(0) = = 7. &P (5 > 1{a(x)—o(y)})

X~y

(ﬁ > 0 is the inverse-temperature; Z; is the partition function)




Glauber dynamics for the Potts model

1
Recall: pe(o) = z exp <ﬁ Z Jl{d(x)=[,(y)})

X~y

A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model

RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3607 J




Glauber dynamics for the Potts model

1
Recall: pe(o) = z exp (ﬁ Z Jl{d(x)=f,(y)})

X~y

Time-dependent statistics of the Ising model
RJ Glauber — Journal of Mathematical Physics, 1963

A family of MCMC samplers for spin systems due to Roy Glauber:

Cited by 3607 J

Specialized to the Potts model:

» Update sites via IID Poisson(1) clocks

» An update at x € V replaces o(x) by
a new spin ~ pp(a(x) € - [ o v\ (x})-
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Glauber dynamics for the Potts model

1
Recall: pe(o) = z exp (ﬁ Z Jl{d(x)=f,(y)})
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A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model
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Glauber dynamics for the Potts model

1
Recall: pe(o) = z exp (ﬁ Z Jl{d(x)=f,(y)})

X~y

A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model

RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3607 J

Specialized to the Potts model:

» Update sites via IID Poisson(1) clocks

» An update at x € V replaces o(x) by
a new spin ~ pp(a(x) € - [ o v\ (x})-

~N

META QUESTION: How long does it take to converge to y




Glauber dynamics for the 2D Potts model

Glauber dynamics, 3-color Potts model on a 250 x 250 torus
for 5 =05~ =201~ g =1.01.

Q.1 FixpB>0and T > 0. Does continuous-time Glauber
dynamics (o¢)¢>0 for the 3-color Potts model on an n x n torus
attain max,, P, (0 7(x) = BLUE) at og which is ALL-BLUE?




The (static) 2D Fortuin—Kasteleyn model

» Underlying geometry: G = finite 2D grid.

> Set of possible configuration:
Qe ={w:wC E(G)}J

(equiv., each edge is open/closed).




The (static) 2D Fortuin—Kasteleyn model

» Underlying geometry: G = finite 2D grid.

> Set of possible configuration:

Qe ={w:wC E(G)}J

(equiv., each edge is open/closed).

Definition (the (p, g)-FK model on G) (EEEIERECEEEINEY
Probability distribution pp on Qg given by the Gibbs measure:

. 1 p || r(w)
ple) = 7 (755) @

(Zex is the partition function; k(w) = # connected components in w)

Well-defined for any real (not necessarily integer) g > 1.




Glauber dynamics for the FK model

1 |w]
Recall:  prx(w) = 7 (1 P p) q«)  where k(w) is the # conn. comp. in w.
A FK - /

A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model

RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3607 J




Glauber dynamics for the FK model

1 |w]
Recall:  prx(w) = 7 (1—‘),)) q«)  where k(w) is the # conn. comp. in w.
FK - /

A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model

RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3607 J

Specialized to the FK model:

» Update sites via IID Poisson(1) clocks

> An update at e € E replaces Liecuy
by a new spin ~ upx(e € w | w\ {e}).




Glauber dynamics for the FK model

1 |w]
Recall:  prx(w) = 7 (1—‘),)) q«)  where k(w) is the # conn. comp. in w.
FK - /

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model
RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3607

Specialized to the FK model: I:: — I‘
» Update sites via |ID Poisson(1) clocks ; p I

> An update at e € E replaces Liecuy
by a new spin ~ upx(e € w | w\ {e}).

o
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Glauber dynamics for the FK model

1 |w]
Recall:  prx(w) = 7 (1—‘),)) q«)  where k(w) is the # conn. comp. in w.
FK - /

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model
RJ Glauber — Journal of Mathematical Physics, 1963  Cited by 3607

Specialized to the FK model: I:: — I‘
» Update sites via |ID Poisson(1) clocks ; p l

> An update at e € E replaces Liecuy
by a new spin ~ k(e € w | w\ {e}). |

I:: edge prob

2l
p+(1—p)q




Coupling of the Potts and FK models

[Edwards—Sokal '88]: coupling of (up, prk) for p=1— e ¥

1 p |w] —eo
wG,p,q(@w):?(lTp) Il Yeow=oon

e=xy€cE

<pp(a)o< (ﬁ)#{my:a(x):a(y)f () o (T;,,_p)lwlq,@(w)) L




Coupling of the Potts and FK models

[Edwards—Sokal '88]: coupling of (up, prk) for p=1— e ¥

1 p |w] —eo
wG,p,q(@w):?(lTp) Il Yeow=oon

e=xy€cE

<pp(a)o< (ﬁ)#{my:a(x):a(y)f () o (T;,,_p)lwlq,@(w) ) L

Simple method to move between Potts & FK: [(EMEEERVENESE]
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project project
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p-percolation 11D color O—O ,,,,, " O
on color clusters V conn. comp. | ; ;
O @ @@

o~ Up (o,w) ~ W W~ g




Coupling of the Potts and FK models

[Edwards—Sokal '88]: coupling of (up, prk) for p=1— e ¥

1 p w] o o
wG,p,q(@w):?(lTp) Il Yeow=oon

e=xy€cE

, ok (w) o (I—LLP)M q'@(w) )

)#{XN}’iU(X):U(}’)}

o
[ ]

<up(0) o« (5

Simple method to move between Potts & FK: [(EMEEERVENESE]

-
" I aita -0 I e K
project project

—e- o—I

AAAAAAAAAS POV I ; : i

p-percolation 11D color O—O ,,,,, " O

on color clusters V conn. comp. | ; ;

O @ @@

o~ Up (o,w) ~ W W~ g

Continuum analog [Miller, Sheffield, Werner '17]: CLE percolations.




Measuring convergence to equilibrium in Potts/FK

Measuring convergence to the stationary distribution 7 of a
discrete-time reversible Markov chain with transition kernel P:

> Spectral gap / relaxation time:

gap=1-)X and t. =gap *

where the spectrum of Pis 1 =MX1 > Ao > .. ..

» Mixing time (in total variation):

P tmix = inf {t : max ||P¥(00, ) — 7||rv < 1/(2e)}
S

(Continuous time (heat kernel Hy = et“): gap in spec(£), and replace Pt by H;.)

For most of the next questions, these will be equivalent.




Measuring convergence to equilibrium in Potts/FK (ctd.)

[Ullrich '13, "14]: related gap of discrete-time Glauber dynamics for
Potts and FK on any graph G = (V, E) with maximal degree A:

gap.. < Csa,q gap; ' |E|log|E]. |

P Glauber for FK is as fast as for Potts up to polynomial factors.

> Glauber for FK can be exponentially faster (in |V]) than Potts.
When are the Glauber dynamics for Potts and FK both fast on Z2?
both slow? FK fast and Potts slow?

Q. 2\ Is gapF_K1 < (g gaplfl on V G with max degree A? J

(NB: gap of Swendsen—Wang is comparable up to poly factors to gap,,.)




Dynamical phase transitions on 72




Dynamical phase transition

s o e

Prediction for Potts Glauber dynamics on the torus

L L L L
0.8 1.0 12 14

Fast at high temperatures, exponehtially slow at low temperatures.

Critical slowdown: as a power law or exponentially slow?




Dynamical phase transition

Bz o el

Prediction for Potts Glauber dynamics on the torus

L L L L
0.8 1.0 12 14

Fast at high temperatures, exponehtially slow at low temperatures.

Critical slowdown: as a power law or exponentially slow?

FK Glauber: expected to be fast also when 8 > ..
P [Guo, Jerrum '17]: for g = 2: fast on any graph G at any §.




Results on Z? off criticality
s > el

> High temperature:

[-)
?

L
.

o [Martinelli,Olivieri '94a,'94b],[Martinelli,Olivieri,Schonmann '94c]: I‘
gap, ! = O(1) VB < fc at g = 2; extends to g > 3 via
[Alexander '98], [Beffara,Duminil-Copin '12].

o [Blanca, Sinclair '15]: rapid mixing for FK Glauber Vg < ., q > 1
(tmix = O(log n) and gapy! = O(1)).




Results on Z? off criticality
B o s

> Low temperature:

o [Chayes, Chayes, Schonmann '87], [Thomas '89], [Cesi, Guadagni,
Martinelli, Schonmann '96]: gap; ! = e(°ﬂ+°(1))"» VB > B, g =2.

> o [Blanca, Sinclair '15]: result that gapg = O(1) V3 < fc,q > 1
transfers to V3 > S, by duality. '

o [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu '99] and
[Borgs, Chayes, Tetali '12]: gapy* 2 e at 8> B and large q.
(Result applies to the d-dimensional torus for any d > 2 provided g > Qo(d).)




Phase coexistence at criticality




Dynamics on an n x n torus at criticality for g > 4

Prediction: ([Li, Sokal '91]....) )
Potts Glauber and FK Glauber on the
torus each have tyix < exp(cg n) at fc if
the phase-transition is discontinuous.




Dynamics on an n x n torus at criticality for g > 4

Prediction: ([Li, Sokal '91],...)

Potts Glauber and FK Glauber on the
torus each have tyix < exp(cg n) at fc if
the phase-transition is discontinuous.

Intuition: FK does not suffer from the “predominantly
one color” bottleneck (has only one ordered phase), yet “ l‘

it does have an order/disorder bottleneck.




Dynamics on an n x n torus at criticality for g > 4

Prediction: ([Li, Sokal '91]....) )
Potts Glauber and FK Glauber on the
torus each have tyix < exp(cg n) at fc if
the phase-transition is discontinuous.

o|

o

Intuition: FK does not suffer from the “predominantly

one color” bottleneck (has only one ordered phase), yet “ ‘

it does have an order/disorder bottleneck. 7

\

Rigorous bounds: [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu '99],
followed by [Borgs, Chayes, Tetali '12], showed this for g large enough:

Theorem
If q is sufficiently large, then Glauber dynamics for both the Potts
and FK models on an n x n torus have gap~* > exp(cn) at 8 = Be.




Slow mixing in coexistence regime on (Z/nZ)?

Building on the work of [Duminil-Copin, Sidoravicius, Tassion "15]:

Theorem (Gheissari, L. '18)
For any g > 1, if 3 multiple infinite-volume FK measures at
B = Bc on an n X n torus then gapy,l > exp(cyn).

~ | In particular, via [Duminil-Copin,Gagnebin,Harel, Manolescu, Tassion]: |~

’ Corollary
For any g > 4, both Potts and FK on the n X n torus at = [3c
have gap~! > exp(cq n).




Proof sketch: an exponential bottleneck

e
L




The torus vs. the grid (periodic vs. free b.c.)

Recall: for g =2 and 8 > f.:

> Glauber dynamics for the Ising model both on an n x n grid

(free b.c.) and on an n x n torus has gap™! > exp(cn).

y /
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The torus vs. the grid (periodic vs. free b.c.)

Recall: for g =2 and 8 > f.:

> Glauber dynamics for the Ising model both on an n x n grid
(free b.c.) and on an n x n torus has gap™! > exp(cn).

> In contrast, on an n x n grid with plus boundary conditions
it has gap~! < n©(I°e") [Martinelli '94], [Martinelli, Toninelli '10],
[L., Martinelli, Sly, Toninelli '13].




The torus vs. the grid (periodic vs. free b.c.)

Recall: for g =2 and 8 > f.:

> Glauber dynamics for the Ising model both on an n x n grid
(free b.c.) and on an n x n torus has gap™! > exp(cn).

> In contrast, on an n x n grid with plus boundary conditions
it has gap~! < n©(I°e") [Martinelli '94], [Martinelli, Toninelli '10],
[L., Martinelli, Sly, Toninelli '13].

When the phase transition for Potts is discontinuous, at 8 = (.:
the dynamics under free boundary conditions is fast:




The torus vs. the grid (periodic vs. free b.c.)

On the grid, unlike the torus (where gap.,! > exp(cn) at 8 = f¢):
Theorem (Gheissari, L. '18)

For large q, FK Glauber on an n x n grid (free b.c.) at . has
gapyy < exp(n°)).




The torus vs. the grid (periodic vs. free b.c.)
On the grid, unlike the torus (where gap.,! > exp(cn) at 8 = f¢):
Theorem (Gheissari, L. '18)

For large q, FK Glauber on an n x n grid (free b.c.) at . has
gapy, < exp(n°V).

Intuition: free b.c. destabilizes the wired phase (and bottleneck).

Proof employs the framework of [Martinelli, Toninelli '10], along ‘
with cluster expansion.




Sensitivity to boundary conditions

Toprid mixing on the torus; sub-exponential mixing on the grid.
Classifying boundary conditions that interpolate between the two?

Theorem ([Gheissari, L. 18’] (two of the classes, informally))
For large enough q, Swendsen—\Wang satisfies:
1. Mixed b.c. on 4 macroscopic intervals: gap~! > exp(cn).

2. Dobrushin b.c. with a macroscopic interval: gap—t = e°(".

“» Boundary Swendsen—Wang

Periodic/Mixed T T > (: gap ! > e

Dobrushin L—\I

e-- s
;
1
—
(0)¢]
]
ko)
L
INA




Questions on the discontinuous phase transition regime

Q. 31 Let g > 4. Is FK Glauber on the n x n grid (free b.c.)
quasi-polynomial in n? polynomial in n?

known: exp(n°®) for g > 1

Q. 4, Let g > 4. Is Potts Glauber on the n x n grid (free b.c.)
sub-exponential in n? quasi-polynomial in n? polynomial in n?




Unique phase at criticality




Dynamics on an n x n torus at criticality for 1 < g < 4

50,

Prediction:

Potts Glauber and FK Glauber on the

torus each have gap~! = n? for a

lattice-independent z = z(q).




Dynamics on an n x n torus at criticality for 1 < g < 4

50,

Prediction:

Potts Glauber and FK Glauber on the

torus each have gap~! = n? for a

lattice-independent z = z(q).

The exponent z is the “dynamical critical exponent”; various works S

in physics literature with numerical estimates, e.g., z,(2) ~ 2.18.




Dynamics on an n x n torus at criticality for 1 < g < 4

Prediction:

Potts Glauber and FK Glauber on the

1

torus each have gap™ < n? for a

lattice-independent z = z(q).

The exponent z is the “dynamical critical exponent”; various works
in physics literature with numerical estimates, e.g., z,(2) ~ 2.18.

8 Rigorous bounds: I
Theorem (L., Sly '12)

Continuous-time Glauber dynamics for the Ising model (q = 2) on
an n x n grid with arbitrary b.c. satisfies n”/* < gap~! < n°.

N
\VE

Bound gap~! < n¢ extends to FK Glauber via [Ullrich '13,'14].




Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. '18)

Cont.-time Potts Glauber dynamics at B:(q) on an n x n torus has
1 atg=3: Q(n)<gap < noW);
O atq=4: Q(n) < gap ! < nOloen)




Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. '18)

Cont.-time Potts Glauber dynamics at B:(q) on an n x n torus has
1 atg=3: Q(n)<gap < noW);
O atq=4: Q(n) < gap ! < nOloen)

» The argument of [L., Sly '12] for ¢ = 2 hinged on an
| RSW-estimate of [Duminil-Copin, Hongler, Nolin "11]. .

\VE




Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. '18)

Cont.-time Potts Glauber dynamics at B:(q) on an n x n torus has
1 atg=3: Q(n)<gap < noW);
0 atqg=4: Q(n) < gap ! < nOlogn)

» The argument of [L., Sly '12] for ¢ = 2 hinged on an
RSW-estimate of [Duminil-Copin, Hongler, Nolin "11].

» Proof extends to g = 3 via RSW-estimates (V1 < g < 4) by
[Duminil-Copin, Sidoravicius, Tassion '15] but not to FK Glauber...




Mixing of Critical 2D Potts Models

Theorem (Gheissari, L. '18)

Cont.-time Potts Glauber dynamics at B:(q) on an n x n torus has
atg=3: Q(n)<gap < noW);
atg=4: Q(n) < gap ! < nO(logn)

The argument of [L., Sly '12] for ¢ = 2 hinged on an
RSW-estimate of [Duminil-Copin, Hongler, Nolin "11].

Proof extends to ¢ = 3 via RSW-estimates (V1 < g < 4) by
[Duminil-Copin, Sidoravicius, Tassion '15] but not to FK Glauber...

The case g = 4 is subtle: crossing probabilities are believed to
no longer be bounded away from 0 and 1 uniformly in the b.c.




FK Glauber for noninteger g

Obstacle in FK Glauber: macroscopic disjoint boundary bridges

prevent coupling of configurations sampled under two different b.c.




FK Glauber for noninteger g

Obstacle in FK Glauber: macroscopic disjoint boundary bridges

prevent coupling of configurations sampled under two different b.c.

Theorem (Gheissari, L.)

For every 1 < q < 4, the FK Glauber dynamics at 8 = f.(q) on an| |
n x n torus satisfies gap~! < nclogn

\

One of the key ideas: establish the
exponential tail beyond some clog n for

# of disjoint bridges over a given point.




Questions on the continuous phase transition regime

Q. 51 Let g =4. Establish that Potts Glauber on an n x n torus
(or a grid with free b.c.) satisfies gap™! < n°.

known: nO(logn)

Q. 6 Let g=m. Establish that FK Glauber on an n X n torus
(or a grid with free b.c.) satisfies gap™! < n°.

known: n©(logn)

Q. 71 Is g+ gap, decreasing in g € (1,4)? Similarly for gap,, ?

And lastly: prove something at criticality or

low temperature for the noisy majority model...
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