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Abstract. The (2 + 1)d Solid-On-Solid (SOS) model famously exhibits a roughening transition:

on an N ×N torus with the height at the origin rooted at 0, the variance of h(x), the height at x, is

O(1) at large inverse-temperature β, vs. ≍ log |x| at small β (as in the Gaussian free field (GFF)).

The former—rigidity at large β—is known for a wide class of |∇ϕ|p models (p = 1 being SOS) yet

is believed to fail once the surface is on a slope (tilted boundary conditions). It is conjectured that

the slope would destabilize the rigidity and induce the GFF-type behavior of the surface at small β.

The only rigorous result on this is by Sheffield (2005): for these models of integer height functions,

if the slope θ is irrational, then Var(h(x)) → ∞ with |x| (with no known quantitative bound).

We study a family of SOS surfaces at a large enough fixed β, on an N ×N torus with a nonzero

boundary condition slope θ, perturbed by a potential V of strength εβ per site (arbitrarily small).

Our main result is (a) the measure on the height gradients ∇h has a weak limit µ∞ as N → ∞;

and (b) the scaling limit of a sample from µ∞ converges to a full plane GFF. In particular, we

recover the asymptotics Var(h(x)) ∼ c log |x|. To our knowledge, this is the first example of a tilted

|∇ϕ|p model, or a perturbation thereof, where the limit is recovered at large β. The proof looks

at random monotone surfaces that approximate the SOS surface, and shows that (i) these form a

weakly interacting dimer model, and (ii) the renormalization framework of Giuliani, Mastropietro

and Toninelli (2017) leads to the GFF limit. New ingredients are needed in both parts, including a

nontrivial extension of [GMT17] from finite interactions to any long range summable interactions.

1. Introduction

The Solid-On-Solid (SOS) model on a finite graph with vertices V and edges E is a distribution

on height functions h : V → Z rooted at a marked vertex o (the origin) to h(o) = 0. The probability

assigned to each h penalize it for having large (in absolute value) gradients along the edges e ∈ E :

Pβ(h) ∝ exp
[
− β

∑
e∈E

|∇h(e)|
]
,

where ∇h(e) := h(y)−h(x) for e = (x, y) ∈ E and the parameter β > 0 is the inverse-temperature.

The (2+1)d SOS model takes the graph to be the N×N torus in Z2, denoted here ΛN , where the

heights are assigned to the N2 unit-squares. Note that Pβ is then translation-invariant (as the torus

is vertex transitive, and rooting h(o) = 0 has no effect when we only look at the gradients ∇h).
One associates to h the surface in R3 consisting of a horizontal face of Z3 at height h(x) for each

x ∈ V(ΛN ) and a minimum completion of vertical faces to make them simply connected (i.e.,

|∇h(e)| faces for each e ∈ E(ΛN )). Viewing h as this set of faces, |h| = N2 +
∑

e∈E |∇h(e)|, thus

Pβ(h) ∝ exp
(
− β|h|

)
. (1.1)

The study of this model in statistical physics goes back to the early 1950’s ([12,55]), pertaining

crystal formation at low temperature (large β). It further serves as an approximation of plus/minus

interfaces in the 3d Ising model, which resemble a height functions as overhangs are microscopic in

that regime. In line with predictions for 3d Ising (given in the 1970’s, remain unproved: cf. [1,24]),

the (2+1)d SOS model undergoes a roughening transition from being delocalized, or rough (formally

defined below) at small β to localized, or rigid at large β. It is widely believed that for 3d Ising

and its approximations, e.g., (2+1)d SOS and more general |∇ϕ|p models, when the interface is on

a slope, the rigidity at large β is destabilized, mirroring the small β behavior (see Figs. 1 and 2).

In this work we give a first rigorous proof of the scaling limit of such a model at large β on a slope:

we show that the (2 + 1)d SOS model perturbed by a potential of εβ per site converges to a GFF.
1
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Figure 1. Simulation of a (2 + 1)d SOS model on a 500× 500 box with slope θ = (1, 1) at

inverse-temperature β = 3, with a marked 100× 100 region zoomed in on the left.

Figure 2. The (2+1)d SOS surface from Fig. 1 after centering it about the mean heights.

As we further explain below, it was unclear whether the scaling limit of tilted Ising-type interfaces

would in fact match the zero temperature GFF picture, especially if the nonzero slope is rational.

There is a vast body of works on low temperature 3d Ising interfaces and (2+1)d SOS surfaces,

intrinsic to the study of crystals. In the physics literature there are numerous studies, experimental

(e.g., [4] comparing roughening in 4He crystals to 3d Ising) and theoretical (e.g., [58] drawing

evidence for the existence of a roughening transition in 3d Ising); see [19,23,33,39,41,50–52,54] as

well as [57] and the references therein, for a sample of such studies going back to the early 1950’s.

The mathematical physics literature, aside from the celebrated work of Fröhlich and Spencer [25]

that we expand on below, has been mostly confined to the rigid regime of these models—starting

from the pioneering work of Dobrushin [22] in the early 1970’s and proceeding to delicate aspects

such as entropic repulsion, layering and wetting; see, e.g., [2, 11, 14, 15, 17, 18, 21, 46, 47] for but a

small sample, as well as some recent works [13,28–32] and the survey [40] and references therein.
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β = 0.2 β = 0.6 β = 1.0

Figure 3. Roughening transition: (2 + 1)d Solid-On-Solid on a 64× 64 box at different β

with flat boundary conditions; sampled via 104 steps of Glauber dynamics started at all-0.

That the surface in the rough phase should have logarithmic fluctuations/correlations appears

in many of these works; as for its continuum scaling limit, Fröhlich, Pfister and Spencer [24] wrote

in 1981 (see p. 186 there) that it should be “given by massless Gaussian measures.”

Following the landmark result of Kenyon [43] that for 3d Ising at zero temperature (β = ∞)

under tilted boundary conditions, the scaling limit of the interface is the Gaussian free field (GFF)

(see also [42, Theorem 15], [44, Sec. 3] and [45] which covers any planar graph), various works asked

if this should be the scaling limit also at finite β; see, e.g., the discussions in [9,37] and the following

excerpt, pertaining to a slope θ = (1, 1), in the recent work of Giuliani, Renzi and Toninelli [36]:

“It is very likely that the GFF behavior survives the presence of a small but positive temperature;

however, the techniques underlying the proof at zero temperature, based on the exact solvability of

the planar dimer problem, break down.”

The roughness of the interface in the tilted (2 + 1)d SOS model, at least for an irrational

slope θ, is rigorously known (unlike 3d Ising at low temperature), yet this model remains highly

nontrivial; e.g., in 2001, Bodineau, Giacomin and Velenik [9] considered interfaces that have a slope

θ = (θ1, 0), stating “...the most natural effective model should have been the SOS model. However,

only few results have been obtained about the fluctuations of this model, because the singularity

of the interaction does not allow to use the techniques based on strict convexity of the potential.”

Velenik [56], in his comprehensive survey from 2006 (that also covers R-valued (continuous) models,

where there is no parameter β; see, e.g., the recent work [3]) wrote that, for the SOS model with any

nonzero slope, it is expected that “the large-scale behavior of these random interfaces is identical

to that of their continuous counterpart. In particular they should have Gaussian asymptotics. This

turns out to be quite delicate... I am not aware of a single rigorous proof for finite β.”

Let us now formally describe what is known on roughening in the SOS model (depicted in Fig. 3).

The roughening transition can be observed in the behavior of Var(h(x)) as |x| → ∞, where |x| is
the Euclidean distance of the site x from the origin o (at which the surface is rooted at 0). In 1981,

Fröhlich and Spencer [25] famously proved that Var(h(x)) ≍ log |x| at small β, as in the GFF, the

conjectured scaling limit in this regime. Conversely, a Peierls-type argument (see Branderberger

and Wayne [10]) shows Var(h(x)) = O(1) at large β. (A recent breakthrough result by Lammers [48]

proved sharpness of this transition: for some βr, the former holds for β ≤ βr, the latter for β > βr.)

The |∇ϕ|p-models (p ≥ 1) generalize SOS (the case p = 1) into Pβ(h) ∝ exp[−β
∑

e∈E |∇h(e)|p].
All these models are expected to demonstrate similar behavior, including the roughening transition;

and while the Fröhlich–Spencer argument only applies to p = 1, 2, the Peierls argument of [10]

(cf. [26]) applies to all p ≥ 1. (See [49] for more on similarities between these models at large β.)

However, this Peierls argument, albeit quite robust, only addresses contractible level line loops,

and thus ceases to imply rigidity at large β when the surface is positioned on a slope.
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Figure 4. SOS configuration on a 10×10 torus, extended periodically with slope θ = (1, 1).

We now define the precise setup of periodic boundary conditions for (2 + 1)d SOS with slope θ.

The (2 + 1)d SOS model on the N × N torus ΛN with slope θ = (θ1, θ2), which without loss

of generality has θ1, θ2 ≥ 0, is formally obtained by extending the function h to Z2 periodically,

decreasing it by ⌊θ1N⌋ along the (1, 0)-direction and by ⌊θ2N⌋ in the (0, 1)-direction (see Fig. 4).

That is, one views h as a full plane height function, where for every face x = (x1, x2) of Z2,

h(x1 +N, x2) = h(x1, x2)− ⌊θ1N⌋ and h(x1, x2 +N) = h(x1, x2)− ⌊θ2N⌋ . (1.2)

Equivalently, one restricts the height functions h on the torus to those where
∑

∇h(e⃗i) = −⌊θ1N⌋
for every non-contractible loop of directed edges (e⃗i) in the (1, 0)-direction, and

∑
∇h(e⃗i) = −⌊θ2N⌋

for non-contractible loops in the (0, 1)-direction (and
∑

∇h(e⃗i) = 0 for every contractible loop).

(Formally, in this formulation one only considers the 1-form/vector-field ∇h as opposed to h.)

From this definition, we see that the SOS measure on the torus with slope θ is translation-invariant.

The slope θ = (θ1, θ2) deterministically induces (θ1+θ2)N macroscopic level line loops in the SOS

surface (see Section 2.1 for a formal definition), each one a non-contractible loop, thus unaddressed

by the rigidity Peierls argument (which is only applicable to contractible level line loops). Indeed,

these interacting macroscopic level lines (which cannot cross one another) break the surface rigidity

and are conjectured to yield a GFF scaling limit (as also conjectured for the flat setup at small β).

A beautiful result of Sheffield [53] from 2005 shows that the SOS surface with slope θ on a torus

is rough when θ = (θ1, θ2) is irrational in one of its coordinates. Precisely, via a highly nontrivial

application of the Ergodic Theorem, Sheffield proved that there does not exist an ergodic and

translation-invariant Gibbs measure µθ for the height function h with an irrational slope θ (where

θi(µ) := Eµ∇h(e⃗i) for e⃗1 = (o, o + (1, 0)), e⃗2 = (o, o + (0, 1)); both are integrable by assumption).

It thus follows that Var(h(x)) → ∞, since otherwise having Var(h(x)) = O(1) would have implied

(through tightness and routine reasoning) the existence of an ergodic and translation-invariant

subsequential local limit. Sheffield’s argument is remarkably general: it is applicable to a wide

family of nearest-neighbor translation-invariant models of integer height functions on Z2, including,

e.g., all |∇ϕ|p (p ≥ 1) models; thus, the random surfaces in all these models are rough when the

slope θ is irrational. However, this argument gives no bound on the rate of Var(h(x)) as |x| → ∞.

In recent years, significant progress was made in the study of (2 + 1)d |∇ϕ|p models in the flat

setup (θ = 0) (cf., the aforementioned work of Lammers [48] on the phase transition in SOS; and

the recent breakthrough of Bauerschmidt et al. [5, 6] on the convergence of the Discrete Gaussian

model (the case p = 2) to a GFF at high enough temperatures). However, at low temperature and

with a nonzero slope θ, the only known result remains the work of Sheffield [53] described above.
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In this work we study the (2+ 1)d SOS model of Eq. (1.1) on a torus with slope θ = (θ1, θ2), for

any θ1, θ2 > 0, with a pinning-type potential V (out of a given family of potentials defined below):

Pβ,λ(h) =
1

Zsos
N,β,λ

exp [−β|h| − λV(h)] . (1.3)

We stress that the potential strength λ > 0 can be taken as εβ, arbitrarily small for large enough β

(whereas the potential V will be assigning a cost of either 0 or 1 per face of the SOS surface h);

thus, one expects the surface behavior to be governed by its energy β|h| and entropy, as in λ = 0.

The (2 + 1)d SOS model with flat boundary conditions (θ = 0) was studied in detail under a

pinning potential (see the survey [40] and the recent works by Lacoin [46, 47]) that rewards every

face of h intersecting a preset plane, typically the slab at height 0—the ground state of the model.

The SOS model with a nonzero slope θ, on the other hand, has exponentially many ground states

(monotone surfaces, as we explain next); accordingly, our family of pinning potentials will reward

the overlap of h not with a predetermined ground state, but rather with its “closest” ground state.

We say that an SOS height function h is a monotone surface if h(x1, x2) ≥ h(y1, y2) whenever

y1 ≥ x1 and y2 ≥ x2. We will often denote a monotone surface by φ or ψ, and refer to it as a

tiling, owing to the well-known bijection between monotone surfaces in Z2 and lozenge tilings of

the triangular lattice T (as well as with dimers in the hexagonal lattice; see below for more details).

We impose on the tiling the same periodic conditions with slope θ as in Eq. (1.2). It is easy to

see that, out of all periodic SOS surfaces h with slope θ, tilings minimize |h|, the number of faces

(recalling |h| = N2 +
∑

|∇h(e)|); that is, tilings are the ground states for the model at λ = 0.

The potentials V studied here will pin h to ψ0, the closest tiling to it in terms of common faces.

(We do not root ψ0 to be 0 at the origin, as it will intersect h which is already rooted.) We give

two concrete examples of such a V before describing the general family of potentials considered.

Example 1.1 (pinning to a closest tiling). Consider all tilings ψ0 satisfying Eq. (1.2), and set

V1(h) = min
ψ0

|ψ0 \ h| . (1.4)

(This is equivalent to taking V1(h) = −maxψ0 |h∩ψ0|; every face in h∩ψ0 collects a reward of λ.)

Note that when θ = 0 (no slope), the only tiling ψ0 compatible with the boundary conditions is

the flat one, whence V1 coincides with the classical pinning potential (rewarding faces at height 0).

Example 1.2 (truncated pinning to a tiling). Let ψ0 be a minimizer of |ψ0\h| (attaining Eq. (1.4),

arbitrarily chosen if multiple exist), and {Si} be the connected components of faces of ψ0 \ h. Set

V2(h) =
∑

|Si|1{|Si|≥1000} . (1.5)

Definition 1.3 (family of pinning potentials). Consider a tiling ψ0 minimizing |ψ0 \h| (a canonical

way to break ties will be given in Proposition 4.1) and fix an arbitrarily large M0 (e.g., M0 = 1000).

The potential V can be any function of a (maximal) connected component S of ψ0 \h, which counts

0 or 1 for each face of S, such that it collects at least ⌊|S|/M0⌋ faces of the component. Precisely,

V(h) =
∑

f(Si) for some function f satisfying ⌊|S|/M0⌋ ≤ f(S) ≤ |S| for all S , (1.6)

where the sum goes over all the connected components Si of ψ0 \ h.

We stress that the potential V may ignore any component Si of ψ0 \ h with less than M0 faces;

i.e., it may penalize h only for large regions missed by the best approximating ground state ψ0.

Such a potential V adds just enough noise to the model—even at λ = εβ—to treat cases where

close ground states have atypically large “frozen” regions, foiling the analysis of interacting tilings.
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Figure 5. Level line comparison of the SOS surface vs. its centering from Figs. 1 and 2.

1.1. Main results. Our motivation was to recover the asymptotic rate of Var(h(o)) in the SOS

model of Eq. (1.3) at large β and a nonzero slope θ (which, to our knowledge, is not known for any

|∇ϕ|p model with any added potential (of strength εβ, so as not to compete with energy/entropy)).

Our main result obtains this, and moreover establishes that (a) the law on ∇h around the origin o

converges to a full plane limit µ∞; and (b) the scaling limit of µ∞ converges to a full plane GFF.

Recall that the full plane GFF is defined as a centered Gaussian stochastic process indexed by

smooth compactly supported C → R functions with 0 integral and covariance

Cov
(
GFF(f1),GFF(f2)

)
:= − 1

π2

∫
f1(u)f2(v) log |u− v|dudv ,

where GFF(f) is the value of the process at the function f , as in the expectation for a distribution1.

Theorem 1. For every λ > 0 and θ1, θ2 > 0 there exists β0 so the following holds for every β > β0.

Consider the (2 + 1)d SOS model of Eq. (1.3), for any potential function V as per Definition 1.3,

on ΛN , an N ×N torus with slope θ = (θ1, θ2) as defined in Eq. (1.2). Then

(a) The law on the SOS gradients ∇h converges weakly, as N → ∞, to a full plane limit µβ,λ∞ .

(b) Sample h ∼ µβ,λ∞ . There exist σ > 0 and a linear map L on R2 (nonrandom) such that

h(n ·)− E[h(n ·)] d−→ σGFF ◦ L as n→ ∞

(viewing both sides as stochastic processes indexed by test functions with 0 integral).

As the GFF is a distribution, Theorem 1 does not provide asymptotics of finite moments of the

SOS height function h. However, building on its proof, one can derive those, as demonstrated next.

Corollary 2. In the setting of Theorem 1, there exists c > 0 such that

Var(h(x)) = (c+ o(1)) log |x| as |x| → ∞ .

The new results readily yield a law of large numbers (LLN) for h(x), having
√

log |x| fluctuations
about its mean θ · x (see the level lines in Fig. 5 depicting the LLN). It is interesting to compare

these results with the LLN for the shape of the Wulff crystal in 3d Ising near the corner of a box

at zero temperature (β = ∞), due to Cerf and Kenyon [16], where lozenge tilings naturally appear.

The intuition behind the GFF scaling limit of the centered height function is that, at large β, the

SOS surface h should behave like a randomly perturbed “almost uniformly” chosen ground state

(which, we recall, is a lozenge tiling of the triangular lattice T). As mentioned above, a seminal

result of Kenyon [43] established that the scaling limit of a uniform (domino) tiling is the GFF,

whence one would expect that the SOS surface h should inherit the same scaling limit.

1Informally, one can think of the GFF as the Gaussian process on C with Cov(GFF(u),GFF(v)) = − 1
π2 log |u−v|

but the fact that log diverges at 0 means it does not make sense pointwise, hence the definition using test functions.
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Our proof strategy is to increase the probability space via a random tiling φ conditional on h:

P(φ | h) ∝ exp(+α|h ∩ φ|)

for some α > 0 (e.g., α = β), rewarding φ for faces in h ∩ φ (see Eq. (1.10)), and establish that:

(i) The marginal on φ is a weakly interacting tiling, that is to say, it is a tilting of the uniform

distribution of the following form: P(φ) ∝ exp
[
−
∑

x

∑
r gr(φ↾B(x,r))

]
, where B(x, r) is the

radius-r ball around x and gr are functions whose L∞-norm decays exponentially with r.

(ii) Consequently, via the powerful renormalization group machinery of Giuliani, Mastropietro

and Toninelli [34, 35], the random tiling φ has a scaling limit given by a GFF.

(iii) The SOS surface h is a local perturbation of φ, thus has the same limit.

The aforementioned renormalization result of [34,35] may be summarized as follows1:

Theorem 1.4 ([34, 35]). Fix a, b, c > 0 to be three sides of a non-degenerate triangle and R > 0.

There exists δ > 0 (depending on a, b, c, R) so that the following holds for every function g on lozenge

tilings of a ball of radius R (with free boundary condition) in the triangular lattice T satisfying

∥g∥∞ ≤ δ . (1.7)

Let µN be distributions over tilings φ of the torus TN given by

µN (φ) ∝ ana(φ)bnb(φ)cnc(φ) exp
[∑

x

g(φ↾B(x,R))
]

for all N ,

where ns(φ) counts the number of lozenges of type s ∈ {a, b, c} in φ. Then:

(a) µN → µ∞ locally for the gradients ∇φ as N → ∞; and

(b) if φ is sampled from µ∞ and viewed as a height function projected on the plane P111, then

φ(n ·)− E[φ(n ·)] d−→ σGFF ◦ L ,

where σ > 0, L is an invertible linear map and GFF is a full plane Gaussian free field.

The proof of Theorem 1.4 given in [34,35] easily extends to the case where, instead of a single g

as per Eq. (1.7), there is a sequence of functions (gr) on balls of growing radius r → ∞, as long as

∥gr∥∞ ≤ δ exp(−Cr2) for a large enough constant C > 0 .

Unfortunately, that assumption is much stronger than what our model affords: we can only hope

for ∥gr∥∞ ≤ O(e−cr), i.e., an exponential decay in the radius of the ball rather than in its volume.

Several new ingredients were needed to boost Theorem 1.4 to the following, with a relaxed Eq. (1.8).

Theorem 3. Fix a, b, c > 0 to be three sides of a non-degenerate triangle, and let πpa, πpb, πpc
denote its angles. For every c > 0 there exists δ > 0 (depending on a, b, c, c) such that the following

holds for every sequence of functions (gr)
∞
r=1 on lozenge tilings of balls of radius r in T satisfying∑
r

∥gr∥∞ ≤ δ . (1.8)

Take any sequences of integers ns,N such that ns,N/N
2 → ps as N → ∞ for s ∈ {a, b, c}. Let µN

be distributions over tilings φ of the torus TN with lozenge counts ns(φ) = ns,N , satisfying∣∣∣µN (φ)/(Z−1
N exp

[∑
x

∑
r≤N

gr(φ↾B(x,r))
])

− 1
∣∣∣ ≤ c−1e−N

c
for all N ,

where ZN is the partition function of exp[
∑

x,r gr(·)]. Under these assumptions, both conclusions

of Theorem 1.4 (existence of the limit µ∞ and the GFF scaling limit for it) hold true.

1The setting there is Z2 with arbitrary weights; the hexagonal lattice is recovered by setting one weight to 0.
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Figure 6. An SOS height function h (non-monotone as marked) and a tiling φ (a monotone

surface) that approximates it, along with its corresponding periodic dimer configuration.

(For concreteness, in the two theorems above, the notation φ↾B(x,r) denotes the collection of

every lozenge tile of φ that intersects a triangle of B(x, r), the ball of radius r about x, in T.)
As a basic application, if tr(φ) is the number of pairs of lozenges of the same type at distance r

apart, Theorem 1.4 can be applied to a uniform lozenge tiling φ tilted by exp[δt1(φ)], whereas

Theorem 3 can be applied to a uniform tiling tilted by exp[δ
∑

r tr(φ)/r
2] (Examples 8.1 and 8.2).

Remark 1.5. Whereas the main contribution in Theorem 3 is that it allows for interactions that are

long range and decay slowly in the pattern radius (vs. Theorem 1.4, dealing with finite interactions),

another aspect where Theorem 3 refines Theorem 1.4 is the microcanonical vs. canonical ensemble:

our slope θ = (θ1, θ2) is equivalent to fixing the lozenge counts in φ to

na = N2 , nb = N⌊θ1N⌋ , nc = N⌊θ2N⌋ ; (1.9)

thus, we require a version restricted to tilings with deterministic na, nb, nc (microcanonical ensemble)

as opposed to an average over of all tilings weighted by anabnbcnc which was the setting of [34,35].

Remark 1.6. A notable difference between the GFF scaling limit for φ, as given in Item (b) of

Theorem 1.4 and Theorem 3, and the one for h, as per Item (b) in Theorem 1, is that the latter

treats the SOS surface h as a height function projected on the plane z = 0, denoted by P001, while

the former considers φ as a height function projected on the plane x+ y + z = 0, denoted by P111.

Towards establishing the scaling limit of h, we extend this result of Theorem 3 and recover the scaling

limit also when regarding φ as a height function projected on the plane P001 (see Lemma 7.3).

Remark 1.7. As an output of the renormalization group analysis, we find that σ and L in Item (b)

of the theorems above (the scaling limit of φ) are analytic functions of gr from Eqs. (1.7) and (1.8).

We further have asymptotic formulas for all cumulants of the variables 1{e∈φ} for edges e of the

hexagonal lattice (viewing φ as a dimer configuration).

In particular, translating Remark 1.7 to the setting of the SOS surface h, one has that σ and

L in the scaling limit of h (Item (b) in Theorem 1) are analytic functions of e−β. As our proof is

only applicable to β > β0, it raises an intriguing open problem whether, for instance, σ is analytic

for all β, or if there is a transition, e.g., near the roughening point βr. (Note the conjectured GFF

scaling limit arises due to different reasons above and below βr: for β < βr, it is driven by the

disorder akin to a discrete GFF, whereas at β > βr it is governed by the law of the ground states.)

1.2. Proof ideas. As mentioned above, our approach will be to superimpose a random tiling φ

approximating the given SOS surface h, and prove that φ has a GFF scaling limit. Formally, we fix

a new parameter α > 0 and, conditional on h, sample a tiling φ on the torus (as in Eq. (1.2)) via:

Pα,β,λ(φ | h) = 1

Zt
N,α(h)

exp (α |h ∩ φ|) , (1.10)

where Zt
N,α(h) =

∑
ψ exp (α |h ∩ ψ|) sums over tilings ψ of the torus ΛN that intersect h (see Fig. 6).
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For the sake of proving Theorem 1 one can choose α = β, but the proofs only need α to be large

enough, and keeping it as a free parameter will help identify its effect. This yields the joint law

Pα,β,λ(h, φ) =
exp [−β|h| − λV(h) + α|h ∩ φ|]

Zsos
N,β,λZt

N,α(h)
. (1.11)

Our main goal is to analyze Pα,β,λ(φ), the marginal probability on the approximating tiling φ, and

show that it is weakly interacting (“nearly uniform”), in that Pα,β,λ(φ) is a tilt of the uniform

measure by exp[
∑

x

∑
r gr(φ↾B(x,r))] per the hypothesis of Theorem 3, yielding the required result.

1.2.1. Outline of Part (i): proving that φ is weakly interacting. (Formally stated in Theorem 2.1.)

This part of the proof will be obtained by the following program, which we believe will be applicable

(after some adapting) to various other interface models. We first give a brief outline of the program,

then expand on each step in Sections 1.2.2 to 1.2.4.

Step 1: Free energy expansion to flip the conditioning, studying h given φ instead of φ given h:

Simpler routes such as cluster expansion are not applicable here, and this step, done in Section 2,

unfortunately turns the tiling φ into a fixed environment, inducing complex long range interactions

on h. Following this step, the problem is reduced to showing that three measures µ, ν, π—in which π

is nothing but Pα,β,λ(h | φ), and is significantly more challenging to analyze than µ, ν—are “local”

in the sense that we can approximate certain observables for them by functions gr as above.

Step 2: Markov chain analysis of Metropolis for sampling µ and Glauber dynamics for sampling ν:

In both cases we show in Section 3 that the dynamics for the corresponding measure is contracting,

i.e., it mixes faster than the time it takes disagreements to propagate, yielding the required locality.

Both µ and ν are measures on a random tiling ψ, conditional on φ, and are fairly tractable (even

though ν has long range interactions), in that one can prove contraction for the natural dynamics

where each move selects a “bubble”—a connected component B of faces of φ △ ψ—to add/delete.

Step 3: Analysis of π = P(h | φ), a long range interacting measure on SOS surfaces h given φ,

whose energy involves the overlap of other tilings ψ with h \ φ. This is one of the main challenges

of the paper and covers Sections 4 to 6. The main ingredients in this step are:

(a) Studying the set of local minimizers of the energy of h given an arbitrary φ (done in Section 4),

and finding a local operation under which this set remains closed. One can then group together

bubbles that impact one another, so that the resulting “bubble groups” are independent.

Adding/deleting an entire bubble group B will be the basis for a contracting dynamics for π.

(b) An algorithm to find an approximation of h by a tiling ψ in locations where h differs from φ:

The idea here is that, aside for a negligible number of “frozen” configurations, either the

surface h contains too many faces near said location, or it can be approximated by a tiling.

The algorithm in Section 5 establishes this, and is key to the definition of bubble groups,

implying their energy outweighs their entropy (thus they are amenable to a Peierls argument).

(c) Markov chain analysis of Glauber dynamics for π which adds/deletes bubble groups (Section 6):

this is one of the most technically challenging parts of the proof, as it aims to control a dynamics

where moves (changing a bubble group) occur at all scales, and the long range interactions are

non-explicit (they are given in terms of an expectation of a global variable w.r.t. a measure µt,

akin to the measure µ from above, but now depending on the current state ht of the dynamics).

It is here that the potential V plays a role, as bubbles in frozen regions of φ might not contract.

As a byproduct of our analysis of π, which we recall is Pα,β,λ(h | φ), we find that h is a perturbation

(via bubble groups with exponentially decaying sizes) of φ, and hence has the same limit (Section 7).
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1.2.2. Sketch of Step 1. To simplify the notation in this part, take α = β. A natural approach for the

problem would have been to study logPβ,λ(h, φ) via cluster expansion techniques. Unfortunately,

these fail for the measure in Eq. (1.11), due to its long range interactions and exponentially many

ground states. Instead, our first step is to perform a free energy expansion whereby, for a probability

distribution of the form Pβ(σ) = Z−1
β

∑
σ exp[−βH(σ)], one has logZβ = logZ∞ +

∫∞
β Eβ̂[H]dβ̂,

under a mild condition on the Hamiltonian H (cf. Lemma 2.6). Recall that Zt
β (h) from Eq. (1.10),

which then appears in the denominator of Eq. (1.11), is
∑

ψ exp(β|h∩ψ|). We could apply the free

energy expansion to logZt
β , but it would be better to shift it by exp(β|h∩φ|): for given h, φ, define

G(ψ) := |h ∩ φ| − |h ∩ ψ| , G := G−min
ψ
G ,

and Zβ :=
∑

ψ exp[−βG(ψ)]. Expanding logZβ, one can then show (see Section 2.2) that

Pβ(h, φ) ∝ exp

[
− β|h|+ β

(
min
ψ
G
)
− λV − logZ∞ −

∫ ∞

β
Eµβ̂ [G]dβ̂

]
,

where Z∞ = #{ψ : G = 0}. The intuition behind the terms in this expansion is as follows:

• The term −β|h| is negative (hence always in our favor), penalizing SOS surfaces h that are

wasteful compared to the optimal (minimum) number of faces achieved by tilings.

• The term β
(
minψ G

)
is again non-positive (hence in our favor: minψ G(ψ) ≤ G(φ) = 0),

penalizing SOS surfaces h that can be better approximated by some tiling ψ compared to φ,

making the latter less likely to be sampled given h.

• The term − logZ∞ points at the near uniform measure on φ: when many tilings are equally

good approximations of h, the choice between them ought to be uniform, i.e., 1/Z∞.

• The potential −λV will help control h in situations when the environment φ is frozen.

• The final term
∫∞
β Eµβ̂ [G]dβ̂ is the culprit in the long range non-explicit interactions, and the

main hurdle for the analysis. E.g., changing h will affectG, thereby µβ̂ and the interactions...

To study the marginal Pβ(φ), we must sum the right hand above over all h, and so we apply the

free energy expansion for the second time to rewrite log(
∑

h exp[·]) as
∫∞
β Eπβ̂ [·]dβ̂ + logZ ′

∞ for

another partition function term Z ′
∞. Unfortunately, this new logZ ′

∞ term is highly nontrivial; we

resort to a third and final application of the free energy expansion for logZ ′
∞, giving rise to the

final measure ν mentioned above (and a corresponding
∫∞
β Eνβ̂ [·]dβ̂ term). Overall, we find that:

Pβ(φ) ∝ exp

[ ∫ ∞

β

(
Eπβ̂ |h|+

1

2
Eνβ̂ |φ △ ψ| − 1

2
Eµβ̂ |φ △ ψ|

)
dβ̂

]
(see Proposition 2.5), where both ν and π incorporate a long range interaction through a

∫
E[·]dβ̂

term (though the one in ν does not involve h, and hence is much more tractable).

1.2.3. Sketch of Step 2. The goal here (Section 3) is to show that
∫∞
β Eµβ̂ [·]dβ̂ and

∫∞
β Eνβ̂ [·]dβ̂, the

first two integrals in the expression for Pβ(φ) in the last display, are local functions, in that each

can be expressed as
∑

x

∑
r gr(φ↾B(x,r)) for gr supported on a ball of radius r with ∥gr∥∞ ≤ δe−cr.

Establishing this for µ illuminates the basic approach, which will then also be applicable to ν

after taking into account its long range interactions that involve µ (whereas the much more difficult

task of proving this for π is done in Step 3). Given φ, the measure µ over tilings ψ is defined as

µβ(ψ) ∝ exp
[
− 1

2β|φ △ ψ|
]
.

We consider Metropolis dynamics for µ that moves by adding or deleting a (φ,ψ)-bubble—i.e., a

connected component of faces of φ △ ψ—and equip the space of tilings ψ with a metric distB(·, ·) via
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shortest-paths in the graph of moves of the dynamics. One can show this dynamics is contracting:

two instances of it (ψt)t≥0, (ψ
′
t)t≥0 can be coupled so that EdistB(ψt, ψ

′
t) ≤ e−t/2 distB(ψ0, ψ

′
0).

The sought locality of
∫
Eµβ̂ [·]dβ̂ is now obtained by (i) letting µr be the restriction of µ which

identifies the tiling outside of the ball B(o, r) with φ; and (ii) defining gr, for r = 2k, as the

residual contribution of µr to the integral compared to µr/2. Running two coupled instances of

the Metropolis dynamics—ψt for µr/2 in B(o, r/2) and ψ′
t for µr in B(o, r), initially agreeing on

B(o, r/2)—we look at time T = cβ̂r: each instance will be close to equilibrium, thus the difference in

probabilities of observing a bubble B in µr/2 vs. µr can be reduced to |P(B ∈ ψT )−P(B ∈ ψ′
T )|. The

last term is controlled by quantifying the rate at which disagreements between ψt, ψ
′
t propagate from

∂B(o, r/2) to its interior by time T , using that, even though the sizes of bubbles B are unbounded,

modifying such a B of size s in one of the copies, but not in the other, is exponentially unlikely.

The analysis of ν is similar, but the interactions between bubbles are no longer nearest-neighbor:

νβ(ψ) ∝ exp

[
− 1

2
β|η △ φ| − 1

2

∫ ∞

β
Eµβ̂ |η △ ψ|dβ̂

]
,

and the
∫
Eµβ̃ [·]dβ̃ term causes the probability of witnessing a bubble B to be affected by distant

bubbles (long range infections). The locality of µ (already obtained, as above) now assists in the

analysis of the Glauber dynamics to sample ν and the speed by which it propagates disagreements.

1.2.4. Sketch of Step 3. Using the formula for Pβ(h, φ) and the discussion of the effect of its various

terms in Section 1.2.2, we can discuss more concretely the analysis of πβ = P(h | φ).
(a) Local minimization (Section 4): minψ G and logZ∞ are a-priori complex non-local functions

of the configuration h. The remedy is to identify a local operation under which the energy

remains minimized: this allows one to group together bubbles that impact one another,

so that minψ G and logZ∞ can be computed separately over these new “bubble groups.”

Adding/deleting a full bubble group B will be the basis for a contracting dynamics for π.

(b) Algorithm (Section 5): Next, we need a bound on the energy cost of one bubble group.

One could hope from the discussion above that the −β|h| and β
(
minψ G

)
terms, combined,

would be sufficient. This is actually false, as there exists “counterexamples” with an almost

optimal number of faces where the best tiling approximation still has only a tiny overlap.

We still bound the entropy of such counterexamples by an arbitrary constant via an explicit

approximation algorithm. Typically, this is enough for a Peierls type estimate because, on

a counterexample, the next term − logZt
∞ is close to the entropy of tiling, beating the

small entropy of counterexamples. However, if additionally φ is locally frozen then this

term disappears and it is to handle these cases that the potential V is crucial.

(c) Markov chain (Section 6): The analysis of a Glauber dynamics for π, which adds/deletes

bubble groups, is one of the most technically challenging parts of the proof due to the long

range non-explicit interactions from the integral term. The issue is that when one tries to

delete a bubble group, if it lies in the middle of a large region containing many other bubbles,

then the integral might dominate the other terms, leaving us with very poor bounds. If we

were only crafting a Peierls map, the solution to this issue would be obvious: delete the whole

region, reducing the energy even more. Making this idea rigorous, however, is extremely

delicate, and involves a global Glauber dynamics where moves (modifying bubble groups)

occur at all scales, while it is imperative to control the speed of propagating information.

(Updating connected regions of every size at rate 1 helps the dynamics avoid bottlenecks;

however, proving contraction and inferring locality of
∫
Eπ[·]dβ̂ then become much harder.)
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We note that the above strategy for Part (i) appears fairly robust: The ground states of many

tilted models can be described using lozenge tilings and, in the analysis, the main parts where we

exploited details that are specific to SOS are Steps (3b) and (3c), whose extension seems plausible.

1.2.5. Outline of Part (ii): Extending the GMT renormalization analysis to long range interactions.

As per [34,35], a prototypical application of Theorem 1.4 is when the probability of a tiling is tilted

by eδ for each pair of adjacent lozenges of the same type (so g is supported on a ball of radius 1).

The refined Theorem 3 amplifies the framework of [34,35] from looking at a finite neighborhood of

every tile x to patterns at all scales, as long as their cumulative effect, per x, is summable to δ.

We next briefly (and informally) explain the crux of obtaining this improvement.

The strategy in [34, 35] to understand the interacting dimer model is to compute its generating

function before writing correlations as derivatives of it. Hence, for the sake of this outline, we focus

on the base partition function:
∑

φ exp[
∑

x,r gr(φ↾B(x,r))]. The idea is to write the functions gr as

sums over finite patterns Pi and then expand the exponential to get an expression of the form∑
{Pi}

∏
i

w(Pi)#{φ : Pi ⊂ φ for all i} .

This can be rewritten using Kasteleyn theory as a large sum over many minors of a fixed matrix K

(not quite in the case of a torus but let us ignore that for now). Said sum is then analyzed using

various formulae, first relating minors of K to minors of K−1, then, for minors of related matrices,

representing some form of restrictions ofK−1 over a fixed scale. The proof is carried by an induction

over scales where one must justify at each step the convergence of several series of determinants.

In [34, 35], for the first few steps of the induction, the authors verify the convergence somewhat

effortlessly because they have the freedom to set their parameters small enough to compensate

for relatively rough bounds on the determinants. After these steps, a contracting property of the

induction process (which is hard to prove, hence the difficulty of [34, 35]) emerges and eventually

guarantees convergence at all scales. In our context, the later contraction will also hold and in fact

the setting in [34,35] is general enough that it will apply directly. For the initialization, however, we

cannot afford the same rough bounds on the determinants. Our improvement will be to capitalize

on the fact that for the initial step, the determinants appearing in the expansion are close enough

to the ones for the usual non-interacting dimer model, so that their combinatorial interpretation

can provide much finer estimates, ultimately proving summability of the relevant series.

Briefly (see Section 8.5 and in particular Remark 8.12 for details), when going over interaction

patterns of size s, one must combat an entropy term exp(C∗s) for some absolute constant C∗. This

was not an issue in the framework of GMT, where it was handled after a Gram–Hadamard bound

as they had ∥gr∥ ≤ exp(−Cr2) on a ball of radius r for C > C∗ (in which s can be of order r2).

Even a decay of ∥gr∥ ≤ exp(−δr) would be insufficient for eliminating the exp(C∗s) entropy term.

Our refinement first extracts another exp(−C∗s) bound on the probability—precisely the entropy—

from the determinant of a suitable restriction of the Kasteleyn matrix; then we recover an extra

exponential decay exp(−δs) not from gr but rather from the propagator defined in Fourier space.

Unfortunately, since [34, 35] use the formalism of Grassmann integrals to encode efficiently the

series of determinants mentioned above, carrying the full proof requires several fairly technical

steps before the initialization of the inductive framework can even be formulated. Moreover, as

mentioned in Remark 1.5, in [34,35], the authors consider tilings of the torus where the number of

tiles of each type is allowed to fluctuate (canonical setting) but for us it is important to fix these

numbers as per the slope θ (microcanonical setting), which requires an additional step.
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1.3. Open problems and future directions. The first natural open problem is to extend our

results to the case λ = 0 (no extra potential V). As mentioned in Section 1.2.4, the main place

where V enters the analysis is in deriving a uniform upper bound on the probability of a bubble

group. There are three main difficulties in allowing λ = 0: (a) the law of h given φ will have bubble

groups “stick” to a “locally frozen” region of φ. As such a region could in turn have a significant

influence though the long range interaction, this makes the measure far less tractable. We believe

that a Markov chain analysis can still be applicable to that case, but it would be significantly more

complicated, and there is no hope to get an L∞ bound on the functions gr as we have when λ > 0;

(b) consequently, one would need to further weaken the assumption in Theorem 3, perhaps replacing

the L∞ bound on gr by an Lp bound under the uniform tiling measure; and (c) one would need

to bound, under the uniform tiling measure, the probability that a large ball contains a “locally

frozen region” (appropriately defined as per the previous two steps).

Another very natural open problem would be to generalize our argument to other random surface

models: first and foremost, 3d Ising interfaces, but also random height functions such as the Discrete

Gaussian (|∇ϕ|2) or restricted SOS (gradients are 0 or ±1) models. On the whole, our method

seems applicable for a model which can be a approximated by a random ground state where an

analog of Theorem 3 can be established (as in the above three models). The technical difficulties, as

we mentioned at the end of Section 1.2.4, are in the analysis of the energy optimization problem at

a deterministic level, both for the definition of bubble groups and for the approximation algorithm.

A question surprisingly related to both previous points is the case of slopes with one nonzero

coordinate, studied (for a different Hamiltonian) in [9]. We do not expect our approach to be

applicable to that case because it features both the conceptual issue of the previous paragraph

and the worst of the technical difficulties from the one before. Indeed, for say θ1 > 0, θ2 = 0, the

set of ground states (on the torus) is given by “stair-like” configurations using only two lozenge

types. The uniform law on them has of course no fluctuations in the direction “parallel to the

steps” but in the orthogonal one it becomes a random walk bridge with
√
N fluctuations. It

is unclear whether this behavior survives at positive temperature, and if it does not then the

approach is somewhat doomed. The second difficulty is that “locally stair-like” regions are actually

the “counterexample” from Step (3b), so in the case θ1 > 0, θ2 = 0 the whole tiling φ could be

a macroscopic counterexample to the algorithm. Overall it is unclear whether one should expect

GFF type or degenerate Brownian bridge fluctuations; even the order of Var(h(o)) remains open.

Finally, one could ask about moving from a model on the torus to a model on a box with fixed

boundary conditions. This should not create any issue for Parts (i) and (iii) of our general strategy,

i.e., the proof that φ is a weakly interacting tiling and that h is a small perturbation of φ. In

fact, many of our statements are for fixed boundary conditions, so the corresponding proofs might

become slightly easier in that setting. However, the renormalization argument in Part (ii) heavily

relies on being in the torus, first because it starts with an explicit diagonalization of (a variant

of) the adjacency matrix in Fourier space, and second because the action of the renormalization

operation on boundary terms is difficult to handle. Even for non-interacting lozenge tilings/dimers,

understanding fluctuations with “generic” boundary conditions remains a major open problem.

2. Setup and energies of tilings that approximate SOS

In this section, following a brief account of preliminaries and setup, we carry out Step 1 of Part (i)

of the proof program outlined above. Recall that our goal in that part is to establish that φ—the

random tiling which approximates our SOS surface as per Eq. (1.10)—is weakly interacting (so as
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Figure 7. Monotone surface in Z2 vs. lozenge tiling of T (dimers in the hexagonal lattice).

The fixed boundary heights (left) determine the boundary of the tiled region (right).

to fulfill the hypothesis of Theorem 3). This result is formalized as follows, where we recall from

the introduction that φ↾B(x,r) denotes the set of lozenges of φ intersecting the ball B(x, r) in T.

Theorem 2.1. Let h be a (2 + 1)d SOS surface as per Eq. (1.3), and let φ be a tiling conditional

on h as per Eq. (1.10). There is an absolute constant C such that if λ > 1
C and α∧ β ≥ λ−20, then

there exist functions gr, for r of the form 2k for k = 0, 1, . . ., and ZN such that for every N ,∣∣∣∣ Pα,β,λ(φ)

Z−1
N exp

[∑
x∈TN

∑
0≤r<N/2 gr(φ↾B(x,r))

] − 1

∣∣∣∣ ≤ Ce
−β− λ2

CM0
N
.

Furthermore, there exists an absolute constant C > 0 such that ∥gr∥∞ ≤ Ce
−β− λ2

CM0
r
for all r.

(Notice that, in the above, the radius of the ball B(x, r) at the final largest scale is N
4 ≤ r < N

2 .)

The analysis in this section will express Pα,β,λ(φ) in terms of measures µ, ν, π (see Proposition 2.5).

This will reduce Theorem 2.1 into proving these measures are local (in increasing order of difficulty):

Theorem 3.1 establishes this for µ, ν, whereas Theorem 6.1 gives the analogous statement for π.

Combining these two theorems with Proposition 2.5 will thus imply the above result on Pα,β,λ(φ).

2.1. Preliminaries and setup. We now import some background on the relation between height

functions on the square lattice Z2 and lozenge tilings of the triangular lattice T, as well as the GFF,

adding context to the results in Theorems 1 and 3 (e.g., the mode of convergence to the GFF and

the notion of viewing lozenge tilings of T as height functions projected on P001 as opposed to P111).

2.1.1. Surfaces and projections. A plaquette, or face, in Z3 is a unit square that is either horizontal

(with opposing corners x, x+(1, 1, 0)) or vertical (opposing corners x, x+(1, 0, 1) or x, x+(0, 1, 1)).

The SOS height function h assigns a horizontal face at height h(x) to each of the horizontal faces

x = (x1, x2) of the N×N square grid. It is viewed as a surface via a minimum completion of vertical

faces to make it simply connected in R3, i.e., |h(x)− h(y)| vertical faces between two neighboring

faces x, y. We will routinely move between viewing h as a height function and viewing it as the

set of faces comprising its interface, a subset of the set of all possible plaquettes in Z3. As there

are always exactly N2 horizontal faces in h, the leading term β|h| in the SOS Hamiltonian aims

to minimize the number of vertical faces. As such, under any fixed boundary conditions that are

monotone decreasing along the (x1, x2) coordinates, the ground state of the SOS model would be

a monotone (decreasing) surface. The three types of faces then correspond to a lozenge tiling of

the triangular lattice T (see Fig. 7, where vertical faces with opposing corners x, x+ (1, 0, 1) are in

blue, vertical faces with opposing corners x, x+ (0, 1, 1) are in red, and horizontal faces in green).
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Figure 8. Monotone height function on a 4× 4 torus with
∑

∇h(e⃗i) = −5 for loops along

the (1, 0)-direction and −4 along the (0, 1)-direction, and the periodic tiling of T it induces.

When the boundary condition is periodic with slope θ, as per Eq. (1.2), the number of blue

vertical faces per row (x1, ·) and number of red vertical faces per given column (·, x2) are each

predetermined (⌊θ2N⌋ and ⌊θ1N⌋, respectively), in which case a full plane periodic monotone

surface in Z2 corresponds to a periodic lozenge tiling of T; see Fig. 8.

In the above notion of height functions (describing SOS configurations h as well as tilings φ,

viewed as their special case of monotone surfaces), the height of faces was measured via a projection

onto the x3 = 0 plane. We now discuss the relation between this notion and the one where the

heights are projected onto the x1+x2+x3 = 0 plane, as is common in the study of dimers. At the

discrete level, in the full plane, the link between the two descriptions is as follows:

Definition 2.2. Let φ be a discrete monotone surface, seen as a union of plaquettes of Z3 (with a

chosen root). Let P001 denote the plane with the equation x3 = 0, let P111 be the plane with the

equation x1+x2+x3 = 0 and let Υ001 and Υ111 denote the orthogonal projections on these planes.

Note that Υ001(Z3) is the square lattice Z2 while Υ111(Z3) is the triangular lattice T.
(i) The P001 height function, or height with SOS convention, assigns heights to the faces of Z2.

Given a face u of Z2, there exists a unique plaquette f of Z3 with f ∈ φ and Υ001(f) = u,

and φ001(u) is defined as the third coordinate of f (well defined since f is parallel to P001).

(ii) The P111 height function, or height with tiling convention, assigns heights to the vertices

of T (or equivalently, the faces of the hexagonal lattice). Given a vertex v of T, there exists
a unique vertex x with Υ111(x) = v and x ∈ φ. We let φ111(v) be the third coordinate of x.

See Fig. 9 for an illustration of the P001 and P111 height functions. On the torus, one defines

these simply by first mapping the configuration from the torus to the full plane in the natural way.

Similarly, the notions of P001,P111 height functions extend to continuous surfaces (in R3).

Let us next discuss the pinning conventions. The joint law on (h, φ) as per Eqs. (1.3) and (1.10),

regardless of the pinning h001(o) = 0 that we specified in the torus (where o is the origin face of Z2),

is a law on (∇h001, h001 −φ001) which is invariant under translations in the plane P001. Note that,

equivalently, it can also be seen as a joint law on (∇φ001, h001−φ001), which will be more convenient

in our analysis after we invert the order of the conditioning, focusing first on the marginal on φ
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Figure 9. A schematic 2D representation of the two height functions conventions. Left:

A discrete monotone function φ in red with the projections on P001 and P111 represented

by black or green fine lines. Right: The corresponding height functions, top with tiling

convention and bottom with SOS convention. The non-linearity of the transformation from

one convention is apparent, e.g., in the drop from 5 to 2 in the P001 convention, which

corresponds to the interval (5, 4, 3, 2) in the P111 convention.

and then viewing h as a perturbation given φ. This already introduces a complication because,

from that point of view, pinning h(o) to 0 is no longer natural (said pinning, as seen by φ, would

be carried out onto a random hidden SOS configuration, as opposed to a deterministic pinning).

We will thus need to change our pinning convention in that context.

Another complication is that we will need results on the dimer model which require translation

invariance with respect to P111 (the usual setting in the dimer literature). However, if we pin

φ001(o) to 0, we break this translation invariance since this amounts to forcing the origin to be

covered by a green tile. (For this reason we did not, for instance, specify that h001(o) = φ001(o) = 0

when introducing φ in Eq. (1.10), and instead just asked that φ ∩ h ̸= ∅. We could have asked for

the former, if we were to then re-root a uniformly chosen face of ΛN to be at height 0 instead of o.)

To address these two issues, we instead pin φ111(o) to 0, where o is now the origin of the

triangular lattice T, or equivalently in terms of monotone surfaces, require that (0, 0, 0) ∈ φ (i.e., it

is a corner of a plaquette in φ). It can then be checked (e.g., by considering the σ-finite measure on

(h, φ) obtained by giving measure 1 to every possible height shift, which is invariant under all Z3

translations) that the resulting law of φ is indeed invariant under P111 translations as needed. See

Fig. 10 and its caption for details on how to read both height functions (P001,P111) from a tiling.

Note that while the P001 height function is natural for an SOS discrete surface, the P111 height

function is far less so: for instance, a “spike” in h001 (an isolated column, e.g., h001(x) = 2 and

h001(y) = 0 for all y ∼ x) becomes an overhang from the P111 point of view (no longer well-defined).

It will convenient to view our discrete surfaces (h and φ) as continuous surfaces in R3, whereby

the notions of height functions φ111(x), h001(y) will make sense for any x ∈ P111 and y in P001

minus the edges of Z3. In the following, when integrating a discrete height function, we will always

consider it as extended as above and we will use ⟨·, ·⟩ to denote the L2 inner product.

2.1.2. The Gaussian free field. The GFF can be viewed as a natural extension of Brownian motion

(or a Brownian bridge) to a parameter space more general than R+. There is an extensive literature

on it, well beyond the scope of this paper; here we will only discuss the basic definition of the GFF

on R2 and simply connected domains of R2, and the meaning of the convergence in Theorem 1.
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Figure 10. The effect of the Υ001 projection on a tiling. The root o is the origin of the

vector e↑. Each green horizontal lozenge corresponds to a face in P001 and is labeled with the

first two coordinates of its center. Successive green lozenges along the e↑ direction correspond

to the faces along the main diagonal of P001 and for u on that diagonal, φ111(u) is the number

of vertical edges not covered by a lozenge between the root o and the corresponding tile. In

other word for k, ℓ ≥ 0, one has φ111(o+ke↑) ≤ ℓ when φ001(−(k− ℓ)+ 1
2 ,−(k− ℓ)+ 1

2 ) ≤ ℓ

and φ111(o+ ke↑) ≥ ℓ when φ001(−(k − ℓ)− 1
2 ,−(k − ℓ)− 1

2 ) ≥ ℓ.

In analogy to the case of Brownian motion, the simplest definition of the GFF on a bounded

open domain D (say with a smooth ∂D) should be as a centered Gaussian process indexed by

points of D where one only needs to fix the covariance matrix, a natural choice being to take

the Green function with Dirichlet boundary conditions (the choice of normalization of the Green

function is unfortunately not completely canonical here). Unfortunately, this does not make sense

directly because the Green function diverges on the diagonal. The solution is to see the GFF as a

stochastic process indexed by (regular enough) test functions f ; in what follows we denote its value

at f by ⟨GFF, f⟩ instead of GFF(f) to emphasize that it is viewed as a Schwartz distribution.

The natural choice of covariance is then

Cov(⟨GFFD, f⟩, ⟨GFFD, g⟩) :=
∫
D

∫
D
f(u)g(v)GD(u, v) dudv

where GD is the Green function of the domain D with Dirichlet boundary conditions.

We would like to just take D = R2 but again this does not work quite directly since the full plane

Green function does not define a valid covariance. In fact this issue is already present in the 1d

case when one wants to define a full plane Brownian motion: the law of all increments is perfectly

well defined (and has the symmetries of R) but one needs to pin the process at a point to turn

these increments into an actual process. In the GFF case, since the value at a point is undefined,

one could similarly pin the value of ⟨GFF, f⟩ for some fixed f , e.g., the indicator of a ball, but an

arbitrary convention of such a sort complicates the analysis. It is more elegant to stick with only

the law of all increments, which in the generalized function point of view is equivalent to restricting

the set of test functions to mean 0 ones. This leads to a definition as given above Theorem 1:

Definition 2.3. The full plane GFF is the centered Gaussian process indexed by smooth test

functions from R2 to R with 0 mean and covariance

Cov(⟨GFFR2 , f⟩, ⟨GFFR2 , g⟩) := − 1

π2

∫
R2

∫
R2

f(u)g(v) log |u− v| dudv.

In the Brownian motion case, the next step after the definition as a stochastic process is to prove

the existence of continuous versions, that is, to establish regularity estimates. The analog for the

2d GFF is to say that it can be realized in a “concrete” space of distribution. The full plane case
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(as opposed to a bounded domain D) is somewhat awkward here since one would need to use a

weighted space (cf., e.g., [8, §5]), but for a bounded domain one has the following:

Proposition 2.4 ([8, Thm. 1.24]). For any ε > 0, for any simply connected bounded open set D,

there exists a version of GFFD which is a random variable in the Sobolev space H−ε(D).

In fact, this version of the GFF can be written explicitly as the almost surely convergent series

GFFD =
∑

nXnf
D
n where {Xn} are i.i.d. standard normal variables and {fDn } are the eigenvectors

for the Laplacian in D with Dirichlet boundary condition, normalized to have unit H1-norm. Note

that the almost sure convergence in H−ε of the series is part of the proposition and non-obvious

but in H−1−ε it is not hard to check that the series becomes absolutely convergent almost surely.

When discussing convergence to the GFF of some discrete random function hn, the simplest

approach is to view theGFF as a stochastic process (as in Definition 2.3), i.e., to show that for every

smooth f (possibly with 0 mean in the full plane case), ⟨hn, f⟩ converges to a centered Gaussian

with variance
∫∫

f(u)f(v)G(u, v)dudv. Indeed, this is the notion of convergence in Theorem 1. For

a concrete example of a property of the SOS function h that one can read from the GFF limit via

this mode of convergence, take any x, y ∈ R2, and set

f(u) = δε(u− x)− δε(u− y) ,

where δε(·) is a smooth approximation of the Dirac delta function in R2 supported on B(o, ε).

Theorem 1 shows that this height statistic for h, comparing the local heights near ⌊nx⌋ vs. ⌊ny⌋,
converges as N → ∞ followed by n→ ∞ to a centered Gaussian with covariance c log |x− y|.

Regarding other notions of convergence, at the discrete level hn is an actual function and, in

many cases (including in the proofs of Theorem 1.4 and its refinement Theorem 3 derived here),

it is natural along the way to compute pointwise correlations (or higher moments of hn), such as

proving that (in a domain D)

Cov(hn(u), hn(v)) → GD(u, v)

(in fact, in Kenyon’s paper [43], this is the targeted notion of convergence) and similar estimates

with more points. These pointwise bounds are actually conceptually stronger than the convergence

as a stochastic process since, in a sense, this mode of convergence controls the joint law of the

values of the GFF at different points even thought this law has no formal existence. Indeed, in the

proof of [7, Thm. 5.1], it is shown that the convergence of all n-point functions with fixed distinct

points coupled with even a fairly rough bound on the divergence as u− v → 0 is enough to prove

not only convergence in H−1−ε but even to control all moments of the H−1−ε-norm of the field.

For us, a similar statement would also hold, up to some small extra difficulties involving weighted

spaces to accommodate the full plane picture.

2.2. Deriving the three measures µ, ν, π. We will decompose Pα,β,λ(φ) as follows:

Proposition 2.5. In the setting of Theorem 1, the measure Pα,β,λ from Eq. (1.10) satisfies

Pα,β,λ(φ) ∝ exp

[
−
∫ ∞

α
µφ,α̂(

1
2 |φ △ ψ|)dα̂+

∫ ∞

α
νφ,ᾱ(

1
2 |η △ φ|)dᾱ+

∫ ∞

β
πφ,β̂(Hh)dβ̂

]
, (2.1)

for measures µφ,α̂, νφ,ᾱ and πφ,β̂ defined below in Eqs. (2.6), (2.12) and (2.17) respectively.

Proof. We begin with the free energy expansion identity that was briefly described in Section 1.2.2—

a folklore approach of expressing the log-partition function as a certain integral over the temperature

(e.g., see [38, Lemma 7.90] for a version of it specialized to the random cluster model); we include

its short proof here for completeness.



TILTED SOLID-ON-SOLID IS LIQUID 19

Lemma 2.6. Let Zβ =
∑

x∈X e
−βH(x) for β > 0 and a function H : X → R on a finite set X. Let

F : X → R be a function such that minx∈X F (x) = 0, and for any β̂ ≥ 0, set

Z β̂β =
∑
x∈X

exp
[
−βH(x)− β̂F (x)

]
.

With ⟨·⟩β,β̂ denoting expectation w.r.t. Pβ̂β(x) := (Z β̂β )
−1 exp[−βH(x)− β̂F (x)], one has

logZβ =

∫ ∞

0
⟨F ⟩β,β̂ dβ̂ + logZ∞

β .

In the special case where H = F we have that

logZβ =

∫ ∞

β
⟨H⟩β̂ dβ̂ + logZ∞ ,

where ⟨·⟩β̂ denotes expectation w.r.t. Pβ̂(x) := (Zβ̂)
−1 exp

[
− β̂H(x)

]
.

Proof. The conclusion follows from the elementary fact d
dβ̂

logZ β̂β = ⟨−F ⟩β̂, using that limβ̂→∞ Z β̂β

exists and is given by
∑

x∈X exp
[
−βH(x)

]
1{F (x)=0} > 0 as F (x) ≥ 0 and F attains its minimum 0

on X. The special case follows by a change of variables, since Pβ̂β = Pβ+β̂ in that case, and F does

not depend on β, β̂. ■

Define

Gh,φ(ψ) = |h ∩ φ| − |h ∩ ψ| . (2.2)

so that Eq. (1.11) gives

Pα,β,λ(φ) =
1

Zsos
N,β,λ

∑
h

e−β|h|−λV(h)∑
ψ e

−αGh,φ(ψ)
. (2.3)

We also define

G
g
h,φ = min

ψ
Gh,φ(ψ) , (2.4)

and, observing that G
g
h,φ ≤ Gh,φ(φ) = 0, further set

Gh(ψ) = Gh,φ(ψ)−G
g
h,φ . (2.5)

Note that we dropped φ in Gh because (unlike G
g
h,φ) it does not actually depend on φ: indeed,

with |h ∩ φ| canceling out, we are left with Gh(ψ) = −|h ∩ ψ|+maxψ0 |h ∩ ψ0|.
We may now apply the (special case H = F of) Lemma 2.6 onto

Zαh =
∑
ψ

e−αGh(ψ)

for F (ψ) = Gh(ψ), noting that F ≥ 0 and F (φ) = 0 as mentioned above. Since we will need

to apply Lemma 2.6 multiple times and keep track of the different measures, let us introduce the

following notations for the quantities involved in that lemma. Define the probability measure µh,α̂
on tilings ψ by

µh,α̂(ψ) =
1

Zα̂µ (h)
exp

[
−α̂Gh(ψ)

]
, (2.6)

where the partition function Zα̂µ (h) is the normalizing constant. Note that

Z∞
µ (h) = #

{
ψ : Gh,φ(ψ) = G

g
h,φ

}
, (2.7)
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and let µh,α̂(F ) denote the expectation of a function F on tilings ψ; that is,

µh,α̂(F ) :=
1

Zα̂µ (h)

∑
ψ

F (ψ) exp
[
− α̂Gh(ψ)

]
. (2.8)

With these notations, we can rewrite Pα,β,λ(φ) from Eq. (2.3) as

Pα,β,λ(φ) =
1

Zsos
N,β,λ

∑
h

exp
[
− β|h|+ αG

g
h,φ − logZαµ (h)− λV(h)

]
,

and decomposing logZα̂µ as per Lemma 2.6 (with Eq. (2.7) in mind) yields

Pα,β,λ(φ) =
1

Zsos
N,β,λ

∑
h

exp
[
− β|h|+ αG

g
h,φ −

∫ ∞

α
µh,α̂(Gh)dα̂− logZ∞

µ (h)− λV(h)
]
.

It will be further useful to define

Hh = |h| − |φ| = |h \ φ| − |φ \ h| , (2.9)

and Z̄sos := eβ|φ|Zsos, using which we can rewrite the above expression as

Pα,β,λ(φ) =
1

Z̄sos
N,β,λ

∑
h

exp
[
− βHh + αG

g
h,φ −

∫ ∞

α
µh,α̂(Gh)dα̂− logZ∞

µ (h)− λV(h)
]
. (2.10)

Remark 2.7. As mentioned in the introduction, the term −βHh penalizes configurations with too

many faces while the term +αG
g
h,φ (which is non-positive) penalizes configurations which can be well

approximated by a tiling albeit by one different from φ (because given that h, it makes φ less likely

to be chosen). One might expect that these two terms would be sufficient to treat all deviations from

φ but that is actually not the case: see Proposition 5.1 and the discussion there for more details.

The term − logZ∞
µ (h) also has a relatively straightforward interpretation: when there are many

tilings which are all equally good approximation of h, we need to choose uniformly over them and

therefore the probability of a fixed φ is of order 1/Z∞
µ . It is the term

∫
µh,α̂(Gh)dα̂ that embodies

the complicated long range interactions of this distribution.

To treat the summation over h in Eq. (2.10), note that Hh ≥ 0 for every h since tilings minimize

the number of faces by definition. Since H = 0 is attained at h = φ (note that H = 0 can occur

not just for h = φ), we may apply Lemma 2.6 for the second time, this time onto F (h) = Hh and

Z β̂φ =
∑
h

exp

[
−β̂Hh + αG

g
h,φ − logZ∞

µ (h)−
∫ ∞

α
µh,α̂(Gh)dα̂− λV(h)

]
,

translating Eq. (2.10) into

Pα,β,λ(φ) =
1

Z̄sos
N,β,λ

exp

[ ∫ ∞

β
πφ,β̂(Hh)dβ̂ + logZ∞

π (φ)

]
, (2.11)

where, analogously to µ from Eq. (2.6), if F is a function on SOS height functions h, we let

πφ,β̂(F ) :=
1

Z β̂π (φ)

∑
h

F (h) exp
[
− β̂Hh+αG

g
h,φ− logZ∞

µ (h)−
∫ ∞

α
µh,α̂(Gh)dα̂−λV(h)

]
. (2.12)

(The normalizer Z β̂π (φ) is exactly Z β̂φ from above, and we include π in the notation to help recall

the measure that it is associated to.)
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Remark 2.8. Notice that, in the special case β̂ = β, the measure πφ,β is nothing but the conditional

law of h given φ:

Pα,β,λ(h | φ) = πφ,β(h) .

Our analysis of πφ,β̂(h) will therefore serve both the goal of establishing the required properties on φ

(towards showing a convergence to a GFF), and the characterization of h as a perturbation of φ.

It remains to expand the nontrivial term Z∞
π (φ) in Eq. (2.11)—which is the following sum over

tilings η:

Z∞
π (φ) :=

∑
η

exp
[
αGg

η,φ − logZ∞
µ (η)−

∫ ∞

α
µη,α̂(Gη)dα̂− λV(η)

]
. (2.13)

Observe that Z∞
µ (η) = 1 since only ψ = η minimizes Gη,φ(ψ) = |η ∩φ| − |η ∩ψ| (whereby its value

is G
g
η,φ = |η ∩ φ| − |η| = −1

2 |η △ φ|). It will be convenient to further observe that

Gη(ψ) = |η ∩ φ| − |η ∩ ψ| − (|η ∩ φ| − |η|) = |η \ ψ| = 1
2 |η △ ψ| , (2.14)

and that 0 ≤ V(h) ≤ V0(h) any h whereas V0(η) = 0, thus V(η) = 0. Combined, Eq. (2.13) becomes

Z∞
π (φ) =

∑
η

exp
[
− 1

2α|η △ φ| −
∫ ∞

α
µη,α̂(

1
2 |η △ ψ|)dα̂

]
. (2.15)

We now apply Lemma 2.6 for the third time, to Z∞
π (φ) from Eq. (2.15) and F (η) = 1

2 |η △ φ| ≥ 0

(noting that F (φ) = 0 and that in this application the only ground state is η = φ), and obtain that

logZ∞
π (φ) =

∫ ∞

α
νφ,ᾱ(

1
2 |η △ φ|)dᾱ−

∫ ∞

α
µφ,α̂(

1
2 |φ △ ψ|)dα̂ , (2.16)

where, for a function F on tilings η,

νφ,ᾱ(F ) :=
1

Zᾱν (φ)
exp

[
− 1

2 ᾱ|η △ φ| −
∫ ∞

α
µη,α̂(

1
2 |η △ ψ|)dα̂

]
, (2.17)

and Zᾱν (φ) is the normalizer of this distribution.

Plugging Eq. (2.16) into Eq. (2.11) yields Eq. (2.1), concluding the proof of Proposition 2.5. ■

3. Local decomposition of µφ,α̂ and νφ,ᾱ

Our goal in this section is to decompose
∫
µφ,α̂(·)dα̂ and

∫
νφ,ᾱ(·)dᾱ as follows.

Theorem 3.1. There is an absolute constant C such that if α ∧ β > C and λ > C/(α ∧ β), then
there exist functions gµr , gνr for r = 2k with k = 0, 1, . . ., defined on lozenge tilings of B(o, r) ⊂ T,
such that for every N ,∣∣∣∣ ∫ ∞

α
µφ,α̂(

1
2 |φ △ ψ|)dα̂−

∑
x∈TN

∑
0≤r<N/2
r=2k

gµr (φ↾B(x,r))

∣∣∣∣ ≤ Ce−αN/C , (3.1)

∣∣∣∣ ∫ ∞

α
νφ,ᾱ(

1
2 |η △ φ|)dᾱ−

∑
x∈TN

∑
0≤r<N/2
r=2k

gνr (φ↾B(x,r))

∣∣∣∣ ≤ Ce−αN/C , (3.2)

and for every integer r = 2k (k ≥ 0) one has ∥gr∥∞ ≤ Ce−αr/C .

The theorem above will be established via a dynamical analysis, comparing the speed of prop-

agating information along Metropolis/Glauber dynamics, vs. their mixing time. At the center of

these Markov chains is the following object.
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Definition 3.2 (Bubble). Given a tiling φ and a height function h, a bubble B is a connected

component of faces of φ △ h (where faces are adjacent if they share an edge). We further color

each face by blue if it is part of φ and red otherwise.

(NB. the colors cannot simply be read from the geometry of B alone, even when h is not a tiling.)

To each bubble B, one may associate the portion of the energy Hh it accounts for:

H(B) = |B| − 2|B ∩ φ| , (3.3)

noting that there is no actual dependence on φ since |B ∩ φ| can be read from B.

3.1. Weak locality of the integral over µ. Recall from Eqs. (2.6) and (2.14) that

µφ,α̂(ψ) ∝ e−
1
2
α̂|φ△ψ| = e−

1
2
α̂
∑

B |B| , (3.4)

where the summation on the right-hand is over all (φ,ψ)-bubbles B.

Metropolis dynamics on bubbles for µ. Given a fixed reference tiling φ of TN , define the following

dynamics (ψt) on tilings of TN :
(i) Attach a rate-1 Poisson clock to every pair (B, f) where B is a candidate for a (φ,ψ)-bubble

and f is a marked face of B.

(ii) If B is a complete (φ,ψt)-bubble, erase it from ψt.

(iii) If B can be added to ψt as a new bubble (that is, it does not intersect nor is it adjacent to

any existing (φ,ψt)-bubble) then do so with probability exp(−1
2 α̂|B|).

Note that ψt is irreducible and reversible w.r.t. µφ,α̂ as per Eq. (3.4). Define distB(ψ,ψ
′) to be the

length of the geodesic in the graph defined by legal moves of the Metropolis dynamics—namely,

the minimum number of moves (each one adding or erasing a bubble) needed to reach ψ′ from ψ.

Proposition 3.3. The dynamics (ψt) is contracting w.r.t. distB; that is, if α̂ is large enough

(independently of φ), then, under the coupling where we synchronize the Poisson clocks from Item (i)

and the Uniform([0, 1]) variables used for Item (iii), we have, for all t > 0,

EdistB(ψt, ψ
′
t) ≤ e−t/2 distB(ψ0, ψ

′
0) .

Proof. By the triangle inequality, it suffices to consider ψ0, ψ
′
0 that differ on a single bubble B0 and

show that d
dtEdistB(ψt, ψ

′
t)
∣∣
t=0

≤ −1
2 under the aforementioned coupling. Assume by symmetry

that ψ′
0 contains B0 and ψ0 does not, and observe that, since the only condition for being allowed

to add a bubble is that it cannot intersect a previous one, only the following scenarios are possible:

(1) [healing ] At rate |B0| we select (B0, f) for some f . If we add B0 to ψ, which happens with

probability 1− exp(−1
2 α̂|B0|), we get distB(ψ,ψ

′) = 0, otherwise we keep distB(ψ,ψ
′) = 1.

(2) [neutral ] We select some (B, f) with B ∩ B0 = ∅. This will leave the distance unchanged.

(3) [infection] We select (B, f) with B ∩ B0 ̸= ∅. In that case the distance increases by 1 when

we add B to ψ which happens with probability exp(−1
2 α̂|B|) and otherwise it is unchanged.

Overall this gives

d

dt
E[distB(ψt, ψ′

t)]
∣∣
t=0

≤ −(1− e−
1
2
α̂|B0|)|B0|+

∑
B∩B0 ̸=∅

|B|e−
1
2
α̂|B|.

Since the number of bubbles of size s only grows exponentially in s with a constant which can be

made uniform over φ, for α̂ large enough the right hand side of the equation is bounded from above

by −1
2 , which concludes the proof. ■
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Proof of Theorem 3.1, Eq. (3.1). Let r = 2k with k ≥ 0, and let Λφr denote Υ(φ↾B(x,r)), i.e., the

tiles of φ whose projection to TN intersect B(x, r). Denote by µr the measure defined as µφ,α̂ but

on tilings of Λφr , that is

µr(ψ) ∝ exp(−1
2 α̂|φ △ ψ|) .

In case r ≥ N/2, we replace B(x, r) in the definition of µr by the full torus TN , i.e., µr = µφ,α̂.

(With this definition, every B(x, r) that is strictly contained in TN is also simply connected.)

Remark 3.4. Since the interactions in µφ,α̂ are nearest-neighbor between bubbles, we could have

also defined the above via the original measure on TN conditional on ψ identifying with φ on tiles

which are outside B(x, r). However, the above definition will be the correct one for the sake of

Eq. (3.2), in which the long-range interactions will distinguish it from the latter one.

Constructing the local function. With the above definition, denote by {B ∈ ψ} for some bubble B

the event that B appears in ψ as a (complete) bubble, and let

fµ1,B(φ↾B(x,1)) :=

∫ ∞

α
µ1(B ∈ ψ)dα̂ ,

fµ2r,B(φ↾B(x,2r)) :=

∫ ∞

α

[
µ2r(B ∈ ψ)− µr(B ∈ ψ)

]
dα̂ for r = 2k, k ≥ 0 .

We claim that, by definition,∫ ∞

α
µφ,α̂(

1
2 |φ △ ψ|)dα̂ =

1

4

∑
x∈TN

∑
(φ,ψ)-bubble B

Υ(B)∋x

∑
r=2k

for k ≥ 0

fµr,B(φ↾B(x,r)) . (3.5)

Indeed, the telescopic sum over µr for r = 2k (k ≥ 1) induced by the sum over fµr,B(φ↾B(x,r)) will

leave only the last term
∫∞
α µφ,α̂(B ∈ ψ)dα̂. (Recall that we are in a finite domain, hence have

a finite set of possible B’s, and there are no issues when exchanging the integral and sum.) The

right-hand of Eq. (3.5) is therefore

1

4

∑
x∈TN

∑
B: Υ(B)∋x

∫ ∞

α
µφ,α̂(B ∈ ψ) .

Looking at the left-hand of Eq. (3.5), we recall that each lozenge f ∈ B (of which there are |B|/2
in φ and |B|/2 in ψ, as both φ,ψ are tilings) contains two triangular faces x ∈ Υ(f) ⊂ TN . Thus,

1

2
|φ △ ψ| = 1

2

∑
B

|B|1{B∈ψ} =
1

4

∑
x∈TN

∑
B: Υ(B)∋x

1{B∈ψ} ,

which after taking expectation under µφ,α̂ and integrating over α̂ results in the preceding equation,

thereby established Eq. (3.5).

We will now argue that for every B with Υ(B) ∋ o, for α large enough one has

∥fµ2r,B∥∞ ≤ exp
[
− α

(r1{r≥2|B|}

10
∨ |B|

2

)]
≤ exp [−α(r + |B|)/16] . (3.6)

The term α|B|/2 in the exponent in Eq. (3.6) follows from a Peierls-type argument: for every B,

µr(B ∈ ψ) ≤ exp(−1
2 α̂|B|) ,

as one derives from the ratio of µr(ψ
′) for ψ′ that has B ∈ ψ′ and µr(ψ) for ψ = ψ′ △ B. This

shows ∥fµ2r,B∥∞ ≤ 4
|B| exp[−

1
2α|B|] (bounding |µr − µ2r| by µr + µ2r and then integrating over α̂).

The term αr/10 in the exponent in Eq. (3.6) under the assumption that |B| ≤ r/2 (as per

that indicator) is more delicate, and here we will use the contracting Metropolis dynamics for µ.
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Denote by (ψt, ψ
′
t) two coupled instances of the dynamics, with domains B(o, r) and B(o, 2r)

respectively, from an initial configuration which agrees on B(o, r), where every update of ψ′
t that is

confined to B(o, r) uses the joint law as per Proposition 3.3 (whereas updates of ψ′
t in the annulus

B(o, 2r) \ B(o, r) will be sampled via the product measure of ψt and ψ
′
t on this event). Run the

dynamics for time

T =
1

12
α̂ r ,

and write

|µ2r(B ∈ ψ)− µr(B ∈ ψ)| ≤ Ξ1 + Ξ2 + Ξ3 ,

where

Ξ1 := |µr(B ∈ ψ)− P(B ∈ ψT )| ,
Ξ2 :=

∣∣µ2r(B ∈ ψ)− P(B ∈ ψ′
T )
∣∣ ,

Ξ3 :=
∣∣P(B ∈ ψT )− P(B ∈ ψ′

T )
∣∣ .

By Proposition 3.3 for t = T (bounding distB(ψT , ψ̃T ) where ψ̃0 ∼ µr, thus also ψ̃T ∼ µr), we have

Ξ1 ≤ e−T/2|B(o, r)| ≤ e−(α̂/8−o(1))r ,

where the o(1)-term goes to 0 as r → ∞, and similarly Ξ2 ≤ e−T/2|B(o, 2r)| ≤ e−(α̂/8−o(1))r.

For Ξ3, we must bound the rate of propagation of information in the Metropolis dynamics, which,

unlike single-site dynamics, has the small complication of allowing long range interactions by virtue

of moves that use arbitrarily large bubbles B. To this end, we take a union bound over any potential

sequence of updates starting from a disagreement (necessarily outside of B(o, r)) and making its

way to B: such a sequence necessarily contains a shortest path of intersecting bubbles B1, . . . ,Bm
(m ≥ 1) such that Bi ∩ Bi+1 ̸= ∅, the first bubble B1 intersects the boundary of B(o, r) and the

last bubble Bm intersects B. Let vi be a vertex of Bi ∩Bi−1 (say, a minimal one according to some

lexicographic ordering), and let ri be the length of the shortest path between vi and vi+1, noting

that si := |Bi| ≥ ri. With these notations,

Ξ3 ≤
∑
m≥1

∑
{ri}∑
ri≥r/2

∑
{si}
si≥ri

∫
0≤t1≤...≤tm≤T

∏
i

(
csi0 si−1 · sie−

1
2
α̂sie−(ti−ti−1)sie

− 1
2 α̂si

)
dt1 . . . dtm,

since dist(Υ(B), ∂B(o, r)) ≥ r − diam(B) ≥ r/2 (using |B| ≤ r/2 and Υ(B) ∋ o), and the update

of Bi is via an exponential clock with rate si exp(−1
2 α̂si), for ringing the appropriate bubble and

then accepting it (where the term exp(−(ti − ti−1)sie
− 1

2
α̂si) accounts for ti being the first update

of this kind over all t > ti−1). Bounding ti − ti−1 ≥ 0, the resulting integral is explicit and gives

Ξ3 ≤
∑
m≥1

∑
{ri}:

∑
ri≥r/2

∑
{si}:si≥ri

(
c1e

− 1
2
α̂
)∑m

i=1 si T
m

m!
≤ e

3
2
T e−

1
4
α̂r−Cr ,

where the last inequality holds for some C provided α̂ is large enough. Since T = 1
12 α̂r, this is at

most e−( 1
8
−C)α̂r. Combining the bounds on Ξ1,Ξ2,Ξ3 and integrating over α̂, we obtain Eq. (3.6).

To conclude the proof of Eq. (3.1), let

gµr :=
1

4

∑
B: Υ(B)∋o

fµr,B .

The tail on |B| in the bound of Eq. (3.6) on ∥fµr,B∥∞ then implies the required bound on ∥gµr ∥∞,

concluding the proof of Eq. (3.1). ■
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3.2. Weak locality of the integral over ν. Having established Eq. (3.1), and recalling the

definition of ν from Eq. (2.17), we can now substitute the expression for
∫
µη,α̂(

1
2 |η △ ψ)dα̂ in

terms of gµr to find that

νφ,ᾱ(η) ∝ exp
[
− 1

2 ᾱ|η △ φ| −
∑
x∈TN

∑
r

gµr (η↾B(x,r))
]
. (3.7)

We will prove Eq. (3.2) in a similar manner to Eq. (3.1) above, albeit with some added difficulty

due to the interaction between bubbles carried through the functions gµr (representing the integral

over α̂ ∈ (α,∞) of E[12 |η △ ψ|] for ψ ∼ µη,α̂).

Glauber dynamics on bubbles for ν. Given a fixed reference tiling φ of TN , define the following

dynamics (ηt) on tilings of TN :
(i) Attach a rate-1 Poisson clock to every pair (B, f) where B is a candidate for a (φ, η)-bubble

and f is a marked face.

(ii) If B is either a (full) (φ, ηt)-bubble, or can be fully added to ηt (i.e., not intersecting nor

adjacent to another bubble), let {η, η̂} denote the configurations {ηt, ηt △ B} such that B is

a (η̂, φ)-bubble. The dynamics moves either to η or to η̂ with weights wη and wη̂ given by

wη = exp
[
−

∑
x∈TN

∑
r

gµr (η↾B(x,r))
]

, wη̂ = exp
[
− 1

2 ᾱ|B| −
∑
x∈TN

∑
r

gµr (η̂↾B(x,r))
]
.

As usual with Glauber dynamics, ηt is irreducible and reversible w.r.t. νφ,ᾱ.

Proposition 3.5. The dynamics (ηt) is contracting w.r.t. distB; that is, if α is large enough

(independently of φ), then, under the coupling where we synchronize the Poisson clocks from Item (i)

and Uniform([0, 1]) variables used for the move in Item (ii), we have, for all t > 0,

EdistB(ηt, η
′
t) ≤ e−t/2 distB(η0, η

′
0) .

Proof. Throughout this proof, since the domain of gµr (·) is B(o, r) and we will always apply it to

terms of the form η↾B(x,r), with x clear from the context, we write gµr (η) to abbreviate gµr (η↾B(x,r)).

It again suffices to consider η0, η
′
0 that differ on a single bubble B0 (assume by symmetry that η′0

contains B0 and η0 does not) and show that d
dtEdistB(ηt, η

′
t)
∣∣
t=0

≤ −1
2 under the aforementioned

coupling. Now that bubbles have interactions, the possible scenarios are as follows:

(1) [healing ] At rate |B0| we select (B0, f) for some f . This has the effect of reducing distB(η, η
′)

to 0 deterministically as the coupling will select, for both tilings, the same weight (yielding

either η̂, containing B0, or η, without it, in both instances).

(2) [long range infection] We select (B, f) with B∩B0 = ∅. This may increase distB(η, η
′) by 1.

(3) [contact infection] We select (B, f) with B∩B0 ̸= ∅. In that case distB(η, η
′) increases by 1

when we add B to η, and otherwise it is unchanged.

The effect of the healing step (Item 1) is straightforward: it contributes−|B0| to d
dtEdistB(ηt, η

′
t)
∣∣
t=0

.

Let us move to the effect of the long range infections (Item 2). Recall that neither η nor η′ contains B

(as they only differ on the disjoint bubble B0), and define

η̂ := η △ B , η̂′ := η′ △ B

to be the configurations obtained by adding B to η and η′, resp. (That is, here and in what

follows, we will typically use ·′ to denote the presence of B0 and ·̂ to denote the presence of B.)
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The probability to increase the distance by 1 is then at most |p − p′| where p corresponds to the

probability of the move η 7→ η̂ and p′ to the move η′ 7→ η̂′, each given by

p =
wη̂

wη + wη̂
=

exp[−1
2 ᾱ|B| −

∑
x,r g

µ
r (η̂)]

exp[−
∑

x,r g
µ
r (η)] + exp[−1

2 ᾱ|B| −
∑

x,r g
µ
r (η̂)]

,

p′ =
wη̂′

wη′ + wη̂′
=

exp[−1
2 ᾱ|B| −

∑
x,r g

µ
r (η̂′)]

exp[−
∑

x,r g
µ
r (η′)] + exp[−1

2 ᾱ|B| −
∑

x,r g
µ
r (η̂′)]

.

We can rewrite

p =
exp[−

∑
x,r(g

µ
r (η̂)− gµr (η))]

exp[12 ᾱ|B|] + exp[−
∑

x,r(g
µ
r (η̂)− gµr (η))]

, (3.8)

and similarly for p′. Then, as x→ ex

c+ex is 1
4 -Lipschitz for any c > 0 (applied here for c = exp[12 ᾱ|B|]),

|p− p′| ≤ 1

4

∣∣∣∑
x,r

(
gµr (η) + gµr (η̂

′)− gµr (η̂)− gµr (η
′)
)∣∣∣ . (3.9)

The only non-zero terms in the above sum of correspond to pairs (x, r) such that B(x, r) intersects

both Υ(B0) and Υ(B); so, using that ∥gµr ∥∞ ≤ Ce−αr/C , we get

|p− p′| ≤
∑
x,r

B(x,r)∩Υ(B0 )̸=∅
B(x,r)∩Υ(B)̸=∅

Ce−αr/C ≤ C(|B0| ∧ |B|)e−αdist(B,B0)/C (3.10)

for some C > 0. The above bound is useful for all B such that |B| ≤ dist(B,B0) but not for much

larger bubbles. For those we will bound |p − p′| by p + p′ and bound each probability separately.

Going back to the expression for p in Eq. (3.8), we see that∑
x,r

|gµr (η̂)− gµr (η)| ≤
∑
x,r

B(x,r)∩B̸=∅

(
|gµr (η)|+ |gµr (η̂)|

)
,

because the balls which do not intersect B do not contribute to the sum on the left. The right hand

side is bounded by C|B| if α is large enough and hence

p ≤ Ce−
1
2
(ᾱ−C)|B| , (3.11)

and the same holds true for p′. For α (and by extension, also ᾱ) large enough, we can then sum the

contribution to |p− p′| over all B via Eq. (3.10) for |B| ≤ dist(B,B0) and otherwise via Eq. (3.11)

(and its analog for p′). Overall, we obtain that long range infections contribute at most∑
B

Υ(B)∩Υ(B0)=∅

|B|Ce−
1
2
ᾱ|B|−αdist(B,B0)/C ≤ 1

4 |B0| .

It remains to treat the effect of contact infection (Item 3). We in fact already bounded the

probability to add a bubble B in Eq. (3.11), so simply summing this bound concludes the proof. ■

Proof of Theorem 3.1, Eq. (3.2). As in the proof of Eq. (3.1) for µ, let r = 2k with k ≥ 0, and let

Λφr denote Υ(φ↾B(o,r)), i.e., the tiles of φ whose projection to TN intersects B(o, r). Denote by νr
the measure defined as νφ,ᾱ but on tilings of Λφr , that is

νr(ψ) ∝ exp

[
− 1

2
ᾱ|φ △ η| −

∫ ∞

α
µr,η(|η △ ψ|)dα̂

]
,

where µr,η is defined like µr but with φ replaced by η.
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(Again , in case r ≥ N/2, we replace B(o, r) in the definition of νr by the full torus TN , that is,
we take νr = νφ,ᾱ; thus, every B(o, r) that is strictly contained in TN is also simply connected.)

Remark 3.6. As a follow-up to Remark 3.4, in the above definition we can now see the difference

between νr and ν conditioned on η = φ outside of B(o, r): the former uses µr and is therefore

measurable with respect to φ↾B(o,r) while the latter would still involve the original µ.

Constructing the local function. Let us denote by {B ∈ η} for some bubble B the event that B

appears in η as a (complete) bubble, and let

fν1,B(φ↾B(x,1)) :=

∫ ∞

α
ν1(B ∈ ψ)dᾱ ,

fν2r,B(φ↾B(x,2r)) :=

∫ ∞

α

[
ν2r(B ∈ η)− νr(B ∈ η)

]
dᾱ for r = 2k, k ≥ 0 .

As was the case for µ in Eq. (3.5), we have that∫ ∞

α
νφ,ᾱ(

1
2 |φ △ η|)dᾱ =

1

4

∑
x∈TN

∑
(φ, η)-bubble B

Υ(B)∋x

∑
r=2k

for k ≥ 0

fνr,B(φ↾B(x,r)) , (3.12)

and now wish to argue that

∥fν2r,B∥∞ ≤ C exp[−α(r + |B|)/C] . (3.13)

The term corresponding to α|B| in the exponent again follows from a routine Peierls argument,

already given in our proof of the contraction. Indeed, p from Eq. (3.8) is bounded from above as

per Eq. (3.11), so νr(B ∈ η) and ν2r(B ∈ η) are both at most C exp(−1
2(ᾱ−C)|B|). However, unlike

the analogous proof for the measure µ, this time we would not want to integrate over ᾱ just yet.

As before, the dependence in r will be derived from the contracting Glauber dynamics. Let (ηt, η
′
t)

be two coupled instances of the dynamics, with domains B(o, r) and B(o, 2r) respectively, from an

initial configuration which agrees on B(o, r), where every update of η′t that is confined to B(o, r)

uses the joint law as per Proposition 3.3 (whereas updates of η′t in the annulus B(o, 2r) \ B(o, r)

will be sampled via the product measure of ηt and η
′
t on this event). Run the dynamics for time

T = εα r ,

for an ε to be chosen later. We emphasize that in the previous proof we considered time T ≍ α̂r

as opposed to T ≍ αr; this is due to the fact that the long range interactions (which were not

present in the measure µ) decay only according to an α-term, and we cannot afford to analyze the

dynamics at larger scales. Next write, still as in the µ case,

|ν2r(B ∈ η)− νr(B ∈ η)| ≤ Ξ1 + Ξ2 + Ξ3 ,

where

Ξ1 := |νr(B ∈ η)− P(B ∈ ηT )| ,
Ξ2 :=

∣∣ν2r(B ∈ η)− P(B ∈ η′T )
∣∣ ,

Ξ3 :=
∣∣P(B ∈ ηT )− P(B ∈ η′T )

∣∣ .
Again, Proposition 3.5 for t = T gives us

Ξ1 ≤ e−T/2|B(o, r)| ≤ e−( 1
2
εα−o(1))r , Ξ2 ≤ e−T/2|B(o, 2r)| ≤ e−( 1

2
εα−o(1))r,

where the o(1)-term goes to 0 as r → ∞.
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For Ξ3, we must bound the rate of information propagation in the Glauber dynamics. Compared

to the µ case, this has the further complication that we need to consider sequences of bubbles that

do not intersect. We can still enumerate over sequences B1, . . . ,Bm (m ≥ 1) such that the distance

from Bi to
⋃
ℓ≤i Bℓ is reached at a point of Bi−1 for all i. By analogy with the previous case, let

ri be the diameter of Bi and let ji = dist(Bi−1,Bi) (ji = 0 is possible if Bi ∩ Bi−1 ̸= ∅), with the

convention that j1 is the distance to ∂B(o, r) instead. Using Eqs. (3.10) and (3.11) to bound the

rate at which the dynamics can create differences, the union bound now shows that Ξ3 is at most∑
m≥1

∑
{ri,ji}:

∑
ri+ji≥r/2

∑
{si}:si≥ri

∫
0≤t1≤...≤tm≤T∏

i

(
csi0 Csi−1(ji + 1) · Csie−ᾱsi−αji/Ce−(ti−ti−1)Csie

−ᾱsi−αji/C

)
dt1 . . . dtm,

with the extra factor C(ji+1) associated with the choice of a root for Bi given Bi−1 and the bound

on the probability to create a defect with size s at distance j corresponding to an exponential clock

with rate Cs exp(−(12 ᾱ− C)s− αj/C). Using the same bound on the integral as for µ, we get

Ξ3 ≤ e
3
2
TCe−(α/C)r/2 ,

where the last inequality holds for some C provided that ᾱ is large enough. For ε chosen small

enough, this is less than Ce−αr/C since T = εαr.

Combining this with the bound C exp[−1
2(ᾱ− C)|B|] established above, we see that

|ν2r(B ∈ η)− νr(B ∈ η)| ≤ Ce−αr/C− 1
4
(ᾱ−C)|B| ,

which we can integrate in ᾱ (as we kept the ᾱ|B| term until now) to get ∥fνr ∥∞ ≤ Ce−α(r+|B|)/C .

We can now conclude the proof by defining gνr (inheriting the sought L∞ bound from fνr ) as

gνr :=
1

4

∑
B: Υ(B)∋o

fνr,B . ■

4. Geometry of the energy minimizers

By now we have proved a local decomposition for two of the three measures from Proposition 2.5,

but as mentioned in the introduction, the last one is much more complicated and its analysis covers

Sections 4 to 6. According to the outline in Section 1.2.4, the first step is to turn the minimization

of Gh,φ(·) into a local observable through the definition of an appropriate notion of bubble groups.

Recall from Section 2.1 that P111 is the plane of equation x1+x2+x3 = 0 and that Υ111 denotes

the orthogonal projection onto that plane. Recall further that Υ111 establishes a bijection between

φ and P111 and that any face of Z3 projects to a lozenge which we see as covering a black triangular

face and a white one. We will very rarely use the projection on the P001 plane before Section 7 so

for the ease of notation we will drop the index from Υ111.

4.1. Ordering the energy minimizers by their heights. A key observation in this section is

the following result, providing a partial order over minimizers of the energy Gh,φ from Eq. (2.2).

Note that, whereas Gh,φ depends on φ, its set of minimizers is determined solely by h.

Proposition 4.1. For every h, if Ψ
g
h is the set of tilings ψ that minimize the energy Gh,φ from

Eq. (2.2), then Ψ
g
h is closed under taking a maximum (viewing ψ1, ψ2 ∈ Ψ

g
h as height functions on

ΛN w.r.t. P001 in order to define their maximum ψ1∨ψ2) as well as closed under taking a minimum.

In particular, there is a unique maximal element ψ⊔ ∈ Ψ
g
h and a unique minimal element ψ⊓ ∈ Ψ

g
h.
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Proof. Recall that ψ ∈ Ψ
g
h if and only if it maximizes |h ∩ ψ|. It easy to verify that if ψ1, ψ2 are

monotone surfaces then so are ψ1 ∨ ψ2 and ψ1 ∧ ψ2. Take ψ1, ψ2 ∈ Ψ
g
h, and note that

h ∩ ψ1 = (h ∩ (ψ1 ∩ ψ2)) ·∪ (h ∩ ((ψ1 ∧ ψ2) \ ψ2)) ·∪ (h ∩ ((ψ1 ∨ ψ2) \ ψ2)) (4.1)

(where ·∪ denotes a disjoint union), and similarly for h ∩ ψ2. Also,

(h ∩ (ψ1 ∧ ψ2)) = (h ∩ (ψ1 ∩ ψ2)) ·∪ (h ∩ ((ψ1 ∧ ψ2) \ ψ2)) ·∪ (h ∩ ((ψ1 ∧ ψ2) \ ψ1)) , (4.2)

and similarly for h ∩ (ψ1 ∨ ψ2).

Since ψ1 ∈ Ψ
g
h, we have |h ∩ ψ1| ≥ |h ∩ (ψ1 ∧ ψ2)|, so comparing Eqs. (4.1) and (4.2) yields

|h ∩ ((ψ1 ∨ ψ2) \ ψ2)| ≥ |h ∩ ((ψ1 ∧ ψ2) \ ψ1)| . (4.3)

Similarly, |h ∩ ψ1| ≥ |h ∩ (ψ1 ∨ ψ2)|, so Eq. (4.1) and the analog of Eq. (4.2) for h ∩ (ψ1 ∨ ψ2) give

|h ∩ ((ψ1 ∧ ψ2) \ ψ2)| ≥ |h ∩ ((ψ1 ∨ ψ2) \ ψ1)| . (4.4)

Reversing the roles of ψ1, ψ2 we find, in the same manner, that

|h ∩ ((ψ1 ∨ ψ2) \ ψ1)| ≥ |h ∩ ((ψ1 ∧ ψ2) \ ψ2)| , (4.5)

|h ∩ ((ψ1 ∧ ψ2) \ ψ1)| ≥ |h ∩ ((ψ1 ∨ ψ2) \ ψ2)| . (4.6)

Combining Eqs. (4.3) and (4.6) yields |h ∩ ((ψ1 ∨ ψ2) \ ψ2)| = |h ∩ ((ψ1 ∧ ψ2) \ ψ1)|, which implies

(again through Eqs. (4.1) and (4.2)) that |h∩ψ1| = |h∩ (ψ1 ∧ψ2)| and so ψ1 ∧ψ2 ∈ Ψ
g
h. Similarly,

via Eqs. (4.4) and (4.5) we find |h ∩ ψ1| = |h ∩ (ψ1 ∨ ψ2)|, whence ψ1 ∨ ψ2 ∈ Ψ
g
h, as required. ■

Remark 4.2. More generally, the proof above holds if Ψ
g
h is the set of minimizers of ψ 7→

∑
f∈ψ af

for any af ∈ R per plaquette f in Z3 (minimizing Gh,φ corresponds to taking af = −1{f∈h}).

Corollary 4.3. For every h, the set Ψ
g
h of tilings ψ minimizing Gh,φ(ψ) can be obtained as follows:

(1) Let ψ0 = ψ⊓ ∩ ψ⊔. Every ψ ∈ Ψ
g
h will include ψ0.

(2) Viewing ψ⊓ as a tiling, for every connected component Ci (i ≥ 1) of Υ(ψ⊓ \ ψ0), choose ψi
independently out of all lozenge tilings of Ci ⊂ TN that maximize the intersection with Υ(h).

(3) Complete ψ by gluing ψ0 with all the ψi.

The following local representation of the energy Gh,φ will also have a useful role in the proofs.

Lemma 4.4 (Zero range energy). For every h, φ there exists an integer-valued function gh,φ on

plaquettes of Z3 such that the energy function Gh,φ from Eq. (2.2) can be given by

Gh,φ(ψ) =
∑
f∈ψ

gh,φ(f) .

Proof. Define gh,φ(f) as follows:

gh,φ(f) := 1{(Υ−1(Υ(f)↾black)∩φ)⊂h} − 1{f∈h} .

In other words, the first term is obtained by projecting f to a lozenge Υ(f) of P111, looking at the

restriction to the black triangle in Υ(f), then lifting this triangle back to φ and finally checking

whether this is part of the intersection of φ and h. Verifying Eq. (2.2) is then immediate. ■

The following is the analog of Lemma 4.4 for the normalized energy function Gh from Eq. (2.5).

Lemma 4.5. For every h there exists an integer-valued function gh on plaquettes of Z3 such that

the energy function Gh from Eq. (2.5) can be given by

Gh(ψ) =
∑
f∈ψ

gh(f) .
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φ h
B1 B2 ψ⊓

ψ⊔

Figure 11. Non-monotonicity of ψ⊓ △ ψ⊔ under bubble deletion: deleting the (h, φ)-

bubble B1 on the left (where ψ⊔ = ψ⊓) introduces new faces in ψ⊔ \ (ψ⊓ ∪ φ) on the right.

Proof. With Proposition 4.1 in mind, for every face f ∈ ψ, let t be the black portion of Υ(f) and

let f⊔ be the unique face of ψ⊔ ∈ Ψ
g
h such that t ⊂ Υ(f⊔). We set

gh(f) := gh,φ(f)− gh,φ(f
⊔) = 1{f⊔∈h} − 1{f∈h} . (4.7)

This provides a valid decomposition of Gh because, as in the proof of Lemma 4.4, every tiling has

exactly one face projecting on each black triangle. ■

Remark 4.6. As an alternative to the local representation of Gh,φ from Lemma 4.4, one could have

used an equivalent expression for Gh,φ(ψ) = |h ∩ φ| − |h ∩ ψ| in terms of symmetric differences:

Gh,φ(ψ) =
1

2
|φ △ ψ| − |(φ △ ψ) ∩ (φ △ h)| . (4.8)

To verify this equivalent formulation, observe that, for any sets of faces h, φ, ψ,

|h ∩ ψ| = |φ ∩ ψ| − |φ \ h|+ |(φ △ h) ∩ (φ △ ψ)|

=
1

2
(|φ|+ |ψ|)− 1

2
|φ △ ψ| − |φ \ h|+ |(φ △ h) ∩ (φ △ ψ)| . (4.9)

(The first equality expressed h∩ψ as the union of h∩φ∩ψ and h∩(ψ\φ); the latter is (φ △ h)∩(ψ\φ),
the former is (φ∩ ψ) \ ((φ∩ ψ) \ h), i.e., (φ∩ ψ) \ (φ \ h)∪ (φ △ h)∩ (φ \ ψ). The second equality

put |φ∩ψ| as 1
2(|φ|+ |ψ|− |φ △ ψ|).) When |ψ| = |φ| — the case at hand when φ,ψ are both tilings

— the expression 1
2(|φ|+ |ψ|)− |φ \ h| in the right hand of Eq. (4.9) is nothing but |φ∩ h|, whence

comparing it to Eq. (2.2) establishes Eq. (4.8).

4.2. Bubble groups. Corollary 4.3 allows us to elevate the notion of bubbles to bubble groups—

addressing long range interactions between bubbles—which will be used to show the locality of π.

Recall the definition of π from Eq. (2.12), and that the first term in the exponent, Hh, breaks into

a sum over each of the bubbles: Hh =
∑

BH(B) as per Eq. (3.3). An analog of this for the next

two terms in that exponent, G
g
h,φ and logZ∞

µ (h), readily follows from Corollary 4.3, as ψ⊓ ∩ ψ⊔

belongs to every minimizer ψ ∈ Ψ
g
h, and elsewhere the minimization can be solved independently:

Observation 4.7. Given h and φ, consider an equivalence relation on (h, φ)-bubbles where B ∼ B′

if (perhaps not only if) Υ(B) and Υ(B′) intersect a common connected component C of Υ(ψ⊓ △ ψ⊔).

Then, referring to the resulting equivalence class as a bubble group B (consisting of its bubbles Bi
as well as the “connector” components Cj), by Corollary 4.3 one can write G

g
h,φ =

∑
BG

g(Bi) for

an appropriate function Gg(·) on bubble groups, and the same holds for logZ∞
µ (h) and V(h).

In Section 3, we proved the weak locality of µ and ν after evaluating the effect of deleting a single

bubble B as part of a Metropolis/Glauber dynamics. If we are to mimic this for a bubble group B

via Observation 4.7, we can only hope to gain energy from its bubbles (rather than other faces of

the connector components Cj); it is then natural to adopt the minimal choice of having B ∼ B′ if

and only if they intersect a common component of Υ(ψ⊓ △ ψ⊔). Unfortunately, that equivalence

relation is not monotone w.r.t. the deleting of bubble groups (see Fig. 11)—so deleting B1 and

then B2 in the dynamics might be permitted, whereas deleting B2 followed by B1 might not be...
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We emphasize that, unlike the definition of a bubble B, which relied on one fixed equivalence

relation (adjacency of plaquettes in Z3), the difficulty here is that the relation ∼ in the definition

of a bubble group B must be a function of h (taking into account ψ⊓ ∩ ψ⊔); a given collection of

bubbles may, or may not, be categorized as one complete bubble group, depending on their exterior.

We wish to be in a position where, if h is obtained from ĥ by deleting a set of bubbles {Bi}, which
formed one or more complete bubble groups as per the notion of bubble groups in (ĥ, φ), then the

same holds also for the notion of bubble groups in (h, φ). To this end, we must increase the set of

plaquettes used in Observation 4.7 to relate B,B′ beyond the minimal requirement ψ⊓ △ ψ⊔ (and,

by doing so, inevitably increase the entropy of bubble groups and their long range interactions).

One may take (φ △ ψ⊓)∪ (φ △ ψ⊔) (a super-set of ψ⊓ △ ψ⊔), but this fails too (again see Fig. 11).

As it turns out, a closer inspection of (h, φ)-bubbles, accounting for their “positive” and “negative”

portions (“above φ”/“below φ”) will support a notion of bubble groups with the sought properties.

Definition 4.8 (Bubble group). Given h and φ, let H+
φ denote the upper half-space of Z3 delimited

by the faces of φ viewed as a full-plane periodic height function (including the faces of φ itself),

and define the lower half-space H−
φ analogously (again, including the faces of φ itself). Set

G+
h,φ(ψ) := |h ∩ φ| − |h ∩ ψ ∩H+

φ | , G−
h,φ(ψ) := |h ∩ φ| − |h ∩ ψ ∩H−

φ | .

Let ψ±,⊔ and ψ±,⊓ be the unique maximal and minimal elements of the minimizers of G±
h,φ, as in

Proposition 4.1 with the generalized form of Remark 4.2 in mind, and define

δ = δ(h, φ) := ψ+,⊔ △ ψ−,⊓ .

We say B ∼ B′ if both Υ(B) and Υ(B′) intersect a common connected component C of Υ(δ).

A bubble group B = ({Bi}, {Cj}) is a maximal connected component of bubbles Bi w.r.t. this

adjacency relation, joined by every connected component Cj of Υ(δ) intersecting any of them.

This definition is fairly intricate; to establish that it meets our requirements we must verify:

(i) [valid equivalence relation as Observation 4.7 requires] Υ(ψ⊓ △ ψ⊔) ⊆ Υ(δ).

(ii) [entropy is controlled via the energy ]
∑

|Cj | ≤ c0
∑

|Bi| for every bubble group B.

(iii) [monotonicity ] If h is obtained from ĥ by deleting a bubble group B, then Υ(δ) ⊆ Υ(δ̂).

We begin by showing ψ+,⊔ and ψ−,⊓ always sandwich φ,ψ⊓, ψ⊔ between them. Note that in our

notation, ψ1 ⊂ H+
ψ2

as a collection of plaquettes iff ψ1 ≥ ψ2 as a height function on ΛN w.r.t. P001.

Claim 4.9. For every h and φ one has ψ+,⊔ ≥ φ and, symmetrically, ψ−,⊓ ≤ φ.

Proof. Suppose that C is a nonempty (maximal) connected component of faces of ψ+,⊔∩ (Z3 \H+
φ ).

Since ψ+,⊔ and φ induce two lozenge tilings of the region S = Υ(C) with boundary tiles agreeing

with φ, we can swap the two tilings in S: let ψ′ be ψ+,⊔ outside of S and φ inside. By definition,

G+
h,φ does not reward faces in C, so G+

h,φ(ψ
′) ≤ G+

h,φ(ψ
+,⊔). If the set of faces C′ replacing C in ψ′

contains a face of h, then the inequality is strict, contradicting the fact that ψ+,⊔ is a minimizer.

Regardless, ψ′ ̸≤ ψ+,⊔, contradicting that fact that ψ+,⊔ is a maximal element of the minimizers. ■

Claim 4.10. For every h and φ one has ψ+,⊔ ≥ ψ⊔ and, symmetrically, ψ−,⊓ ≤ ψ⊓.

Proof. As in the proof of Claim 4.9, suppose that C is a nonempty (maximal) connected component

of faces of ψ+,⊔ ∩ (Z3 \H+
ψ⊔), and let ψ′ be the tiling obtained by swapping C by C′ corresponding

to the tiling of S = Υ(C) by ψ⊔. Since we know by Claim 4.9 that ψ+,⊔ ≥ φ, we also have C′ ⊂ H+
φ ;

thus, every face of h ∩ ψ′ is rewarded by G+
h,φ, and since it is the maximum (by definition of ψ⊔)

we find that ψ′ is a minimizer of G+
h,φ, a contradiction to ψ+,⊔ being a maximal element. ■
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Combining the preceding two claims, every face of ψ+,⊔ ∩ ψ−,⊓ must also belong to ψ⊓, ψ⊔, φ

(e.g., it belongs to H+
φ ∩H−

φ = φ, and one argues similarly for ψ⊔ ≥ ψ⊓), giving Item (i) as follows:

Corollary 4.11. For every h and φ one has Υ(ψ⊓ △ ψ⊔) ⊆ Υ(ψ+,⊔ △ ψ−,⊓).

(In fact, we established the stronger inequality Υ ((φ △ ψ⊓) ∪ (φ △ ψ⊔)) ⊆ Υ(ψ+,⊔ △ ψ−,⊓).)

The following simple claim will readily establish Item (ii).

Claim 4.12. For every bubble group B = ({Bi}, {Cj}) we have |φ △ ψ+,⊔| ≤ 2
∑

i |Bi|, and the

same bound holds (symmetrically) for |φ △ ψ−,⊓|.

Proof. This will follow from the local representation of Gh,φ. Take h
+ = h ∩H+

φ , and observe that

G+
h,φ(ψ) = Gh+,φ(ψ). Since G+

h,φ(ψ
+,⊔) ≤ G+

h,φ(φ) = 0, we read from Eq. (4.8) (applied to Gh+,φ)

that |φ △ ψ+,⊔| ≤ 2|φ △ h| = 2
∑

i |Bi|. (Alternatively, one can deduce this from Lemma 4.4.) ■

It remains to establish the monotonicity of the bubble groups.

Claim 4.13. For every h, ĥ and φ, if h is obtained by deleting an (ĥ, φ)-bubble group B from ĥ

and we denote ψ·(ĥ) by ψ̂·, then we have ψ̂+,⊔ ≥ ψ+,⊔ and, symmetrically, ψ̂−,⊓ ≤ ψ−,⊓.

Proof. Throughout this proof, write ψ+ = ψ+,⊔ and ψ̂+ = ψ̂+,⊔ for brevity, and let h+ = h ∩ H+
φ

and ĥ+ = ĥ ∩ H+
φ . With the aim of showing ψ̂+ ≥ ψ+, suppose that C is a nonempty (maximal)

connected component of ψ̂+ ∩ (Z3 \ H+
ψ+), and let C′ be the tiling induced by ψ+ on Υ(C). Note

that |C ∩h+| ≤ |C′∩h+|, or else we could interchange C, C′ in ψ+ and get a contradiction to it being

a minimizer of Gh+,φ (maximizing its overlap with h+). For ĥ+, the analogous inequality is strict:

|C′ ∩ ĥ+| < |C ∩ ĥ+| , (4.10)

since, by construction of C, interchanging C, C′ in ψ̂+ would give a minimizer ψ′ satisfying ψ′ ̸≤ ψ̂+,

a contradiction to the fact that ψ̂+ is a maximal element in the corresponding set of minimizers.

Next, consider h vs. ĥ, let {Bi} be the bubbles of the bubble group B they differ by, and by a

slight abuse of notation, use B ∩ φ to denote (
⋃
i Bi) ∩ φ and B \ φ to denote (

⋃
i Bi) \ φ. Then

|C ∩ h+| = |C ∩ ĥ+| − |C ∩ (B \ φ)|+ |C ∩ (B ∩ φ)| , (4.11)

simply because the face set B \ φ in ĥ+ is replaced by B ∩ φ in h. The same identity holds for C′,

but now it can be improved: since ψ+ > ψ̂+ ≥ φ on the region corresponding to its face set C′, we

see that C′ ∩ (B ∩ φ) = ∅, whence

|C′ ∩ h+| = |C′ ∩ ĥ+| − |C′ ∩ (B \ φ)| .

Using in Eq. (4.10) on the right-hand of the last identity, and then plugging in Eq. (4.11), we get

|C ∩ h+| − |C′ ∩ h+| > −|C ∩ (B \ φ)|+ |C′ ∩ (B \ φ)|+ |C ∩ (B ∩ φ)| ≥ −|C ∩ (B \ φ)| . (4.12)

The above applies simultaneously for all components C as above, so for ease of notation, henceforth

let C be their union (no longer assumed to be connected).

Let ψ0 be the tiling obtained by interchanging C, C′ in ψ+. Let ψ1 be obtained from ψ0 by

deleting every (φ,ψ0)-bubble B such that Υ(B) intersects one of the Υ(Bi)’s, replacing it by B∩φ.
Note that a face f ∈ ψ0 \ ψ1 cannot be in h+. Indeed, by construction, ψ0 ∈ H−

ψ̂+
but it also must

be connected by a path P in ψ0 \φ to at least one face f ′ with Υ(f ′) in some Υ(Bi) (it is part of a

(φ,ψ0)-bubble that was deleted, and cannot be a part of φ). As ψ0 ⊂ ψ+∪ ψ̂+ ⊂ H+
φ by Claim 4.9,

it follows that ψ̂+ > φ along Υ(P ), so Υ(P ) ⊆ Υ(ψ̂+,⊔ △ ψ̂−,⊓) by Claims 4.9 and 4.10. By our

definition of the bubble group, this means that Υ(f) ∈ δ ∪
⋃
Υ(Bi) for δ as per Definition 4.8
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w.r.t. ĥ; hence, Υ(f) cannot be in the projection of any other (ĥ, φ) bubble that was not deleted,

so f /∈ h+. Also, any face f ∈ ψ1 \ψ0 has to project to Υ(B) (as we just established that Υ(ψ0 \ψ1)

is a subset of δ ∪
⋃
Υ(Bi)), where by construction h+ = φ so any such f is in h+. Thus,

|(ψ1 \ ψ0) ∩ h+| − |(ψ0 \ ψ1) ∩ h+| = |ψ1 \ ψ0| = |ψ0 \ ψ1| ≥ |C \ φ| ≥ |C ∩ (B \ φ)|. (4.13)

Combining Eqs. (4.12) and (4.13), we see that |h+ ∩ ψ1| > |h+ ∩ ψ+| which is a contradiction with

the fact that ψ+ was a minimizer. ■

We now infer Item (iii), and its importance for the local consistency of bubble groups—if ĥ has

two bubble groups B ̸= B′ and we delete B, this should not alter (neither expand nor shatter) B′:

Corollary 4.14. In the setting of Claim 4.13 one has Υ(ψ⊓ △ ψ⊔) ⊆ Υ(ψ̂+,⊔ △ ψ̂−,⊓). As a

consequence of this, if B′ is a different (full) bubble group in ĥ, then it remains one in h.

Proof. The fact that Υ(ψ⊓ △ ψ⊔) ⊆ Υ(ψ̂+,⊔ △ ψ̂−,⊓) follows from Claim 4.13 in the same manner

that we concluded Corollary 4.11 from its preceding claims, as ψ̂+,⊔, ψ̂−,⊓ sandwich ψ+,⊔, ψ−,⊓.

This monotonicity implies, by Definition 4.8, thatB′ is either a single bubble group or is shattered

into a collection of bubble groups in h (deleting B cannot cause B′ to reach out to a new bubble).

We now argue that only the former can happen. If we look at the boundary of B′, there we had

ψ̂+,⊔ = ψ̂−,⊓, and therefore also ψ+,⊔ = ψ−,⊓ by the last claim. Furthermore on any face with f

with Υ(f) ∈ Υ(B′
i) we must have h± = ĥ±. Overall the ψ̂± and ψ± must be solutions of the same

optimization problem with the same boundary condition, which concludes the proof. ■

We end this section by defining analogs of Hh, Gh,φ, V for a bubble group B = ({Bi}, {Cj}). Let

Υ(B) := Υ
(⋃

{B ∈ B}
)
∪
⋃

{Cj ∈ B}

and let H(B), Gg(B), Z∞
µ (B),V(B) be the respective values of Hh, G

g
h,φ(h), Z

∞
µ (h),V(h) restricted

to the region Υ(B) in the triangular lattice TN . E.g., H(B)=
∑

B∈BH(B); Gg(B) is the minimum

of Gh,φ over tilings ψ of this region; and Z∞
µ (Bi) is the number of tilings ψ achieving this minimum.

With these definitions, if {Bi(h, φ)} are the bubble groups of h, φ, then

exp
[
−β̂Hh+αG

g
h,φ−logZ∞

µ (h)−λV(h)
]
=

∏
i

exp
[
−β̂H(Bi)+αG

g(Bi)−logZ∞
µ (Bi)−λV(Bi)

]
,

(4.14)

the factorization per bubble group as described in Observation 4.7.

Note that for every bubble group B = ({Bi}, {Cj}) we have |Υ(B)| ≤ (
∑

i |Bi|) + |ψ+,⊔ △ ψ−,⊓|
as per Definition 4.8; thus, Claim 4.12 shows that

|Υ(B)| ≤ 5
∑
i

|Bi| . (4.15)

The above definition of V(B), in the special case of the pinning potential V1 from Eq. (1.4),

corresponds to |Υ(ψ⊔\h)∩Υ(B)|. In that case, take ψ0 ≡ ψ⊔ and h0 ≡ h on Υ(B) and ψ0 ≡ h0 ≡ φ

elsewhere, to arrive at the following equivalent expression which will be useful later on:

V1(B) = |Υ(ψ⊔ \ h) ∩Υ(B)| = |ψ0| − |h0 ∩ ψ0| = (|h0 ∩ φ| − |h0 ∩ ψ0|) + (|φ| − |h0 ∩ φ|)

= G
g
h0,φ

+ |φ \ h0| = Gg(B) +
∑
B∈B

|φ ∩ B| . (4.16)
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5. Deterministic approximation of height functions via tilings

5.1. Algorithm for approximating a height function inside a single bubble. We will use a

deterministic algorithm to establish how one can approximate a given height function h by a tiling.

Before providing the details of the construction, let us briefly discuss the overall strategy and some

of the complications that make the full implementation of our approach fairly involved.

A very naive approach to turn an arbitrary function into a monotone one is to consider the

running minimum (or some variant thereof). This does not seem precise enough for our purpose

since it is too easy for a small local defect to have a very large influence in such an approximation

algorithm; it is also challenging to control the 3D geometry through the run of the algorithm.

Instead, we will describe our functions as a sequence of level lines, arbitrary curves touching the

boundary together with loops for SOS and simple random walk paths for tilings (assume to help

with the visualization that Z2 is drawn with a 45 degree angle so that a tiling level line takes only

SE and NE steps). Running the approximation greedily, level by level, then turns the problem into

a 2D problem which is substantially more tractable.

The simplest example is to approximate a single level line connecting two boundary points of

a simply connected domain. A natural approximation algorithm is the following straightforward

greedy process starting from the W endpoint:

• if the SOS level line Γh does a SE or NE step, then copy it to the output tiling level line Γψ;

• if Γh does a SW or NW step, wait until it re-enters a point accessible from your current

position (i.e., a W-facing quarter plane) and let Γψ shortcut directly to that point;

• repeat this procedure until reaching the endpoint of Γh.

A convenient feature of this algorithm is that it is quite easy to enumerate over the potential inputs

Γh given the output Γψ since the missing pieces are nothing but an ordered collection of excursions.

Also, it turns out that this algorithm will respect the ordering of level lines, so dealing with a single

level will be essentially enough to treat the full (multi level) configuration. However, as presented,

it is easy to create an example (see Fig. 12) where Γψ does not end at the same point as Γψ which

would create issues when trying to fit the approximation ψ associated to a given bubble into the

larger tiling φ, hence one must include an extra condition to make sure that the “correct” endpoint

always stays accessible as we draw Γψ (see the definition of Γreg
h in the proof).

In a simply connected domain, this procedure is relatively simple to analyze. However, the

presence of holes in the domain is a major difficulty (and is truly needed for our application, which

bundles together disconnected bubbles, potentially distant from one another, through the bubble

group criterion). Indeed, suppose that Γh goes through two holes; then Γψ will have three separate

paths to process, which need to be used in a fixed order E to W. However, there is actually no

requirement for Γh to go through the holes in the same order (see Fig. 13 for examples of “bad”

Γh configurations). In such situations, the behavior of the greedy algorithm becomes much more

complicated, and a large portion of the proof is dedicated to the control of these cases.

Finally, we will need to take into account the possible presence of loops. Those that do not

affect the boundary conditions can actually be safely ignored; however, it is possible for a loop to

surround a hole, thus modifying the boundary conditions on that hole. Unfortunately, it turns out

that there are examples where even very small loops can create boundary conditions so constrained

that they can only be satisfied by a single tiling. To deal with such scenarios, one must be willing

to sacrifice a part of the boundary condition constraint (which does creates compatibility issues

between the approximation provided for different bubbles, but in a manageable way), choosing

which of the loops to preserve and which to ignore.
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Proposition 5.1. Let S be a connected set of s faces in the triangular lattice T, tiled by some

tiling φ, which also tiles its interior holes. Associate to φ a height function1 (on Υ001(S)) by

pinning an arbitrary face of ∂S to height 0, and consider the set H of SOS height functions h

on S which agree with φ on ∂S and have h ∩ φ = ∅. For some absolute constant C > 0 and for

every ε > 0 there exists a subset H′ ⊂ H such that |H′| ≤ exp[Cε1/3s] and the following holds

for all h ∈ H \ H′: either |h| ≥ |φ| + εs, or there exists a tiling ψ of a superset S′ of S with

|ψ ∩ h| − |φ ∩ h| ≥ ε1/3s and |S′ \ S| ≤ ε2/3s.

Remark 5.2. The powers of ε in the proposition are non-optimal, but apart from that the statement

is almost optimal. It is necessary to consider a slight enlargement S′ of the domain since one can

construct domains S which admit only a single tiling ϕ but where there is a positive entropy for SOS

configurations h with ϕ∩ h = ∅ and |h| − |φ| = o(s) (consider an hexagon with a slit corresponding

a a completely filled lowest column). It is also possible to create sets S with families of at least

ecε| log ε| many bubbles with |h|−|φ| ≤ εs for which the best approximations still satisfy |h∩ψ| ≤ Cε.

Proof. Fix an SOS height function h and suppose |h| ≤ |φ|+εs. Our proof will provide an algorithm

for constructing the approximation ψ, which will describe the set H′ as it goes along.

For this proof, we consider the following coordinates and directions on P001. We say that the

direction x1 is South-West (SW) while x2 is South-East (SE) and the other directions (NE,NW) are

derived from them. Recall that for every k ∈ Z, the height-k level set is the collection of dual edges

xy such that h(x) < k and h(y) ≥ k. One can use the NE splitting rule to turn it into a collection

of self avoiding loops and lines (starting and ending at the boundary, where the boundary points

can be either external or internal).

In the main body of the proof, we will first assume that there are no loops in this decomposition

and in that case the superset S′ is just S; a series of claims (Claims 5.3 to 5.17) will be devoted to

the analysis of this case. The general case will be treated at the end (see the explanation before

Fig. 16 and the ensuing Claims 5.18 to 5.20).

Note that a level line in a tiling is described as a walk on Z2 using only NE and SE moves

while a level line of an SOS function is a self-avoiding path allowed to use all 4 directions. Note

however that since S admits a tiling φ (including its holes), the ending point of any level line in h

is accessible using NE and SE moves from its starting point. Let D be the simply connected closure

of S (adding said holes), and extend h to be an SOS configuration on D via the heights of the

tiling φ on D \ S, thereby also extending the level lines so that all their boundary points become

external. For each level line Γh of h, parameterize its edges as Γh(t).

Consider the following approximation algorithm. Our goal will be to control the number of initial

height functions h where it behaves “badly” and only results in a resulting ψ with |h ∩ ψ| < ε1/3s.

Let ψmax and ψmin be the maximal and minimal monotone surfaces compatible with the boundary

condition of S (i.e., the maximal and minimal tilings whose heights agree with φ outside of S),

which are well-defined since (even in a non-simply connected setting) monotonicity is closed under

taking a maximum or minimum. We perform two “preprocessing” steps: first, we replace h by

(h ∧ ψmax) ∨ ψmin; second, we turn all level sets into level lines and loops using the NE splitting

rule and then erase all the loops. Denote the resulting “regularized” SOS function by hreg and

its height-k level lines by Γreg
h,k (k ∈ Z). The algorithm will process the Γreg

h,k one by one, sorted by

heights from the highest to the lowest. Define the “West facing” and “East facing” quarter-planes

QW(x) = x+ {u1 < 0, u2 > 0} , QE(x) = x+ {u1 > 0, u2 < 0} ,
1It is possible to associate a height function to φ since it tiles the holes of S.
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Γψ

Γh

Figure 12. Illustration of the algorithm to approximate the height function h by a tiling ψ.

There are no holes in this example, so the quarter plane QW is the right hand side of the

domain between the level lines Γmin and Γmax that bound Γh. The wavy line marks Γreg
h \Γh.

a

b
c

d

Figure 13. Illustration of the effect of holes (in green) on the level lines: the preprocessing

replaces the contour from a to b by a line, plus a loop around c, d that is deleted from Γreg
h .

and do as follows (we describe the procedure for a single k, suppressing its index for brevity):

Step 0: Set t0 = 0 and i = 1.

Step 1: Look along Γreg
h until the start of the first SW or NW step. Call that time t′i and let

ai = Γreg
h (t′i). We let Γψ[0, t

′
i] = Γreg

h [0, t′i].

Step 2: Let ti be the first time Γreg
h re-enters QE(ai) and bi = Γreg

h (ti). Add to Γψ the line [ai, bi].

Step 3: Increment i by 1 and return to Step 1, until exhausting Γreg
h .

(See Figs. 12 and 13 illustrating the algorithm.) We emphasize that while running Steps 1 to 3, we

ignore the underlying domain. We have three elements to prove: (1) the algorithm above produces

a tiling; (2) this tiling respects the boundary condition; and (3) we can appropriately bound the

number of functions h where the algorithm fails to construct a tiling that has a large overlap with h.

Let ⪰ be the partial order on level lines defined as follows. By construction D is a simply

connected domain and a level line Γ is a self-avoiding curve connecting two points of ∂D; therefore,

Γ divides D into two connected components. Since the boundary conditions on D are compatible

with a tiling (namely, φ), the two boundary points u, v of Γ cannot have u2 − u1 = v2 − v1 (a level

line of the tiling φ increments x2−x1 deterministically by 1 in each step going from West to East),

so we orient the path from West to East and denote the connected component to the left/right of

Γ as the North/South ones. We identify Γ with the indicator function of the North component

and we let ⪰ be inherited from the usual partial order on functions. Notice that, thanks to this

identification, one can also define the maximum and minimum between level lines by applying the

operation on the associated functions but in general doing so may create loops. Finally, if Γ, Γ′ are

the level lines of two tilings with the same boundary points, then they can be viewed as functions of

x2−x1, whence the relation Γ ⪰ Γ′ is equivalent to Γ ≤ Γ′ for the usual partial order on functions.
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Claim 5.3. In each level line Γ of ψmax, no connected component of Γ ∩ S̊ (where S̊ = S \ ∂S)
has a NE step immediately followed by a SE one, and similarly, no level line Γ of ψmin admits a

SE step immediately followed by a NE step. Finally, if Γmax and Γmin are level lines bounding the

same level, then the set of faces of S between Γmax and Γmin is simply connected.

Proof. Fix Γ a level line of ψmax, assume by contradiction that there is a NE step followed by a SE

step above a face f ∈ S, and let Γ′ be the lowest level line using such steps above f . Flipping these

two steps in Γ′ (to SE followed by NE) changes only the height at f—increasing it by 1—thus still

satisfies the boundary condition but contradicts the maximality of ψmax. Finally the last statement

follows from the fact that the set of monotone functions with given boundary condition is connected

by flips as above. Indeed fix ψ ≥ ψ′ two tilings with the same (possibly non-simply connected)

boundary condition. Viewing them both as tilings, let v ∈ T such that ψ111(v) > ψ′
111(v), move

along the directions of the projection of the standard basis without crossing a tile of ψ until we

are stuck at a point v′. Along the path, it is easy to check that ψ − ψ′ is non-decreasing so

ψ111(v
′) > ψ′

111(v
′) and v′ is not in a hole while by construction a flip is possible at the point v′. ■

Claim 5.4. Let h be an SOS height function and hreg := (h∧ψmax)∨ψmin. Let Γh,Γ
reg
h ,Γmax,Γmin

be the level lines associated to some level. Then Γreg
h = (Γh∧Γmax)∨Γmin. In particular, Γreg

h stays

in the closed domain between Γmax and Γmin and its intersection with S̊ is the same as Γh.

Proof. For this proof, we associate a level line with a {0, 1} value function as above and we denote

by Γ
(ℓ)
h the level line separating levels ℓ and ℓ + 1, noting that for any face v and any level ℓ ∈ Z,

we have Γh(v) = 1{h(v)>ℓ}. With this notation, we see that

1{(h∧ψmax)∨ψmin>ℓ} = 1{(h∧ψmax)>ℓ} ∨ 1{ψmin>ℓ}

= (1{h≥ℓ} ∧ 1{ψmax≥ℓ}) ∨ 1{ψmin>ℓ} ,

as desired. ■

Claim 5.5. Let a be a point of Γmin preceded by a SE step and followed by a NE step. The SE

and SW oriented half line starting from a + εe↑ are crossed an odd number of time (in particular

at least once) by Γh. The symmetric statement holds for Γmax.

Proof. By Claim 5.3, a must be a boundary point and, since a is on Γmin, we have Γmin(a+εe↑) = 1

for all ε ∈ (0, 1). By definition, Γh and Γmin have the same boundary condition when they are

both viewed as functions from D to {0, 1} so this must also be the case for Γh. On the other

hand, since a is followed by a NE step, the half line starting from a+ εe↑ oriented SW crosses Γmin

once so the boundary condition at the first point where it intersects ∂D (call it bε) must be a 0.

Since Γh(a+ εe↑) = 1 but Γh(b
ε) = 0, Γh must cross the line from a+ εe↑ to bε an odd number of

times. ■

We say that t is an agreement time for Γreg
h if at that time the algorithm is in Step 1 or if it is

at one of the endpoints of t′i, ti.

Claim 5.6. If s ≤ t are two agreement times for Γreg
h , then QE(Γ

reg
h (s)) ⊂ QE(Γ

reg
h (t)) and Γreg

h [0, t]

does not intersect QE(Γ
reg
h (t)).

Proof. By definition of agreement times there exists s̃, t̃ such that Γreg
h (s) = Γψ(s̃) and Γreg

h (t) =

Γψ(t̃) and by construction one must have s̃ ≤ t̃. Since Γψ only moves in the SE and NE directions,

we must have QE(Γ
reg
h (s)) ⊂ QE(Γ

reg
h (t)). Combined with the fact that Γreg

h is self avoiding, we see
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that Γreg
h (s) is outside of the closure of QE(Γ

reg
h (t)) at any agreement time s < t. Any other time s

must be part of an excursion (t′i, ti) but then Γreg
h (s) /∈ QE(Γ

reg
h (ti)) ⊃ QE(Γ

reg
h (t)). ■

Claim 5.7. The image of h by the algorithm is a monotone function.

Proof. The function hreg is always well defined so we only need to consider the algorithm starting

from it. Fix two level lines Γreg
h ,Γ

reg
h assuming w.l.o.g. that Γreg

h ⪰ Γ
reg
h and let Γψ,Γψ be their

images by the algorithm. We need to prove that they do not intersect.

We assume by contradiction that Γψ ⪰̸ Γψ and let u be the first time where they agree but Γψ
does a SE step while Γψ does a NE step. Since Γreg

h ⪰ Γ
reg
h , it cannot be the case that both Γ

reg
h

and Γreg
h agree with Γψ,Γψ after immediately after u.

If u is in an excursion in both, writing their indexes i, j respectively, by the claim Γ
reg
h [0, t′i]

does not enter QE(Γ
reg
h (t′i)) and Γreg

h [0, t′j ] does not enter QE(Γ
reg
h (t′j)) and therefore by construc-

tion Γ
reg
h [0, ti] connects ∂D to the SE oriented part of QE(u) while Γreg

h connects ∂D to the NE

oriented part, both staying in D \ QE(u) (in fact here, we can even replace D by a large enough

ball around u, extending the level lines periodically if necessary). Combining this observation

with the fact that Γ
reg
h ⪰ Γreg

h , going along ∂(D \ QE(u)) in positive order, one must encounter

Γreg
h (0),Γ

reg
h (0),Γreg

h (tj),Γ
reg
h (ti) in that order but this is a contradiction with the assumption that

they do not intersect. If u is in an excursion only say in Γ
reg
h , we apply the same argument using

Γ
reg
h [0, ti] and Γreg

h up to the end of the SE step after u. ■

Claim 5.8. The image of h by the algorithm satisfies the boundary condition.

Proof. Fix a level line Γreg
h and let Γψ, Γmax, Γmin be the associated level line for the image by the

algorithm and the maximal and minimal tilings. Let us show that Γmax ⪰ Γψ ⪰ Γmin.

Focusing on the first inequality, let u be the first time where they agree but Γψ does a SE step

while Γmax does a NE step. Since Γmax is a tiling level line, the half line u + {(0, u2), u2 > 0} is

below Γmax but since Γψ does a SE step from u there has to be at least one point of Γreg
h on that

line. This is a contradiction with the fact that Γreg
h stays in the domain between Γmax and Γmin.

Since the order holds for every level, we see that ψmax ≥ ψ ≥ ψmin and ψ must satisfy the

boundary condition. ■

We now turn to the definition of H′ and the combinatorial bound on its size. The idea is of

course that H′ will contain the functions where the above algorithm performs “badly.” Before

doing the actual enumeration, we still need to collect a few geometric fact. Fix Γh a level line and

assume for now that it has no loop. As above, let Γreg
h ,Γmax,Γmin,Γψ be the associated level lines

in hreg, ψmin, ψmax, and ψ. We divide the steps of Γh into three types:

• (Excursion from Γreg
h ) Any connected component of Γh \ Γreg

h .

• (Agreement step) Any step in Γh ∩ Γreg
h ∩ Γψ.

• (Excursion from Γψ) For each connected component of Γreg
h \ Γψ, we say that all its inter-

section with Γh forms one excursion from Γψ.

We also note that any step in Γreg
h \ Γh must be part of either Γmax or Γmin. In the algorithm,

excursion from Γreg
h are created by the preprocessing, agreement steps correspond to Step 1 and

excursions from Γψ to Step 2, except that part of the excursion of Γreg
h might not be counted.

Finally we let d be the number of defects on Γh and T be the length of Γψ.

Since an excursion from Γreg
h must start and end either on Γmin or Γmax, we can say that it is

forward if its starting point is West of its ending point and backward otherwise.
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Figure 14. The two types of excursions as per Claim 5.12 (left: type (i), right: type (ii)).

In both cases, we have written a = Γmin(τ1), b = Γmin(τ
+
1 ), c = Γmin(τ

−
2 ), d = Γmin(τ2).

Claim 5.9. The length of Γreg
h is smaller than the length of Γh.

Proof. Since the starting and ending points of Γh, Γ
reg
h and Γψ are the same by assumption, |Γh| =

|Γψ|+ 2d. We conclude because, by construction, Γreg
h \ Γh can only contain edge appearing either

in Γmax or Γmin and in particular only SE and NE steps. ■

Claim 5.10. For any t, t′ such that Γreg
h (t) ∈ Γmin and Γreg

h (t′) ∈ Γmin, if the first coordinate of

Γreg
h (t) is smaller than the one of Γreg

h (t′), i.e., if Γreg
h (t) is West of Γreg

h (t′), then t < t′. The

analogous statement for Γmax also holds.

Proof. By Claim 5.3, Γreg
h stays in the domain between Γmax and Γmin. Also by assumption, both

Γmax and Γmin are tiling level lines so starting at the West-most point, following Γmin up to its

endpoint and then following Γmax backward is a full turn around that domain. If we had t′ < t, then

along that turn we would meet the points Γreg
h (0),Γreg

h (t),Γreg
h (t′),Γreg

h (tend) in that order which is

a contradiction to the fact that Γreg
h [0, t′] cannot intersect Γreg

h [t′, tend]. ■

We note also note that excursions must be nested in the following sense.

Claim 5.11. Fix two excursions above Γreg
h and call a, b their starting points and c, d their ending

points. One of the arcs from a to c or from b to d along Γmin contains the other one.

Proof. Suppose that along Γmin the points are ordered as a, b, d, c. By Claim 5.10 there are paths

in Γreg
h connecting the points in that order. The excursions must stay in the domain bounded by

Γreg
h and the top of ∂D, but given their order it means that they must intersect. ■

We say that an excursion is maximal if it is not nested inside any other. We note that any

vertical line crossed by a non-maximal excursion must be crossed at least once also by a maximal

one so the total length of all non-maximal excursion is at most 2d.

Claim 5.12. Fix a forward excursion away from Γreg
h which we call Γh[t1, t2]. We assume that it

is above Γreg
h and set τ1, τ2 such that Γh(t1) = Γmin(τ1) and Γh(t2) = Γmin(τ2). If Γmin(τ1) and

Γmin(τ2) belong to different components of Γmin ∩ S̊, then there exists unique τ+1 and τ−2 such that

Γmin(τ1, τ
+
1 ) and Γmin(τ

−
2 , τ2) do not intersect Γh but Γmin(τ

+
1 ) is the endpoint of a step from Γh

starting above Γmin and Γmin(τ
−
2 ) is the starting point of a step going above Γmin.

Furthermore, the four points Γmin(τ1),Γmin(τ
+
1 ),Γmin(τ

−
2 ),Γmin(τ2) must be visited by Γh in one

of the following three orders:

• Γmin(τ1) → Γmin(τ2) → Γmin(τ
−
2 ) → Γmin(τ

+
1 ),

• Γmin(τ
−
2 ) → Γmin(τ

+
1 ) → Γmin(τ1) → Γmin(τ2),

• Γmin(τ
+
1 ) → Γmin(τ1) → Γmin(τ2) → Γmin(τ

−
2 ).
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Proof. For the first part, note that at the point Γh(t1) = Γmin(τ2), the function associated with Γh
jumps from 0 to 1. On the other hand, at the endpoint of its component of Γmin ∩ S̊, the boundary
condition are given by Γh = 1 by Claim 5.11, therefore Γh must have at least one crossing between

that boundary and Γmin(τ1) and we just take the first one. The construction of τ−2 is analogous.

For the second part, first note that Γmin(τ1) must be immediately followed by Γmin(τ2) since

this is exactly the excursion Γh[t1, t2]. Also, if Γmin(τ2) was immediately followed by Γmin(τ
+
1 ) (say

reached at a time t3, then the concatenation of Γmin[τ
+
1 , τ1] with Γh[t1, t3] must surround either

Γmin(τ
−
2 ) or the start of the edge into Γh(t1) so this configuration is forbidden. Similarly, Γmin(τ

−
2 )

cannot be immediately followed by Γmin(τ1). A simple enumeration shows that the only remaining

orders are given above. ■

In the following, we will say that an excursion has type (i) if it is in one of the first two cases

and type (ii) if it is in the third case.

Claim 5.13. Suppose Γh[t1, t2] is a type (i) excursion above Γreg
h . If the order of the visits is

Γmin(τ1) → Γmin(τ2) → Γmin(τ
−
2 ) → Γmin(τ

+
1 ) then all NE/SW-oriented lines (0, u2) + Re1 with

(Γmin(τ
+
1 ))2 ≤ u2 ≤ (Γmin(τ2))2 and all NW/SE-oriented lines (u1, 0) + Re2 with (Γmin(τ

+
1 ))1 ≤

u1 ≤ (Γmin(τ2))1 are crossed at least twice by Γh.

For the other order, the same holds for the lines (0, u2)+Re1 with (Γmin(τ1))2 ≤ u2 ≤ (Γmin(τ
−
2 ))2

and (u1, 0) + Re2 with (Γmin(τ1))2 ≤ u2 ≤ (Γmin(τ
+
2 ))2.

Proof. We just observe that the path Γh[t1, t2] must contain at least one crossing of each of these

lines but so does the path from Γmin(τ2) to Γmin(τ
+
1 ). ■

In the first case, we will write for future reference ℓ = (Γmin(τ2))1 − (Γmin(τ
+
1 ))1 and ℓ′ =

(Γmin(τ2))2 − (Γmin(τ
+
1 ))2 and similarly for the second one.

For a forward excursion of type (ii), let t1, t2, t3, t4 be the times of the visits to Γmin(τ
+
1 ), Γmin(τ1),

Γmin(τ2), Γmin(τ
−
2 ) respectively. Consider a SE-most point of Γh[0, t2] and let ℓ be the difference of

its second coordinate with Γmin(τ1) or the difference of second coordinate with Γmin(τ2) whichever

is smaller. Similarly let ℓ′ be difference of the first coordinate between Γmin(τ2) and the NW-most

point of Γh[t3, tend] Γmin(τ1).

Claim 5.14. Any line (u1, 0)+Re2 or (0, u2)+Re1 with Γmin(τ2)−ℓ′ ≤ u1 ≤ Γmin(τ2) or Γmin(τ1) ≤
u2 ≤ Γmin(τ1) + ℓ must be crossed twice by Γh but Γh does not enter the quarter space {u1 <

Γmin(τ2)− ℓ′, u2 > Γmin(τ1) + ℓ}.

Proof. The first part is simply that one crossing comes from Γh[t2, t4] and the other one from

Γh[0, t2] or Γh[t3, tend]. For the second part, combining Claim 5.11 with the assumption on the

order of the visits, we see that Γmin cannot have any point where a SE step is followed by a NE one

in this quarter plane. This immediately shows that Γmin goes above the quarter plane. Also since

Γh[t2] and Γh[t3] are the start and end of an excursion, there is a path Γreg
h [s2, s3] connecting them

and not intersecting Γh[t2, t3]. Suppose by contradiction that Γreg
h [s2, s3] is in the quarter plane at

some time s, it cannot do so at a time where it agrees with Γh because by construction Γh[0, t2]

and Γh[t3, tend] stay outside of it and γh[t2, t3] is an excursion. As mentioned above, Γmin is above

the quarter plane so the only solution is that Γreg
h must agree with Γmax at the time s. Consider the

vertical path down from Γreg
h (s), it does not intersect Γh since again it stays in the quarter plane

and Γh[t2, t3] cannot cross Γmax because that would require in particular to cross Γreg
h . Therefore

Γh must be equal to 0 on both sides of Γreg
h but this a contradiction with Claim 5.4. ■
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Claim 5.15. Let Γh[t1, t2] be a forward excursion away from Γreg
h . Assume it is above Γreg

h and set

τ1, τ2 such that Γh(t1) = Γmin(τ1) and Γh(t2) = Γmin(τ2). If Γh(t1, t2) intersects the quarter plane

{u1 ≥ (Γh(t2))1, u2 ≥ (Γh(t1))1}, then there exist τ+1 , τ
−
1 as in Claim 5.12, the order of visits to

Γmin(τi) is as per Claim 5.12, and either Claim 5.13 or Claim 5.14 applies depending on said order.

Proof. By assumption there is at least one crossing of Γmin(τ1, τ2) so we can define τ+1 and τ−2 as the

first and last crossing, so the proof follows exactly as for excursions intersecting two components. ■

Claim 5.16. The numbers of excursion from Γreg
h is at most 4d and the number of excursion from

Γψ is at most d.

Proof. Each excursion of Γreg
h from Γψ by construction starts with a defect so there are at most d

of them. Similarly, at most d excursions from Γreg
h contain a defect so we only need to bound the

number of excursion with no defect. Similarly, the total length of non-maximal excursion is at most

d so we can reduce to maximal excursion. Let Γh[t1, t2] be one of them and assume by symmetry

that it is above Γreg
h . Clearly it cannot both start and end on the same component of Γmin ∩ S̊ but

then by Claims 5.13 and 5.14 we can associate it to at least one line of Z2 which is crossed twice

by Γh and there can be only d such line. Each line is counted at most twice, once for a maximal

excursion below Γreg
h and one for a maximal excursion above Γreg

h which completes the proof. ■

We can finally start enumerating excursions. Note that an excursion above a single component

not intersecting Γmin can be considered as a type (ii) excursion with ℓ = ℓ′ = 0.

Claim 5.17. Fix a and b be two points on Γmin, let t = (b2− a2)+ (a1−b1) be the number of steps

of Γmin between them.

• There are at most
(
t+2δ
2δ

)(
t+2δ

2δ+ℓ+ℓ′

)
44δ+ℓ+ℓ

′
excursions of type (i) connecting them and con-

taining δ defects.

• There are at most
(
t+2δ
2δ+ℓ

)(
t+2δ
2δ+ℓ′

)
44δ+ℓ+ℓ

′
excursions of type (ii) connecting them and con-

taining δ defects.

Proof. Let us actually start by enumerating type (ii) excursions. We cut the excursion at the first

time it enters the half plane {u2 ≥ a2 + ℓ′}. In the first part, we count paths by choosing which

step will be in a direction other than NE and choosing a direction for each (or to omit any defect),

this leads to fewer than
(
T+2δ
2δ+ℓ

)
42δ+ℓ possibilities. Similarly in the second part, we place the steps

in a direction other than SE and choose. Since the endpoint of the first part must be in the half

plane {u1 ≤ b2 + ℓ′}, this leads to at most
(
T+2δ
2δ+ℓ′

)
42δ+ℓ

′
possibilities.

For a type (i) excursion, associated with the order Γmin(τ1 → Γmin(τ2) → Γmin(τ
−
2 ) → Γmin(τ

+
1 ),

we split the excursion at the first entry in the half plane {u2 ≥ (Γmin(τ1)2} which gives
(
T+2δ
2δ

)
42δ

possibilities as before. For the rest, we enumerate steps that are not in the SE direction and this

gives at most
( T+2δ
2δ+|Γmin(τ2)−Γmin(τ

+
1 )|

)
42δ+|Γmin(τ2)−Γmin(τ

+
1 )| choices since the endpoint of the first step

must have a smaller first coordinate than Γmin(τ
+
1 ). ■

We can finally turn to the enumeration of the possible paths Γh. Recall that we let d be the

number of defects on Γh and T be the length of Γψ so that the length of Γh is T + d. We also

let g be the number of steps where Γh = Γψ. If d ≥ T/20, we just count 4T+2d. Otherwise the

enumeration proceeds as follows:

(1) Choose the points of Γmax and Γmin that which are the starting and ending points of maximal

excursions. There are fewer than 8d such points and the total combined length is at most

2T so there are at most 8d
(
2T
8d

)
choices.
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(2) Choose all lines that will be crossed at least twice. There are fewer than d such lines out of

a total of T so d
(
T
d

)
choices.

(3) Choose all the maximal excursions. Note that the matching of the start and end points

is determined since we are considering maximal excursions and therefore we just need to

independently choose an excursion for each pair. There are fewer than 24d choices for the

types and, since knowing the types and which lines are crossed twice is enough to apply

Claims 5.13 and 5.14, we can bound the number of choices in each one by Claim 5.17.

Overall, we obtain the product of 24d42d+d (bounding both the sum of the δ by d and the

sum of the ℓ + ℓ′ by d) and a product of binomial coefficients. In turn these binomial

coefficients can be see as counting choosing fewer than 4d+ d points out of 2T + 4d times

so overall this step amounts to fewer than 210d
(
2T+4d

5d

)
.

(4) Choose all the starting points of the non-maximal excursion and then all the excursions.

There are at most
(
2T
4d

)
choices for the initial points and 52d excursions since their total

length is at most 2d and at each step one needs to pick a direction or to move to the next

excursion.

(5) At this point we know all the excursion so it is enough to construct Γreg
h . Note that since

we know the starting and ending points of all the excursions of Γh away from Γreg
h , there is

no further choice for all the step where Γreg
h and Γh do not agree.

(6) We choose all the times where an excursion away from Γψ starts giving fewer than 2d
(
T+2d
2d

)
possibilities.

(7) We choose all the excursion from Γψ, similarly to Claim 5.17, note that each of them

must stay in a half plane so that there are fewer than
(
t+2δ
2δ

)
excursions containing δ defect

and connecting points at distance t. Overall and bounding again a product of binomial

coefficient by a single one, this gives at most 22d
(
T+2d
2d

)
choices.

(8) We choose all the steps where Γreg
h ,Γh and Γψ agree. There are at most g of them by

assumption and the times at which they happen can be deduced from the previous step so

this accounts for at most 2g choices.

Putting everything together and again bounding a product of binomial coefficients by a single one,

we see that we have fewer than 16 · d3 · 218d+g ·
(
9T+10d

22d

)
choices for a single level line. Applying

that bound to all level lines independently, we recover directly the desired estimate when there are

no loops.

We now turn to the general case in the presence of loops. If none of the loops touch the boundary

or surround a hole, then we can apply the above procedure ignoring all the loops and the resulting

tiling ψ still satisfies the boundary condition. Hence in that case, one just needs to enumerate over

the possible sets of loops but, since the total length of loops is at most εs, choosing freely all the

points belonging to a loop only accounts for an extra
(
s
εs

)
. Overall the results with no loops extends

trivially to the case where the loops do not touch the boundary.

When a loop in the set of level lines of h touches the boundary however, there is an extra difficulty

since ignoring it in the algorithm means that the resulting ψ will not satisfy the correct boundary

condition but including it introduces new possible topologies in Claim 5.12, for which one cannot

bound the entropy (see the example in Fig. 15). To get a meaningful statement, one therefore needs

to carefully select which loop to take into account and which loops to ignore, creating the superset

S′ from the proposition. We will then account for the “damage” in terms of entropy and ignored

faces.
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Figure 15. A configuration where loops affect the boundary condition: φ is the completely

filled cube represented with transparent light blue and h is the solid configuration. Note that

the presence of the gray “tower” in h means that φ is the only tiling satisfying the boundary

condition so in order to have a non-trivial output in the algorithm we need to discard that

tower. To the left of the gray tower, another one reaches the height of φ creating a hole in

the domain S which would also be removed in this example but could be preserved in h1 if

its area was large enough compared to its height.

As mentioned above, we can safely ignore any loop that does not surround a hole or touch

the boundary and enumerate over them at the end so w.l.o.g. we assume that all loops touch a

boundary. For each loop ϱ, we let a(ϱ) be the area of ϱ and H(ϱ) be the total length of all loops

inside ϱ, including ϱ itself. To select which loop to keep, we proceed inductively starting from the

innermost ones (the nesting of loops defines a natural partial order) and erasing ϱ together with all

the loops inside of it if H(ϱ) ≥ ε1/3a(ϱ) (updating the values of H as we erase loops). We let S′ be

the union of S and the interior and support of all erased loops and we will construct a tiling of S′.

We first apply the above construction ignoring all the loops, let h0 be the corresponding SOS

height function and ψ0 be the tiling constructed in this way. If h0 is already in the set of “bad”

configurations H′, then we simply enumerate over the remaining loops and declare h to also be

in H′. Otherwise, we proceed as follows. First, note that any loop in h must be either completely

above or completely below h0, since the level lines of h0 do not cross the loops. We will first treat

all the loops above h0, and then do the same for the ones below, but from now on we focus on the

first step. Let h1 be the configuration obtained by adding all these loops to h0 and let ψ1 be the

lowest tiling satisfying the boundary condition imposed by h1 and with ψ1 ≥ ψ0.

We sort the innermost loops ϱi by the value of h1 inside of them and breaking ties arbitrarily.

Next, let ψ
(i)
1 be defined inductively by enforcing the constraint ψ

(i)
1 = h1 on the intersection of ∂S′

and the interior of ϱ1, . . . , ϱi, i.e., the lowest tiling larger than ψ0 and satisfying these constraints.

The ψ
(i)
1 ’s form an increasing sequence of tilings and we let Ai be the number of horizontal tiles

which differ between ψ
(i−1)
1 and ψ

(i)
1 .

Claim 5.18. We have
∑

iAi ≤ s.

Proof. By construction, ψ
(i)
1 is obtained from ψ

(i−1)
1 by setting ψ

(i)
1 = h(ϱi) for some x ∈ P001 where

we had ψ
(i)
1 < h(ϱi). Since the h(ϱi) are non-increasing, each x can appear in at most one Ai. ■

We then enforce the constraints associated to all the other loops to get ψ1. Let us turn to the

enumeration of the number of tilings ψ0 that could be turned into a given ψ1 by taking into account
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ζ
ϱ

Figure 16. A schematic representation of the proof of Claim 5.19. The original path is

represented with green/black/cyan colors depending on the division in the proof and the

final path is represented in purple below both the blue loop ζ and the red loop ϱi(ζ). The

area in orange is bounded by Ai, the area between the loop ϱ and its corresponding level

line (not represented in the picture) which must stay north of the green/black/cyan path.

the loops as above. We do the enumeration level by level. In each level, for each loop ζ we choose

an innermost loop ϱi(ζ) contained in it (or i(ζ) = i if ζ = ϱi is already an innermost loop) and we

extend the order between the ϱi to that level. We index the loops by ζk in that order and we let

Γk be the level line after taking into account the constraints up to ζk. In the same spirit as the Ai,

we define lengths Lk as the number of steps which moved for the first time between Γk−1 and Γk.

Claim 5.19. Let ζ = ζk be a loop. There exists a universal constant C > 0 such that the number

of paths Γk−1 compatible with a given Γk is at most

A3
i e

2C
√
Ai(ζ)2diam(ϱi(ζ))

(
Lk
2|ζ|

)
.

Proof. We enumerate separately the different parts as in Fig. 16. Draw a SE to NW half line

starting at the SW-most point of the loop ζ; note that Γk cannot cross this line but we can assume

Γk−1 does (otherwise there is nothing to prove on the W side). Also draw a parallel line from the

SW-most point of ϱi(ζ) and a straight N one and then copy with symmetric directions on the E

side. We enumerate from the center outward. For the inner portion (cyan in Fig. 16) between the

two vertical lines, we note that its length is at most diam(ϱi(ζ)), with 2 choices per step and at

most A allowed vertical translations. Then the two paths in “1
8 -plane” portions (the black paths

in Fig. 16), we note that given the two areas between them, there are fewer of them than integer

partitions with these twice these areas (which would correspond to paths in quarter planes). It

is then standard that the number of partitions of an integer n can be bounded by eCn for some

C. Finally for the paths between the parallel diagonal lines (green in Fig. 16), note that they are

completely determined once we know their length and the positions of respectively the NE and SE

steps for the W and E side. Then number of such steps is at most |ζ| because by construction ζ

contains the loop ϱi(ζ) but also the total number of unknown steps at that point is at most Li. ■

Overall, bounding again a product of binomial coefficient by a single one and the sum of the Lk
by s, we find that the total number of ways to obtain a given ψ1 is at most

exp(2C
∑
i

√
Aini)2

∑
i diam(ζi)ni

(
s

2εs

)
where ni is the number of loops ζ with i(ζ) = i (we absorbed the power of A into C). Also for each

ζ, we must have diam(ζi) ≤ |ζ| so the second term is bounded by 2εs.
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Finally, we can use the preprocessing step to bound the sizes of the loops. Fix i and denote

by ζ1, . . . , ζni all the loops counted in ni from the innermost one, ζ1 = ϱi, to the outermost one.

Since a(ζn) ≤ |ζn|2 and H(ζn) ≥
∑n

m=1 |ζm| for all n, we see that every loop must have a size at

least ε−1/3 and more generally that their length must satisfy the recursive inequality

|ζn+1|(|ζn+1| − ε−1/3) ≥ ε−1/3
n∑

m=1

|ζm|.

It is straightforward to verify that this implies

|ζn| ≥ 1
3ε

−1/3n

for all n, from which we get ∑
i

n2i ≤ 2ε1/3
∑
ζ

|ζ| ≤ 2ε4/3s.

A simple Cauchy–Schwarz then proves (running the whole argument in the new configuration a

second time to account for the presence of loops below h):

Claim 5.20. For a given ψ1, there are at most exp(Cε2/3s) ways to choose ψ0.

To conclude the proof of Proposition 5.1, we simply redo the enumeration of the possible paths Γh
taking into account Claim 5.20. Indeed, note that the points (1) to (7) are still valid to enumerate

the excursions away from Γψ0 , the initial configuration where we ignored all the loops and that

what remain to enumerate are the steps where Γh and Γψ0 agree. The number of steps where in

addition ψ0 agrees with ψ1 (which is the actual output of the algorithm) is bounded by g as in the

case with no loops and accounts for at most 2g choices. It remains to choose the steps where Γψ0

and Γh agree but not with Γψ1 , which we over-count by sampling all the parts of ψ0 where it differs

from ψ1 using Claim 5.20. ■

5.2. Application for bubble groups. Proposition 5.1 will provide us with a crucial estimate on

βHh(B)−αG
g
h,φ(B) for a “typical” bubble group B. Recall from Eq. (4.15) that for every bubble

group B = ({Bi}, {Cj}) we have |Υ(B)| ≤ 5
∑

i |Bi|.

Lemma 5.21. There exist an absolute constant C > 0 such that, for every φ, ε > 0 and s > C,

there are at most exp(Cε1/4s) bubble groups B of size |Υ(B)| = s and containing a fixed point o so

that

βHh(B)− αG
g
h,φ(B) ≤ ε1/3(αε1/3 ∧ βε)s . (5.1)

Moreover, if ε ≤ 1
150 then for all such B, we have V1(B) ≥ s/16 for the potential V1 from Eq. (1.4),

as well as βHh(B) + λV(B) ≥ β − λ+ λs/(16M0) for the general potential V from Definition 1.3.

Proof. First observe that Hh is additive on the bubbles Bi by its definition in Eq. (4.14). As

for G
g
h,φ, since the set S

′ in Proposition 5.1 is larger than just the bubble, we can unfortunately not

directly sum the bound. Let ψi be the tilings of the set S′
i obtained by applying Proposition 5.1

to the bubble Bi, setting by convention ψi = φ↾S for the cases where h ∈ H′. Each tile in some

ψi ∩ h can have one of three possible orientation (i.e., it can belong to a translate of the P100,P010

or P001 direction) to one type must account for at least 1/3 of the total. Suppose by symmetry

(in this proof, we will not consider h as anything but an arbitrary set of faces) that it is the P100

direction. We can view each tiling as a monotone function over a Z2 tiling of the P100 plane exactly
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as we often do over the P001 plane and similarly to the above we can assume that for at least half

of these faces satisfy ψi(u) ≥ φ(u). We let

ψ = max({ψi} ∪ {φ})

in that representation, i.e., for any face u of P100, ψ(u) is the maximum of all φ(u) and of all the

ψi(u) that are well defined. Clearly, ψ is well defined as an integer function but we need to check its

monotonicity to show that it is indeed a tiling. For this, fix some u and let u′ be one of its neighbor

with u′ ≥ u. Suppose first that i, i′ are such that ψi(u) = ψ(u) and ψi′(u
′) = ψ(u′), if ψi′ is defined

at u, then the proof is trivial so we can assume that it is not the case. Since ψi′ is not defined at u

but is compatible with φ outside of its domain of definition, one must have ψi′(u
′) ≤ φ(u) but by

assumption φ(u) ≤ ψi(u). The proof is similar if ψ(u) = φ(u) or ψ(u′) = φ(u′). We also note that,

since for each i, |S′
i \ Si| ≤ ε2/3|Si|, going from the ψi to ψ misses at most ε2/3

∑
|Υ111(Bi)| faces.

Overall we get ∑
i

|ψ ∩ h ∩Υ−1
111(Si)| ≥

1

6

∑
i

|ψi ∩ h| − 2ε2/3
∑
i

|Si|.

Since the S′
i \ Si also contain all the faces where φ and h agree but not ψ, we then get

G
g
h,φ(B) ≤ G

g
h,φ(ψ) ≤ −1

6

∑
i

|ψi ∩ h|+ 2ε2/3
∑
i

|Si| . (5.2)

Consider ψ constructed in this manner, and call a Bi bad if the corresponding SOS height function

h belongs to the exceptional subset H′ from Proposition 5.1, with the same choice of ε as we have

here, and good otherwise.

We will enumerate bubble groups with βHh(B)− αG
g
h,φ(B) ≤ ε1/3(αε1/3 ∧ βε) using the above

bound on Gg. Observe that we may assume∑
i

|Bi|1{Bi is good} ≤ 24ε1/3s , (5.3)

since every good bubble Bi has either Hh(Bi) ≥ ε|B| or |ψi ∩ h| ≥ ε1/3|B| (recall h ∩ φ = ∅ on an

(h, φ)-bubble), so every such B contributes at least (αε1/3 ∧ βε)|B| to βHh(B) − αG
g
h,φ(B), with

Eq. (5.2) in mind for the contribution to G
g
h,φ(B).

To control the contribution of bad bubbles, first observe the following.

Fact 5.22. Let Bi be an (h, φ)-bubble. If Bi is bad as defined above then |Bi| > 1/ε.

Proof. For Bi to belong to H′ as per Proposition 5.1, necessarily |h ∩ Bi| > |φ ∩ Bi|, as otherwise

h ∩ Bi is itself a tiling whence |h ∩ ψi| = |Bi|/2 > ε1/3|Bi| (by taking ψi = h ∩ Bi), so Bi is good.

Since we must also have H < ε|Bi| from the criteria of H′, we deduce that |Bi| > 1/ε. ■

We will also need the following simple deterministic observation.

Fact 5.23. For any ε > 0 and connected set S of faces of the triangular lattice T , the number of

faces of ⌈ε−1⌉T intersecting S is at most 12⌈ε|S|⌉.

Proof. Let T′ be the sub-lattice of T made of tiles with side-length ⌈1/ε⌉, and let T be the number

of tiles of T′ that intersect S. The faces of the triangular lattice T can be colored using 6 colors

such that two faces with the same color share neither an edge nor a vertex. Select the single-color

sub-lattice containing the most faces of T′ which intersect S and let T ′ be number of tiles in this

set. If T ′ > 1, since S is connected, we can associate to each of these tiles a path in S of length

1/(2ε) connecting S ∩ t up to distance 1/(2ε) of t. Also of course T ′ ≥ T/6. Overall, we see that if

T > 6, then |S| ≥ |T |/(12ε) and in particular T ≤ 12⌈εS⌉. ■
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We can now start to enumerate our bubble groups. First we choose a connected set of 12εs

faces of ⌈ε−1⌉T and there are C12εs
0 ways to do it, with C0 the growth constant for animals in the

triangular lattice T. The total area of this set in T is thus at most 12s/ε. Then we choose the

centers of all the bad bubbles: there are κ ≤ εs of them because of Fact 5.22 so there are less

than
∑

κ

(
12s/ε
κ

)
≤ exp(Cεs log(1/ε)) possible choices at this step. Similarly, using Eq. (5.3), we

can choose the area covered by good bubbles and an SOS configuration for each of them with at

most
(12s/ε
ε1/3s

)
Cε

1/3s choices in total. Finally we choose the bad bubbles given their centers and by

Proposition 5.1 there are only exp(cε1/3s) possible choices for those in total. Overall, the number

of bubble groups we enumerated over is at most

c12εs0 exp(2Cε1/3s log(1/ε))Cε
1/3s exp(cε1/3s) ≤ exp(C ′ε1/4s) ;

thus, at most exp[cε1/4s] bubble groups B have βHh(B) − αG
g
h,φ(B) ≤ ε1/3(αε1/3 ∧ βε)s (our

criterion as per Eq. (5.1) for an exceptional bubble group B), as required.

It now remains to address the exceptional bubble groups B via the potential V(B). First let us

consider V1 from Eq. (1.4); we recall Eq. (4.16) to find that

V1(B) = G
g
h,φ(B) +

∑
B∈B

|φ ∩ B| = G
g
h,φ(B) +

∑
B∈B

(|B| −Hh(B))/2

≥ −
βHh(B)− αG

g
φ,h(B)

α ∧ β
+

1

10
|Υ(B)| ,

where we used Eq. (3.3) in the first line and Eq. (4.15) in the second one. The numerator in the

first term is (by definition) at most ε2/3(α ∧ β)|Υ(B)| for every B which fails to satisfy Eq. (5.1).

For every ε ≤ 1
150 , we thus have V1(B) ≥ (− 1

28 + 1
10)|Υ(B)| > 1

16 |Υ(B)|, as required.
For the general family of V, let {Si}mi=1 (for some m ≥ 1) be the connected components of ψ⊔ \h.

Recall from Definition 1.3 that V collects at least ⌊|Si|/M0⌋ > |Si|/M0−1 faces of each Si (whereas

V1 collected all faces of these components), so that, in light of our lower bound on V1(B),

V(B) ≥ V1(B)

M0
−m >

|Υ(B)|
16M0

−m ;

Since ψ⊔ maximizes |h∩ψ| over all tilings ψ, for each i it must be that h↾Υ(Si) is not a tiling (or else

we could replace ψ⊔ by that tiling in Si and strictly increase its intersection with h). In particular,

one has Hh(B) ≥ m, as h has at least one excess face per each of the components Si. Combining

these bounds gives βHh(B) + λV(B) ≥ (β − λ)m+ λ|Υ(B)|/(16M0), completing the proof. ■

Towards an application for the dynamics that will appear in the proof of Theorem 6.1, we need an

analogous statement for pairs (S, {Bi}) where S is a connected set of faces of ⌈ 1γ ⌉T that intersects

each of the bubble groups in {Bi}.
Lemma 5.24. There exists an absolute constant C > 0 such that the following holds for every φ,

ε, γ > 0 and s > C. There are at most exp[C(ε1/4 + γ2)s] pairs (S, {Bi}), where S is a connected

set obtained as the union of triangles of ⌈ 1γ ⌉T and {Bi} is a collection of disjoint bubble groups

such that Υ(Bi)∩S ̸= ∅ for all i, with s = |S| ∨
∑

i |Υ(Bi)| and containing a fixed point o, so that∑
i

(
βHh(Bi)− αG

g
h,φ(Bi)

)
≤ ε2/3(αε1/3 ∧ βε)

∑
i

|Υ(Bi)| .

Furthermore, if ε ≤ 1
512 then for all such exceptional (S, {Bi}) we have∑
i

(
βHh(Bi) + λV(Bi)

)
≥ β − λ+

λ

20M0

∑
i

|Υ(Bi)| .
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Proof. The proof is completely analogous to Lemma 5.21 so we only give a sketch. The total area

of bubble groups that are good in the sense of Lemma 5.21 is at most εs while bad bubble groups

in the sense of Lemma 5.21 provide very little entropy. The proof is then identical to Lemma 5.21

simply replacing bubbles by bubble groups, with the additional step of a final enumeration over S.

It is there (using Fact 5.23) where the exp[γ2s] term appears.

For the final assertion, denote βHh(B) − αG
g
h,φ(B) by f(B) in this proof for brevity. Our

assumption
∑

i f(Bi) ≤ ε2/3(αε1/3 ∧ βε)s implies that∑
i

|Υ(Bi)|1{f(Bi)<8ε2/3(αε1/3∧βε)|Υ(Bi)|} >
7
8s .

By Lemma 5.21, if ε ≤ 1
150 then βHh(B)+λV(B) ≥ β−λ+λ|Υ(Bi)|/(16M0) holds for everyBi with

f(Bi) ≤ ε1/3(αε1/3 ∧βε)|Υ(Bi)|, thus for every Bi that contributes to the above sum (as ε ≤ 1
512).

So, the restriction of
∑

i(βHh(Bi) + λV(Bi)) to these Bi’s already suffices, as 1
16 · 7

8s > s/20. ■

6. Local decomposition of πφ,β̂

Our goal in this section is to decompose
∫
πφ,β̂(·)dβ̂ as follows.

Theorem 6.1. There is an absolute constant C such that if λ < 1
C and α ∧ β > Cλ20, then there

exist functions gπr for r = 2k with k = 0, 1, . . ., such that for every N ,∣∣∣∣ ∫ ∞

β
πφ,β̂(Hh)dβ̂ −

∑
x∈TN

∑
0≤r<N/2
r=2k

gπr (φ↾B(x,r))

∣∣∣∣ ≤ Ce
−β− λ2

CM0
N
, (6.1)

and for every integer r = 2k (k ≥ 0) one has ∥gπr ∥∞ ≤ Ce
−β− λ2

CM0
r
.

Recalling the definition of πφ,β̂ from Eq. (2.12), thanks to Eq. (4.14) we have that

πφ,β̂(h) ∝ exp

[ ∑
B : B is an

(h, φ)-bubble group

[
− β̂H(B) + αGg(B)− logZ∞

µ (B)− λV(B)
]
−
∫ ∞

α
µh,α̂(Gh)dα̂

]
.

(6.2)

As was the case for the measures µ and ν, we analyze the measure π by defining an appropriate Gibbs

sampler, and establishing that (a) it contracts w.r.t. an appropriate metric on SOS configurations,

and therefore mixes rapidly; and (b) its speed of propagating information is uniformly bounded.

As mentioned in Section 1.2.4, each of these tasks is significantly more challenging than the analogs

for µ and ν because the effects of the term
∫
µh,α̂(Gh)dα̂ are hard to control.

More precisely, we will see (see, e.g., the proof of Proposition 6.10) that the SOS configuration

at two different positions may interact strongly through this term when there exists a dense set of

bubble groups connecting them. This introduces two difficulties: First, a large dense set comprised

of small bubble groups {Bi} will be a bottleneck for any “local” dynamics since in such a case the

interaction through the integral might dominate the others terms for each individual Bi, stopping

us from adding or removing them one by one. That is why the dynamics in Section 6.2 will be

defined with possibly large single updates: it is designed to allow such a bottleneck to be removed

in a single step. Second, at the technical level, we will need to measure the local density in our

bounds on the integral, hence the notion of enclosure and fenced set defined below.
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6.1. Bounds on the integral interaction. Let ρ denote the density of a set S ⊂ T with respect

to an SOS configuration h:

ρ(S, h) =
1

|S|
∑
B∈h

|Υ(B)|1{Υ(B)∩S ̸=∅} . (6.3)

Definition 6.2 (Enclosure). Let h be an SOS configuration and let B0 be an (h, φ)-bubble group.

An enclosure R0 of B0 with density ρ0, which unless specified otherwise we take as ρ0 = 1
10 , is a

connected set R0 satisfying:

(1) R0 ⊇ Υ(B0).

(2) No (h, φ)-bubble group B has Υ(B) ∩ ∂R0 ̸= ∅.
(3) It has density (as per Eq. (6.3)) at least ρ0.

(4) There is no set R with |R| > |R0| that satisfies Items (1) to (3).

Similarly, an enclosure of a set of bubble group {B0
i } is a set satisfying the above condition and

such that each of its connected component contains at least on of the Υ(B0
i }.

Remark 6.3. Every bubble group B0 has an enclosure R0 as above: Indeed, Υ(B0) trivially satisfies

Items (1) and (2) while Item (3) is given by Eq. (4.15); thus, the collection of sets R satisfying

Items (1) to (3) is non-empty and any element of maximal size can be chosen as R0. We emphasize

that, typically, a bubble group will admit many different enclosures.

Definition 6.4 (Fenced set). Let h be an SOS configuration. A set R is said to be fenced with

density ρ0, which unless specified otherwise we take as ρ0 = 1
10 , if no (h, φ)-bubble group B has

Υ(B) ∩ ∂R ̸= ∅ and if every connected set S ⊆ TN \R but with ∂S ∩ ∂R ̸= ∅ has ρ(S, h) < ρ0.

Note that any enclosure is a fenced set but the converse is not true. Note also that being a

fenced set is a decreasing condition on the set of bubble groups of h.

Our first step is to control the effect of adding or removing a set of bubble groups on
∫
µh,α̂(Gh)dα̂.

Proposition 6.5. For all ρ0 <
1
5 , there exists C such that the following holds. Let ĥ be an SOS

configuration, let {Bi} be a collection of bubble groups of ĥ and let h be the configuration obtained

by removing the Bi from ĥ, i.e., h = ĥ △ (
⋃
i

⋃
B∈Bi

B). If R is a fenced set with density ρ0 with

respect to ĥ (as per Definition 6.4) such that
⋃
iΥ(Bi) ⊂ R, then∣∣∣ ∫ ∞

α

(
µĥ,α̂(Gĥ)− µh,α̂(Gh)

)
dα̂

∣∣∣ ≤ C|R| . (6.4)

Proof. Note that for any h, denoting by {Bi} a consistent collection of ϕ △ ψ bubbles,

logZαµ ≥ log
( ∑
{Bi}⊂R

e−α
∑

iGh(Bi)
)
+ log

( ∑
{Bj}⊂Rc

e−α
∑

j Gh(Bj)
)

logZαµ ≤ log
( ∑
{Bi}⊂R

e−α
∑

iGh(Bi)
)
+ log

( ∑
{Bj}:Bj∩∂R ̸=∅

e−α
∑

iGh(Bj)
)
+ log

( ∑
{Bk}⊂Rc

e−α
∑

iGh(Bk)
)

Indeed, since the compatibility condition between bubbles is just that they cannot intersect, the

first inequality amounts to restricting the partition function to configuration ψ with ψ = φ on ∂R

and the second is over-counting by ignoring the compatibility condition between the three sets of
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bubbles. Applying Lemma 2.6 to all terms, we get∫
µα̂(Gh(R)|ψ = φ on ∂R) + logZ∞

µ (R) +

∫
µα̂(Gh(R

c)|ψ = φ on ∂R) + logZ∞
µ (Rc)

≤
∫
µα̂(Gh) + logZ∞

µ ≤∫
µα̂(Gh(R)|ψ = φ on ∂R) + logZ∞

µ (R) +

∫
µα̂(Gh(R

c)|ψ = φ on ∂R) + logZ∞
µ (Rc)

+

∫
µ∂R,α̂(Gh(∂R)) + logZ∞

∂ . (6.5)

Indeed, thanks to the fact that the energy G is zero-range, the measure obtained when applying

Lemma 2.6 just to the partition function of configurations inside R coincides with the conditional

measure µ given ψ = ψ on ∂R.

In the expression above, note further that since ∂R does not intersect any bubble group, logZ∞
µ =

logZ∞
µ (R)+logZ∞

µ (Rc) and logZ∞
∂ = 0. Also, the terms outside ofR are equal for h and ĥ. Overall,

we therefore have∫
µĥ,α̂(Gĥ(R))−

∫
µh,α̂(Gh(R))−

∫
µh,∂R(Gh(∂R))

≤
∫
µĥ −

∫
µh ≤∫

µĥ(Gĥ(R))−
∫
µh(Gh(R)) +

∫
µĥ,∂R(Gh(∂R)) (6.6)

and applying Lemma 2.6 in the opposite direction

logZαµĥ
(R)− logZ∞

µĥ
(R)− logZαµh(R) + logZ∞

µh
(R)− logZαµh,∂ (∂R)

≤
∫
µĥ −

∫
µh ≤

logZαµĥ
(R)− logZ∞

µĥ
(R)− logZαµh(R) + logZ∞

µh
(R) + logZαµĥ,∂

(∂R) . (6.7)

All the logZ(R) aterms re bounded by C0|R| because they count tilings of R. The terms logZ(∂R)

are also bounded similarly because having a surface larger than |R| outside of R is exponentially

costly (via G) because we cannot be dense by definition of a fenced set. This yields Eq. (6.4). ■

The above proposition will be useful to understand the dynamics close to a region of interest

where we do not expect the true value of the interactions to be particularly small. The following

bound will refine that bound in terms of a single enclosure R0 and the sizes of the bubble groups

as opposed to the more complicated fenced sets.

Lemma 6.6. There exists a constant C such that the following holds. Fix h an SOS configuration,

let B0 be a bubble group that can be added to h and let h′ be the corresponding configuration. Let R0

be an enclosure of B0 in h′. Further fix a set {B1
i } of bubble groups which can be added in both h and

h′, denoting the resulting configurations by ĥ, ĥ′. Let S be a connected set intersecting each Υ(B1
i ).

If dist(
⋃
iΥ(Bi), R0) ≤ 40(|R0|+

∑
|Υ(Bi)|), then∣∣∣ ∫ ∞

α

(
µĥ′,α̂(Gĥ′)− µh′,α̂(Gh′)

)
dα̂

∣∣∣ ≤ C(|S|+
∑
i

|Υ(Bi)|+ |R0|) ,

and similarly for the pair (h, ĥ).
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Proof. Let R1 be an enclosure for the B1
i in configuration ĥ′ with density 3

20 . It is a fenced set in

any of h, h′, ĥ, ĥ′ and therefore by Proposition 6.5 it is enough to bound its size.

Suppose by contradiction that |R1| ≥ 200(|S| +
∑

i |Υ(Bi)| + |R0|). Let R′ be obtained as

(R1 ∪ S) \ R0 to which we add a minimal path to ∂R0 and a path on the outer boundary of R0.

Since each connected component of R1 contains one of the Υ(B1
i ) and S intersects all of them,

R1 ∪ S is connected and therefore R′ must also be connected since any connection in R1 ∪ S going

through R0 can now go through the outer boundary path. By definition ρ(R1, ĥ
′) ≥ 3

20 so

|R′|ρ(R′, h) ≥ |R1|
3

20
−
∑
i

|Υ(B1
i )| − |R0| ,

while

|R′| ≤ |R1|+ |S|+ dist
(⋃

Υ(B1
i ), R0

)
+ 11|R0|

≤ |R1|+ |S|+ 51|R0|+ 40
∑

|Υ(B1
i )| .

Combining the two bound, we see that

ρ(R′, h) ≥
( 3

20
−

∑
i |Υ(B1

i )|+ |R0|
|R1|

)(
1− |S|

|R1|
− 51

∑
i |Υ(B1

i )|+ |R0|
|R1|

)
≥ 3

20
− 10

∑
i |Υ(B1

i )|+ |R0|
|R1|

≥ 1

10
,

where the last inequality used that |R1| ≥ 200
∑

i |Υ(B1
i )|+ |R0|. This is a contradiction with the

fact that R0 is an enclosure of B0. ■

We also need a statement controlling the interaction between far away bubble groups. The first

step is to show a form of exponential decay in the measure µh:

Proposition 6.7. For all ρ < 1
5 , there exists C0 such that the following holds for each α̂ large

enough. Fix h′ and an (h′, φ)-bubble group B0, and let h = h′ △
⋃

B∈B0
B. Let R⋆0 be a fenced set

containing B0 Then there is a coupling µh,h′,α̂ of µh,α̂, µh′,α̂ so that for all f ,

µh,h′,α̂(f ∈ Υ(ψ △ ψ′)) ≤ C0e
− 1

2
(α̂−C0) dist(f,R⋆

0) .

Proof. We define the coupling as follows. Sample the surfaces

ψ ∼ µh,α̂ and ψ̂ ∼ µh′,α̂

independently, and let A = Υ(ψ △ ψ̂). Define the surface ψ′ by

(i) ψ′ = ψ̂ on R0 \A and any connected component of A touching ∂R0;

(ii) ψ′ = ψ on any other connected component of A.

By Lemma 4.5, we see that ψ̂ and ψ′ have the same law, and consequently µh,h′,α̂(f ∈ Υ(ψ′ △ ψ))

is bounded by the probability that there exists a connected component of A connecting f to ∂R⋆0.

(Note that the zero-range interactions of µ are crucial to making this switching legal.) Consider

the part of this component outside of R⋆0; it cannot be denser than 1−ε
5 because of Item (4) so the

probability that at least 1
2 of it is covered by bubbles in either φ △ ψ or φ △ ψ̂ is bounded by

C0e
− 1

2
(α̂−C0) dist(f,R⋆

0), with the constant C0 accounting for an enumeration over all possible sets of

bubbles (via a Peierls argument, done for ψ under µh,α̂ and separately for ψ̂ under µh′,α̂). ■

We can now control the interaction between two far away bubble groups via the following.
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Lemma 6.8. For all ρ < 1
5 , there exists C such that the following holds for every α large enough.

Let h be an SOS configuration and let B0,B1 be two bubble groups that do not intersect and which

can both be added to h. As before, let

h′ = h △
⋃

B∈B0

B , ĥ′ = h △
⋃

B∈B0∪B1

B , ĥ = h △
⋃

B∈B1

B .

Let R̂0, R̂1 be enclosures with density ρ of B0 and B1 w.r.t. ĥ′ as per Definition 6.2. Then∣∣∣∣ ∫ ∞

α

(
µĥ′,α̂(Gĥ′)− µh′,α̂(Gh′)− µĥ,α̂(Gĥ) + µh,α̂(Gh)

)
dα̂

∣∣∣∣ ≤ C(|R̂0| ∧ |R̂1|)e−α dist(R̂0,R̂1)/C .

Moreover, if (B0
i )1≤i≤m0 and (B1

i )1≤i≤m1 are two family of bubble groups that can be simultaneously

added (together) to h, then∣∣∣∣ ∫ ∞

α

(
µĥ′,α̂(Gĥ′)− µh′,α̂(Gh′)− µĥ,α̂(Gĥ) + µh,α̂(Gh)

)
dα̂

∣∣∣∣ ≤ C0

∑
i,j

(|R̂0
i | ∧ |R̂1

j |)e
−αdist(R̂0

i ,R̂
1
j )/C0 ,

where the R̂0
i , R̂

1
j are enclosures of the B0

i and B1
j respectively.

Proof. We start with the first case involving only two bubble groups. The general idea is prove this

result via an application of Proposition 6.7, creating a separate coupling for each face f ∈ TN that

would show that f has an exponentially small contribution, as it cannot be close simultaneously to

R̂0 and R̂1.

Since the condition on R⋆0 from Proposition 6.7 is monotone on the set of bubble groups, we

can apply Proposition 6.7 to both the pair (h, h′) and (ĥ, ĥ′) using the same set R̂0. For the same

reason, if we add B1, we can still use Proposition 6.7 using R̂1. Overall, we see that we can define

couplings such that

µh,h′,α̂(f ∈ Υ(ψ △ ψ′)) ≤ C0 e
− 1

2
(α̂−C0) dist(f,R̂0) ,

µĥ,ĥ′,α̂(f ∈ Υ(ψ̂ △ ψ̂′)) ≤ C0 e
− 1

2
(α̂−C0) dist(f,R̂0) ,

µh,ĥ,α̂(f ∈ Υ(ψ △ ψ̂)) ≤ C0 e
− 1

2
(α̂−C0) dist(f,R̂1) ,

µh′,ĥ′,α̂(f ∈ Υ(ψ′ △ ψ̂′)) ≤ C0 e
− 1

2
(α̂−C0) dist(f,R̂1) .

Now, we can decompose the integral over the contribution of each faces x of TN . Let

G
x
h(ψ) =

∑
f∈Υ−1(x)

gh(f)1{f∈ψ}

using the decomposition of Gh from Lemma 4.5 (as usual, for brevity, in what follows we omit the

parameter ψ from G
x
h, as well as the corresponding ψ′, ψ̂, ψ̂′ from G

x
h′ , G

x
ĥ, G

x
ĥ′ , respectively). Then∣∣∣∣ ∫ ∞

α

(
µĥ′,α̂(Gĥ′)− µh′,α̂(Gh′)− µĥ,α̂(Gĥ) + µh,α̂(Gh)

)
dα̂

∣∣∣∣
≤

∑
x∈TN

∣∣∣∣ ∫ ∞

α

(
µĥ′,α̂(G

x
ĥ′)− µh′,α̂(G

x
h′)− µĥ,α̂(G

x
ĥ) + µh,α̂(G

x
h)
)
dα̂

∣∣∣∣
≤ 2

∑
x∈TN

∫ ∞

α
min

(
µh,h′,α̂(x ∈ Υ(ψ′ △ ψ)) + µĥ,ĥ′,α̂(x ∈ Υ(ψ̂′ △ ψ̂)) + 21{x∈Υ(B0)},

µh,ĥ,α̂(x ∈ Υ(ψ △ ψ̂)) + µh′,ĥ′,α̂(x ∈ Υ(ψ̂′ △ ψ′)) + 21{x∈Υ(B1)}

)
dα̂.
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Indeed, for the last line, note that we can bound the contribution of a single x using two possible

pairings of the four terms and we are free to use the better one depending on x. Furthermore, when

x /∈ Υ(B0) then G
x
h = G

x
h′ , and we bound the difference in the expectation of this variable under

the two measures µh,α̂ and µh′,α̂, recalling that |Gxh| ≤ 1 always holds, via∫ ∞

α
|µh′,α̂(G

x
h′)− µh,α̂(G

x
h)|dα̂ ≤ 2

∫ ∞

α
µh,h′,α̂(x ∈ Υ(ψ △ ψ′))dα̂ .

For x ∈ Υ(B0) we used the trivial upper bound |Gxh|+ |Gxh′ | ≤ 2. The bounds for the other terms

are similar (replacing B0 by B1).

Plugging in the bounds on µh,h′,α̂ and using the fact that the indicators 1{x∈Υ(B0)} and 1{x∈Υ(B1)}
cannot hold simultaneously, we see that overall∣∣∣∣ ∫ ∞

α

(
µĥ′,α̂(Gĥ′)− µh′,α̂(Gh′)− µĥ,α̂(Gĥ) + µh,α̂(Gh)

)
dα̂

∣∣∣∣ ≤ C0

∑
f∈TN

e−α(dist(f,R̂0)∨dist(f,R̂1))/C0

≤ C0(|R̂0| ∧ |R̂1|)e−αdist(R̂0,R̂1)/C0 ,

which concludes the proof of the first part. (To see the last inequality, suppose w.l.o.g. that

|R̂0| ≤ |R̂1|, and take d = dist(R̂0, R̂1). The set of all f at distance at least d/2 from R̂0 contributes

at most C|R̂0|e−(α/C0)d/2 by summability of the exponent; on the other hand, every other face f

must have distance at least d/2 from R̂1 and there are at most C|R̂0|d2 such faces.)

For the case with multiple bubble groups, it follows directly from monotonicity of fenced sets in

Proposition 6.7 and the observation that

µĥ′,α̂(Gĥ′)− µh′,α̂(Gh′)− µĥ,α̂(Gĥ) + µh,α̂(Gh)

=
∑
i,j

µhi+1,j+1,α̂(Ghi+1,j+1
)− µhi+1,j ,α̂(Ghi+1,j

)− µhi,j+1,α̂(Ghi,j+1
) + µhi,j ,α̂(Ghi,j ) ,

with hi,j the configuration obtained by adding the bubble groups B0
1, . . . ,B

0
i and B1

1, . . . ,B
1
j . ■

As for the bound involving only a single difference, it will be useful to have a version involving

simpler quantities that the R̂i above.

Lemma 6.9. Let h, B0, B1 be an SOS configuration and two bubble groups that can be added to

it as above. Let h′, ĥ, ĥ′ be obtained by adding B0, B1 or both to h. If an enclosure R0 of B0 in

the configuration h′ satisfies

d := dist (Υ(B1), R0) > 40(|R0|+ |Υ(B1)|) ,

then, for an absolute constant C0,∣∣∣∣ ∫ ∞

α

(
µĥ′,α̂(Gĥ′)− µh′,α̂(Gh′)− µĥ,α̂(Gĥ) + µh,α̂(Gh)

)
dα̂

∣∣∣∣ ≤ C0e
−αd/C0 .

More generally, for two family of bubble groups (B0
i )1≤i≤m0 and (B1

i )1≤i≤m1, if there exists enclo-

sures of the R0
i of the B0

i in h′ such that for all i

dist
(⋃

j

Υ(B1
j ), R

0
i

)
> 40

(
|R0

i |+
∑
j

|Υ(B1
j )|

)
,

then∣∣∣∣ ∫ ∞

α

(
µĥ′,α̂(Gĥ′)− µh′,α̂(Gh′)− µĥ,α̂(Gĥ) + µh,α̂(Gh)

)
dα̂

∣∣∣∣ ≤ C0

∑
i

e−αdist(R0
i ,
⋃

j Υ(B1
j ))/C0 .
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Proof. Again we start with the case involving only two bubble groups. Assume we have such an

R0. Let R̂0, R̂1 be enclosures of B0,B1 in ĥ′ but with density 3/20, Lemma 6.8 applies so what

remains to do is to bound dist(R̂0, R̂0) and their sizes.

We first argue that

dist(R0, R̂1) ≥ d/10 .

Suppose by contradiction that dist(R0, R̂1) ≤ d/10. Since dist(Υ(B1), R0) ≥ d, then necessarily

|R̂1| ≥ 9
10d ≥ 36(|R0|+ |Υ(B1)|). In particular, the bubble groups common in h′ and ĥ′ and outside

of R0 must already have a positive density:∑
(h′, φ)-bubble group B

B ̸=B1

|Υ(B)|1{Υ(B)∩R0=∅} ≥ ( 3
20 − 1

36)|R̂1| ≥ 1
9 |R̂1| ≥ 1

10(|R̂1|+ d/10) ,

again using for the last step that d/10 ≤ 1
9 |R̂1|. Consider the union of R̂1 and the shortest

path connecting it to R0: the above equation shows that it has density at least 1/10 even in h′,

contradicting the definition of R0 (Definition 6.2).

We have thus proved that no set of density (in ĥ′) more than 3/20 can intersect both Υ(B1)

and R0. In particular, R̂0 cannot intersect Υ(B1) and it must have the same density in ĥ′ and ĥ

but it therefore can be chosen to be smaller than R0. This comparison of R0, R̂0 now implies that

dist
(
R̂0, R̂1

)
≥ d/10 ,

and we conclude by simply plugging this bound in Lemma 6.8.

With multiple bubble groups, since the distance condition involves the sum of the sizes, the same

argument as above first shows that for each i, j, dist(R̂1
j , R

0
i ) ≥ dist(Υ(Bj), R

0
i )/10. Again from

this we can deduce that we can choose R̂0
i ⊂ R0

i for all i. Using the bound on the distance, we can

absorb a factor
∑

j |Υ(B1
j )| into the exponential and this concludes the proof. ■

Finally, since the integral is always positive and since only dense regions of bubble groups con-

tribute significantly, intuitively one could hope that it could be monotone. This does not seem to

be correct but one can still in a sense ignore its effect, at the cost of losing the Gg and log(Z∞
µ )

terms.

Proposition 6.10. Let φ be a tiling of TN , and suppose h, ĥ are two SOS configurations where

the (ĥ, φ)-bubbles consist of all the (h, φ)-bubbles in addition to (ĥ, φ)-bubble groups {Bi}mi=1. Then

πφ,β̂(ĥ)

πφ,β̂(h)
≤ exp

( m∑
i=1

[
− β̂H(Bi)− λV(Bi)

])
.

Proof. It will be useful to use the expression for Gh,φ(ψ) from Eq. (4.8). Note that for every tiling ψ,

(φ △ ψ) ∩ (φ △ ĥ) = (φ △ ψ) ∩
(
(φ △ h) ⊎

⋃
i

Bi

)
,

where
⋃
iBi is short for

⋃
i

⋃
B∈Bi

B, the union of bubbles in the bubble groupBi, which are disjoint

to φ △ h by definition. In particular,

Gĥ,φ(ψ) = Gh,φ(ψ)−
∣∣∣(φ △ ψ) ∩

(⋃
i

Bi

)∣∣∣ .
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Since Corollary 4.3 implies that the minimizers of Gh,φ are constructed independently between

(h, φ)-bubble groups (which would not hold at the level of bubbles!), it follows that

G
g

ĥ
= G

g
h +

∑
i

Gg(Bi) ,

and combining the last two displays we see that

Gĥ,φ(ψ) = Gh,φ(ψ)−
∣∣∣(φ △ ψ) ∩

(⋃
i

Bi

)∣∣∣−∑
i

Gg(Bi)

≤ Gh,φ(ψ)−
∑
i

Gg(Bi) . (6.8)

In particular,

Zαµ (ĥ) =
∑
ψ

e−αGĥ(ψ) ≥ Zαµ (h)e
α
∑

iG
g(Bi) ,

and so, using Lemma 2.6 to recover the log partition functions from the integrals, we have∫ ∞

α
µĥ,α̂(Gĥ)dα̂−

∫ ∞

α
µh,α̂(Gh)dα̂ =

(
logZαµ (ĥ)− logZ∞

µ (ĥ)
)
−
(
logZαµ (h)− logZ∞

µ (h)
)

≥ logZ∞
µ (h)− logZ∞

µ (ĥ) + α
∑
i

Gg(Bi) .

Finally, the aforementioned independence of the minimizers between bubbles groups implies that

Z∞
µ (ĥ) = Z∞

µ (h)
∏
i

Z∞
µ (Bi)

(again via Corollary 4.3 and the fact that we are looking at bubble groups rather than bubbles),

which translates the last inequality into∫ ∞

α
µĥ,α̂(Gĥ)dα̂−

∫ ∞

α
µh,α̂(Gh)dα̂ ≥

∑
i

[
αGg(Bi)− logZ∞

µ (Bi)
]
.

Consequently, we see from Eq. (6.2) that

πφ,β̂(ĥ)

πφ,β̂(h)
= exp

[∑
i

[
− β̂H(Bi) + αGg(Bi)− logZ∞

µ (Bi)− λV(Bi)
]

−
(∫ ∞

α
µĥ,α̂(Gĥ)dα̂−

∫ ∞

α
µh,α̂(Gh)dα̂

)]
≤ exp

[∑
i

[
− β̂H(Bi)− λV(Bi)

]]
,

as required. ■

6.2. Glauber dynamics on bubble groups for h. Given a fixed reference tiling φ of TN , define
the following dynamics (ht) on SOS configurations, using a scale parameter

γ := λ/C (6.9)

where C is a large enough absolute constant (it will suffice to take it, e.g., as 105C∗M0 where C∗ is

the enumeration constant on animals in the lattice T).
(1) (a) Assign an independent rate-1 Poisson clock to every pair (S, {Bi}) , where S ⊆ TN is

a connected set of triangles in the lattice ⌈ 1γ ⌉T, and {Bi} is a set of pairwise-disjoint

bubble groups such that Υ(Bi) ∩ S ̸= ∅ for every i, and
∑

i |Υ(Bi)| ≥ γ|S|/200.
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(b) Also assign a rate-1 clock to pairs (S†, {B}) as above where S† is a single triangle in

⌈ 1γ ⌉T (without the aforementioned density restriction on Υ(Bi)’s).

(2) If either (i) no current bubble projects onto S in ht and adding every B ∈
⋃
Bi will result in

a configuration ĥ where {Bi} are precisely the bubble groups with Υ(Bi)∩S ̸= ∅, or (ii) the
current ht is such an ĥ, then let {h, ĥ} denote the configurations {ht, ht △ (

⋃
i

⋃
{B ∈ Bi})}

with ĥ the configuration with the bubbles. The dynamics moves to h with probability

wh/(wh + wĥ) and otherwise it moves to ĥ, where

wh = exp

[ ∫ ∞

α
µh,α̂(Gh)dα̂

]
,

wĥ = exp

[∑
i

[
− β̂H(Bi) + αGg(Bi)− logZ∞

µ (Bi)− λV(Bi)
]
−
∫ ∞

α
µĥ,α̂(Gĥ)dα̂

]
.

Compared to the Glauber dynamics we considered for ν, this is similar but instead of changing

only a single bubble at a time we can now add or remove a dense set of bubble groups. This is still

clearly reversible for πφ,β̂ as per Eq. (6.2)—note that irreducibility (which was automatic for the

bubble dynamics but now can be foiled by the density constraints on the sets S), is provided by the

extra clocks on the singletons S† (which have no density restriction). That is to say, by reversibility

it suffices to show a path from every configuration to h = φ, which we can do by removing bubble

group one tile at the time (each with an S†-update).

Define distB(h, h
′) to be the length of the geodesic in the graph where two configurations are

adjacent if they differ on single bubble group B of the larger configuration.

Proposition 6.11. The dynamics (ht) is contracting w.r.t. distB; that is, if α ∧ β̂ is large enough

(independently of φ), then for every pair of initial states (h0, h
′
0) for two instances of the chain,

there exists a coupling of (ht, h
′
t) such that, for some δ > 0,

E[distB(ht, h′t)] ≤ e−δt distB(h0, h
′
0) .

Proof of Proposition 6.11. As in the two previous cases, it suffices to consider h0, h
′
0 that differ

on a single bubble group B0 and again we assume by symmetry that h′0 contains B0.

Let R0 be an enclosure of B0 (recall Remark 6.3), and let us first consider the scenario wherein

|R0| > 12/γ .

We also collect for future reference the following conditions on an update (S, {Bi}):

[Healing size] |S| ≥ 8 · 107C1

(α ∧ β̂)γ
|R0| , (6.10)

[Infection size] |S| ≥ 3C1

(α ∧ β̂)γ20
|R0| , (6.11)

[Typicality ]
∑
i

[
β̂H(Bi)− αGg(Bi) + logZ∞

µ (Bi) + λV(Bi)
]
≥ 2C1

(
|S|+ |R0|+

∑
i

|Υ(Bi)|
)
,

(6.12)

[Distance] dist (∪Υ(Bi), R0) > 40
(
|R0|+

∑
i

|Υ(Bi)|
)
, (6.13)

with C1 chosen to be the maximum between all the constants from Lemmas 6.6 and 6.9 and the

constant C such that there are at most eCs pairs (S, {B}) with |S| = s.
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We will say that a bubble group is typical if it satisfies the typicality condition and atypical

otherwise and that it is at long range or short range if is satisfies or not the distance condition.

Note that the distance condition is exactly the same as in Lemmas 6.6 and 6.9. Let us also argue

that if an update (S, {Bi}) satisfies the distance condition, then it can either be added in both

h0, h
′
0 or in neither of them. If the Bi can be added to h′0, then by monotonicity (Corollary 4.14)

it can also be added to h0, even without using the distance condition. Now assume that it can be

added to h0, by the distance condition the bubbles of the Bi cannot intersect the ones of B0 so we

can still define configurations ĥ0, ĥ
′
0 by adding these bubbles to h0 and h′0 respectively. If there is

a path in T separating Υ(B0) from
⋃

Υ(Bi) staying outside of the projection of the bubble groups

of both ĥ0 and ĥ′0, then by the local consistency of bubble group (as in the proof of Corollary 4.14),

we find that the Bi are bubbles groups of ĥ′0. If there is no such path, then in particular there is a

set connecting
⋃
Υ(Bi) to R0 with bubble group density more than 1/2 in one of ĥ0 or ĥ′0 but this

contradicts the distance assumption and the fact that R0 is an enclosure.

Also, an atypical update (S, {Bi}) that satisfies the healing size condition (or the infection size

of course) must satisfy∑(
β̂H(Bi)− αGg(Bi)

)
≤ 2C1

(
|S|+ |R0|+

∑
i

|Υ(Bi)|
)

≤ 2C1

(200
γ

+
200

γ

γ(α ∧ β̂)
8 · 107C1

+ 1
)∑

i

|Υ(Bi)| , (6.14)

and therefore, if α ∧ β̂ is large enough, any atypical large update falls into the condition from

Lemma 5.24 for, say, ε = 1
512 (the dominant term is the middle one, involving 4 · 105C1, which

amounts to at most ε = 1
570 in the condition from Lemma 5.24) and thus satisfies∑

i

(
β̂H(Bi) + λV(Bi)

)
≥ β̂ − λ+

λ

20M0

∑
i

|Υ(Bi)| . (6.15)

Finally, an atypical update satisfying the infection size condition has, again assuming α∧ β̂ is large

enough, and now also assuming γ is small enough,∑(
β̂H(Bi)− αGg(Bi)

)
≤ 2C1

(200
γ

+
200

γ

(α ∧ β̂)γ20

3C1
+ 1

)∑
|Υ(Bi)|

≤ ε5/3(α ∧ β̂)
∑

|Υ(Bi)| (6.16)

for ε := γ9 qualifying for an application of Lemma 5.24 (with room to spare, as the dominant term

above featured we had γ19). We will apply said lemma later, with the enumeration over such cases.

Again, we can identify four scenarios:

(1) [blocked move] We select (S, {Bi}) where {Bi} can neither be added nor removed in both

configurations. In that case nothing happens and the distance stays 1. Note that this

happens with a very high rate since the number of pairs (S, {Bi}) grows exponentially with

the size of S but almost none of these will be compatible with the current configuration.

(2) [healing ] We select S satisfying the healing size condition (Eq. (6.10)) and S ∩Υ(B0) ̸= ∅,
together with bubble groups {Bi}, {B′

i} which are exactly the one whose projection intersect

S in h and h′ respectively. In particular, B0 appears in the set {B′} but not in {B}.
• If (S, {B}) is typical (i.e., satisfies Eq. (6.12)) then, since the contribution to either

weight of the integral is at most C1(|R0|+ |S|+
∑

i |Υ(B′
i)|) by Lemma 6.6 (C1 ≥ C0 by

construction and the distance condition is automatically verified since S intersects B0),
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with probability at least 1−2 exp(−C1|S|) (with room to spare) we remove all bubbles

from both h and h′, decreasing the distance to 0. With the complement probability,

we increase the distance by at most #{B′} ≤ |S|.
• If (S, {B}) is atypical, then Eq. (6.15) holds as discussed there so by Proposition 6.10 we

remove all bubbles in both h and h′ except with probability 2 exp(−β̂− λ
20M0

∑
i |Υ(Bi)|)

and in the exception the distance increases by at most #{B′} ≤
∑

i |Υ(Bi)|) + 1.

Overall, we see that, still assuming β̂ is large enough, any set S as above contributes a

rate of at least 1/2 to the decrease of the expected distance. It remains to show that there

are enough such sets. Take R0 as above. By Fact 5.23, the number of triangles of ⌈ 1γ ⌉T it

intersects is at most 12⌈γ|R0|⌉, in particular any set S containing all of these along with

γ|R0| other triangles taken arbitrarily will satisfy
∑

i |Υ(B′
i)| ≥ |R0|/10 ≥ γ|S|/200 since

|S| ≤ |R0|/(14γ) in T. There are at least eC∗γ|R0|−o(|R0|) many such choices, where C∗ is

the enumeration constant for animals in T (choose an animal in 1
εT and adjoin it to S, say

by gluing its leftmost (then bottom most) point to the rightmost (then top most) point of

the original S).

(3) [long range infection] We select (S, {Bi}i≥1) or (S
†, {Bi}) satisfying the distance condition

(Eq. (6.13)). As noted above, if it can be added to one configuration it can be added to the

other one too. Write

p =
wĥ

wh + wĥ
, p′ =

wĥ′

wh′ + wĥ′
.

By the exact same argument leading to Eq. (3.9) for the dynamics (ηt) considered there),

one has

|p− p′| ≤
∣∣∣∣ ∫ ∞

α
µh + µĥ′ − µh′ − µh

∣∣∣∣ .
We can apply Lemma 6.9 to bound the integral term by C exp

(
− α dist(R0,

⋃
iΥ(Bi)

)
.

Given the distance condition, if α is large enough the total contribution of that case is at

most a constant.

(4) [short range infection] We select (S, {Bi}) or (S†,B) which does not satisfy the distance

condition (Eq. (6.13)) and does not fit in the healing case (Item (2)). Consider three cases.

(a) [small ] S does not satisfy Eq. (6.11) (in particular this case does not exist if R0 is

too small). In that case, we will not try to control the probability and we bound the

distance assuming it increases by |S|. The number of such pairs (S, {Bi}) is at most

e3(α∧β̂)
−1γ−18|R0|. Globally this case contributes a rate of increase for the distance of

at most |R0|2e3(α∧β̂)
−1γ−18|R0|.

(b) [large typical ] S satisfies Eqs. (6.11) and (6.12). Note that S does not intersect B0

otherwise it would instead appear in the “healing” term and therefore the same set

{Bi} rings for both h and h′. Suppose first that the Bi can be removed from both,

as in the healing case by Lemma 6.6 it happens with probability at least 1 − e−C1|S|

for any of the two configurations. Similarly, if the Bi can be added, it happens with

probability at most e−C1|S|. Overall, since removing the same set synchronously in

both h and h′ does not increase the distance1, any set in this case contributes at most

1It is possible to find pairs (S, {Bi}) where the Bi can be added to h and not h′ but with S ∩υ(B0) = ∅ if one of

the Bi intersects B0 and S or if adding bubbles make some bubble group merge. Even in that case, bubble groups

need to be added to one configuration to increase the distance.



TILTED SOLID-ON-SOLID IS LIQUID 59

|S|e−C1|S| and since this is summable over all decorated set the total rate of increase is

c|R0| for a constant c that can be taken arbitrarily small is α and β̂ are large enough.

(c) [large atypical ] S satisfies Eq. (6.11) but not Eq. (6.12). As in the healing case, when

this happens the pair (S, {Bi}) must be in the exceptional set of Lemma 5.24 with

now, as noted after Eq. (6.11), ε = γ9. By Proposition 6.10 the probability to add

or keep the Bi is bounded by e
−β̂− λ

20M0

∑
i |Υ(Bi)| and it is the only case where the

distance can increase. Recall that
∑

Υ(Bi) ≥ γ|S|/200. The number of such pairs

with max(|S|,
∑

|Υ(Bi)|) = s is bounded by eC(γ9/4+γ2)s by Lemma 5.24. Altogether,

the contribution of this case is at most

exp
[
Cγ2s− λγ

4000M0
s− β̂

]
(6.17)

which is summable if λ/γ is large enough so again that case contributes at most c|R0|
with a c which can be made arbitrarily small by taking β̂ large enough.

Remark 6.12. The potential V was utilized in Items (2) and (4c) (healing and large typical short

range infection). In the former, it plays a weak role: we just need to kill the size of the set |S|
(which is the potential damage when we heal in one copy and not in the other), i.e., in that case

any V ≳ log |S| would work. It is however important to have V ≳ |S| in the latter (see Eq. (6.17)).

If |R0| < 12/γ, then assuming α and β̂ are large enough, C0|R0| ≤ 1
2(α ∧ β̂) with C0 from

Proposition 6.5. Since any bubble group B has either H(B) ≥ 1 or h↾Υ(B) is a tiling whence

Gg(B) = −|Υ(h \ φ) ∩Υ(B)| ≤ −1, the effect of the integral cannot dominate the other terms so

the proof is quite straightforward. We keep the nomenclature of the previous case.

For the healing rate as just noted above, a pair S†, {Bi} will always satisfy Eq. (6.12) and we can

even add an extra −1
2(α ∧ β̂) to the right hand side. Applying the same argument as in that case

(Item (2)) the probability to decrease the distance is at least 1− e−
1
2
(α∧β̂) and in the complement

probability we increase the distance by at most 1/γ2. There exists at least one possible choice for

S† so overall the healing rate is at least 1/2. The long range infection case is completely analogous.

Finally, in the short range infection, if α and β̂ are large enough there are no small sets (indeed

the condition on the size of small sets was designed to only include the cases where the integral

might dominate the other terms). The case with large sets has to be slightly modified to include

updates (S†, {Bi}) but since their sizes are bounded and each has a probability at most e−
1
2
(α∧β̂)

to increase the distance, they only contribute a small additive term. The total rate of change of

the distance is hence

−1

2
+ c|R0|

and, together with |R0| ≤ 12/γ, we see that if α, β̂ are large enough there is still a contraction of

the distance.

Overall we see that, starting (ht, h
′
t) at (h, h

′), we have d
dtE[distB(ht, h

′
t)]↾t=0 is at most

−1

2
eC∗γ|R0|−o(|R0|) + |R0|2eκ(α∧β̂)

−1|R0| + c|R0| ≤ −1

4
eC∗γ|R0|−o(|R0|) ,

which concludes the proof. ■

6.3. Propagation of information. To prove Theorem 6.1 we must control the speed at which in-

formation propagates through the dynamics. This step will be considerably more delicate compared

to the analysis of the dynamics for µ and ν studied in Section 3, due to the potential emergence of

large dense regions, encouraged by the long range interaction of
∫
µ(Gh)dα̂.
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Proof of Theorem 6.1. As in the proof of Eqs. (3.1) and (3.2) for µ and ν, let r = 2k with k ≥ 1,

and let Λφr denote Υ(φ↾B(o,r)), i.e., the tiles of φ whose projection to TN are strictly contained in

B(o, r). Denote by πr the measure defined as πφ,β̂ but on SOS configurations of Λφr , that is,

πr(h) ∝ exp

[
− β̂Hh + αG

g
h,φ − logZ∞

µr,h
− λV(h)−

∫ ∞

α
µr,h,α̂(Gh)dα̂

]
,

where µr,h,α̂ is again defined only over tilings of B(o, r). Again , in case r ≥ N/2, we replace B(o, r)

in the definition of πr by the full torus TN , that is, we take πr = πφ,β̂. (With this definition, every

B(o, r) that is strictly contained in TN is also simply connected.)

Constructing the local function. With the above definition, denote by {B ∈ h} for some bubble B

the event that B appears in h as a (complete) (h, φ)-bubble, and let

fπ2r,B(φ↾B(o,2r)) :=

∫ ∞

β

[
π2r(B ∈ h)− πr(B ∈ h)

]
dβ̂ .

Similarly to the case of µ, ν in Eqs. (3.5) and (3.12), we have that∫ ∞

β
πφ,β̂(Hh)dβ̂ =

∑
x∈TN

∑
(h, φ)-bubble B

Υ(B)∋x

H(B)

|Υ(B)|
∑
r=2k

for k ≥ 1

fπr,B(φ↾B(x,r)) , (6.18)

and now wish to argue that

∥fπ2r,B∥∞ ≤ C exp[−λ(r + |B|)/C] . (6.19)

The term corresponding to |B| in the exponent again follows from a Peierls argument, yet now it

must be done at the level of bubble groups, and take into account whether said bubble group B ∋ B

is exceptional or not w.r.t. Proposition 5.1. More precisely, given B with H(B) ≥ 1 (there is nothing

to prove for the other ones), let B be the bubble group containing it and let R0 be an enclosure of B

(choosing which one arbitrarily). We define a Peierls map removing all bubble groups intersecting

R0. The ratio of the probabilities is at most e−β̂−C1|R0| if this collection of bubble groups satisfy

Eq. (6.12) or e
−β̂− λ

200M0
|R0| if they do not (using that the density of an enclosure is at least 1/10.

Furthermore, the multiplicity of the map is at most the number of bubble groups in R0 so less

than |R0|. Arguing as in the proof of Proposition 6.11, we claim that we can enumerate over all

possibles dense sets R0 and obtain that

πr(B ∈ h) ≤ Ce
−β̂− λ

200M0
|Υ(B)|

(6.20)

for some fixed C. Indeed, to enumerate over the sets R0, one separates between bad sets that failed

Proposition 5.1, which have a reduced entropy, and good sets, for which the Peierls energy gain is

exp(C|R0|) for a large constant C (which we take to be large enough to beat the enumeration over

such sets), as was done in the proof of Lemma 5.21.

Once again, the decay in r will come from a bound on the speed of propagation of information

under the dynamics (ht). This time we will run (two coupled instances of) the dynamics for time

T = cλr for c = c(γ) to be specified later. Note that, now that the interactions have a small rate of

exponential decay λ, we are even more limited in the time for which we will analyze the dynamics

than in the ν case. Compared to that case, there is also a further difficulty whenever a large dense

set appears which we first explain heuristically. Indeed, suppose that at some time t, a bubble

group B differs between h and h′ and is associated to a large R0 with |R0| ≫ α∧ β̂ in one of them.

As in the small short-range case of the proof of Proposition 6.11, there are an order ec|R0|/(α∧β̂)
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many clocks which can each contribute to the propagation of the information from the boundary

so the speed of information appears extremely large. This is however misleading because if this

happens, there is an even larger rate for updates removing all bubbles from R0 so overall it is still

be very unlikely for information to actually move using the above mechanism.

The proof will now follow a multi-scale induction, aiming to show that a connected set of size s

(the scale parameter) which might get populated by a dense collection of bubble groups, is likely

to have its bubbles vanish before it gets a chance to support a long-range infection step in the

dynamics. To this end, define the local density near x of sets of size of order s:

ρx(s, h) := max
S∋x

s≤|S|≤2s
S connected

ρ(S, h) (6.21)

(and ρx(s, h) = −∞ if no such set S exists), as well as the local time spent in configurations where

ρ exceeds a given threshold:

Lx(s, r) =

∫ 1

0
1{ρx(s,ht)≥r}1{x∈Υ(ht△φ)}. (6.22)

Note the technical detail that we always ask x to be in a bubble.

We aim to relate Lx to the number of times that a large (dense) set was created. To that end,

consider the dynamics (ht) and let (S(k), {B(k)
i })k≥1 be the random set of updates where

• the corresponding clock rang as per Item 1 in its definition, along t ∈ (0, 1);

•
∑

i β̂Hh(B
(k)
i )− αG

g
h,φ(B

(k)
i ) ≥ ε(α ∧ β̂)

∣∣⋃
iB

(k)
i

∣∣.
• the update resulted in the addition of {B(k)

i } to ht as per Item 2;

Writing, here and throughout this proof, |
⋃
iBi| :=

∑
i |Υ(Bi)|, let

Qεx(s) := #

{
k : x ∈ S(k) ,

∣∣⋃
i

B
(k)
i

∣∣ ≥ s

}
. (6.23)

The induction will be based on the following two statements, proved in tandem.

Lemma 6.13. Take ε > 0 such that γ7 < ε < γ6. If α ∧ β̂ is large enough, then for every

configuration h0 and every scale s ≥ 1/γ2, one has that

E[Lx(s, 1
10)] ≤ e−

1
4
γs for all x ; (6.24)

E[Qεx(s/(ε2(α ∧ β̂))] ≤ e−
1
5
γs for all x . (6.25)

Proof. We will prove the following implications inductively on s, with a base case of s = N2 + 1:

Step 1: Eq. (6.24) for a given s implies Eq. (6.25) for that s;

Step 2: Eqs. (6.24) and (6.25) for a given s together imply Eq. (6.24) for s/2.

(To carry this out, we will take advantage of the fact that these estimates hold for all x).

Base case. The statement of Eq. (6.24) for s = N2 + 1 is trivial (as we then have ρx(s, h) = −∞).

Proof of Step 1. Fix x and s and assume that Eq. (6.24) holds for s. Note that the updates that

are counted in Qx(s/(ε
2(α∧ β̂))) but not Qx(2s/(ε2(α∧ β̂))) must satisfy |

⋃
Bi| ≤ 2s/(ε2(α∧ β̂))

as well as
∑

i β̂Hh(Bi)− αG
g
h,φ(Bi) ≥ (s/ε) ∨ 1. Thus, using Lemma 6.6 to control the difference

in the integral, when such a clock rings and attempts to add bubbles, if there is no set R0 with

density at least 1
10 and size at least s, then the probability to accept the proposed move is at most

exp
[
− s

ε
+ C

(
1 +

200

γ

2

ε2(α ∧ β̂)
+

2

ε2(α ∧ β̂)

)
s
]
.
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In the interval [0, 1], the expected number of such clocks ringing is at most eCs/(ε
2(α∧β̂)) (for C

associated to the enumeration over pairs of (S, {Bj} with a given size), so their total contribution

is indeed smaller than e−γs/4 for α∧ β̂ large enough (and γ < 1/ε, automatic as γ, ε are both small).

On the other hand, by the induction hypothesis Eq. (6.24), the expected number of clock ringing

during the time counted in some Ly(s,
1
10) for y ∈ B(x, 2s/(ε2(α ∧ β̂))) is

exp
[
C

s

ε2(α ∧ β̂)
− γ

4
s
]
.

Combined, and recalling that ε > γ7, as long as α∧β̂ > C ′γ−15 (say) we arrive at a total contribution

of at most e−γs/5, concluding the proof of this step. (Using that γs is large enough, via s > 1/γ2.)

Proof of Step 2. Fix s and assume Eqs. (6.24) and (6.25) for 2s.

Let us first assume that ρx(s, h0) ≥ 1
10 , and consider τ1 the first time where ρx(s, ht) ≤ 1

13 .

Arguing as in the healing part of Proposition 6.11 (the condition |R0| > 12/γ in the healing is

satisfied here by the fact that we take s ≥ γ−2), we see that at any time before τ , there is a rate at

least eγs to remove all bubbles constituting any set of density more than 1/13 (take any such set

as R0). In particular τ1 is bounded by an exponential variable of mean e−γs. We emphasize that

this is uniform even if at some times x is part of a dense set larger than 2s.

On the other hand, suppose that initially ρx(s, h0) ≤ 1
13 and let τ2 be the first time where

ρx(s, h0) ≥ 1
10 , conditional on the event that no update counted in Q rings (we will treat the

unconditional setting in the next paragraph). Before τ2 one must add a set of bubbles with density

larger than 1
10 − 1

13 and we can bound τ2 assuming that whenever a clock with size less than

4s/(ε2(α ∧ β̂)) rings, we always add the corresponding bubbles. Any clock not counted in Q has

to be bad by construction. As in the case of large atypical updates and using that ε < γ6, the

probability to accept any such update when it rings is bounded by Proposition 6.10 and overall

they do not contribute any significant rate. It is easy to see since the clocks are independent that

E[τ2| no Q update] ≥ e−Cs/(ε
2(α∧β̂)) for some C.

Now assuming that any update in Q also allows us to go from density 1
13 to 1

10 and iterating

the two stopping times above, we obtain that Lx(s,
1
10) ≤

∑J
j=0 τ2j+1, where τj is a sequence of

stopping times defined inductively by τ2j+1 = inf{t ≥ τ2j : ρx(s, ht) <
1
13}, τ2j+2 = inf{t ≥ τ2j+1 :

ρx(s, ht) >
1
10} and J counts the number of times the density went from 1

13 to 1
10 . Further note

that in the previous bounds, each bound was true uniformly over all initial configurations h0 and

was actually obtained by looking at the clocks independently from the dynamics ht so the whole

sum can be bounded as if all terms were independent so

E[Lx(s, 1
10)] ≤ eCs/(ε

2(α∧β̂))e−γs + s2e−
2
5
γse−γs ≤ e−γs/4

which concludes.

Having established the induction, the proof is complete. ■

Remark 6.14. It will be useful to regard the (very similar) special case of Eq. (6.25):

E[Qεx(s)] ≤ exp
[
− α ∧ β̂

5γ13
s
]

for all s ≥ 1

γ16(α ∧ β̂)
, γ7 < ε < γ6 .

We emphasize that when α∧β̂ is large enough, this does hold up to s = 1: This is because the rate of

decay is much worse than expected for small updates which still satisfy
∑
β̂H(Bi)− αGg(Bi) ≥ 1.

Let (ht, h
′
t) be two coupled instances of the dynamics on respective domains B(o, r) and B(o, 2r),

from an initial configuration which agrees on B(o, r), where every update of h′t that is confined to
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B(o, r) uses the joint law as per Proposition 6.11 (and updates of η′t in the annulus B(o, 2r)\B(o, r)

sampled via the product measure of ηt and η
′
t on this event). Run the dynamics for time

T = cγλr/M0 ,

with c to be chosen small enough later and write

|π2r(B ∈ h)− πr(B ∈ h)| ≤ Ξ1 + Ξ2 + Ξ3 ,

where

Ξ1 := |πr(B ∈ h)− P(B ∈ hT )| ,
Ξ2 :=

∣∣π2r(B ∈ h)− P(B ∈ h′T )
∣∣ ,

Ξ3 :=
∣∣P(B ∈ hT )− P(B ∈ h′T )

∣∣ .
As in the two previous cases, Proposition 6.11 for t = T , we get

Ξ1 ≤ e
−cδ γλ

M0 |B(o, r)| ≤ e
−(cδ γλ

M0
−o(1))r

, Ξ2 ≤ e
−cδ γλ

M0
r|B(o, 2r)| ≤ e

−cδ( γλ
M0

−o(1))r
,

and so we can focus on the bound on Ξ3.

As in the ν case, on the event where, at time T , B is only present in one configuration we can find

a sequence of updates (S(1), {B(1)
j }), . . . , (S(m), {B(m)

j }) (m ≥ 1) with Υ(B) ∩ (
⋃
j Υ(B

(m)
j )) ̸= ∅

and such all updates occur successively, each in only one of h or h′ before time T . We can also

assume that whenever (S(k), {B(k)
j }) occur, the minimal distance from S(k) ∪

⋃
j Υ(B

(k)
j ) to any

disagreement is reached at a point of
⋃
iΥ(B

(k−1)
i ). We let jk, rk, sk, tk denote respectively this

distance, the diameter of S(k) ∪
⋃
j Υ(B

(k)
j ), max(|S(k)|,

∑
j |Υ(B

(k)
j )|) and the time of the update.

We also let Fk denote the σ-algebra of events measurable with respect to the dynamics up to time τk
and we let nk := ⌊τk − τk−1⌋. As in the ν case, we bound Ξ3 by a union bound over all sequences

(S(1), {B(1)
j }), . . . , (S(m), {B(m)

j }).
The first step is to enumerate over sequences of (jk, rk, sk, nk)k≥0 and to condition on all the Fk

to obtain that Ξ3 is at most∑
(nk)∑
nk<T

∑
(jk,rk)∑
jk+rk≥r

∏
k

[ ∑
sk≥rk

P
(
compatible (S(k), {B(k)

i }) in [tk−1 + nk, tk−1 + nk + 1] | Fk−1

)]
.

(6.26)

The conditional probability in the right hand side is bounded as follows:

If jk ≥ 160(α ∧ β̂) and sk ≤ jk/(80C) where C the constant such that there are at most eCs

possible updates with size s, then we consider the set of times in [tk−1 + nk, tk−1 + nk + 1] where

∀x such that dx := dist
(
x,

⋃
iΥ(B

(k)
i )

)
≥ jk satisfies max

s≥dx/160
ρx(s, h) <

1

10
.

By Lemma 6.13, the expected size of its complement at most Csk
∑

n≥jk ne
− 1

4
γn ≤ e−

1
5
γjk so the

probability that it is larger that e−
1
10
γjk is at most e−

1
10
γjk . Enumerating over all possible updates,

the probability that one of them occurs during the complement is at most Csk−1jke
− 1

10
γjkeCsk ≤

e−
1
20
γjk . On the other hand, at any instant where the condition holds, we can apply Lemma 6.9

(with {S(k),B(k)} for S and {B1} while the R0
i are the enclosures of all differences between ht and

h′t) and, reasoning as in the long range infection part of the contraction, we see that the probability

to create a defect is bounded by Csk−1e
−α∧β̂

C
jk with C given by Lemma 6.9.
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If jk ≥ 160(α∧β̂) and sk ≥ jk/(80C), then we bound the probability to do any update counted in

Qε for ε = γ6 by Lemma 6.13. The rate of updates not counted in Qε is bounded by Proposition 6.10

with the number of corresponding updates bounded by Lemma 5.21 (as in the short range bad case

in the contraction). Overall these updates contribute at most sk−1(e
− α∧β̂

5γ13
jk
80C + e

(2Cγ2− γλ
400M0

)
jk
80C ).

If jk ≤ 160(α∧β̂), we bound the contribution of any update counted in Q by Csk−1(α∧β̂)2e
− α∧β̂

5γ13 .

For updates not counted in Q, we note that, since any bubble group has β̂H(B)−αGg(B) ≥ α∧ β̂,
at any time where Lemma 6.6 ensure that the integral is bounded by (α ∧ β̂)/2, the rate at which

we do a move is bounded by e−(α∧β̂)/4. Consider the times where there exists an enclosure R0 with

size |R0| ≥ (α∧ β̂)/(2C) with C given by Lemma 6.6. If this local time is smaller than e−
γ
10

α∧β̂
2C then

the probability that a clock with size less that α∧ β̂ and not counted in Q rings during that time is

at most sk−1e
− γ

10
α∧β̂
2C e2Cγ

2(α∧β̂). By Eq. (6.24), the probability that this local time exceeds e−
γ
10

α∧β̂
2C

is at most e−
γ
10

α∧β̂
2C . Finally, updates not counted in Q but with s ≥ (α ∧ β̂) can be bounded as in

the case jk ≥ 160(α ∧ β̂).
Overall, we see that we can bound∑
rk,sk

skP
(
compatible (S(k), {B(k)

i }) in [tk−1 + nk, tk−1 + nk + 1] | Fk−1

)
≤ sk−1e

− γλ
CM0

jk− γ(α∧β̂)
C

for some absolute constant C. Note that we included a factor sk on the left hand side in order

to compensate for the sk−1 appearing in right hand side so that overall when plugging everything

back in Eq. (6.26) only the exponential factors remain.

Turning to the enumeration over all n, since the minimum between the number of terms and the

sum of the jk must be at least r/2, we see that

Ξ3 ≤ e
− γλ

M0C
r

∑
(nk)

K
k=1∑

nk<T

e−K(α∧β̂)/C .

Given K, the number of terms in the above summation over sequences (nk) is explicit and given

by
(K+⌊T ⌋

K

)
≤ 2K+T . With the factor e−Kc(α∧β̂) this gives

Ξ3 ≤ e−(α∧β̂)/Ce
− γλ

M0C
r
2T .

Recalling that we choose T = cγλr/M0 for c small enough, we see that we have arrived at the

desired bound Ξ3 ≤ e−(α∧β̂)/Ce
− γλ

M0C
r
, and the proof is concluded by setting

gπr :=
∑

B: Υ(B)∋o

fπr,B . ■

7. Concluding Theorem 1 and Corollary 2 modulo Theorem 3

Recalling our global strategy, at this point, we have defined an approximation of the SOS height

function h by a tiling φ, then established that the marginal law of φ is that of a weakly interacting

tiling in Theorem 2.1. This was done through the decomposition of φ into µ, ν, π (characterized

in Theorems 3.1 and 6.1), proving along the way that the conditional law of h given φ is given by

small perturbations with exponentially decaying interactions.

The next natural step would be to prove Theorem 3 to obtain the convergence of φ but this part

of the argument use very different tools to the rest of the paper so we instead first focus on the

proof of Theorem 1 modulo Theorem 3 since it is closer in spirit to the previous sections. There
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are three points in this argument: naturally we need to prove that h itself has a limit in infinite

volume, then we have to check that h − φ does not contribute to the scaling limit of h. However

we also need to change the underlying coordinate system. Indeed, while h is defined as a function

from Z2 to Z, our current results on φ use the natural setting of lozenge tilings and for example

the height function associated to φ is defined from the vertices of the triangular lattice to Z. We

see that we thus need to show how to transport the convergence from one convention to the other.

Proposition 7.1. For every λ > 0, and slope θ ̸= 0, there exists β0 such that for all β ≥ β0 the

following holds. Let (hN , φN ) be sampled according to Eq. (1.11) on the torus ΛN and recall that

by convention h is pinned to 0 at some point o. As N goes to infinity, the pair (hN , φN ) converges

locally (seen as subset of plaquettes in Z3) to some (h, φ).

Furthermore, the law of (∇h, h−φ) is translation invariant (under P001 translation) and ergodic.

Proof. The existence of a local limit for ∇φN is one of the outputs of Theorem 3. The measure

∇φ must be invariant under P111 translations because ∇φN was for all N (this is one of the point

where the setting of the torus is particularly convenient).

As an output of Theorem 3, we also have that the cumulants of the edge occupations variables

decay polynomially with the distance between the edges (see Eq. (8.21)). In particular, we must

have for any two local events E1, E2 and writing τu for the translation by u, Cov(1E1 ,1τuE2) → 0

as ∥u∥ → ∞. It is easy to deduce that the measure must be ergodic (still for P111 translations):

consider a translation invariant event E, there must exists a local event E1 with P(E △ E1) ≤ ε

for all ε. By translation invariance for any translation τ , P(E △ τE1) ≤ ε and since E1 and τE1

are asymptotically independent, we conclude.

We turn to the joint law of h and φ. By Skorokhod’s Theorem, we can assume without loss of

generality that φN → φ almost surely. By Eq. (6.19), we know that for any r and any N large

enough, the conditional law of hN △ φN↾B(o,r) given φN is close to the law of (the restriction of)

h △ φN from the simply connected domain φN↾B(o,2r), with an error term exponentially small in r.

This automatically proves tightness of the law of hN △ φN and shows that any subsequential limit

must also be close to the law in the finite domains φ↾B(o,2r). Since r was arbitrary and since the

laws of h in finite domains are automatically continuous functions of φ, we have proved convergence

for the joint measure.

Again the translation invariance holds automatically for the joint measure because it was true

already in finite volume and the decay of correlation in h given φ and the ergodicity of φ shows

that the joint law is ergodic. ■

Remark 7.2. We know from Eq. (6.20) that the size of bubbles in h △ φ has an exponential tail.

It is not hard to see similarly that h △ φ has almost surely no infinite component. This can already

be interpreted as saying that the large scale geometry of h and φ are identical.

Lemma 7.3. Fix a, b, c, λ > 0 and β large enough. Let φ be sampled according to the measure

µ∞ = µβ,λ∞ given by Theorem 3 and let σ and L be given by Item (b) of that theorem. There exists

L̄ such that in the SOS convention,

φ001(n·)− Eφ001(n·) → σ

√
3

3
|det(L̄)|GFF ◦ L ◦ L̄ .

Furthermore L̄ only depends on a, b, c but not λ or β.

Proof. The first step is to define L̄. Suppose for concreteness that φ is pinned so that o = (0, 0, 0) ∈
φ. By translation invariance, both E[φ111] and E[φ001] are linear maps so they can each be associated
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Figure 17. A schematic 2d representation of the proof of Claim 7.4. The set U corresponds

to the interval between the black dots on P001, V = L(U) is the interval between the green

dots with the construction of the map L̄ shown using the thin lines and the blue dots. In this

example, the sum over u ∈ U counts the green area together with the right red component

while the sum over v ∈ V counts the green and left red component.

to a plane of R3. However, by Theorem 3, we know that φ(nv)−Eφ111(nv)
n goes to 0 for all non-root

v ∈ P111. In particular the planes E[φ111] and E[φ001] must coincide. It is not hard to check that

in fact, it must be the plane of equation ax1 + bx2 + cx3 = 0 and we call it Pabc. We let L̄ be the

map from P001 to P111 such that L̄(u) = v if and only if there exists x ∈ Pabc such that Υ111(x) = v

and Υ001(x) = u.

Seeing U as a union of faces of Z2, it is clear that
∑

u∈U φ001(u)− E[φ(u)] is the signed volume

of the set {x : E[φ001(x1, x2)] ≤ x3 ≤ φ001(x1, x3) or φ001(x1, x2) ≤ x3 ≤ E[φ(x1, x2)]} (up to an

O(|∂U |) error coming from the approximation of Pabc by a step function). For V a set of vertices

of the triangular lattice,
∑

v∈V φ111(v)−E[φ(v)] actually has a similar interpretation: Indeed note

that adding a single cube to φ (at a point where it can be done without violating the monotonicity

condition) leaves φ111 invariant everywhere except at the projection of the diagonal of the cube

where φ111 increases by 1. Therefore
∑

v∈V φ111(v) − E[φ(v)] is also the signed volume of a set

bounded by φ and Pabc, with the only difference that now the “sides” must be in the direction

(111) instead of (001) (see Fig. 17).

Consider now U fixed and let V = L̄(U), with an arbitrary convention on the boundary which

will not have any impact.

Claim 7.4. There exists C (depending on a, b, c) such that, if there exists V ′ ⊃ V and M such that

supv′∈V ′ |φ111(v
′)− E[φ111(v

′)]| ≤M and infv∈∂V,v′∈∂V ′ |v − v′| ≥ CM , then

|
∑
u∈U

(φ001(u)− E[φ(u)])−
∑
v∈V

(φ111(v)− E[φ(v)])| ≤ |∂V |CM3 .

Proof. Fix a point p1 ∈ φ such that v := Υ111(p1) ∈ V but Υ001(p1) /∈ U . Let p2 be the unique

point in Pabc such that Υ111(p2) = v, by assumption ∥p1−p2∥1 ≤ 3M and consequently ∥Υ001(p1)−
Υ001(p2)∥ ≤ 2M . On the other hand, by definition Υ001(p2) = L̄−1(v) so it must be in U . Overall

we see that v must be at distance at most 2M of ∂V .

Conversely, take p1 ∈ φ such that u := Υ001(p1) ∈ U and Υ111(p1) /∈ V and suppose by

contradiction that |ϕ001(u) − E[ϕ001(u)]| ≥ CM for a constant C to be chosen large enough later.

As before let p2 be the point of Pabc such that Υ001(p2) = u and let v2 = Υ111(p2) = L̄(u).
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Let p′2 be the point of φ such that Υ111(p
′
2) = v2, by assumption, since v2 ∈ V , we must have

∥p′2−p2∥1 ≤ 3M . Since ∥p1−p2∥ ≥ CM and they only differ in the z coordinate, there must exists

a path in φ starting at p′2, (going to p1) a doing at most 2M steps in the x or y directions while it

does at least CM steps in the z direction, either all increasing or all decreasing depending on the

sign of φ001(u)−E[φ001(u)]. If C is large enough, this is a contradiction with the fact that φ stays

close to Pabc in a large neighborhood of V . We can then argue as in the previous paragraph that

v2 must be within distance CM of ∂V .

Overall, we see that the contributions to |
∑

u∈U
[
φ001(u)−E[φ(u)]

]
−
∑

v∈V
[
φ111(v)−E[φ(v)]

]
|

can only come from cubes within distance CM of the boundary of V which concludes the proof of

the claim. ■

Recall from Section 2.1 that we interpret φ001(n·)−E[φ001(n·)] as a piecewise constant function

defined from R2 to R and that we write integrals as the L2 scalar product. Recall also that, since

the full plane Gaussian free field is only defined as a distribution up to a global shift, we only need

to prove convergence of

⟨φ001(n·)− E[φ001(n·)], f⟩
for test functions f with 0 mean. Clearly, we can further restrict the set of test functions to finite

linear combination of the indicator of smooth open sets so for clarity let us focus on the convergence

of

⟨φ001(n·)− E[φ001(n·)],1U+ − 1U−⟩
for two disjoint bounded open sets U± with smooth boundaries and the same areas. Theorem 1

from [34] tells us that all cumulants of φ111(v)−φ111(o) of order more that 2 are bounded uniformly

in v and that Var(φ111(v)−φ111(o)) grows logarithmically in |v−o|. In particular, applying Markov

to a high enough moment and Borel–Cantelli, we see that almost surely, for all n large enough

sup
v∈B(o,n)

|φ111(v)− E[φ(v)]| ≤ n1/4 .

We can then apply Claim 7.4 to both
∑

u∈nU+ and
∑

u∈nU− . The error term coming from the claim

is O(n7/4) since |∂nU±| = O(n) and the other errors coming from approximating the sets U± by a

union of squares contribute O(n5/4) so overall∑
u

(
φ001(u)− E[φ001(u)]

)(
1nU+(u)− 1nU−(u)

)
=

∑
v

(
φ111(v)− E[φ111(v)]

)(
1nV +(v)− 1nV −(v)

)
+O(n7/4) .

Moving from discrete sum to L2 inner product, the area of the faces of the dual lattice to T appears

in the right hand side and

⟨φ001(n·)− E[φ001(n·)],1U+ − 1U−⟩ =
√
3

3
⟨φ111(n·)− E[φ111(n·)],1L̄U+ − 1L̄U−⟩+O(n−1/4)

and hence, since φ111 − E[φ111] converges to σGFF ◦ L,

⟨φ001(n·)− E[φ001(n·)],1U+ − 1U−⟩ −→
√
3

3
⟨GFF ◦ L,1L̄U+ − 1L̄U−⟩

=

√
3

3
|det(L̄)|⟨GFF ◦ L ◦ L̄,1U+ − 1U−⟩| . ■

The final step, as mentioned above, is to prove that h − φ does not contribute to the scaling

limit of h. Note that for h, only the SOS convention makes sense so we stick to this convention

and drop the indices.
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Lemma 7.5. Uniformly over φ and u, h(u)−E[h(u) | φ] has an exponential tail, h(·)−E[h(·) | φ]
has exponentially decaying covariance and for all U ,

⟨h(n·)− E[h(n· | φ],1U ⟩
L2

−−→ 0 .

Proof. This is essentially a corollary of the analysis of πφ,β̂ in Section 6. Indeed, as already

mentioned in Remark 2.8, the conditional law of h given φ is πφ,β. The exponential tail of

h(o) − E[h(o) | φ] is an immediate consequence of the exponential bound on the size of bub-

bles given in Eq. (6.20) (note that it is given there for πr but since the bound is uniform over r it

applies for measure on the torus too). In particular, h(·) − E[h(·) | φ] is square integrable and its

variance is uniformly bounded in φ.

For the covariance, fix x and y and let r = |x−y|. First note that, again since the size of bubbles

has an exponential tail, it is enough to look only on the even where the bubbles at both x and y

are smaller than r/10. We can then replace the actual law of h given φ by the law in B(o, 2r) with

boundary condition φ again with an exponentially small error in r. Then, running the dynamic of

Section 6 for a time cr with c small enough, except on an event of exponentially small probability,

information does not have time to propagate between B(x, r/2) and B(y, r/2) and so on that event

h↾B(x,r/2) and h↾B(y,r/2) are independent. Overall, we see that the covariance decays exponentially

with r as desired.

Once we control the pointwise variance and covariances, we deduce immediately that, uniformly

over φ, Var(⟨h(n·)− E[h(n· | φ],1U ⟩) = O(L−2) which concludes. ■

Lemma 7.6. For the law on full plane tilings φ given by Theorem 3, E[h(o) | φ]−φ(o) is bounded

and has mean 0, E[h(·) | φ]− φ(·) has exponentially decaying covariance and for all U ,

⟨E[h(n·) | φ]− φ(n·),1U ⟩
L2

−−→ 0 .

Proof. E[h(o) | φ]− φ(o) is bounded again because of the arguments in Section 6. More precisely,

since we proved that the size of bubbles has an exponential tail uniformly over φ, the expected size

is bounded as a function of φ.

To see that E[h(o) | φ]−φ(o) has mean 0, first note that by translation invariance E[h(u)]−E[φ(u)]
cannot depend on u. Also, we remark that the joint law of h and φ is defined only using h and φ

as union of plaquettes of Z3. In particular, it is invariant under changing the sign of all three axis

in space, which transforms (h(·), φ(·)) to (−h(−·),−φ(−·)) so E[h(·)] − E[φ(·)] must be odd (this

transformation can also be seen as exchanging the + and − spins in an Ising configuration with

interface h, or a reflection on the 111 plane). Overall, the only solution is that E[h] = E[φ].
For the covariance, we first note that

E[h(o) | φ] = φ(o) +
∑
r

∑
B:Υ(B)⊂o

(hB(o)− φ(o))(π2r(B ∈ h)− πr(B ∈ h)) ,

where hB(o) is the height of o in any configuration containing B as a bubble. This is almost the

same as the decomposition in Section 6 except that there is no integral over β̂ and we have a slightly

different weight per bubble. The arguments of Section 6 apply directly and prove that∣∣∣ ∑
B:Υ(B)⊂o

(hB(o)− φ(o))(π2r(B ∈ h)− πr(B ∈ h))
∣∣∣ ≤ e−cr

for some constant c, i.e., E[h(o) | φ]−φ is almost a local function in the same sense as g. Combined

with the polynomial decay of the cumulants of the edge occupation variables in Eq. (8.21), we see

that the covariance between E[h(o) | φ] and E[h(u) | φ] must decay to 0 as ∥u∥ → ∞ (at a rate
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at least e−ε
√

log ∥u∥). It then immediately follows that Var(⟨h(n·) − E[h(n· | φ],1U ⟩) → 0 which

concludes the proof. ■

Concluding the proof of Theorem 1 is then simply a matter of combining the previous results.

Proof of Theorem 1. We write

h− E[h] =
(
φ− E[φ]

)
+
(
h− E[h | φ]

)
+
(
E[h | φ]− φ

)
using the fact that E[h] = E[φ] mentioned in the proof of Lemma 7.6. The first parenthesis in the

right hand side converges to the Gaussian free field by Lemma 7.3 while the other two converge to

0 by Lemmas 7.5 and 7.6. ■

Let us note that in a sense Theorem 1 gives a much more precise statement about the limit than

a simple control of the variance but the fact that the GFF is a distribution means it does not

formally imply anything for pointwise moments. For the sake of completeness, we still derive the

variance of height increments in the SOS convention.

Proposition 7.7. As ∥u∥ → ∞,

Var(h(u)− h(o)) =
σ2

p2a
log ∥u∥+ o(log ∥u∥) ,

where σ is given by Theorem 3.

Proof. First we note that, by Lemmas 7.5 and 7.6, it is enough to prove the result for φ001(u) −
φ001(o) instead. Fix u which according to the convention in Section 2.1 and Fig. 10 we label using

half integers. Let us denote by e↑ the projection on P111 of the unit vector e3 The first step is to

give concretely how to read the φ001 height in terms of the φ111 one.

By definition φ001(u) = z if and only if the plaquette (u1 ± 1
2 , u2 ±

1
2 , z) is in ϕ which is then

equivalent to then fact that

φ111

(
Υ111(u1 +

1
2 , u2 +

1
2 , z)

)
= φ111

(
Υ111(u1 − 1

2 , u2 −
1
2 , z)

)
= z .

Also, since both E[φ111(·)] and E[φ001(·)] describe the same plane Pabc and by definition of L we

have E[φ001(u)] = E(φ111(L(u)). Using the linearity of the projection we therefore obtain that

Υ111(u1 +
1
2 , u2 +

1
2 , z) = L(u) + Υ111

(
1
2 ,

1
2 , z − E[φ001(u)]

)
= L(u) + (z − E[φ001(u)]− 1

2)e↑ .

It follows that we would have

φ001(u) = k + E[φ001(u)] (7.1)

if and only if

φ111(L(u) + (k + 1
2)e↑) = φ111(L(u) + (k − 1

2)e↑) = k + E[φ111(L(u))] .

Since k → φ(u+ke↑)−k is non-increasing in k we can equivalently reformulate the above as saying

that Eq. (7.1) occurs if and only if

φ111(L(u)+(k+ 1
2)e↑)−(k+ 1

2) < E[φ111(L(u))] and φ111(L(u)+(k− 1
2)e↑)−(k− 1

2) > E[φ111(L(u))] .

Note that for any v ∈ P111, E[φ111(v + e↑) − φ111(v)] = 1 − pa . Fix v0 = L(u) + 1
2e↑. First let

us consider the good event G where both |φ111(v0)− E[φ111(v0)]| ≤ log ∥v0∥ and

sup
v∈B(v0,log

2 ∥v0∥)
|φ111(v)− E[φ111(v)]− φ111(v0) + E[φ111(v0)]| ≤ log1/4(∥v0∥) .
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The probability of G goes to 1 as ∥u∥ → ∞ because the variance of φ111(v0) is of order log ∥v0∥ and

all cumulants of φ111(v)−φ111(v0) of order larger than 2 are bounded (in fact the 10th moment is

enough for the above bound). Let v± be the points

v0 +
φ111(v0)− E[φ111(p0)]

pa
e↑ ±

2 log1/4(∥v0∥)
pa

e↑ .

On G they are both in B(v0, log
2 ∥v0∥) and therefore

φ111(v+) ≤ φ111(v0) +
1

pa
E[φ111(v+)− φ111(v0)] + log1/4(∥v0∥)

≤ φ111(v0) +
1− pa
pa

(
φ111(v0)− E[φ111(v0)]

)
+

2− 2pa
pa

log1/4(∥v0∥) + log1/4(∥v0∥)

< E[φ111(v0)] +
1

pa

(
φ111(v0)− E[φ111(v0)]

)
+

2

pa
log1/4(∥v0∥) ,

and similarly

φ111(v−)−
(φ111(v0)− E[φ111(p0)]

pa
e↑ −

log1/4(∥v0∥)
pa

)
> E[φ111(v0)] .

Therefore, still on the event G,

φ001(u)− E[φ001(u)] =
φ111(v0)− E[φ111(v0)]

pa
n+O(log1/4(∥u∥)) .

Overall we see that E[(φ001(u)− E[φ001(u)])1G] =
σ2

p2a
log ∥u∥+ o(log ∥u∥) as desired.

We now turn to the analysis of the bad event Gc. As for the good event (or Lemma 7.3), we

will use some uniform control on φ111 − E[φ111] to move between the two convention but this is a

bit more complicated because the domain has to depend on the deviation at the reference point

v0. For k ≥ 1, ℓ ≥ 0 and (k, ℓ) ̸= (1, 0), let Bk,ℓ be the event where both (k − 1) log ∥v0∥ ≤
|φ111(v0)− E[(φ111(v0)]| < k log ∥v0∥ and

sup
v∈B(v0,kℓ log

2(∥v0∥))
|φ111(v)− E[φ111(v)]− φ111(v0) + E[φ111(v0)]| ≥ kℓ log1/4(∥v0∥) ,

but where the analogous statement for ℓ+1 does not hold. Applying a moment bound with powers

6 we see that (if ∥v0∥ is large enough)

P(Bk,0) ≤
1

k6 log2(∥v0∥)
,

while, with an order 16 moment and a union bound we find that for ℓ ≥ 1

P(Bk,ℓ) ≤
1

k14ℓ14 log2(∥v0∥)
.

On the event Bk,ℓ, reasoning as in the case of G we have φ001(u)−E[φ001(u)] ≤ 2k(ℓ+1) log2(∥v0∥)
and therefore the total contribution of all the events Bkℓ to the variance is bounded. On the other

hand, by Borel–Cantelli and the above bound on the probabilities, we see that (up to a negligible

event) Gc ⊂
⋃
Bkℓ, which concludes the proof. ■
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8. Renormalization group analysis: proof of Theorem 3

In this section, we show how to improve the results of [34, 35] to be able to apply the output

of Theorem 2.1. We start with a fairly lengthy setup: Section 8.1 gives a very short introduction

to Kasteleyn theory in non-interacting dimers, it can be safely skipped if one already knows this

theory. Section 8.2 presents our strategy to deal with the microcanonical setting. Section 8.3

introduces the formalism of Grassmann integrals and list the property needed later, again it can

be safely skipped if the reader is already familiar with the formalism. The main arguments start

in Section 8.4 where we rewrite our problem using Grassmann integrals, then Section 8.5 gives an

overview of the induction. Only then can we provide the core of the section with the improved

bounds on the determinants in Section 8.6 and the adaptation to the microcanonical setting in

Section 8.7.

When discussing the GMT framework for proving Theorem 1.4 and the obstacles standing in the

way of proving the refined Theorem 3, the reader should have the following two examples in mind:

Example 8.1 (Prototypical application of Theorem 1.4). For admissible a, b, c > 0 and a small

enough fixed δ > 0, the distribution µN is on tilings φ of the torus TN given by

µN (φ) ∝ ana(φ)bnb(φ)cnc(φ) exp
[
δ
∑
x

∑
y: dist(x,y)=1

1{type(φ,x)=type(φ,y)}

]
where ns(·) is the number of lozenges of type s, and type(·, x) is the lozenge type at the face x.

Example 8.2 (Prototypical application of Theorem 3). For admissible pa, pb, pc > 0 and a small

enough fixed δ > 0, the distribution µN is on tilings φ of the torus TN whose lozenge types are

nb(φ) = ⌊pbN2⌋ and nc(φ) = ⌊pcN2⌋ (with na = N2 − nb − nc) that is given by

µN (φ) ∝ exp
[
δ
∑
x

∑
y

1{type(φ,x)=type(φ,y)}
1

dist(x, y)2

]
.

8.1. Crash course on Kasteleyn theory. In the following, we will sometime need coordinates

on the hexagonal lattice. We use the following convention. First the two bipartite class will be

called black and white and we will actually use different variables b and w for white and black

vertices. We assume without loss of generality that the lattice is composed of regular hexagons

with a horizontal side and that the black vertex is on the right of that edge. We fix a horizontal

edge and say that both the white and black vertices adjacent to that edge have coordinate (0, 0).

For other points, we use non-orthogonal coordinates as indicated in Fig. 18. We say that horizontal

(resp. NW to SE and NE to SW) edges have types a, b and c respectively.

Consider a simply connected piece of the hexagonal lattice D and construct a matrix K indexed

by black vertices on the rows and white vertices on the the columns with K(b, w) = 1{b∼w}. In

the definition with permutation, we see that the only non-zero terms come from permutations

which only associate adjacent white and black vertices, i.e., the non-zero permutations are exactly

describing lozenge tilings and det(K) =
∑

φ ε(φ) where ε(φ) is the signature of the permutation

described by φ. Now is is also true that the set of tilings of a simply connected domain is closed

under rotation of hexagons in the tiling, which in terms of permutation are simply multiplication

by a cycle of 3 elements. Since a cycle of length 3 has signature +1, ε(φ) does not actually depend

on φ and | det(K)| = #{tilings of D}. Applying the above argument to both D and D \ {b0, w0}
for some pair of adjacent vertices (b0w0), the comatrix formula for the determinant says that

|K−1(w0, b0)| =
#{tilings of D \ {b0, w0}}

#{tilings of D}
= P((b0w0) occupied)
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(0, 0)

(0, 1)

(1, 0)

(−1, 0)

(0,−1)

(−1, 1)

(1,−1)

a

bc

a

b c

Figure 18. Left: The coordinate system. Right: The types of edges.

with the P under a uniformly chosen tiling. In fact the comatrix formula has a generalization to

minors which gives for any finite set of edges (biwi)

P(∀i, (biwi) occupied) = | det(K−1(bi, wj))| . (8.1)

We thus see that a very natural (and fruitful) approach to the dimer model is to try to identify K−1.

From this argument, it is also easy to see that if now we put weights (possibly even complex)

a, b, c depending on the types of edges, the associated determinant becomes a partition function

of tilings depending on their weights. However, again since hexagon rotations connect all tilings

and preserve the number of tiles of each type, this is a trivial operation at the combinatorial level.

We will not really use it here but it can however be a relevant change to do in order to get nice

asymptotic formulas for K−1.

On the torus, it is not quite true that rotation connect all tilings: they can connect all tilings

with a given number of tiles of each type but this is not fixed anymore. In terms of height, a tilings

can be seen as describing a discrete vector field which is still closed (i.e., its integral along path is

invariant under deformation of the path) but in a non-simply connected domain this is not enough

for it a admit a true primitive. If we still want to primitive it, we obtain in general an “additively

multivalued function”, which can be seen simply as a function in the full plane whose derivatives

are periodic and described by the tiling of the torus. It can be seen that the information about

the number of tile of each type can be readily read in terms of the global slope of the primitive

or equivalently the height gaps between two copies or the integral of the derivative along two non-

contractible cycles. We call that information, the instanton component of the configuration. As

a consequence, introducing (positive) weights a, b, c on the edges depending on their types has an

interesting effect on the associated dimer measure: it affects the law of the instanton component

while keeping the configuration uniform given it. Algebraically, this manifests as follows. Let Ka,b,c

denote the weighted matrix with weights depending on the types of edges for the N × N torus.

Then in all tilings the number of tiles of each type must be a multiple of N and

det(Ka,b,c) =
∑
k,ℓ

±(k, ℓ)aN
2−Nk−NℓbNkcNℓZ(k, ℓ) , (8.2)
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where ±(k, ℓ) is a sign which in fact only depends on the parity of k and ℓ and Z(k, ℓ) is the number

of tilings φ with lozenge types na(φ) = N2 −Nk −Nℓ, nb(φ) = Nk and nc(φ) = Nℓ.

It is actually possible to identify completely the function ±(k, ℓ) (since this depends on further

convention on the matrix we will not do it here) and to then obtain the unsigned partition function

as a combination of 4 determinants, i.e.,∑
k,ℓ

aN
2−Nk−NℓbNkcNℓZ(k, ℓ) =

1

2

( ∑
ϑ1,ϑ2∈{−1,1}

±(ϑ1, ϑ2) det(Ka,ϑ1b,ϑ2c)
)
.

This is the classical route to study the dimer model on the torus (see for example [45]) and in

particular this is used in [34, 35]. The analog of Eq. (8.1) in this context becomes, given a pattern

P containing na(P ), nb(P ), nc(P ) tiles of each type subset S of black and white vertices∑
φ

±(k, ℓ)aN
2−Nk−NℓbNkcNℓ1{P∈φ} = ±(P )ana(P )bnb(P )cnc(P ) det(Ka,b,c↾P c)

= ±(P ) det(Ka,b,c)
∏
e∈P

Ka,b,c(e) det(K
−1
a,b,c↾P ) , (8.3)

where the second line only holds if Ka,b,c is invertible. Let us emphasize that the above formula

holds even if the pattern P wraps around the torus and indeed even if it determines completely k

and ℓ. Indeed the signs ±(k, ℓ) in Eq. (8.2) is determined by looking at the sign of the permutation

associated to a non-contractible loop as a function of its homotopy class. This is not affected when

removing the vertices of P from the graph and therefore the same function ±(k, ℓ) has to appear

when expending det(K↾P c) and det(K). Only a global sign can appear to account for the change

of convention when removing some rows and columns of the matrix K.

By taking the correct a, b, c it is possible to choose which pairs (k, ℓ) will have the main contri-

bution to the partition function or in probabilistic term to choose the typical instanton component

and the choice is actually explicit: Fix pa, pb, pc positive and summing to 1, let ∆ be a triangle

with angles πpa, πpb, πpc and let a, b, c be the length of the edges opposite to the associated angle.

Then (at least asymptotically) the measure with weights a, b, c gives probabilities pa, pb, pc to edges

of the corresponding types. It is further known that, for this measure, the instanton component

converges to a discrete Gaussian distribution without any normalization but we will not use it here.

Because of the signs, Eq. (8.3) does not directly gives a formula for the probability of a pattern

P . However it turns out that the 4 variants of K are close enough that one can ignore this issue

and still write probabilities as determinants of (any version of) K−1 with a very small error. This

is particularly useful since the K matrices are is diagonal in Fourier space: Indeed, fix a, b, c (or fix

pa, pb, pc and take a, b, c according to the above construction), k = (k1, k2) and let ŵk =
∑

w e
i⟨k,w⟩ew

and b̂k =
∑

w e
−i⟨k,w⟩ew where ⟨k,w⟩ = k1n1 + k2n2 with (n1, n2) the coordinates of w. We have

Kŵk =
∑
w

ei⟨k,w⟩(aeb + beb+(1,0) + ceb+(0,1)) =
∑
b

e−i⟨k,b⟩(a+ beik1 + ceik2)eb

= (a+ be−ik1 + ce−ik2)b̂−k ,

where in the computation, we used b to denote the black vertex with the same coordinates as w.

We see that it is relevant to introduce the Newton polynomial P (z1, z2) = a + bz1 + cz2 and we

may note that its zeros are exactly z1 = eπ(pa+pb) and z2 = e−iπ(pa+pc).

8.2. Moving to a microcanonical setting. In the context of this paper, we have to consider the

dimer model on a torus with fixed instanton component instead of the more classical “canonical”

setting where all possible configurations are possible but have varying weights. In this section we
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show how to adapt the Kasteleyn theory presented above to this setting. Going back to Eq. (8.2),

the idea is that instead of summing 4 copies to remove the sign, we will introduce complex phases

to a, b, c and then use a Fourier inversion formula to extract Z(k, ℓ).

Fix pa, pb, pc such that Npa, Npb, Npc are integers and let a, b, c be the associated weights. For

ϑ1, ϑ2 ∈ R, we write K(ϑ1, ϑ2) = Ka,beiϑ1 ,ceiϑ2 and Z(k, ℓ) = a−Nk−NℓbNkcNℓZ(Npb + k,Npc + ℓ).

In these new notations, Eq. (8.2) becomes

detK(ϑ1, ϑ2) = aN
2pa1bN

2pb(1+iϑ1)cN
2pc(1+iϑ2)

∑
k,ℓ

±(k, ℓ)Z(k, ℓ)ei(Nkϑ1+Nℓϑ2) .

It is known from the non-interacting theory (see for example [20]) that Z is well concentrated at

scale N2 in the sense that for all ε > 0, there exists η > 0 such that if |k| ≥ Nε or |ℓ| ≥ Nε then

Z(k, ℓ) ≤ e−ηN
2
Z(0, 0) ,

and therefore

detK(ϑ1, ϑ2) = aN
2pabN

2pb+Niϑ1cN
2pc+Niϑ2Z(0, 0)

∑
−εN≤k,ℓ≤εN

±Z(k, ℓ)

Z(0, 0)
ei(Nkϑ1+Nℓϑ2) +O(e−ηN

2
) .

Now the Fourier inversion is clear, we choose ϑ1 (resp. ϑ2) such that eNiϑ1 (resp. eNiϑ2) runs over

all Npb-th (resp., Npc-th) roots of unity and sum all terms:∑
ϑ1,ϑ2

det(K(ϑ1, ϑ2)) = aN
2pabN

2pbcN
2pcZ(0, 0)

∑
−εN<k,ℓ<εN

∑
ϑ1,ϑ2

±Z(k, ℓ)

Z(0, 0)
ei(Nkϑ1+Nℓϑ2) +O(e−ηN

2
)

= ±N2pbpca
N2pabN

2pbcN
2pcZ(0, 0) +O(e−ηN

2
) ,

because only the k = ℓ = 0 term is non-zero in the sum over ϑ in the right hand side.

With the above formula in mind, we will proceed with the proof by analyzing det(K(ϑ1, ϑ2))

for fixed K and only treat the sum over them after the whole normalization procedure. This is in

fact analogous to [34, 35] where also most of the analysis is focused on a fixed matrix out of the 4

needed to cancel the signs in Eq. (8.2).

8.3. Grassmann integrals. We begin with a short review of the Grassmann integral notation, see

Section 4 of [27] for a more detailed and informed account. It will be used crucially to allow us to

write complicated series of minors in a way that looks like perturbed gaussian integrals (similar to

say the partition function of the ϕ4 model) and therefore to import into our problem the intuition

and language of Gaussian integration.

Definition 8.3. Consider two separate sets of n indices {bi} and {wj}. The Grassmann integral

is a formal notation using 2n variables ψwi , ψbj defined by the following rule∫
ψw1 . . . ψwnψb1 . . . ψbndψ = 1 ,

ψwψw′ = −ψw′ψw , ψbψb′ = −ψb′ψb , ψwψb = ψbψw ,

and any integral not containing all variables exactly once gives 0. Analytic functions of the variables

ψ are defined by their series expansion, which always gets truncated to a finite number of terms by

the anti-symmetry assumption.

The link between determinants and Grassmann integrals is the following.
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Proposition 8.4. Let K be a matrix whose rows are indexed by the wi and columns are indexed

by the bj, we have ∫
exp(ψ⃗b ·K · ψ⃗w)dψ = det(K) .

More generally, for every subsets I = {ik} and J = {jl} of indices of wi’s and bj’s, resp., one has∫ ∏
i∈I

∏
j∈J

ψwiψbj exp(ψ⃗b ·K · ψ⃗w)dψ = ±det(K↾Ic,Jc) .

Proof. This is a direct computation: Since only monomials of degree exactly 2n have a non-zero

integral, the exponential in the first statement is not different from 1
n!(ψ⃗b ·K · ψ⃗w)n. Developing the

power, we see that the only non-vanishing terms come from taking every ψw and ψb exactly once

so we can enumerate all terms using two permutations σw and σb. Note that pairs ψwψb commutes

with other pairs so we can reorder the ψ’s to set σb to the identity, simplifying the 1
n! term. This

gives ∫
exp(ψ⃗b ·K · ψ⃗w) =

∑
σ

∑
i

Kiσ(i)

∫
ψb1ψwσ(1)

· · ·ψbnψwσ(n)
dψ .

To use the definition of the integral, one must also reorder the ψb and it can be checked that the

resulting change of sign is exactly the signature ε(σ).

The statement about the minor follows the same proof. ■

Let us note now a few additional algebraic properties that follow from this main definition.

Corollary 8.5. Suppose K is as above and is also invertible. Then

•
∫
ψwψb exp(ψ⃗b ·K · ψ⃗w) dψ

det(K) = K−1
b,w.

•
∫ ∏

i∈I
∏
j∈J ψwiψbj exp(ψ⃗b ·K · ψ⃗w) dψ

det(K) = det(K−1↾I,J) =
∑

σ ε(σ)
∏
K−1
wi,bσ(i)

.

• If K−1 = A−1 +B−1, then∫
f(ψ⃗)eψ⃗Kψ⃗

dψ

det(K)
=

∫∫
f(ψ⃗1 + ψ⃗2)e

ψ⃗1Aψ⃗1eψ⃗2Bψ⃗2
dψ1

detA

dψ2

detB
.

The last equality of the second line is called the Wick formula for Gaussian Grassmann integral

since it writes a 2|I|-point correlation in terms of 2 points correlations.

Proof. The first two lines are classical formula about minors. For the last line, we can check that

the Wick expansion matches separately for all monomials. ■

Because of the expression of the last bullet point, we introduce the notation∫
f(ψ)dPg(ψ) :=

∫
f(ψ) exp(ψg−1ψ)

dψ

det g−1
,

where g is a matrix. We emphasize that the Wick formula means that we can compute with these

notations without going back to the original Grassmann integrals. In fact we can even define the

value of any such integral using only the Wick formula even when g is not invertible. A particularly

degenerate case of this will be when some rows and columns of G are identically 0. Suppose

g = g1 + g2 with g1(i, j) = 0 whenever i /∈ I or j /∈ J . We can still use the formula∫
f(ψ)dPg(ψ) =

∫ [ ∫
f(ψ + ϕ)dPg2(ϕ)

]
dPg1(ψ) ,

using in both integrals the full set of Grassmann variables. However we see that, if any variable

ψwi with i /∈ I comes out of the integral over the ϕ variables, then the corresponding term will give
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a 0 contribution after the second integral. In other words, when expanding (the w part of) the

monomials in ψ + ϕ in f , the only meaningful terms come from the cases where we never choose

any ψwi for i /∈ I. Therefore, we would have the same combinatorics by replacing ϕ+ψ by ϕ+ψ↾I .
After that transformation, it makes sense to only consider the outer integral with respect to g1 as

an integral over variables indexed in I instead of the full set. The inner integral can still be over

the full set of variables (it g2 does not itself have rows or columns of 0) with the sum performed

only over the common coordinates.

Later we will use linear change of variables extensively. In this context the multilinearity of the

Wick formula provides a very nice description.

Lemma 8.6. Let X1, . . . , Xn (resp. Y1, . . . , Yn) be linear expressions depending on some Grassmann

variables ψ+
k (resp. ψ−

k ) and let g be a matrix with rows indexed by the ψ+ and columns indexed by

the ψ−. We have ∫ n∏
i=1

XidPg(ψ) = det
(
g(Xi, Yj)

)
1≤i,j≤n ,

where g(Xi, Yj) :=
∫
XiYjdPg can be computed simply by bilinearity.

The core of the proof of Theorem 3 (and of the original version) is a repeated use of the last

point of Corollary 8.5 repeatedly. For this we introduce a further notation to describe the log of a

Grassmann integral.

Definition 8.7. The truncated expectation (with respect to a propagator g) is

ETg (X1, . . . , Xk, n1, . . . , nk) =
∂
∑
ni

∂n1
λ1
. . . ∂n

k

λk

log

∫
e
∑
λiXidPg(ψ)|λ⃗=0

,

where the Xi are expressions in terms of the Grassmann variables Xi. We will drop the subscript

when it is clear from context.

It can be checked that the ni introduce exactly the same effect as repeating variables and that

ET (X1, . . . , Xk, n1, . . . , nk) has the same algebra as
∏
Xni
i . Also, since by definition the truncated

expectation is extracting coefficients from the log of the integral, it satisfies∫
eXdPg(ψ) = exp

(∑
n

1

n!
ET (X,n)

)
,

and more generally if we have some extra variables ϕ on which we are not integrating,∫
eX(ψ + ϕ)dPg(ψ) = exp

(∑
n

1

n!
ET (X(·+ ϕ), n)

)
.

There is an expression of the truncated expectation in terms of the regular expectation (which is ba-

sically the formula giving the cumulants of a random variable in terms of its moments) so, as for the

regular expectation, if the total number of + and− variables are not equal then ET (X1, . . . , Xk) = 0.

Also, since
∫
1dPg(ψ) = 1 by construction, the truncated expectation with no variable is 0. In par-

ticular in the two above formula we can start the sum at n = 1.

To bound a truncated expectation like the one above, we will to use the following theorem

(Battle–Brydges–Federbush formula, see [34, Lemma 3]1):

1Compared to that statement, the constants ci are just prefactors in their variables X and we have a determinant

and not a Pfaffian because we use two types of variables while they only use one.
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Theorem 8.8. Consider I1, . . . Is some sets of indices (with as many + term as − term) and write

ψI =
∏
i∈I ψi. If s > 1 then

ETg (ψI1 , . . . , ψIs) =
∑
T

±(T )
(∏
e∈T

ge
) ∫

det(G(T, t⃗))dPT (⃗t) ,

where

• the index T in the sum is a tree over {1, . . . , s} with each edge marked by two indices in the

associated Ij and ±(T ) is a sign depending on T .

• The product over e runs over the edges of T and ge is the propagator evaluated at the

endpoints of e.

• PT is a probability measure on [0, 1]s
2
whose support is on matrices which can be written

tj,j′ = uj · uj′ for vectors uj of unit L2-norms.

• G(T, t⃗) is a size
∑

|Ij |−s+1 matrix with entries indexed by all pairs of labels not appearing

in T and given by G(T, t⃗)(j,i),(j′,i′) = t⃗j,j′g((j, i), (j
′, i′)).

Note that we use two indices for each parameter of g just above because we need to identify one

of the Ij and then the exact i in it.

Let us expand a bit the definition of the matrix G(T, t⃗). Start from the matrix of size
∑

|Ij |
with rows and columns indexed respectively by the ψ+

k and ψ−
k in the Ij . We emphasize that if

some ψk appears in several of the Ij , we do want to repeat it also in the matrix so that we can

really think of it as having blocks indexed in {1, . . . , s}. Next, apply a Gram-type construction on

the blocks, multiplying every entry in the block j, j′ by tj,j′ = uj · uj′ . Note that already at this

point, having repeated entries in the Ij does not make the determinant vanish. Finally we remove

the rows and columns associated with the (labeled) edges of the tree T to get G(T, t⃗).

In turn, det(G(T, t⃗)) will be bounded by the Gram–Hadamard inequality, recalled next.

Theorem 8.9 (Gram–Hadamard). Let vi, ṽi be two families of vectors in some Euclidean space.

Let G be the Gram matrix Gi,i′ = vi · ṽi′. Then | det(G)| ≤
∏
i∥vi∥ · ∥ṽi∥.

8.4. Grassmann formulation of the problem. As mentioned at the start of the section our goal

is to compute the generating function of the model, from which edge correlations will be obtained as

derivatives. In order to simplify the notations and to better highlight our core arguments however,

we will only provide a complete derivation for the partition function and only consider the full

generating function at the end in Section 8.7. This is a deviation from [35] who directly work with

the generating function. We will also take advantage of our more restricted setting to drop some

of the notations from [35] but we will provide the matching terms in [35] via footnotes.

The first step is the analog of [35, Prop. 1] and consists in rewriting the partition function in

terms of Grassmann integral.

Lemma 8.10. There exist weights wϑ on patterns such that

aN
2pabN

2pbcN
2pc

∑
φ:k=Npb,ℓ=Npc

exp
[∑
r,x

gr(φ↾B(x,r))
]

= 1
N2pbpc

∑
ϑ

∫
exp

(
ψ⃗b ·Ka,b,c(ϑ) · ψ⃗w +

∑
P

wϑ(P)ψS

)
dψ +O(e−ηN

2/2) ,

where ψS :=
∏
b∈S ψb

∏
w∈S ψw. The sum over ϑ = (ϑ1, ϑ2), the matrix Ka,b,c and η are given by

Section 8.2.
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Proof. In what follows, we use P as the argument to a function gr (in our context, the value of

φ↾B(o,r)) which we think of as a finite tiling pattern. Given P , we can read off r and hence can

drop the subscript r from the corresponding gr. We start with the weighted partition function

associated to a fixed K and in this computation we consider a, b, c as complex to save on notations∑
φ

±(k, ℓ)aN
2−Nk−NℓbNkcNℓ exp

[∑
r,x

gr(φ↾B(x,r))
]

:=
∑
φ

±(k, ℓ)aN
2−Nk−NℓbNkcNℓ exp

[∑
P,x

g(P )1{τxP∈φ}

]
=

∑
φ

±(k, ℓ)aN
2−Nk−NℓbNkcNℓ

∏
P,x

1 + (exp(g(P ))− 1)1{τxP∈φ}

= cN
2pc

∑
φ

±(k, ℓ)aN
2−Nk−NℓbNkcNℓ

∑
{Pj ,xj}

∏
j

(exp(g(Pj))− 1)1{∀j τxjPj∈φ}

=
∑

{Pj} disjoint

∏
j

w̄(Pj)
∑
φ

±(k, ℓ)aN
2−Nk−NℓbNkcNℓ1{∀j τxjPj∈φ}

=
∑

{Pj} disjoint

∏
j

w̄(Pj)
∏

e∈
⋃

Pi

Ka,b,c(e) det(Ka,b,c↾⋂Pc
i
)

=

∫ ∑
{Pi} disjoint

∏
j

w(Pj)ψPje
ψ⃗b·Kab,c·ψ⃗wdψ , (8.4)

where P are marked patterns P = ({Pj}), given some set of {Pj} the Pi are the smallest unions

of Pj ’s such that the vertex sets of the Pi are disjoint. We wrote above ψP =
∏
w∈P

∏
b∈P ψwψb

matching the convention for sets. The weights w(P) are defined as

w̄(P) =
∏
j

(exp(g(Pj))− 1) , w(P) =
∏
e∈P

Ka,b,c(e)w̄(P) .

If we sum over all versions K(ϑ), the first line becomes the partition function in the statement of

the lemma and we get

aN
2pabN

2pbcN
2pc

∑
φ:k=Npb,ℓ=Npc

exp
[∑
r,x

gr(φ↾B(x,r))
]

=
1

N2pbpc

∑
ϑ

∫ ∑
{Pj} disjoint

∏
j

ψPje
ψ⃗b·Kϑ·ψ⃗wdψ +O(e−ηN

2
) .

We now claim that

e
∑

P w(P)ψP =
∑

{Pj} disjoint

∏
j

w(Pj)ψPj . (8.5)

Indeed, when expanding the exponential series, whenever we select two overlapping patterns, we

get some ψ with a power 2 and a vanishing term. For a disjoint collection of patterns, the factorial

term in the exponential compensates exactly the enumeration over all the ways to obtain it. Let us

emphasize that this “cluster expansion” identity only involves finitely many non-zero terms since

by anti-symmetry we only need to keep track of monomials of degree at most 1 in each variable. ■

To simplify the analysis, it is useful to re-index slightly the exponent in Lemma 8.10: since ψP

only depends on the support of P, we can factor the sum over all patterns with a given support.
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We obtain ∑
P

w(P)ψP =
∑
D

w(D)ψD ,

where D is a marked set D = (D, {rj}, {xj}) with the constraint that D must be the support of a

pattern P obtained from the Pj with radius rj and center xj . The weights become

w(D) = ana(D)bnb(D)cnc(D)
∑
φ

∏
j

(e
grj (φ↾B(xj,rj))− 1) ,

where the sum is over all tilings of D and ns(D) is the number of tiles of type s ∈ {a, b, c} in any

tiling of D (which is constant). Let us emphasize a small difficulty with the notation: recall from

Section 2.1 that φ↾B(x,r) denotes the set of tiles of φ which intersect B(x, r) so its support is not

fully defined by x and r. Hence in a marked set D, the first coordinate D is not redundant.

Recall that the assumption in Theorem 3 over the interaction functions gr is
∑

r ∥gr∥∞ ≤ δ for

δ that can be taken arbitrarily small given all other parameters. (In the next lemma we rescale δ

for the convenience of our notation.)

Lemma 8.11. With Eq. (1.8) in mind, let δ > 0 be such that
∑

r ∥gr∥∞ ≤ δ3/2. Then

|w(D)| ≤ Zt(D)δ2n(D)
∏
j

[
(2/δ2)∥grj∥∞

]
, (8.6)

where Zt(D) is the partition function of tilings of D with weights a, b, c and n(D) is the number

of centers in D. Furthermore, there is an absolute constant C so that for any set of xj and rj, the

number of compatible sets D is at most C |∂(
⋃

j B(xj ,rj))| and for all such D,

C−1 ≤ |∂D|
|∂(

⋃
j B(xj , rj))|

≤ C .

Proof. The first part is a direct application of the uniform bound on the grj from Eq. (1.8) and

the enumeration of tilings. Indeed, since D contains the information over all centers and radii,

summing over patterns P compatible with a D just amounts to summing over all lozenge tilings

of D. If δ is small enough, the weights w̄(P) =
∏
j(exp(grj (Pj) − 1)) are bounded by

∏
j 2∥grj∥,

which is at most δ2n(D)
∏[

(2/δ2)∥grj∥∞
]
, yielding Eq. (8.6). The second part is because given the

xj and rj , we only have to choose a tiling of the boundary of
⋃
B(xj , rj) to determine D and the

size of the boundary of a union of balls is bounded by their radii. ■

Note that if D is simply connected, Zt(D) = |detKϑ↾D| by the Kasteleyn theory.

8.5. The original renormalization group analysis. We now turn to the the core of the proof

in [35], the estimation of the integral in the right hand side of Lemma 8.10 for a fixed ϑ.

We introduce the following notation

ψ̂+
k =

∑
b

e−i⟨k,b⟩ψb , ψ̂−
k =

∑
w

ei⟨k,w⟩ψw ,

with k ∈ [−π, π] ∩ (2πN Z2 + (ϑ1, ϑ2) from which we clearly have

ψb =
1

N2

∑
k

ei⟨k,b⟩ψ̂+
k , ψw =

1

N2

∑
k

e−i⟨k,w⟩ψ̂−
k .
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We computed in Section 8.1 that K is diagonal in Fourier, this becomes in this context1

ψ⃗b ·K · ψ⃗w =
1

N4

∑
b,w,k,k′

ei⟨k,b⟩ψ̂+
k K(b, w)e−i⟨k

′,w⟩ψ̂−
k′

=
1

N4

∑
k,k′

∑
w

(a+ beik1 + ceik2)ei⟨k−k
′,w⟩ψ̂+

k ψ̂
−
k′

=
1

N2

∑
k

µ(k)ψ̂+
k ψ̂

−
k ,

and therefore the inverse is

gK−1(ψ̂−
k , ψ̂

+
k′) := N2 1

a+ beik1 + ceik2
δk,k′ .

We emphasize that the value of ϑ is hidden in the notation
∑

k since the set of modes k depends

on ϑ.

The renormalization aspect of the proof comes from the fact that we want to write

1

det(K)

∫
exp

(
Sϑ(ψ) +

∑
D

w(D)ψD
)
dψ =

∫
dPg(−n)(ψ(−n)) . . .

∫
dPg(0)(ψ

(0))

exp
(∑

D

w(D)
(∑

ψ(−i))
D

)
,

where
∑
g(−i) = K−1 and each g(−i) corresponds to integrating a certain scale2. Note that (at first

approximation) we expect the large scale behavior to be captured by the modes closest to the 0 of

a+ beik1 + ceik2 so the decomposition over scales should amount to writing (a+ beik1 + ceik2)−1 in

terms of smooth functions supported on concentric annuli. In reality things are more complicated

because the higher order term have a significant effect, for example the actual large scale behavior

is captured slightly away from the zeros of (a+beik1 + ceik2)−1 so the full analysis involves defining

the g(−i) by induction and is very involved.

In this paper, we will only improve on the initial step of the induction so the general idea

highlighted above is sufficient and in particular we do not need to define the general inductive

procedure. On the other hand, we still need to perform a few transformations (corresponding to

[35, Sec. 6.1]) that only really make sense with the full construction in mind and that we ask the

reader to just accept as is.

Define

µ(k) = a+ beik1 + ceik2 ,

µ0(k) = µ(k) +
∑

ω∈{+,−}

χ0(k − p̄ω)[−µ(k) + ⟨ᾱω − ∂µ(p̄ω), k⟩] ,

where χ0 is a smoothed version of the indicator of a small ellipse. The parameters p̄ω, ᾱω and the

ellipse are just free parameters for the purpose of this paper since they will get fixed later in the

induction3.

1The change in sign compared to Section 8.1 comes from the fact that here we use K as a quadratic form and

not an operator.
2The scale index in [35] is negative so we keep their convention for ease of reference.
3Our α corresponds to the vector (α, β) from [35, Eq. (6.4)]; we do not use a and b.
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We then slightly tweak the expression from Lemma 8.10. Let kω be the points closest to p̄ω
breaking ties arbitrarily, we distinguish the associated variables by writing Ψ̂±

ω = ψ̂±
kω
. We then use

(the degenerate case of) the addition principle to get1∫
exp

(
Sϑ(ψ) +

∑
D

w(D)ψD
)
dψ = (

∏
k

µ0(k))

∫
eV (ψ̂)e−

1
N2

∑
k µ0(k)ψ̂

−
k ψ̂

+
k

dψ∏
µ0

= (
∏
k ̸=k±

µ0(k))

∫
dΨ̂e−

1
N2

∑
ω µ0(kω)Ψ̂

−
ω Ψ̂+

ω

[ ∫
dPg(≤0)(ψ)eV (Ψ̂+ψ̂)

]
(8.7)

where g(≤0) is the propagator defined in Fourier space by g(≤0)(ψ̂+
k , ψ̂

−
k′) = N2

µ0(k)
1{k=k′}1{k ̸=k±}.

The potential V is defined by the equality in the first line, i.e.,

V (ψ̂) := −
∑
k

(µ(k)− µ0(k))ψ̂
−
k ψ̂

+
k +

∑
D

w(D)ψD

= −
∑
k

(µ(k)− µ0(k))ψ̂
−
k ψ̂

+
k +

∑
D

w(D)(
∏
w∈D

1

N2

∑
k

e−i⟨k,w⟩ψ̂−
k )(

∏
b∈D

1

N2

∑
k

ei⟨k,b⟩ψ̂+
k ).

Since V has an expression involving both the normal space and the Fourier space, it can be hard

to see exactly what is is concretely. Let us therefore rewrite it as much as possible in terms of

variables in real space.

V (Ψ̂ + ψ̂) = −
∑
k ̸=k±

(µ(k)− µ0(k))ψ̂
−
k ψ̂

+
k +

∑
ω

(µ(kω)− µ0(kω))(ψ̂
−
kω

+ Ψ̂−
ω )(ψ̂

+
kω

+ Ψ̂+
ω )

+
∑
D

w(D)
( ∏
w∈D

1

N2

∑
k

e−i⟨k,w⟩ψ̂−
k +

1

N2

∑
ω

e−i⟨kω ,w⟩Ψ̂−
ω

)
×
( ∏
b∈D

1

N2

∑
k

ei⟨k,b⟩ψ̂+
k +

1

N2

∑
ω

ei⟨kω ,b⟩Ψ̂+
ω

)
= −

∑
b,w

[∑
k

(µ(k)− µ0(k))e
i⟨k,b−w⟩]ψbψw +

∑
D

w(D)ψD

+
∑
ω

(µ(kω)− µ0(kω))[Ψ̂
−
ω ψ̂

+
kω

+ ψ̂−
kω
Ψ̂+
ω + Ψ̂−

ω Ψ̂
+
ω ]

+
1

N2

∑
ω

∑
(D,y)

w(D)e±(y)i⟨kω ,y⟩Ψ̂±(y)
ω ψD\{y}

+ similar terms with up to 4 marked points.

The last written term come from choosing the Ψ̂ contribution instead of the ψ contribution at the

points y in the big product above. For all points where we took the ψ term, we immediately rewrote

them using the normal space variable.

We can now describe the first step of the induction procedure. Let χ(−1) be another regularized

version of the indicator of a small ball. The first decomposition is

g(≤0)(ψb, ψw) = g(0)(ψb, ψw) +
∑
ω

e−i⟨pω ,b−w⟩g(≤−1)
ω (b, w)

1This corresponds to [35, Eqs. (6.11) and (6.13)] up to a few changes of notation: we call our potential V instead

of N , we call the propagator g(≤0) instead of g0 and we do not have J or A terms.
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where

g(0)(ψb, ψw) =
1

N2

∑
k ̸=k±

e−i⟨k,b−w⟩
1− ξ(−1)(k − p+)− χ(−1)(k − p−)

µ0(k)
, (8.8)

g(≤−1)(ψb, ψw) =
1

N2

∑
k ̸=k±

e−i⟨k−p
w,b−w⟩χ

(−1)(k − pω)

µ0(k)
. (8.9)

As mentioned above, we want to use the addition formula with the above decomposition and

rewrite the resulting expression in an exponential form in order to keep iterating. We start with

the formal derivation of the expression setting aside convergence issues. The first step is to write

V for a sum of 3 fields

V (Ψ + ϕ+ ψ) = −
∑
b,w

[ ∑
k ̸=k±

(µ(k)− µ0(k))e
i⟨k,b−w⟩](ψbψw + ϕbψw + ψbϕw + ϕbϕw)

+
∑
D

w(D)(ψ + ϕ)D

+ similar expression with up to 4 Ψ̂ terms

=
∑
S,I

w(S ∪ I)ϕSψI ,

where with a slight abuse of notation we can say that S can be marked with up to 4 points and

that the corresponding terms in ϕS are replaced by Ψ̂. We can also declare that the first terms

just correspond to the cases where S ∪ I has size 2. Let us emphasize that the case S = ∅ and

I = ∅ above are certainly valid since everything comes from developing products but that there is

no n = 0 term. By construction of the truncated expectation, we have∫
eV (Ψ+ϕ+ψ)dPg(0)(ψ) = exp

∑
n

1

n!
ET (V (Ψ + ϕ+ ·), . . . , V (Ψ + ϕ+ ·))

= exp
∑
n

1

n!

[ ∑
(S1,I1),...,(Sn,In)

∏
i

w(Si ∪ Ii)ET (ψI1 , . . . , ψIn)ϕSi

]
= exp

∑
n

1

n!

∑
S

[ ∑
Sipartition of S

∑
Ii

∏
w(Si ∪ Ii)ET (ψI1 , . . . , ψIn)

]
ϕS .

In the second line, we used the linearity of the truncated expectation and factored out the variables

we are not integrating while in the third line we use anti-symmetry of ϕ to say that the sets Si
never contribute if they are not disjoint. This leads to the following formal expression for W , again

not considering the issue of summability:

W (−1)(S) =
∑
n≥1

1

n!

∑
partitions Si

∑
Ii

∏
w(Si ∪ Ii)ET (ψI1 , . . . , ψIn) . (8.10)

Let us note that for a given S, when n is large most of the sets Si must be empty so when trying to

understand the convergence of the above expression, we can mostly think of the Ii as being directly

given by patterns. Recall also from Section 8.3 that the truncated expectation ET (ψI1 , . . . , ψIn)
is 0 if the total number of black and white vertices in the Ii do not match and that the weights

w are also only non-zero for sets that admit tilings since they come from enumerating patterns.
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Combining the two, we see that W (−1) is also supported on sets with the same number of black

and white vertices, in particular there is no weight for singletons1.

Remark 8.12. Before providing the bounds on W (−1) justifying the above computation, it is useful

to discuss briefly why [35] does not apply directly in our context and where our improvements are.

In [35], as a consequence of having only finitely many patterns in the interaction, the weights w(D)

have a very fast decay—exponentially in the area of S. Because of this, the authors could afford

to be imprecise in the estimation of the truncated expectation term (we still note that their bound

is still far from trivial and that the most naive approach will lead to a divergent series). In our

context however, the weights w(D) do not have a fast decay—on the contrary, they grow to infinity

with the size because there are order Cs∗ patterns of size s for some fixed C∗ > 1. We will show

in what follows that these divergences of the weights w(D) disappear after the first integration step

because the ψD’s have a very small integral. More precisely, we want to use the following two facts:

first, |
∫
dPgK−1ψD| = P(P appears in a tiling) ≃ C

−|D|
∗ by well-known facts from Kasteleyn theory;

and second, the Gram–Hadamard bound can be made to give a (slow) exponential decay for large

determinants thanks to the fact that g(0) is defined by integrating over only part of the Fourier space.

8.6. Bound on truncated expectation. The goal of this section is to prove the following, which

is an analog of [35, Eqs. (6.30) and (6.31)]2 where they state their bound on the the weights after

the first integration:

Proposition 8.13. The weights W (−1) satisfy the following bound for all S and δ small enough

|W (−1)(S)| ≤ δC |S|e−
εχ
2

√
A(S)

where C and εχ are constants and A(S) is the minimal number of vertices in a connected set

containing S. The constant εχ depends on χ(−1) but C does not.

Remark 8.14. Comparing the bound in Proposition 8.13 to [35, Eq. (6.30)], our bound is weaker

than the m = 0 version there: we have an exponential increase in the size of S instead of

C |S|εmax(1,cn) with ε chosen small enough after C. This is not an issue because after one fur-

ther induction step, we will obtain a true exponential decay in |S| assuming the regularization was

chosen appropriately: Indeed, note that the constant C in Proposition 8.13 does not depend on

the regularization chosen so, recalling that the induction corresponds to a way to separate Fourier

space, by choosing χ(−1) to cover a large enough portion of the space, our initial step corresponds

to a arbitrary finite number of steps in [35]. However, as seen in [35, Eq. (6.56)], the propagator

g(m) after −m steps decays exponentially with −m so, in our notation, for the next integration the

Gram–Hadamard bound will carry a factor ε
|S|
χ compensating the C |S| from Proposition 8.13. Note

that [35, Eq. (6.60)] giving the full induction hypothesis, does include a factor corresponding in our

notations to 2−m(2−|S|/2) meaning that the above-mentioned application of Gram–Hadamard with a

small propagator g(m) is done there. We will therefore not provide extra details on that point.

1This is the reason why in [35, Eq. (6.24)] the sum is over n even and the ϕ terms appear with alternating ±.
2For us, m = 0, the vector x is our set S.
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Proof. Recall the expression in Eq. (8.10) for the weights after integration,

W (−1)(S) =
∑
n

1

n!

∑
partitions Si

∑
Ii

∏
i

w(Si ∪ Ii)ET (ψI1 , . . . , ψIn)

≤
∑
n

1

n!

∑
partitions Si

∑
Ii

|ET (ψI1 , . . . , ψIn)|
∏
i

[
Zt(D)δ2n(Ii)

∏
j

(
2δ−2∥g

r
(i)
j

∥∞
)]
, (8.11)

where the inequality used the bound from Lemma 8.11 on the weights w(Si ∪ Ii). We wrote n(I)

for the number of centers above, with the same convention as n(D) from Lemma 8.11. In order to

show that the series on the right hand of Eq. (8.11) converge, it suffices to prove an exponential

decay of ET (ψI1 , . . . , ψIn) with the area of the Ii, at a rate slightly larger than the entropy of tilings.

The first step is to introduce a change of variables. Assume first for simplicity that none of the

sets Si ∪ Ii contains a non-contractible loop of TN . Note that while the Si ∪ Ii must be tileable,

there is no need for Ii to be since the partition only comes from expending a product. Since there

are at most 3|Si| dimers configurations covering S, one of them has to account for a fraction at least

(3max(a, b, c))−|Si| of Zt(Si ∪ Ii). We let Ĩi be the set of vertices not covered by this particular

tiling. Note that |Ĩi| ≥ |Ii| − |Si|, |∂Ĩi| ≤ |∂Ii|+ 3|Si| and

|det(K↾Ĩi)| ≥ Zt(Si ∪ Ii)(3max(a, b, c))−|Si| ,

For a set Si ∪ Ii which contains a non-contractible loop, we denote by cut(Si ∪ Ii) the length

of a minimal cut removing all noncontractible loops. Enumerating also over the positions of tiles

intersecting this cut, we see that we can find Ĩ such that

| det(K↾Ĩ)| ≥ Zt(Si ∪ Ii)C−|Si|+cut(Si∪Ii) , (8.12)

For b ∈ Ĩi, we let

ψ̃
(i)
b =

∑
w∈Ĩi

K(b, w)ψw .

Note that for w ∈ Ĩi, ψw =
∑

b∈Ĩi(K↾Ĩi)
−1(w, b)ψ̃

(i)
b and therefore (up to a global sign depending

on the implicit ordering used in notations such as
∏
w∈Ĩi ψw)∏

w∈Ĩi

ψw =
∏
w∈Ĩi

∑
b∈Ĩi

(K↾Ĩi)
−1(w, b)ψ̃

(i)
b

=
∑
σ

∏
w∈Ĩi

(K↾Ĩi)
−1(w, b)ψ̃

(i)
σ(w)

= det(K↾Ĩi)
−1

∏
b∈Ĩi

ψ̃
(i)
b . (8.13)

To go from the first to the second line, we use that ψ̃2
b = 0 and to go from the second to the third

we use the anti-symmetry. Introducing the notation ψ̃Ii =
∏
w∈Ii\Ĩi ψw

∏
b∈Ĩi ψ̃b

∏
b∈Ii ψb, we have

ET (ψI1 , . . . , ψIn) =
1∏n

i=1 det(K↾Ĩi)
ET (ψ̃I1 , . . . , ψ̃In) . (8.14)

The product of determinants above accounts for the partition function of tilings but we still

need to find a (1 − ε)
∑

|Ii| decay. This will come from a more detailed analysis of the truncated

expectation in the right hand side and a Gram–Hadamard bound. For this we need to explicit the

action of the propagator in terms of the new variables.
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Note that since KĨi
acts locally, we still have the same stretched exponential decay as for the

original, maybe with a factor 3 in the multiplicative constant. Furthermore, we also have for any

b not on the boundary of Ĩi,

g(0)(ψ̃
(i)
b , ψb′) =

∑
w

K(w, b)g(0)(ψw, ψb′)

=
∑
w

K(w, b)
1

N4

∑
k,k′ ̸=k±

g(0)(ψ−
k , ψ

+
k′)e

−i⟨k,w⟩+i⟨k,b′⟩

=
1

N2

∑
k ̸=k±

1− χ(−1)(k − p+)− χ(−1)(k − p−)

µ0(k)
ei⟨k,b

′−b⟩(a+ beik1 + ceik2) .

If we choose the regularization function χ(0) so that its support lies outside of the support of

1− χ(−1)(k− p+)− χ(−1)(k− p−), then µ0 in the denominator is exactly the numerator and hence

g(0)(ψ̃
(i)
b , ψb′) =

1

N2

∑
k ̸=k±

(1− χ(−1)(k − p+)− χ(−1)(k − p−))ei⟨k,b
′−b⟩ .

Note that we are already in a good setup to apply the Gram–Hadamard inequality since the above

is exactly ṽ
(i)
b · vb′ for

ṽ
(i)
b =

1

N

∑
k ̸=k±

√
1− χ(−1)(k − p+)− χ(−1)(k − p−)e−i⟨k,b⟩ek , (8.15)

vb′ =
1

N

∑
k ̸=k±

√
1− χ(−1)(k − p+)− χ(−1)(k − p−)ei⟨k,b

′⟩ek ,

with (ek) forming an abstract standard basis. For b on the boundary of one of the I, we can still

have a Fourier description of g and therefore a Gram expression

g(0)(ψ̃b, ψb′) =
1

N2

∑
k ̸=k±

(1− χ(−1)(k − p+)− χ(−1)(k − p−))
Qb(e

ik1 , eik2)

µ0(k)
ei⟨k,b

′−b⟩

= ṽb · vb′

where Qb is a degree 1 polynomial depending on the set of neighbors of b in I and

ṽb =
1

N

∑
k ̸=k±

√
1− χ(−1)(k − p+)− χ(−1)(k − p−)e−i⟨k,b⟩

Qb(e
ik1 , eik2)

µ0(k)
ek .

For any w ∈ Ii \ Ĩi the same holds with Q being a single monomial. We note that because of the

regularization, there exists Cχ <∞ and εχ > 0 such that for all b

∥vb∥2 ≤ 1− εχ , ∥ṽb∥2 ≤

{
Cχ if b ∈ ∂I,

1− εχ otherwise.
(8.16)

(We retain the subscripts εχ and Cχ to emphasize their dependence.) Using the above expression,

let us turn to the bound on ET (ψ̃I1 , . . . , ψ̃Is). As mentioned before, we use Theorem 8.8 and we

will bound det(G(T, t⃗)) uniformly over T and t⃗ so we fix them and, following the notations of

Theorem 8.8 we let uj be vectors of unit norm such that tj,j′ = uj ·uj′ . Replacing g(0) by the above

expressions In the definition of G = G(T, t⃗), we see that

G(j,i),(j′,i′) = (uj · uj′)(ṽ(j,i) · v(j′,i′)) = (u⊗ ṽ)(j,i) · (u⊗ v)(j′,i′).
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Note that we removed the superscript (i) since is becomes redundant in the block notation of G.

Since the uj have unit norms, ∥(u⊗ ṽ)j,i∥ = ∥ṽj,i∥ so by Gram–Hadamard (Theorem 8.9)

| det(G(T, t⃗))| ≤
(
1− εχ

)∑ |Ii|C
∑

i |∂Ii|
χ ;

therefore,

|ET (ψ̃I1 , . . . , ψ̃Is)| ≤
(∑

T

∏
e∈T

|g(0)(e)|
)
·
(
1− εχ

)∑ |Ii|C
∑

i |∂Ii|
χ .

Plugging this in Eq. (8.14), and then substituting the bound on ET into Eq. (8.11), we find that

|W (−1)(S)| ≤
∑
n

1

n!

∑
partitions Si

∑
Ii

(∑
T

∏
e∈T

|g(0)(e)|
)

·
∏
i

δ2n(Ii)
Zt(Si ∪ Ii)
det(KĨi

)

(∏
j

(
2δ−2∥g

r
(i)
j

∥∞
))

·
(
1− εχ)

)|Ii|C |∂Ii|
χ , (8.17)

where we emphasize that the labels in the tree T are still referring to the variables ψ̃b and the

superscript in Zt denotes tilings, not the tree T .

Establishing Eq. (8.17) was the hard part in the analysis, however we still need to adapt it to a

more usable form. First we can replace det(KĨi
) by its lower bound from Eq. (8.12), and further

bound δ2n(I) ≤ δ1+n(I) to arrive at

|W (−1)(S)| ≤
∑
n≥1

δn

n!

∑
partitions Si

∑
Ii

δ
∑
n(Ii)C |Si|

(∏
i,j

2

δ2
∥grj∥∞

)
·
(∑

T

∏
e∈T

|g(0)(e)|
)
·
(
1− εχ

)∑ |Ii|C
∑

i |∂Ii|+cut(Si∪Ii)
χ . (8.18)

By construction |g(0)(x, y)| decays as the exponential of the square root of |x − y|; let us thus fix

εχ and Cχ such that |g(0)(x, y)| ≤ Cχe
εχ
√

|x−y| uniformly over x, y. For any tree T , we have∏
e∈T

|g(0)(e)| ≤ Cnχ
∏
i

Ξi where Ξi := e−εχ
√

dist(Si∪Ii ,
⋃

j ̸=i(Sj∪Ij)) .

where the distance between set is as usual the minimal distance between points in these sets. Then∏
i:Si ̸=∅

Ξi ≤ e−
1
2
εχ
√
A(S)(1 + εχ/4)

∑
i |Ii| ,

where A(S) is the size of the minimal connected set containing S, whereas∏
i:Si=∅

Ξi ≤ (1 + εχ/4)
∑

i |Ii|C({Si}, {Ii}) for C({Si}, {Ii}) :=
∏
i:Si=∅

e−
1
2
εχ
√

dist(Si,Ii) .

Since there are fewer than nn−2 ≤ Cnn! trees T for some absolute constant C, we get overall

(changing the value of Cχ)∑
T

∏
e∈T

|g(0)(e)| ≤ n!Cnχe
− 1

2
εχ
√
A(S)(1 + εχ/2)

∑
|Si∪Ii|C({Si}, {Ii}) .
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Also, we can bound cut(Si ∪ Ii) ≤ |Si|+ cut(Ii). Going back to Eq. (8.18) and matching similar

terms, we get

|W (−1)(S)| ≤ C |S|
∑
n≥1

(δCχ)ne−
1
2
εχ
√
A(S)

∑
partitions Si

∑
Ii

C({Si}, {Ii})

· δ
∑
n(Ii)

(∏
i,j

2

δ2
∥grj∥∞

)(
1− εχ

)∑ |Ii|C
∑

i |∂Ii|+cut(Ii)
χ . (8.19)

Fix R > 0. For every Ii, if we denote IRi =
⋃
j: rj≥RBj (where Bj = B(xj , rj) is part of Ii), and

if δ is small enough (compared to R), then

δn(Ii)(1− cλ)
r(Ii)(1− εχ/2)

|Ii|C |∂Ii|+cut(Ii)
χ ≤ δn(Ii)/2(1− cλ)

r(Ii)(1− εχ/2)
|IRi |C

|∂IRi |+cut(IRi )
χ .

Note that we always have cut(IRi ) ≤ 2n. Also if IRi contains a non-contractible loop but has

|∂Ii| ≤ n/2, then all the connected components of its complement must be simply connected.

Applying the isoperimetric inequality to each of them, this is only possible if |IRi | ≥ n2/2. Overall,

up to a change of constant we can ignore the term cut(IRi ) for n large enough. Now, note the

following simple fact:

Fact 8.15. There exists an absolute constant C > 0 such that, for every R > 0 and finite collection

{Bj} of balls of radius at least R in R2, the set IR =
⋃
j Bj satisfies |∂IR| ≤ C|IR|/R.

Proof. We will prove the result for balls defined in the continuum and with |IR| and |∂IR| denoting
respectively the Lebesgue measure and the length measure. In the discrete setting of a bounded

degree graph, the result is trivial for R ≤ 1 while for R ≥ 1 it can be obtained from the continuum

analog up to a change of constant. Let xj and rj denote the centers and radii of the balls Bj , we

assume without loss of generality that the xj do not repeat. Let Aj = {x ∈ ∂IR : dist(x, xj) = rj},
we have

⋃
j Aj = ∂IR and, since the intersection of two circles with different centers contains at

most 2 points, |Aj ∩ Aj′ | = 0 for all j ̸= j′. Let Cj be the “corner” associated to the arc “Aj”,

i.e., Cj =
⋃
x∈Aj

[xj , x] where [xj , x] denotes the closed segment between the points xj and x. By

construction
⋃
j Cj ⊂ IR and |Cj | = 2|Aj |/R. Also, since the sum of the length on opposite sides

of a quadrilateral is smaller than the sum of the length of the diagonal, for all j ̸= j′ and different

x ∈ Aj , x
′ ∈ Aj′ , the segments [xj , x] and [xj′ , x

′] are disjoint. In particular |Cj ∩ Cj′ | = 0 for all

j, j′. Combining the above, we have

|∂IR| =
∑
j

|Aj | =
∑
j

2|Cj |/R ≤ 2|IR|/R

as desired. ■

Choosing R = Rχ large enough, we can therefore bound the perimeter terms by the total area,

obtaining that

δn(Ii)(1− cλ)
r(Ii)(1− εχ/2)

|Ii|C |∂Ii|
χ ≤ δn(Ii)/2(1− cλ)

r(Ii)(1− εχ/4)
|IRi | .

If δ is small enough, this then gives

δn(Ii)/4(1− cλ)
r(Ii)(1− εχ/4)

|Ii|2|S|
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where the 2|S| comes from the fact that, in order to apply Fact 8.15, we might have included some

points of S in IR. Coming back to the full expression in Eq. (8.19), we can now deduce that

|W (−1)(S)| ≤ (2C)|S|
∑
n≥1

(δCχ)
ne−

1
2
εχ
√
A(S)

∑
partitions Si

∑
Ii

C({Si}, {Ii})

· δ
∑
n(Ii)/4(1− εχ/4)

∑
|Ii|

(∏
i,j

2

δ2
∥grj∥∞

)
.

We turn to the sum over the Ii. Recall that each Si ∪ Ii is a set decorated with pairs of centers

and (xj , rj) together with possibly up to 4 extra marked points corresponding to a variable Ψ̂±
ω .

Recall further that, given some {(xj , rj)}, there are at most C |∂
⋃

j B(xj ,rj)| compatible I (second

part of Lemma 8.11). Finally, while Si ∪ Ii must be a connected set, it is possible to have Si = ∅
but in such a case the term C provides a penalization by exp[−1

2εχ
√
dist(Ii, S)].

We first enumerate over the faces of 1
ηT intersecting Si ∪ Ii for an η to be chosen small enough

later and then over all possibles xi in these faces and associated ri. By Fact 5.23, if Si is not empty,

there are at most eCη|Si∪Ii| possible sets of faces for some absolute constant C. When Si is empty,

because of the penalization by the distance, the same argument applies and we only have to count

an extra factor Cχ to choose the position. At each point, choosing whether to introduce a center

and summing over all possible r provides a factor of

1 +
∑
r≥1

2

δ2
∥gr∥∞ ≤ 1 + δ

to the enumeration. (NB. this is the location where the key assumption on the weights gr is used.)

Last, choosing Ii given {(xj , rj)} provides a factor C |∂
⋃

j B(xj ,rj)| but these terms can be absorbed

into δ
∑
n(Ii)(1 + δ)

∑
|Ii| as before. Altogether we obtain∑

Ii

C({Ii}, {Si})δ
∑
n(Ii)

(∏
i,j

2

δ2
∥grj∥∞

)
(1− εχ/4)

∑
|Ii|

≤ Cnχδ
∑
s

eCη(|Si|+s)(1 + δ)12s/η(1− εχ/4)
s ≤ Cnχ2

|Si| (8.20)

where the last bound holds if we first choose η small enough and then β large enough depending

on εχ. This leads to (still changing the values of the constants):

|W (−1)(S)| ≤ C |S|e−
1
2
εχ
√
A(S)

∑
n≥1

(δCχ)
n

∑
partitions Si

C
∑

|Si| .

Finally, again assuming δ is small enough and changing the value of the absolute constant C,

|W (−1)(S)| ≤ δC |S|e−
1
2
εχ
√
A(S) ,

which concludes the proof of Proposition 8.13. ■

As mentioned in Remark 8.14, the above estimate corresponds to the initialization in the induc-

tive procedure1. The rest of the induction then follows exactly as in [35] and provides the following

output2:

1See [35, Eqs. (6.30) and (6.31)].
2See [35, Eq. (6.112)].
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Proposition 8.16.∫
exp

(
ψ⃗Kψ⃗ +

∑
P

w(P)ψS
)
dψ = exp(N2E

(h)
ϑ )

∫
exp

(Z(h)

N2

∑
ω

µϑ,ωΨ̂
+
ω Ψ̂

−
ω + V

(h)
ϑ (

√
Z(h)Ψ)

)
dΨ

where h is the index of the last step of the induction, h = log2(N) + O(1), while E
(h)
ϑ , µϑ,ω, Z

(h)

and V (h) are given by the renormalization procedure1. The terms E
(h)
ϑ , µϑ,+, µϑ,−, Z

(h) are real

numbers while V is a polynomial in Ψ (which was defined at the start of Section 8.5).

Furthermore, the following holds:

1. The terms E
(h)
ϑ , µϑ,+, µϑ,−, Z

(h) and the coefficients of V are given by absolutely convergent

sums over labeled trees. They are analytic functions of the weights of patterns.2

2. The set of labeled trees in the first item is independent of ϑ.3

Giving full details on the definition of E,µ, Z and V above would require repeating long and

technical parts of [35] so we only give a brief description of E. The other terms admit similar

expansions. The general form of the formula is in fact not surprising, we performed the integral

over all the variables ψ from the left hand side except from the two modes Ψ which remain to be

integrated and are present in the right hand side. Furthermore, since we are always rewriting our

formula in exponential form, it is natural to end up with the exponential of a polynomial in Ψ so

in a sense we just gave names to (parts of) the coefficients of order 0 and 2 in that polynomial.

E
(h)
ϑ keeps track of the weight of the empty set over the renormalization procedure, looking

back at Eq. (8.7), we see that eN
2E

(0)
ϑ =

∏
k ̸=k± µ0(k) (again the dependence in ϑ is hidden in

the set of Fourier modes in the product). After the first integration, E
(−1)
ϑ − E

(0)
ϑ = W (−1)(∅)

is the constant in the formula for W (1) which of course just factors out of all further integration.

Similarly E
(h−1)
ϑ −E(h)

ϑ will be the constant factor appearing in step h of the integration. Similarly

to step 1, it will be a sum over all collections of sets of the step-h weights combined with the

scale h propagator. If the step-h weights are themselves rewritten in terms of the weights at a

previous scale, we obtain a sum over trees with h generations describing “trajectories” in the space

of interaction terms, see [34, Eq. (5.1)] and the discussion preceding it for details.

In fact, the above expansion is a bit too naive, to obtain a convergent expansion, it is necessary

to separate at each step the “main” terms (called the local terms in [35]) from the rest. This makes

the labeling scheme more complicated (and the proof considerably more challenging) than what

would appear by just repeating the expansion used from step 0 to 1 repeatedly but at our level of

details the naive picture is sufficient.

Remark 8.17. At this point, we can expand on why the renormalization group approach of [34]

manages to give an expression for the free energy as a analytical function of the interaction but a

cluster expansion approach would fail.

At first glance, the approaches seem similar: Lemma 8.10, which is an analog of [35, Prop. 1],

provides an estimate à la cluster expansion: it replaces
∑

exp[
∑

r,x(. . .)] by exp[
∑

P(. . .)], and

begins with rewriting exp[
∑

g(P )] as
∏
P (1 + (exp(g(P )− 1)) and expanding the product, as done

1In [35], see Eqs. (6.42),(6.45) for the definition of Z; (6.53) for E; (6.33),(6.111) for µ; (6.48),(6.49) for V .
2See [35, Prop. 3] and the discussion immediately after it, as well as Eqs. (6.69),(6.70) and Sec. 6.4.5. More

precisely, Prop. 3 shows analyticity as a function of the weights and extra variables called the running coupling

constant assuming the latter stay small. Eqs. (6.69),(6.70)formulate precisely the conditions the constant will actually

satisfy and Sec. 6.4.5 shows that they depend analytically on the weights and that the dependence can be inverted.
3This is immediate from their description in [35, Sec. 6.3].
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in the classical cluster expansion proofs. However, the fact that the ψP are Grassmann variables

instead of usual indicator functions actually simplifies considerably this rewriting: in Eq. (8.5), the

left hand side exp[
∑

P w(P)ψP] directly gives a sum over disjoint patterns (because any term of

order more than 2 cancels: ψ2
b = 0 and ψ2

w = 0), namely
∑

{Pj} disjoint

∏
j w(Pj). Comparing to

the classical cluster expansion formula, this avoids all the “extra” terms involving Ursell functions.

Already getting to this point, where we may use Grassman variables to account for the interaction,

is model-specific. Indeed, in our context, one can see these variables as just a nice way to work

with the determinants from Kasteleyn theory (see Eq. (8.3) and Eq. (8.4) for its use in the proof

of Lemma 8.10), with the anti-symmetry of the variables designed to match the behavior of the

determinant under permutation of the lines and columns (a property of fermionic models).

Even at this point, the term (1 + δ)12s/n from Eq. (8.20), left from enumerating over patterns

P, would destroy the summability condition needed for cluster expansion. This is due to the fact

that every pattern P has an entropy of A(P) (its area), yet is only penalized by diam(P) (and even

that, with a very small constant). In other words, the move to Grassman variables transformed the

cluster expansion summability condition into showing that W (−1)(S) from Eq. (8.10) is summable.

The remedy is to use the truncation in Fourier space, and its associated factor of (1 − εχ/4)
s.

That is, the term (1 + δ)A(P) is handled by the finite range effect of g(0), which is (1− εχ)
A(P).

Finally, we also needed to handle the enumeration over tilings; to that end we moved in Eqs. (8.12)

and (8.13) from ψ↾Ii to ψ̃↾I′i via multiplying by K; this change-of-basis was accompanied by a minor

of K, which exactly counted the number of tilings. Moreover, g(0) is similar to K−1, and so in this

new basis, it becomes close to the identity.

Note that the truncated expectation ET (ψI1 , . . . , ψIn) was bounded in [34,35] via Gram–Hadamard

by some C > 0 (which they could afford, as in their setting they have an e−C
′A(P) at their disposal)

and this bound can easily be seen from the definition of g in Fourier space. We also use the same

Gram–Hadamard bound here, but in addition, exploit the fact that it is the L2-norm of ṽ from

Eq. (8.15) which is bounded in Eq. (8.16) by a more precise (1− εχ), using the fact that we found

a base where g(0) is close to the identity (whose columns of course have L2-norm exactly 1).

8.7. Back to the microcanonical model. Recall from Lemma 8.10 that the partition function

of the interacting model was written as∑
φ:k=Npb,ℓ=Npc

exp

(∑
r,x

gr(φ↾B(x,r))

)
=

1

N2pbpc

∑
ϑ

∫
exp

(
Sϑ(ψ)+

∑
P

w(P)ψS

)
dψ+O(e−ηN

2/2) .

Further recall that, by Proposition 8.16, each term
∫
exp

(
Sϑ(ψ) +

∑
P w(P)ψS

)
dψ on the right is

equal to

exp(N2E
(h)
ϑ )

∫
dΨexp(

Z(h)

N2

∑
ω

µϑ,ωΨ̂
+
ω Ψ̂

−
ω + V

(h)
ϑ (

√
Z(h)Ψ)) .

We are interested in the asymptotic of the free energy F = log
(∑

φ exp
∑

r,x gr(φ↾B(x,r))
)
and in

correlations such as Cov(1e,1e′) were 1e is the indicator that the edge e is occupied in the tilings

(as well as higher order cumulants). We will only provide details on the output of the construction

for F and Cov(1e,1e′) because higher order cumulants are obtained similarly, see [34] for details.

We start by analyzing the dependence in ϑ and N of E
(h)
ϑ from Proposition 8.16. Recall that

eN
2E

(0)
ϑ =

∏
k ̸=k± µ0(k) where µ0 is a smooth function of k away from two points p± with a

singularity of order 1 at these two points, that k runs over the discrete torus with mesh size 1/N

shifted by ϑ1 in the first coordinate and ϑ2 in the second coordinate and that k± are the two points
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of that lattice closest to p±. One can check that eN
2E

(0)
ϑ /eN

2E
(0)
0,0 is bounded and bounded away

from 0 uniformly over ϑ and N1.

Recall further that E
(h)
ϑ −E(0)

ϑ is an absolutely convergent series where each term is a product of

truncated expectations with respect to recursively defined “single scale propagators” g
(i)
ϑ (see the

explanation around Eqs. (8.8) and (8.9)). For i close to 0, g
(i)
ϑ /g

(i)
(0,0) = 1 + O(N−2) because they

are Riemann sums approximations of the integral of a C2 function while for (i) very negative g
(i)
ϑ

is exponentially decreasing in (i). Overall it can be shown2 that E
(h)
ϑ − E

(0)
ϑ = ∆ + log(1+s(ϑ,N))

N2

where ∆ only depends on the parameters of the model and s is equicontinuous in N . Furthermore

s can be bounded by an arbitrarily small constant by taking β large enough. In fact, the same also

holds when subtracting from log(1 + s) a factor 2 logZh to normalize the integral over Ψ. Overall

this shows that∫
exp

(
ψ⃗Kψ⃗ +

∑
P

w(P)ψS

)
dψ = e

N2E
(h)
(0,0)

· (1 + s(ϑ,N))
1

Z2
h

∫
exp

(Z(h)

N2

∑
ω

µϑ,ωΨ̂
+
ω Ψ̂

−
ω + V

(h)
ϑ (

√
ZhΨ)

)
dΨ .

The coefficients of V (h) are by definition associated to the exponentially decreasing factors in the

renormalization. Since h is of order log2(N) it means that they must be polynomially small in N . In

fact, since the rate of decay are explicit as a function of the size (see the “dimensional estimates” in

[35, Eq. (6.60)]) and for V they are at least N−3 so these terms must have a vanishing contribution

as N → ∞. However the Grassmann integral with only a quadratic term is the exponential is

explicit which overall gives∫
exp

(
ψ⃗Kψ⃗ +

∑
P

w(P)ψS

)
dψ = e

N2E
(h)
(0,0)(1 + s(ϑ,N))µϑ,+µϑ,−(1 +O(1/N))µϑ,+µϑ,− .

Furthermore, µϑ,± is given by a convergent series with bounds that are uniform in ϑ and it is

analytic by Proposition 8.16.

Combining all of the above, and plugging it back in our original sum, we find∑
φ

exp
∑
r,x

gr(φ↾B(x,r)) = e
N2E

(h)
(0,0)

1

N2papb

∑
ϑ

eN
2E

(0)
ϑ

e
N2E

(0)
(0,0)

(1 + s(ϑ,N)) +O(e−ηN
2/2) .

The term summed in the right hand side is bounded and therefore 1
N2F → limh→∞E

(h)
0,0 .

We now turn to the correlations. Given a function e→ Ae, define the generating function

eF (A) :=
∑
φ

exp

(∑
r,x

gr(φ↾B(x,r)) +
∑
e

Ae1{e∈φ}

)
.

It is well known that Cov(1e,1e′) = ∂Ae∂Ae′F (0) so we want to generalize the above normalization

procedure to a non-zero “external scalar field” A. In fact everything follows with essentially no

modification since adding these new variables just amounts to a increase in the set of weighted

patterns3. The only conceptual difference is that in the approach above we were thinking of the

1This is [35, Eq. (6.121)] with its proof in [35, Appendix D.1]. They have only 4 ϑ’s instead of a continuum but the

argument go though just replacing − 1
2
logµ0(k

←)− 1
2
logµ0(k

→) in Eq. (D.3) by an appropriate linear combination

of the 4 closest points in the shifted lattice so that Eqs. (D.4) and (D.5) still holds.
2See [35, Appendix C].
3In [34,35], they provide the full details and study the generating function from the start.
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weights w(P) as fixed parameters of the model but now they appear as functions of A. It is not

hard to see from the proof of Lemma 8.10 that the weights become polynomials in the variables

Je := eAe − 1 so, using these new variables, the output of the normalization becomes:∫
exp

(
Sϑ(ψ) +

∑
P

w(P, J)ψS

)
dψ = exp

(
N2E

(h)
ϑ + S

(h)
ϑ (J)

)
·
∫

exp
(Z(h)

N2

∑
ω

µϑ,ωΨ̂
+
ω Ψ̂

−
ω + V

(h)
ϑ (

√
ZhΨ, J)

)
dΨ ,

where the new term S
(h)
ϑ contains the dependence in J of N2E(h) and any terms containing both Ψ̂

and J is included in V
(h)
ϑ . As before, S(h) is obtained by a convergent series in terms of the variables

(Je)e with no constant term. Note that the coefficients of S
(h)
ϑ are order 1 because the factor N2

in front accounted from the number of vertices in the torus while in S
(h)
ϑ they all correspond to

different terms.

With similar arguments to the one for E(h) −E(0), one can prove that S
(h)
ϑ (J) = S(J) + log(1 +

s′(ϑ,N, J)/N2) for a bounded function s′. One can also bound V
(h)
ϑ (

√
ZhΨ, J) similarly to the

J = 0 case. Therefore∫
exp

(
Sϑ(ψ) +

∑
P

w(P, J)ψS

)
dψ = e

N2E
(h)
(0,0)eS(J)

· (1 + s(ϑ,N))
(
1 +

s′(ϑ,N, J)

N2

)
µϑ,+µϑ,−(1 +O(1/N))

and

eF (A) = e
N2E

(h)
(0,0)eS(J)

· 1

N2papb

∑
ϑ

eN
2E

(0)
ϑ

e
N2E

(0)
(0,0)

(1 + s(ϑ,N))
(
1 +

s′(ϑ,N, J)

N2

)
µϑ,+µϑ,−(1 +O(1/N)) +O(e−ηN

2/2) .

We conclude that (exactly as in the usual case with only 4 matrices), the partial derivatives of

F (A) are given by the coefficients of S(J) up to an error vanishing with N .

Let us note now for future reference that the coefficients of S satisfy a bound similar to the one

in Proposition 8.13, in particular at every intermediate scale h it has a term e−εχ
√
2hA where, as in

Proposition 8.13, A is the length of the minimal tree connecting all the edges associated to a given

coefficient1. As a consequence, all cumulants of the edge occupation variables have a polynomial

decay in A.2 Namely, for all e1, . . . , ek,

|Cumulant(1e1 , . . . ,1ek)| ≤ CkA(e1, . . . , ek)
−c (8.21)

for some C, c > 0.
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[11] J. Bricmont, A. El Mellouki, and J. Fröhlich. Random surfaces in statistical mechanics: roughening, rounding,

wetting,. . . . J. Stat. Phys., 42(5-6):743–798, 1986.

[12] W. K. Burton, N. Cabrera, and F. C. Frank. The growth of crystals and the equilibrium structure of their

surfaces. Philos. Trans. Roy. Soc. London Ser. A, 243:299–358, 1951.

[13] P. Caddeo, Y. H. Kim, and E. Lubetzky. On level line fluctuations of SOS surfaces above a wall. Forum Math.

Sigma. To appear.

[14] P. Caputo, E. Lubetzky, F. Martinelli, A. Sly, and F. L. Toninelli. Dynamics of (2+1)-dimensional SOS surfaces

above a wall: Slow mixing induced by entropic repulsion. Ann. Probab., 42(4):1516–1589, 2014.

[15] P. Caputo, E. Lubetzky, F. Martinelli, A. Sly, and F. L. Toninelli. Scaling limit and cube-root fluctuations in

SOS surfaces above a wall. J. Eur. Math. Soc. (JEMS), 18(5):931–995, 2016.

[16] R. Cerf and R. Kenyon. The low-temperature expansion of the Wulff crystal in the 3D Ising model. Comm.

Math. Phys., 222(1):147–179, 2001.

[17] F. Cesi and F. Martinelli. On the layering transition of an SOS surface interacting with a wall. I. Equilibrium

results. J. Stat. Phys., 82(3):823–913, 1996.

[18] F. Cesi and F. Martinelli. On the layering transition of an SOS surface interacting with a wall. II. The Glauber

dynamics. Comm. Math. Phys., 177(1):173–201, 1996.

[19] S. T. Chui and J. D. Weeks. Phase transition in the two-dimensional coulomb gas, and the interfacial roughening

transition. Phys. Rev. B, 14:4978–4982, Dec 1976.

[20] H. Cohn, R. Kenyon, and J. Propp. A variational principle for domino tilings. J. Amer. Math. Soc., 14(2):297–

346, 2001.

[21] E. I. Dinaburg and A. E. Mazel. Layering transition in SOS model with external magnetic field. J. Stat. Phys.,

74(3):533–563, 1994.

[22] R. L. Dobrushin. The Gibbs state that describes the coexistence of phases for a three-dimensional Ising model.

Teor. Verojatnost. i Primenen., 17:619–639, 1972.

[23] M. Elwenspoek and J. P. van der Eerden. Kinetic roughening and step free energy in the solid-on-solid model

and on naphthalene crystals. J. Phys. A Math. Gen., 20(3):669, feb 1987.
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