

Dynamics for the critical 2D Potts/FK model: many questions and a few answers

Eyal Lubetzky October 2018

Courant Institute, New York University

The models: static and dynamical

Dynamical phase transitions on \mathbb{Z}^2

Phase coexistence at criticality

Unique phase at criticality

The models: static and dynamical

The (static) 2D Ising model

- Underlying geometry: G = finite 2D grid.
- Set of possible configuration:

$$\Omega_{\scriptscriptstyle \rm I}=\{-1,1\}^{{\it V}({\it G})}$$

(each *site* receives a plus/minus *spin*).

The (static) 2D Ising model

- Underlying geometry: G = finite 2D grid.
- Set of possible configuration:

 $\Omega_{\scriptscriptstyle \rm I}=\{-1,1\}^{\textit{V(G)}}$

(each *site* receives a plus/minus *spin*).

[Lenz 1920]

Definition (the Ising model on G)

Probability distribution $\mu_{\rm I}$ on $\Omega_{\rm I}$ given by the Gibbs measure:

$$\mu_{\mathrm{I}}(\sigma) = \frac{1}{Z_{\mathrm{I}}} \exp\left(\beta \sum_{\mathbf{x} \sim \mathbf{y}} \mathbb{1}_{\{\sigma(\mathbf{x}) = \sigma(\mathbf{y})\}}\right)$$

 $(\beta \ge 0$ is the inverse-temperature; Z_{I} is the partition function)

The (static) 2D Ising model: phase transition

- Underlying graph: G =finite 2D grid.
- Set of possible configuration: $\Omega_{I} = \{-1, 1\}^{V(G)}$
- Probability of a configuration: $\mu_{I}(\sigma) \propto \exp\left(\beta \sum_{x \sim y} \delta_{\sigma(x),\sigma(y)}\right)$

Local (nearest-neighbor) interactions can have macroscopic effects:

Ising model on a 1000×1000 torus

 $\beta = 0.88$

 $\beta = 1$

The (static) 2D Ising model: phase transition (ctd.)

Ising model on a 2D torus

Noisy majority model on a 2D torus: Ising universality class?

The (static) 2D Potts model

Generalizes the Ising model from 2-state spins to q-state spins:

- Underlying geometry: G = finite 2D grid.
- Set of possible configuration:

 $\Omega_{ ext{P}} = \{1,\ldots,q\}^{V(\mathcal{G})}$

(each site receives a color).

The (static) 2D Potts model

Generalizes the Ising model from 2-state spins to *q*-state spins:

- Underlying geometry: G =finite 2D grid.
- Set of possible configuration:

 $\Omega_{ ext{P}} = \{1,\ldots,q\}^{V({ extsf{G}})}$

(each site receives a color).

Definition (the *q*-state Potts model on *G*)

Probability distribution $\mu_{\rm P}$ on $\Omega_{\rm P}$ given by the Gibbs measure:

$$\mu_{\mathrm{P}}(\sigma) = \frac{1}{Z_{\mathrm{P}}} \exp\left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}}\right)$$

 $\left(eta\geq \mathsf{0} \text{ is the inverse-temperature; } Z_{ ext{P}} ext{ is the partition function}
ight)$

Recall:

$$\mu_{\mathrm{P}}(\sigma) = \frac{1}{Z_{\mathrm{P}}} \exp\left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}}\right)$$

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Recall:

$$\mu_{\mathrm{P}}(\sigma) = \frac{1}{Z_{\mathrm{P}}} \exp\left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}}\right)$$

A family of MCMC samplers for spin systems due to Roy Glauber: *Time-dependent statistics of the Ising model* **RJ Glauber** – Journal of Mathematical Physics, 1963 Cited by 3607

Specialized to the Potts model:

- Update sites via IID Poisson(1) clocks
- An update at $x \in V$ replaces $\sigma(x)$ by a new spin $\sim \mu_{P}(\sigma(x) \in \cdot | \sigma \upharpoonright_{V \setminus \{x\}})$.

Recall:

$$\mu_{\mathrm{P}}(\sigma) = \frac{1}{Z_{\mathrm{P}}} \exp\left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}}\right)$$

A family of MCMC samplers for spin systems due to Roy Glauber: *Time-dependent statistics of the Ising model*

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Specialized to the Potts model:

- Update sites via IID Poisson(1) clocks
- An update at $x \in V$ replaces $\sigma(x)$ by a new spin $\sim \mu_{P}(\sigma(x) \in \cdot | \sigma \upharpoonright_{V \setminus \{x\}})$.

Recall:

$$\mu_{\mathrm{P}}(\sigma) = \frac{1}{Z_{\mathrm{P}}} \exp\left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}}\right)$$

A family of MCMC samplers for spin systems due to Roy Glauber: *Time-dependent statistics of the Ising model*

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Specialized to the Potts model:

- Update sites via IID Poisson(1) clocks
- An update at $x \in V$ replaces $\sigma(x)$ by a new spin $\sim \mu_{P}(\sigma(x) \in \cdot \mid \sigma \upharpoonright_{V \setminus \{x\}})$.

Recall:

$$\mu_{\mathrm{P}}(\sigma) = \frac{1}{Z_{\mathrm{P}}} \exp\left(\beta \sum_{x \sim y} \mathbb{1}_{\{\sigma(x) = \sigma(y)\}}\right)$$

A family of MCMC samplers for spin systems due to Roy Glauber: *Time-dependent statistics of the Ising model*

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Specialized to the Potts model:

- Update sites via IID Poisson(1) clocks
- An update at $x \in V$ replaces $\sigma(x)$ by a new spin $\sim \mu_{P}(\sigma(x) \in \cdot \mid \sigma \upharpoonright_{V \setminus \{x\}})$.

META QUESTION: How long does it take to converge to μ ?

Glauber dynamics, 3-color Potts model on a 250×250 torus for $\beta = 0.5 \rightsquigarrow \beta = 2.01 \rightsquigarrow \beta = 1.01$.

Q. 1 Fix $\beta > 0$ and T > 0. Does continuous-time Glauber dynamics $(\sigma_t)_{t\geq 0}$ for the 3-color Potts model on an $n \times n$ torus attain max_{σ_0} \mathbb{P}_{σ_0} ($\sigma_T(x) = \text{BLUE}$) at σ_0 which is ALL-BLUE?

The (static) 2D Fortuin–Kasteleyn model

• Underlying geometry: G = finite 2D grid.

Set of possible configuration:

 $\Omega_{ ext{FK}} = \{ \omega : \omega \subseteq E(G) \}$

(equiv., each edge is open/closed).

The (static) 2D Fortuin–Kasteleyn model

• Underlying geometry: G = finite 2D grid.

Set of possible configuration:

 $\Omega_{ ext{FK}} = \{\omega : \omega \subseteq E(G)\}$

(equiv., each edge is *open/closed*).

Definition (the (p,q)-FK model on G)

Probability distribution $\mu_{\rm P}$ on $\Omega_{\rm FK}$ given by the Gibbs measure:

$$\mu_{ ext{\tiny FK}}(\omega) = rac{1}{Z_{ ext{\tiny FK}}} \Big(rac{
ho}{1-
ho}\Big)^{|\omega|} q^{\kappa(\omega)}$$

 $(Z_{ ext{FK}} ext{ is the partition function; } \kappa(\omega) = \# ext{ connected components in } \omega)$

Well-defined for any real (not necessarily integer) $q \ge 1$.

Recall:
$$\mu_{ ext{FK}}(\omega) = rac{1}{Z_{ ext{FK}}} igg(rac{p}{1-p}igg)^{|\omega|} q^{\kappa(\omega)}$$

where $\kappa(\omega)$ is the # conn. comp. in ω .

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Recall:
$$\mu_{\text{FK}}(\omega) = rac{1}{Z_{\text{FK}}} \left(rac{p}{1-p}
ight)^{|\omega|} q^{\kappa(\omega)}$$

where $\kappa(\omega)$ is the # conn. comp. in ω .

A family of MCMC samplers for spin systems due to Roy Glauber:

Time-dependent statistics of the Ising model

RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Specialized to the FK model:

- Update sites via IID Poisson(1) clocks
- An update at e ∈ E replaces 1_{e∈ω} by a new spin ~ μ_{FK}(e ∈ ω | ω \ {e}).

Recall:
$$\mu_{FK}(\omega) = \frac{1}{Z_{FK}} \left(\frac{p}{1-p}\right)^{|\omega|} q^{\kappa(\omega)}$$
 where $\kappa(\omega)$ is the $\#$ conn. comp. in ω .
A family of MCMC samplers for spin systems due to Roy Glauber:
Time-dependent statistics of the Ising model
RJ Glauber – Journal of Mathematical Physics, 1963 Cited by 3607

Specialized to the FK model:

- Update sites via IID Poisson(1) clocks
- An update at e ∈ E replaces 1_{e∈ω} by a new spin ~ μ_{FK}(e ∈ ω | ω \ {e}).

Coupling of the Potts and FK models

$$\Psi_{G,p,q}(\sigma,\omega) = \frac{1}{Z} \left(\frac{p}{1-p}\right)^{|\omega|} \prod_{e=xy \in E} \mathbb{1}_{\{\sigma(x)=\sigma(y)\}}$$
$$\left(\mu_{P}(\sigma) \propto \left(\frac{1}{1-p}\right)^{\#\{x \sim y: \sigma(x)=\sigma(y)\}}\right), \mu_{FK}(\omega) \propto \left(\frac{p}{1-p}\right)^{|\omega|} q^{\kappa(\omega)}\right)$$

Coupling of the Potts and FK models

Simple method to move between Potts & FK: [Swendsen-Wang '87

Coupling of the Potts and FK models

$$\begin{bmatrix} \mathsf{Edwards}-\mathsf{Sokal '88} \end{bmatrix}: \text{ coupling of } (\mu_{\mathsf{P}},\mu_{\mathsf{FK}}) \text{ for } p = 1 - e^{-\beta} :$$

$$\Psi_{G,p,q}(\sigma,\omega) = \frac{1}{Z} \left(\frac{p}{1-p}\right)^{|\omega|} \prod_{e=xy \in E} \mathbb{1}_{\{\sigma(x)=\sigma(y)\}}$$

$$\left(\mu_{\mathsf{P}}(\sigma) \propto \left(\frac{1}{1-p}\right)^{\#\{x \sim y: \sigma(x)=\sigma(y)\}}\right), \mu_{\mathsf{FK}}(\omega) \propto \left(\frac{p}{1-p}\right)^{|\omega|} q^{\kappa(\omega)}\right)$$

Simple method to move between Potts & FK: [Swendsen-Wang '87

Continuum analog [Miller, Sheffield, Werner '17]: CLE percolations.

Measuring convergence to equilibrium in Potts/FK

Measuring convergence to the stationary distribution π of a discrete-time reversible Markov chain with transition kernel *P*:

Spectral gap / relaxation time:

$$ext{gap} = 1 - \lambda_2 \quad ext{and} \quad t_{ ext{rel}} = ext{gap}^{-1}$$

where the spectrum of *P* is $1 = \lambda_1 > \lambda_2 > \ldots$

Mixing time (in total variation):

$$t_{ ext{mix}} = \inf \left\{ t : \max_{\sigma_0 \in \Omega} \| P^t(\sigma_0, \cdot) - \pi \|_{ ext{TV}} < 1/(2e)
ight\}$$

(Continuous time (heat kernel $H_t = e^{t\mathcal{L}}$): gap in spec(\mathcal{L}), and replace P^t by H_t .)

For most of the next questions, these will be equivalent.

Measuring convergence to equilibrium in Potts/FK (ctd.)

[Ullrich '13, '14]: related gap of discrete-time Glauber dynamics for Potts and FK on any graph G = (V, E) with maximal degree Δ :

 $\operatorname{gap}_{\operatorname{FK}}^{-1} \leq C_{eta, \Delta, q} \operatorname{gap}_{\operatorname{P}}^{-1} |E| \log |E| \,.$

Glauber for FK is as fast as for Potts up to polynomial factors.
 Glauber for FK can be exponentially faster (in |V|) than Potts.
 When are the Glauber dynamics for Potts and FK both fast on Z²?
 both slow? FK fast and Potts slow?

Q. 2) Is
$$\operatorname{gap}_{\operatorname{FK}}^{-1} \leq C_{\beta,\Delta,q} \operatorname{gap}_{\operatorname{P}}^{-1}$$
 on $\forall \ G$ with max degree Δ ?

(NB: gap of Swendsen–Wang is comparable up to poly factors to gap_{FK} .)

Dynamical phase transitions on \mathbb{Z}^2

Dynamical phase transition

Dynamical phase transition

Results on \mathbb{Z}^2 off criticality

High temperature:

- [Martinelli,Olivieri '94a, '94b],[Martinelli,Olivieri,Schonmann '94c]: $gap_{P}^{-1} = O(1) \quad \forall \beta < \beta_{c} \text{ at } q = 2; \text{ extends to } q \geq 3 \text{ via}$ [Alexander '98], [Beffara,Duminil-Copin '12].
- [Blanca, Sinclair '15]: rapid mixing for FK Glauber $\forall \beta < \beta_c, q > 1$ $(t_{\text{mix}} = O(\log n) \text{ and } gap_{\text{FK}}^{-1} = O(1)$).

Results on \mathbb{Z}^2 off criticality

Low temperature:

- [Chayes, Chayes, Schonmann '87], [Thomas '89], [Cesi, Guadagni, Martinelli, Schonmann '96]: $gap_{P}^{-1} = e^{(c_{\beta}+o(1))n} \forall \beta > \beta_{c}, q = 2.$
- [Blanca, Sinclair '15]: result that $gap_{FK}^{-1} = O(1) \quad \forall \beta < \beta_c, q > 1$ transfers to $\forall \beta > \beta_c$ by duality.
- [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu '99] and [Borgs, Chayes, Tetali '12]: $gap_P^{-1} \gtrsim e^{cn}$ at $\beta > \beta_c$ and large q. (Result applies to the *d*-dimensional torus for any $d \ge 2$ provided $q > Q_0(d)$.)

Phase coexistence at criticality

Dynamics on an $n \times n$ torus at criticality for q > 4

Prediction: ([Li, Sokal '91],...) Potts Glauber and FK Glauber on the torus each have $t_{mix} \simeq \exp(c_q n)$ at β_c if the phase-transition is discontinuous.

Dynamics on an $n \times n$ torus at criticality for q > 4

Prediction: ([Li, Sokal '91],...) Potts Glauber and FK Glauber on the torus each have $t_{mix} \simeq \exp(c_q n)$ at β_c if the phase-transition is discontinuous.

Intuition: FK does not suffer from the "predominantly one color" bottleneck (has only one *ordered phase*), yet it does have an *order/disorder* bottleneck.

E. Lubetzky S NYU COURANT

Dynamics on an $n \times n$ torus at criticality for q > 4

Prediction: ([Li, Sokal '91],...) Potts Glauber and FK Glauber on the torus each have $t_{mix} \simeq \exp(c_q n)$ at β_c if the phase-transition is discontinuous.

Intuition: FK does not suffer from the "predominantly one color" bottleneck (has only one *ordered phase*), yet it does have an *order/disorder* bottleneck.

Rigorous bounds: [Borgs, Chayes, Frieze, Kim, Tetali, Vigoda, Vu '99], followed by [Borgs, Chayes, Tetali '12], showed this for *q* large enough:

Theorem

If q is sufficiently large, then Glauber dynamics for both the Potts and FK models on an $n \times n$ torus have $gap^{-1} \ge exp(cn)$ at $\beta = \beta_c$.

Slow mixing in coexistence regime on $(\mathbb{Z}/n\mathbb{Z})^2$

Building on the work of [Duminil-Copin, Sidoravicius, Tassion '15]:

Theorem (Gheissari, L. '18) For any q > 1, if \exists multiple infinite-volume FK measures at $\beta = \beta_c$ on an $n \times n$ torus then $\operatorname{gap}_{FK}^{-1} \ge \exp(c_q n)$.

In particular, via [Duminil-Copin,Gagnebin,Harel,Manolescu,Tassion]:

Corollary

For any q > 4, both Potts and FK on the $n \times n$ torus at $\beta = \beta_c$ have $gap^{-1} \ge exp(c_q n)$.

Proof sketch: an exponential bottleneck

Recall: for q = 2 and $\beta > \beta_c$:

▶ Glauber dynamics for the Ising model both on an $n \times n$ grid (free b.c.) and on an $n \times n$ torus has gap⁻¹ ≥ exp(cn).

Recall: for q = 2 and $\beta > \beta_c$:

- ▶ Glauber dynamics for the Ising model both on an $n \times n$ grid (free b.c.) and on an $n \times n$ torus has $gap^{-1} \ge exp(cn)$.
- In contrast, on an n × n grid with plus boundary conditions it has gap⁻¹ ≤ n^{O(log n)} [Martinelli '94], [Martinelli, Toninelli '10], [L., Martinelli, Sly, Toninelli '13].

Recall: for q = 2 and $\beta > \beta_c$:

- ▶ Glauber dynamics for the Ising model both on an $n \times n$ grid (free b.c.) and on an $n \times n$ torus has $gap^{-1} \ge exp(cn)$.
- In contrast, on an n × n grid with plus boundary conditions it has gap⁻¹ ≤ n^{O(log n)} [Martinelli '94], [Martinelli, Toninelli '10], [L., Martinelli, Sly, Toninelli '13].

When the phase transition for Potts is discontinuous, at $\beta = \beta_c$: the dynamics under free boundary conditions is fast:

On the grid, unlike the torus (where $gap_{FK}^{-1} \ge exp(cn)$ at $\beta = \beta_c$):

Theorem (Gheissari, L. '18)

For large q, FK Glauber on an $n \times n$ grid (free b.c.) at β_c has $gap_{FK}^{-1} \leq exp(n^{o(1)})$.

On the grid, unlike the torus (where $gap_{FK}^{-1} \ge exp(cn)$ at $\beta = \beta_c$): Theorem (Gheissari, L. '18)

For large q, FK Glauber on an $n \times n$ grid (free b.c.) at β_c has $gap_{FK}^{-1} \leq exp(n^{o(1)})$.

- Intuition: free b.c. destabilizes the wired phase (and bottleneck).
- Proof employs the framework of [Martinelli, Toninelli '10], along with cluster expansion.

Sensitivity to boundary conditions

Toprid mixing on the torus; sub-exponential mixing on the grid. Classifying boundary conditions that interpolate between the two?

Theorem ([Gheissari, L. 18'] (two of the classes, informally)) For large enough q, Swendsen–Wang satisfies:

- 1. Mixed b.c. on 4 macroscopic intervals: $gap^{-1} \ge exp(cn)$.
- 2. Dobrushin b.c. with a macroscopic interval: $gap^{-1} = e^{o(n)}$.

Unique phase at criticality

Dynamics on an $n \times n$ torus at criticality for 1 < q < 4

Prediction:

Potts Glauber and FK Glauber on the torus each have $gap^{-1} \approx n^z$ for a lattice-independent z = z(q).

Dynamics on an $n \times n$ torus at criticality for 1 < q < 4

Prediction:

Potts Glauber and FK Glauber on the torus each have $gap^{-1} \approx n^z$ for a lattice-independent z = z(q).

The exponent z is the "dynamical critical exponent"; various works in physics literature with numerical estimates, e.g., $z_{\rm P}(2) \approx 2.18$.

Dynamics on an $n \times n$ torus at criticality for 1 < q < 4

Prediction:

Potts Glauber and FK Glauber on the torus each have $gap^{-1} \approx n^z$ for a lattice-independent z = z(q).

The exponent z is the "dynamical critical exponent"; various works in physics literature with numerical estimates, e.g., $z_{\rm P}(2) \approx 2.18$.

Rigorous bounds:

Theorem (L., Sly '12)

Continuous-time Glauber dynamics for the Ising model (q = 2) on an $n \times n$ grid with arbitrary b.c. satisfies $n^{7/4} \leq gap^{-1} \leq n^c$.

Bound $gap^{-1} \leq n^c$ extends to FK Glauber via [Ullrich '13,'14].

Theorem (Gheissari, L. '18)

- 1. at q = 3: $\Omega(n) \le \text{gap}^{-1} \le n^{O(1)}$;
- 2. at q = 4: $\Omega(n) \le \text{gap}^{-1} \le n^{O(\log n)}$.

Theorem (Gheissari, L. '18)

- 1. at q = 3: $\Omega(n) \le \text{gap}^{-1} \le n^{O(1)}$;
- 2. at q = 4: $\Omega(n) \le \text{gap}^{-1} \le n^{O(\log n)}$.
- The argument of [L., Sly '12] for q = 2 hinged on an RSW-estimate of [Duminil-Copin, Hongler, Nolin '11].

Theorem (Gheissari, L. '18)

- 1. at q = 3: $\Omega(n) \le \text{gap}^{-1} \le n^{O(1)}$;
- 2. at q = 4: $\Omega(n) \le \text{gap}^{-1} \le n^{O(\log n)}$.
- The argument of [L., Sly '12] for q = 2 hinged on an RSW-estimate of [Duminil-Copin, Hongler, Nolin '11].
- ▶ Proof extends to q = 3 via RSW-estimates ($\forall 1 < q < 4$) by [Duminil-Copin, Sidoravicius, Tassion '15] but not to FK Glauber...

Theorem (Gheissari, L. '18)

- 1. at q = 3: $\Omega(n) \le \operatorname{gap}^{-1} \le n^{O(1)}$;
- 2. at q = 4: $\Omega(n) \le \text{gap}^{-1} \le n^{O(\log n)}$.
- The argument of [L., Sly '12] for q = 2 hinged on an RSW-estimate of [Duminil-Copin, Hongler, Nolin '11].
- ▶ Proof extends to q = 3 via RSW-estimates ($\forall 1 < q < 4$) by [Duminil-Copin, Sidoravicius, Tassion '15] but not to FK Glauber...
- The case q = 4 is subtle: crossing probabilities are believed to no longer be bounded away from 0 and 1 uniformly in the b.c.

FK Glauber for noninteger q

Obstacle in FK Glauber: macroscopic disjoint boundary bridges prevent coupling of configurations sampled under two different b.c.

FK Glauber for noninteger q

Obstacle in FK Glauber: macroscopic disjoint boundary bridges prevent coupling of configurations sampled under two different b.c.

Theorem (Gheissari, L.)

For every 1 < q < 4, the FK Glauber dynamics at $\beta = \beta_c(q)$ on an $n \times n$ torus satisfies gap⁻¹ $\leq n^{c \log n}$.

One of the key ideas: establish the exponential tail beyond some $c \log n$ for # of disjoint bridges over a given point.

Questions on the continuous phase transition regime

Q. 5 Let q = 4. Establish that Potts Glauber on an $n \times n$ torus (or a grid with free b.c.) satisfies gap⁻¹ $\leq n^c$.

known: $n^{O(\log n)}$

Q. 6 Let $q = \pi$. Establish that FK Glauber on an $n \times n$ torus (or a grid with free b.c.) satisfies gap⁻¹ $\leq n^{c}$.

known: $n^{O(\log n)}$

Q. 7) Is $q \mapsto \operatorname{gap}_P$ decreasing in $q \in (1, 4)$? Similarly for gap_{FK} ?

And lastly: prove *something* at criticality or low temperature for the noisy majority model...

Thank you!