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Abstract. In this note, we study the low temperature (2 + 1)D SOS interface above a hard floor with

critical pinning potential λw = log( 1
1−e−4β ). At λ < λw entropic repulsion causes the surface to delocalize

and be rigid at height 1
4β

logn + O(1); at λ > λw it is localized at some O(1) height. We show that at

λ = λw, there is delocalization, with rigidity now at height ⌊ 1
6β

logn+ 1
3
⌋, confirming a conjecture of Lacoin.

1. Introduction

The Solid-On-Solid (SOS) model above a wall with an attractive pinning force of λ > 0 along the wall, is
the following probability distribution over nonnegative height functions ϕ over Λn = {−⌊n2 ⌋, . . . , ⌊

n
2 ⌋}

2:

P(ϕ) ∝ exp
(
− β

∑
x∼y

|ϕx − ϕy|+ λ
∑
x

1ϕx=0

)
, ϕ : Λn → Z≥0 . (1.1)

A standard setting for the model sets 0 boundary condition on Z2 \ Λn, which is incorporated into (1.1) by
viewing ϕ as extended onto Λn together with its outer vertex boundary ∂Λn, but forced to be 0 on ∂Λn.

When λ = 0 and β is large (low temperatures), there is a competition between rigidity of the interface,
and entropic repulsion from the constraint that ϕv ≥ 0 for all v. Bricmont, El Mellouki and Fröhlich [2]
showed that the typical height of the interface is of order log n, and the works [3,4] studied the typical height
and the shapes of the level curves in detail. In particular, it was shown that the interface rises along the
boundary, and is typically rigid about height ⌊ 1

4β log n⌋ (or possibly the preceding integer for certain n).

When λ > 0, the pinning potential competes with the entropic repulsion; Chalker [5] showed that for all
large β, there is a critical λw(β) separating a localized regime of λ > λw in which the interface height at the
origin is tight: ϕo = Op(1) as n grows (and ϕx is a certain constant k(λ) for most x ∈ Λn), and a delocalized
wetting regime of λ < λw where ϕo → ∞ (as does ϕx for almost all x ∈ Λn). Since that work, the two
regimes have been investigated in more detail, e.g., [1,11], culminating in works of Lacoin [9,10]. These last
two works identified

λw = − log(1− e−4β) , (1.2)

and showed that on the λ > λw side, an infinite sequence of layering transitions occur as λ ↓ λw. Namely,
there is a sequence of λ1 > λ2 > . . . exponentially converging to λw such that between λi−1 and λi, the
interface is rigid about height i (independent of n), and the λi mark discontinuous (first-order) jump points
for the expected height above the origin, say. For more on this and related phenomena, see the surveys [8,12].

Recently, Feldheim and Yang [6] showed that with probability 1− o(1) (with high probability, or w.h.p.),
the typical height remains ⌊ 1

4β log n⌋ + O(1), as is the case for λ = 0, throughout the wetting regime of

λ < λw. The behavior exactly at the critical point λ = λw remained open. Lacoin conjectured (as stated
in [6]) that the interface at λ = λw should still be delocalized, but it should be rigid about height 1

6β log n

rather than 1
4β log n. Some evidence towards a lower bound was offered in [6] (but only if one assumes an a

priori bound of O(n4/3) on the total number of zeros of the SOS function ϕ).
In this note, we prove the above conjecture, showing that at the critical wetting point λw, all but an εβ

fraction of the sites have height exactly (up to a possible −1 for certain values of n)

h∗n = ⌊ 1
6β log n+ 1

3⌋ . (1.3)

Theorem 1.1. There exists an absolute constant C such that for all β large enough and λ = λw, w.h.p.,

|{x ∈ Λn : ϕx /∈ {h∗n − 1, h∗n}}| ≤
C

β
n2 .

Remark 1.2. For “most” values of n (e.g., a subset of N with a natural density of at least 0.6), we can
identify the single height h ∈ {h∗n− 1, h∗n} such that, w.h.p., all but an εβ-fraction of the sites have height h.
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Figure 1. Downward large deviations of the SOS surface. Left: a 1× 1× h spike of depth h with
rate e−4βh, governing the no-pinning setting (λ = 0). Middle: a 1 × 2 × h spike with rate e−6βh.
Right: a toothlike-spike with rate e−6βh+2β that governs the critical pinning setting (λ = λw).

For instance, if the fractional part of 1
6β log n+ 1

3 falls in the interval [0.34, 1), then h = h∗n (see Remark 3.4),

and if it falls in the interval [0, log β8β ) then h = h∗n − 1 (see Remark 2.10).

Remark 1.3. Lemma 2.6 in fact shows that all connected sets of vertices of height at least h∗n + 1 have
exponential tails on their sizes, and by a union bound the largest one is O(log n) with high probability. One
would expect, in analogy with the λ = 0 case [4], that there is a unique macroscopic connected component of
the {x : ϕx ∈ {h∗n − 1, h∗n}}, occupying all but some εβ fraction of Λn, whose scaling limit is a Wulff shape.

To understand where this height is coming from, let us recap the intuition given in [2] for the case λ = 0.
Making the ansatz that at β large, the interface is rigid about a certain height h(n), there is a tradeoff

between exp(−4βn) for lifting the bulk of the interface up from height h− 1 to h, and (1 + e−4βh)n
2

for the
entropy gained by the newfound allowance of the interface to have downward oscillations of height h (the
easiest way being a straight 1× 1× h “spike”) and still remain nonnegative. These two terms are balanced
at 1

4β log n+O(1), where rigidity was established in [3] (and then refined to ⌊ 1
4β log n⌋− 1, ⌊ 1

4β log n⌋ in [4]).

The work of [6] showed that this tradeoff is still governing the behavior as long as λ < λw.
At the critical λ = λw, as conveyed in [6, Section 1.6], one expects there to be a perfect cancellation of

entropic repulsion via singleton (1 × 1 × h) downward spikes with the pinning potential, leading the only
gain in entropy from lifting the interface to be from the lower order 2×1×h downward spikes. This changes

the above competition to be between exp(−4βn) and (1 + e−6βh)n
2

, which is balanced at 1
6β log n + O(1).

The true threshold we identify of (1.3) is actually governed by a minor refinement of the above expectation;
namely, we show that the relevant entropic repulsion effect is by toothlike-spikes that consist of a 2×1×(h−1)
spike with a last block appended below one of its two bottom vertices: see Fig. 1. This is what causes the
1
3 correction to ⌊ 1

6β log n⌋ in (1.3). For proving the sharp result of Theorem 1.1, it is important to have

identified this mechanism in both the lower bound and upper bound on the typical interface height.

We conclude this section with a few necessary preliminaries on the model. Define the state space Ω̃ where
the floor constraint is relaxed as

Ω̃ = {φ : Λn → Z : ∄x ∼ y with φx ≤ −1 and φy ≤ 0} .

Roughly, that is saying that all oscillations where negative heights are attained have singleton intersections

with height zero. Notice that Ω̃ is an increasing subset of the set of all φ : Λn → Z.
We let Q≥2(φ) be the sites taking height zero that also have a neighbor taking height zero:

Q≥2(φ) = {x : φx ≤ 0 and ∃y ∼ x with φy ≤ 0} . (1.4)

Observe that in Ω̃, vertices of Q≥2 cannot take negative heights, and therefore must take height zero.

Then we can define an SOS model P̃ on Ω̃, which when the positive part is taken, gives exactly the SOS
model with pinning potential λ of (1.1) as follows.

P̃(φ) ∝ exp
(
− β

∑
x∼y

|φx − φy|+ λ|Q≥2(φ)|
)
. (1.5)

The following observation of [6] relating max{0, φ} for φ ∼ P̃ to ϕ ∼ P will be very useful.
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Observation 1.4. Fix any β > 0 and let λ = λw. Then for every ϕ : Λn → Z≥0,

P(ϕ) =
∑

φ:max{0,φ}=ϕ

P̃(φ) ,

where the maximum is taken pointwise.

Lemma 3.1 of [9] also used a relaxation of the floor constraint, but that one was more complicated and

for general λ. The case λ = λw with the state space Ω̃ as suggested in [6, Section 4] is especially clean due
to the equivalence between the ability in φ for a singleton at height ≤ 0 to take a geometric random variable
with mean e−4β as a negative height, and the token of size 1

1−e−4β that ϕ collects by being at height zero.

Several of our proofs will go by identifying events for φ in terms of events in P̃ to which they correspond,

and then bounding those events under P̃.
We conclude below with the definition of up-contours and down-contours, applicable for both ϕ and φ,

and refer the reader to [3, Sec. 3] for a full description of the contour representation of the SOS model.

Definition 1.5. For each height h, begin by letting Γh(φ) denote the set of all dual-edges that separate v ∼ w
for φv ≥ h and φw ≤ h− 1. In order to uniquely decompose this into a collection of loops, it is important to
have some canonical splitting rule when four dual-edges are incident a dual-vertex. The standard procedure
is to round these corners according to a SE-NW rule, whence we are left with a collection of disjoint contours
γ1, . . . , γm with interiors Int(γ1), . . . , Int(γm) such that φv ≥ h on the interior vertex boundary of Int(γi) and
φv ≤ h− 1 on the exterior vertex boundary of Si for all i. Then γ1, . . . , γm are the up h-contours of φ.

Analogously, one uniquely defines the down h-contours of φ with each one having φv ≤ h on its internal
vertex boundary, and φ ≥ h+ 1 on its external vertex boundary.

In what follows, we call a set S ⊂ Λn simply-connected if it can be the interior of a contour with the
above SE-NW splitting rule. For such a set, we use ∂S for its bounding contour. We let PhS (respectively,

P̃hS) denote the SOS measure (1.1) (resp. (1.5)) on the region S with boundary conditions h on Sc.

Acknowledgements. The authors thank the anonymous referee for helpful comments. The research of
R.G. is supported in part by NSF DMS-2246780. The research of E.L. was supported by the NSF grant
DMS-2054833.

2. Upper bound

In this section we show the following upper bound on the typical height of φ.

Proposition 2.1. There exists C > 0 such that for all β large, we have

P̃
(
#{x : φx ≥ h∗n + 1} ≥ Ce−βn2

)
≤ e−n

3/4

.

The argument goes by showing that up-contours γ at height h∗n + 1 have exponential tails. This requires
us to be able to shift down the interior of such a contour to gain a factor of eβ|γ| while remaining in the

admissible space Ω̃. In turn, in order to argue that the gain from the deletion of the up-contour dominates
the entropic repulsion, our goal is to establish that the probability of the interior of γ being such that its
shift down by 1 is admissible has probability given by (1− e−6βh+2β)|Int(γ)|.

2.1. A lifting map to gain entropy. When trying to identify the rate for downward oscillations with
e−6βh+2β , the possible pinning effect of the floor makes Peierls maps that delete down-contours more delicate
than they would be when λ = 0—although having a large down-contour has a cost proportionate to the length
of the contour, it allows for the possibility of collecting more “tokens” of λ through the Q≥2 term in (1.5).
As the number of tokens gained can be proportionate to the area inside the contour, the benefit of the tokens
may outweigh the cost of the downward contour for large contours. Hence, we need an a priori upper bound
on the size of Q≥2 interior to a contour.

In what follows, let S be a simply connected set, and let S′ ⊆ S be a subset which should be thought of
as the interior of a down-contour. Let W ⊆ S′ be a further subset representing a set of points on which we
want to keep φ fixed (ultimately, this will be a pair of adjacent vertices or the empty set).
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Figure 2. The five tiles that together can cover any realization of Q≥2.

For any φ, let A be an arbitrary subset of Q≥2(φ) ∩ S′ \W . For each such A, we want to consider the
map which raises the height of φ inside S′ \ (W ∪A) by 1:

UAφ =

{
(UAφ)z = φz z ∈ (S′)c ∪W ∪A
(UAφ)z = φz + 1 else

.

For any vertex set V , we can define the edge boundary ∂eV as the set of edges

∂eV := {{u, v} : u ∼ v, u /∈ V, v ∈ V } .

Moreover, for a φ, define ∆S′ as the change in disagreements attributed to the edge boundary of S′:

∆S′ = ∆S′(φ) := |{u ∼ v : u ∈ S′, v /∈ S′, φu ≥ φv}| − |{u ∼ v : u ∈ S′, v /∈ S′, φu < φv}| . (2.1)

Lemma 2.2. Let S be a simply connected set, h ≥ 0, S′ ⊆ S, and W ⊆ S′ ⊆ S. Let φ be such that for all
v ∈ S which are also in the exterior boundary of S′ (with respect to S), we have φv ≥ 1. Then,∑

A⊆Q≥2(φ)∩S′\W

P̃hS(UAφ) ≥ P̃hS(φ)e−β∆S
′−β|∂eW |−λ|W |(1 +

1

2
e−6β)|Q≥2(φ)∩S′\W |/5 .

Proof. This proof follows the idea of the proof of [6, Thm 1.2], with some necessary modifications in order
to generalize to the above setting. First of all, we have that

P̃hS(UAφ) ≥ P̃hS(φ) exp (−β∆S′ − β|∂eA| − β|∂eW | − λ(|Q≥2(φ)| − |Q≥2(UAφ)|)) . (2.2)

Because of the assumption that φv ≥ 1 for all v ∈ S which are in the exterior boundary of S′, the isolated
zeroes of φ in S \ S′ remain the same no matter how we change φ inside of S′. Hence, we have that

|Q≥2(φ)| − |Q≥2(UAφ)| = |Q≥2(φ) ∩ S′| − |Q≥2(UAφ) ∩ S′| . (2.3)

Now consider a tiling T = {Ti} of the region Q≥2(φ) ∩ S′ \W by the tiles in Fig. 2 (and their rotations).
(It is a simple geometric fact that any finite subset of Z2 can be tiled in this way as long all its connected
components have size at least 2.) Let Ai = A∩ Ti, and let Q≥2(Ai) = Q≥2(UAφ)∩Ai. Note that we always
have Q≥2(UAφ) ⊆ Q≥2(φ), so we can write

|Q≥2(UAφ) ∩ S′| =
∑
i

|Q≥2(Ai)|+ |Q≥2(UAφ) ∩W | ≥
∑
i

|Q≥2(Ai)| ,

and

|Q≥2(φ) ∩ S′| =
∑
i

|Ti|+ |Q≥2(φ) ∩W | ≤
∑
i

|Ti|+ |W | .

Combining the above, and summing (2.2) over A ⊆ Q≥2(φ) ∩ S′ \W , we then have

∑
A⊆Q≥2(φ)∩S′\W

P̃hS(UAφ) ≥ P̃hS(φ)e−β∆S
′−β|∂eW |−λ|W |

|T |∏
i=1

e−λ|Ti|
∑
Ai⊆Ti

e−β|∂eAi|+λ|Q≥2(Ai)| , (2.4)

since summing over A ⊆ Q≥2(φ) ∩ S′ \W is the same as summing over subsets of each of the covering tiles,
and if A =

⋃
iAi, then |∂eA| ≤

∑
i |∂eAi|. Furthermore, for each of the five possible choices (up to isometry)

of the tile T , it was calculated in [6, Lemma 4.1] that

e−λ|T |
∑
A⊆T

e−β|∂eA|+λ|Q≥2(A)| ≥ 1 +
1

2
e−6β . (2.5)
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Plugging this bound into Eq. (2.4), and noting that the number of tiles in T is at least |Q≥2(φ)∩ S′ \W |/5
(since the maximum number of vertices in a tile is 5), we have that∑

A⊆Q≥2(φ)∩S′\W

P̃hS(UAφ) ≥ P̃hS(φ)e−β∆S
′−β|∂eW |−λ|W |(1 +

1

2
e−6β)|Q≥2(φ)∩S′\W |/5 . ■

Lemma 2.3. For any φ,φ′ such that φ and φ′ are ≥ 1 on the exterior boundary of S′, and any A ⊆
Q≥2(φ) ∩ S′ \W , A′ ⊆ Q≥2(φ

′) ∩ S′ \W such that either φ ̸= φ′ or A ̸= A′, we have

UAφ ̸= UA′φ′.

Proof. It suffices to show that we can recover φ from UAφ. We first show how we can recover the set A
given UAφ. Let Z be the set of zeroes of UAφ inside S′ \W . Observe that Z is equal to the disjoint union
of A and the set {z ∈ Z : φz = −1}. We claim that A is equal to the set

Z1 := {z ∈ Z : ∃v ∈ S′ \W, v ∼ z, UAφv ∈ {0, 1}} ∪ {z ∈ Z : ∃v ∈W, v ∼ z, UAφv = 0} .

To show A ⊆ Z1, note that for all z ∈ A, there must be some v ∼ z such that φv = 0 (since A ⊆ Q≥2(φ)).
As φ is ≥ 1 on the exterior boundary of S′, such v must be also be in S′. If v ∈ W , then we know
UAφv = φv = 0. If v /∈ W , then the fact that UAφ either keeps the value of φ or increases it by 1 implies
that UAφw ∈ {0, 1}.

We show that Z1 ⊆ A by showing that {z ∈ Z : φz = −1} ⊆ Z \ Z1 =: Z2. First note that we can write

Z2 = {z ∈ Z : ∀v ∈ S′, v ∼ z, v /∈W,UAφv ≥ 2} ∩ {z ∈ Z : ∀v, v ∼ z, v ∈W,UAφv ̸= 0} .

Observe that for z such that φz = −1, any v ∼ z must be such that φv ≥ 1 by definition of Ω̃. In particular,
we know that v /∈ A. By definition of UAφ, in the case that v ∈ S′ ∩Ac ∩W c, then UAφv = φv + 1, and so
UAφv ≥ 2. In the case that v ∈W , then UAφv = φv ≥ 1, so in particular UAφv ̸= 0. Since Z1 only depends
on the values of UAφ, this shows we can recover the set A.

Once we have the set A, we can easily recover φ from UAφ by taking φz = UAφz if z ∈ (S′)c ∪W ∪ A
and taking φz = UAφz − 1 otherwise. ■

When S = S′ = Λn, h = 0, and W = ∅, Lemma 2.2 corresponds to the result of [6, Thm 1.2] that
Q≥2(φ) ≤ Cβn (e.g., this bound holds for the choice Cβ = e7β). To make the present paper self-contained
(|Q≥2(φ)| = O(n) will be needed in Section 3), we show how to derive said bound as a corollary of the above.

Corollary 2.4 ([6, Thm. 1.2]). Let β be large enough, and fix Cβ > 80βe6β. Then

P̃(|Q≥2(φ)| ≥ Cβn) ≤ e−n(
Cβ
20 e

−6β−4β) .

Proof. When S = S′ = Λn, h = 0, and W = ∅, we have ∆S′ = 4n and P̃hS = P̃0
Λn

= P̃. By Lemma 2.2,∑
A⊆Q≥2(φ)

P̃(UAφ) ≥ P̃(φ)e−4βn(1 +
1

2
e−6β)|Q≥2(φ)|/5. (2.6)

Furthermore, when S′ = S, the condition that φ is ≥ 1 on the exterior boundary of S′ disappears, and we
can sum both sides of the above inequality over all φ such that |Q≥2(φ)| ≥ Cβn. Then, Lemma 2.3 shows
that the left-hand side is upper bounded by 1, and we obtain

P̃(|Q≥2(φ)| ≥ Cβn) ≤ e4βn−
Cβ
20 ne

−6β

, (2.7)

where we use the fact that 1 + x ≥ e
1
2x for x ∈ [0, 1]. ■

2.2. Identifying the rate for downward tooth-like oscillations. An implication of Lemma 2.2 is that
down-contours have exponential tails. Using that, we can show that the rate for having φx ≤ 0, φy ≤ 1 is
governed by the minimal weight way to generate this, the tooth-like spike which costs e−6βh+2β .

Lemma 2.5. There exists εβ > 0 (going to zero as β → ∞) such that for every simply connected S, every
h ≥ 1, and every pair of adjacent sites x, y ∈ S,

P̃hS(φx ≤ 0, φy ≤ 1) ≤ (1 + εβ)e
−6βh+2β .
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Proof. It suffices to show

P̃hS(φx ≤ 1, φy ≤ 1) ≤ (1 + εβ)e
−6β(h−1) , and (2.8)

P̃hS(φx ≤ 0 | φx ≤ 1, φy ≤ 1) ≤ (1 + εβ)e
−4β , (2.9)

To show Eq. (2.8), we want to say that with probability 1−εβ , conditional on φx ≤ 1, φy ≤ 1, the outermost
down-contour containing x and y is the loop bounding exactly {x, y}. To begin, fix a contour Cx,y containing
x and y. Let Cx,y(φ) denote the outermost down-contour containing both x, y in φ. Let B(Cx,y) be the event
that φx ≤ 1, φy ≤ 1, and Cx,y(φ) = Cx,y. Let S′ denote the interior of Cx,y. For every ψ ∈ B(Cx,y), we
know that ψ is ≥ h on the exterior boundary of Cx,y by definition of Cx,y being an outermost down-contour.
Hence, we can apply Lemma 2.2 with W = {x, y} and S′ = Int(Cx,y) to obtain that∑

A⊆Q≥2(ψ)∩Int(Cx,y)\{x,y}

P̃hS(UAψ) ≥ P̃hS(ψ)eβ|Cx,y|−6β−2λ(1 +
1

2
e−6β)|Q≥2(ψ)∩Int(Cx,y)\{x,y}|/5

≥ P̃hS(ψ)eβ|Cx,y|−6β−2λ .

Furthermore, note that since UAψ did not change the values of ψ on x, y, then we still have UAψx ≤
1, UAψy ≤ 1. Hence, summing over ψ ∈ B(Cx,y) above and applying Lemma 2.3, we have∑
ψ∈B(Cx,y)

P̃hS(ψ)eβ|Cx,y|−6β−2λ ≤
∑

ψ∈B(Cx,y)

∑
A⊆Q≥2(ψ)∩Int(Cx,y)\{x,y}

P̃hS(UAψ) ≤ P̃hS(φx ≤ 1, φy ≤ 1) , (2.10)

and in particular

P̃hS(B(Cx,y)) ≤ e−β|Cx,y|+6β+2λP̃hS(φx ≤ 1, φy ≤ 1) . (2.11)

Since the number of contours containing x, y with length l is at most Cl for some universal constant C,
we then have

P̃hS(φx ≤ 1, φy ≤ 1, |Cx,y(φ)| > 6) =
∑
l≥8

∑
Cx,y:|Cx,y|=l

P̃hS(B(Cx,y)) (2.12)

≤
∑
l≥8

Cle−β(l−6)+2λP̃hS(φx ≤ 1, φy ≤ 1)

≤ C ′e−2βP̃hS(φx ≤ 1, φy ≤ 1) ,

and in particular that

P̃hS(|Cx,y(φ)| = 6 | φx ≤ 1, φy ≤ 1) ≥ (1− εβ) . (2.13)

Now, with the above in hand, we claim that

P̃hS(|Cx,y(φ)| = 6, φx ≤ 1, φy ≤ 1) ≤ (1 + εβ)e
−6β(h−1) . (2.14)

First consider the case where φx = φy = 0, |Cx,y(φ)| = 6. On such configurations, consider the bijective map
sending φ to Tφ, where Tφx = φx + 6h, Tφy = φy + 6h, and Tφw = φw for w /∈ {x, y}. The fact that

|Cx,y(φ)| = 6 implies that for any neighbors w of {x, y}, we have φw ≥ h, so that P̃hS(φ) ≤ P̃hS(Tφ)e−6βhe2λ.
Summing over φ in this case proves that

P̃hS(|Cx,y(φ)| = 6, φx = φy = 0) ≤ e−6βh+2λ.

Otherwise, if we have that at least one of φx or φy is not equal to 0, we consider the map where Tφx =
φx + 6(h − 1), Tφy = φy + 6(h − 1), and Tφw = φw for w /∈ {x, y}. In this case, neither x nor y are in

Q≥2(φ), and so we have P̃hS(φ) ≤ P̃hS(Tφ)e−6β(h−1). Summing over φ in this case proves that

P̃hS(|Cx,y(φ)| = 6, φx ≤ 1, φy ≤ 1, φx ̸= 0 or φy ̸= 0) ≤ e−6β(h−1).

The above two displays prove Eq. (2.14), which combined with Eq. (2.13) then proves Eq. (2.8).
To prove Eq. (2.9), first note that the exact same proof of Eq. (2.13) yields

P̃hS(|Cx,y(φ)| = 6 | φx ≤ 0, φy ≤ 1) ≥ (1− εβ) (2.15)
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(simply enforce the starting configurations ψ to satisfy ψx ≤ 0, ψy ≤ 1, and then apply the same maps UAψ).
Thus, noting that

P̃hS(φx ≤ 0 | φx ≤ 1, φy ≤ 1) =
P̃hS(|Cx,y(φ)| = 6 | φx ≤ 1, φy ≤ 1)

P̃hS(|Cx,y(φ)| = 6 | φx ≤ 0, φy ≤ 1)
P̃hS(φx ≤ 0 | φx ≤ 1, φy ≤ 1, |Cx,y(φ)| = 6)

≤ (1 + εβ)P̃hS(φx ≤ 0 | φx ≤ 1, φy ≤ 1, |Cx,y(φ)| = 6),

it suffices to bound the right side above by (1 + εβ)e
−4β . Let φ be such that φx ≤ 0, φy ≤ 1, |Cx,y(φ)| = 6.

If φx = φy = 0, then consider the map which sets Tφx = Tφy = 1 and follow the same reasoning as before
to obtain

P̃hS(φx = φy = 0 | φx ≤ 1, φy ≤ 1, |Cx,y(φ)| = 6) ≤ e−6β+2λ. (2.16)

If φx = k ≤ −1, then φy = 1 by definition of Ω̃. Hence, it remains to consider when φx ≤ 0, φy = 1. In this
case, we can consider the map that sets Tφx = 1 and obtain that

P̃hS(φx = k | φx ≤ 1, φy ≤ 1, |Cx,y(φ)| = 6) ≤ e−4(1−k)β , (2.17)

whence summing over k ≤ 0 and combining with Eq. (2.16) proves that

P̃hS(φx ≤ 0 | φx ≤ 1, φy ≤ 1, |Cx,y(φ)| = 6) ≤ (1 + εβ)e
−4β .

This concludes the proof of Eq. (2.9) and hence of the lemma. ■

2.3. Tail bounds for up-contours. Having identified the dominant mechanism for violating the floor

constraint of P̃ in Lemma 2.5, we can show that at heights h∗n + 1 and higher, the gain from entropic

repulsion is negligible compared to the boundary cost for an up-contour. Let C↑
S,h denote the event that the

boundary of S is a up h-contour.

Lemma 2.6. There exists an absolute constant c0 > 0 such that, for every simply connected set S,

P̃(C↑
S,h) ≤ exp

(
− β|∂S|+ c0e

−6βh+2β |S|
)
.

In particular, if h = h∗n + 1, then P̃(C↑
S,h∗

n+1) ≤ exp(−(β − c0
4 )|∂S|).

Proof. For a simply connected domain S (the interior of a contour), let ES denote the event that there does
not exist a pair of adjacent sites x, y ∈ S such that φx ≤ 0 and φy ≤ 1.

Observation 2.7. For every simply connected S and integer h ≥ 1, if φ ∈ C↑
S,h ∩ ES, then the configuration

φ′ obtained by shifting φ 7→ φ− 1 in the interior of S keeps the configuration permissible (i.e., φ′ ∈ Ω̃).

We begin by establishing

P̃(ES | C↑
S,h) ≥ exp

(
− c0e

−6βh+2β |S|
)
, (2.18)

as on ES ∩ C↑
S,h Observation 2.7 ensures we can shift down S and gain a weight factor of e−β|∂S|.

Associate to every φ ∈ Ω̃ in the state space of P̃, the SOS configuration ϕ = max{φ, 0} in the state space
of P. For every φ ∈ ES , we see that ψ satisfies the same property (it does not contain any adjacent pair of

sites x, y such that ϕx = 0 and ϕy ∈ {0, 1}). In addition, since h ≥ 1, we have that φ ∈ C↑
S,h if and only if

ϕ ∈ C↑
S,h in its corresponding space. Thus, it suffices to bound from below

P
( ⋂
x∼y

{
ϕx ≤ 0 , ϕy ≤ 1

}c ∣∣ C↑
S,h

)
.

By a routine reasoning, when conditioning on C↑
S,h we can modify the external boundary of S to h (domain

Markov, using that the internal boundary is at least h), and then use monotonicity (see, e.g., [9, Sec. 4.1];
it is easy to check that the validity of Holley’s lattice condition is unaffected by the λ tokens) to remove the
conditioning that the internal boundary is at least h (as we will look to bound from below an increasing
event), so it suffices to bound from below

PhS
( ⋂
x∼y

{
ϕx ≤ 0 , ϕy ≤ 1

}c)
.
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The proof is then concluded from Lemma 2.5 by FKG for PhS and the inequality 1− x ≥ 1
2e

−x for x ∈ [0, 1],

using the equivalence of {φx ≤ 0, φy ≤ 1} for P and P̃ as mentioned above. (The constant c0 comes from
enumerating over ordered pairs (x, y) in S, and also absorbs the factor of 1

2 in the inequality 1− x ≥ 1
2e

−x.)
Having shown (2.18), let us conclude the proof. We apply the map that shifts φ 7→ φ− 1 in the interior

of S for every φ ∈ C↑
S,h ∩ ES , and obtain that

P̃(C↑
S,h ∩ ES) ≤ e−β|∂S| . (2.19)

Dividing this bound by P̃(Es | C↑
S,h) and applying (2.18), we conclude the proof.

When we take h = h∗n + 1, the exponential tail follows from e−6β(h∗
n+1)+2β ≤ 1

n and |S| ≤ n|∂S|/4. ■

By the same reasoning, we have the following more general version of Lemma 2.6.

Corollary 2.8. For any family of disjoint simply connected sets S1, . . . , Sm with compatible ∂S1, ..., ∂Sm,

P̃(C↑
S1,h

, . . . , C↑
Sm,h

) ≤ exp
(
− β

∑
i

|∂Si|+ c0e
−6βh+2β

∑
i

|Si|
)
.

In particular, if h = h∗n + 1, then P̃(
⋂
i C

↑
Si,h∗

n+1) ≤ exp(−(β − c0
4 )

∑
i |∂Si|).

Proof. It is clear by the application of domain Markov that Eq. (2.18) holds even if we further condition on
the values of φ outside of S. Since shifting φ 7→ φ − 1 inside of S preserves φ outside of S, Eq. (2.19) also
holds conditional on φ outside of S. In particular, Lemma 2.6 holds even conditional on having a family of
up-contours in the exterior of S, whence Corollary 2.8 follows by induction. ■

2.4. Proof of the upper bound. To conclude Proposition 2.1, by Lemma 2.6, we can deduce there are
no up h∗n + 1 contours of size greater than log n. The following lemma controls the total area confined in
smaller contours; this type of estimate is fairly standard once one has the exponential tails of Corollary 2.8.

Lemma 2.9. There exists C, c > 0 such that for all β large, with probability 1− e−cn, the number of x ∈ Λn
interior to some up-contour of height h∗n + 1 and interior area at most n1.9 is Ce−βn2.

Proof. Let Γ denote the set of all outermost h∗n+1 up-contours having interior area at most n2/(log n)8. We
follow, e.g., the proof of [7, Lemma 4.7] considering the contributions from contours of dyadically increasing
sizes. Partition the set of outermost h∗n + 1 up-contours into sets U1,U2, . . . given by

Uk = {γ ∈ Γ : 2k−1 ≤ |Int(γ)| ≤ 2k} .

We will show that for a suitable absolute constant C0 > 0, for each k = 1, . . . , ⌈log2 L1⌉,

P̃
( ∑
γ∈Uk

|Int(γ)| ≥ (εβ,kn)
2
)
≤ exp

(
− (β − C)

(εβ,kn)
2

2k/2

)
, for εβ,k :=

C0

eβ/2k
. (2.20)

A union bound over k implies the claimed bound.
Fix k. To show (2.20), suppose φ is such that

∑
γ∈Uk

|Si| ≥ (εβ,kn)
2 and suppose the elements of Uk are

γ1, . . . , γm with interiors S1, . . . , Sm respectively. By definition of Uk, it must be the case that

m ≤
m∑
i=1

|Si|21−k . (2.21)

By the isoperimetric inequality in Z2, |γi| ≥ 4
√

|Si|, and the definition of Uk,

m∑
i=1

|γi| ≥ 4

m∑
i=1

|Si|2−k/2 (2.22)

By applying Corollary 2.8 to the Si, we obtain

P̃
(⋂

i

C↑
Si,h∗

n+1

)
≤ exp

(
− (β − c0/4)

∑
i

|γi|
)
. (2.23)
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We union bound over collections Uk as follows: letting χ count 1
n2

∑m
i=1 |Si|,

P̃
( ∑
γ∈Uk

|Int(γ)| ≥ (εβ,kn)
2
)
≤

∑
(εβ,kn)2≤χn2≤n2

∑
m≤χn221−k

(
n2

m

) ∑
L≥χn22−

k
2
+2

CLe−(β−c0/4)L

≤
∑

εβ,kn2≤χn2≤n2

∑
m≤χn221−k

(
n2

m

)
e−4(β−C)χn22−

k
2 .

The first line above used (2.21)–(2.22) to upper bound m and lower bound L, and once the root-points for
the m distinct contours have been picked, there are at most CL ways to generate m associated contours with
total length L, for some absolute constant C.

Now using the bound
∑
j≤ρN

(
N
j

)
≤ exp(H(ρ)N) where H(ρ) is the binary entropy function (this bound

uses ρ ≤ 1/2 which holds because otherwise some of the contours could not be distinct), we get

P̃
( ∑
γ∈Uk

|Int(γ)| ≥ (εβ,kn)
2
)
≤

∑
εβ,kn2≤χn2≤n2

exp
((

H(χ21−k)− (β − C)22−
k
2 χ

)
n2

)
.

It thus suffices to show that for every χ > ε2β,k =
C2

0

eβk2
, we have

H(χ21−k) ≤ 3(β − C)χ2−k/2 , (2.24)

to get (2.20), absorbing the pre-factor of n2 from the sum into the C in the exponent. To see this (2.24),
using the bound H(ρ) ≤ ρ log 1

ρ + ρ, and noting that χ21−k ≤ (β − C)χ2−k/2 for all k ≥ 1 and all β large,

we just need to show

21−k log
2k−1

χ
≤ (β − C)21−

k
2 or (k − 1)(log 2) + logχ−1 ≤ (β − C)2k/2 .

By the lower bound on χ, we have logχ−1 ≤ β + log(k2) − logC2
0 . At this point, C0 can be taken large

(independent of β because the β on the left is bounded by 2k/2β on the right for all k) to only consider large
values of k, and for those it is evident that the right-hand side is larger than the left-hand side. ■

Proof of Proposition 2.1. Any vertex x having φx ≥ h∗n+1 must be contained in some up h∗n+1 contour,
so it suffices to bound the total area interior to outermost up h∗n+1 contours. By application of Lemma 2.9, it
suffices to bound the contribution from up h∗n+1 contours with interior area at least n1.9, which necessitates
contour length at least n0.95. By the fact that there are at most Cℓ many contours of length ℓ incident about
a vertex x for a universal constant C > 0, Lemma 2.6 and a union bound imply that

P̃
( ⋃
ℓ≥n0.75

⋃
∂S:x∼∂S,|∂S|=ℓ

C↑
S,h∗

n+1

)
≤

∑
ℓ≥n0.75

∑
∂S:x∼∂S,|∂S|=ℓ

Cℓe−(β− c0
4 )ℓ ≤ e−(β−C′)n0.75

,

which for β large, is at most e−n
0.75

. By a union bound over the n2 possible choices of x in Λn, this rules
out the existence of any h∗n + 1 up-contours of interior area greater than n3/2 concluding the proof. ■

Remark 2.10. When the fractional part ξn := ( 1
6β log n+ 1

3 )− ⌊ 1
6β log n+ 1

3⌋ is below a certain threshold

(depending on β), the proof of Proposition 2.1 applies also for h∗n. To see this, notice that in uses of
Lemma 2.6, taking h = h∗n, we in fact obtain

P̃
(
C↑
S,h∗

n

)
≤ exp

(
−β|∂S|+ c0(|∂S|/4)e6βξn

)
.

Whenever ξn ≤ log β
8β , for instance, this is at most e−(β/2)|∂S| and the rest of the steps go through as before.

3. Lower bound

Our goal in this section is to show the following lower bound on the typical height of φ. We will then
conclude the section by combining it with Proposition 2.1 and moving back to P to deduce Theorem 1.1.

Proposition 3.1. There exists a constant C > 0 such that for all β large,

P̃
(
#{x : φx ≤ h∗n − 2} ≥ (C/β)n2

)
≤ e−βn .
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The proof goes by examining the histogram of φ and finding a k such that the histogram has more faces
than it should at height h∗n − k. The map then lifts the interface up by k while injecting entropy through
tooth-like spikes of depth k that are now permitted. We work on the event of |Q≥2(φ)| ≤ e7βn which was
proved to have high probability by [6, Thm. 1.2] (our Corollary 2.4 for completeness), ensuring that the loss
of tokens from lifting Q≥2 up doesn’t overwhelm the entropy gained.

Lemma 3.2. For every k ≥ 2 define the set

Xk(φ) := {x ∼ y : φx = φy = h∗n − k , and no z adjacent to x or y has φz ≤ 0} ,
(where we counted unordered pairs of adjacent sites x ∼ y). Then for every k ≥ 2,

P̃
(
|Xk(φ)| ≥ e8β−5βkn2 , |Q≥2(φ)| ≤ e7βn

)
≤ exp(−eβkn) .

Proof. Fix k ≥ 2, and let Bk be the bad event that |Xk(φ)| ≥ e8β−5βkn2, and |Q≥2(φ)| ≤ e7βn. (Note
that the choice of −5βk is somewhat arbitrary in that 5 could be any number strictly smaller than 6, since
e−6βkn2 is, to first order, the expected number of sites at depth k below h∗n.)

Let X ′
k(φ) be an arbitrary subset of disjoint ordered pairs of adjacent sites (x, y) among Xk(φ), noting

that we may collect at least |Xk(φ)|/7 such pairs greedily (e.g., by listing the edges xy of Xk(φ), ordered
x < y lexicographically, proceeding sequentially and collecting each one that is not sharing a vertex with a
previously selected edge).

For a prescribed subset of pairs S ⊂ X ′
k(φ), S = {(xi, yi)}i, define the map φ 7→ TSφ via

TSφv =


0 v = xi for some i

1 v = yi for some i

φv + 1 otherwise

,

i.e., it lifts φ by 1, then adjusts φx to 0 and φy to 1 for every (x, y) ∈ S (noting these are all disjoint by

construction). The fact that TSφ ∈ Ω̃ follows from the fact that S is not adjacent to any v having φv ≤ 0, and

otherwise the constraint of Ω̃ is increasing, so lifting the rest of the configuration cannot take it outside Ω̃.
We can easily compare probabilities

P̃(TSφ)
P̃(φ)

≥ exp
(
− 4βn− (6β(h∗n − k + 1) + 2β)− λ|Q≥2(φ)|

)
. (3.1)

We now claim that for fixed k, the sets of images TSφ across (φ, S) are all disjoint, so that we may sum the
above expression. Note that if (TSφz, Tsφz′) = (0, 1) for a pair z ∼ z′, it could not be that φz = −1, φz′ = 0

because that would violate φ ∈ Ω̃. Therefore, any such pair (z, z′) must have both z, z′ belonging to edges
in S. Moreover, all vertices belonging to edges in S get either height 0 or 1 and have a neighbor in the other
height. In this manner, the set S can be read off from TSφ, and hence the interface φ can be read off from
TSφ (recover S, then set everyone in S back to height h∗n − k and shift every other site’s height down by 1).
Summing over φ ∈ Bk and S ⊂ X ′

k(φ) and applying (3.1),

1 ≥
∑
φ∈Bk

∑
S⊂X′

k(φ)

e−6β(h∗
n−k+1)+2β exp(−4βn− λ|Q≥2(φ)|)P̃(φ) .

In turn, by binomial theorem, the definition of h∗n (1.3), and the bounds of |X ′
k(φ)| ≥ 1

7 |Xk(φ)| ≥ 1
7e

8β−5βkn2

and |Q≥2(φ)| ≤ e7βn on Bk,

1 ≥ min
φ∈Bk

(1 + e−6β(h∗
n−k+1)+2β)|X

′
k(φ)| exp(−4βn− λ|Q≥2(φ)|)P̃(Bk)

≥ min
φ∈Bk

exp
( 1

n
e6β(k−1)|X ′

k(φ)| − 4βn− λ|Q≥2(φ)|
)
P̃(Bk)

≥ exp
(1
7
eβ(k+2)n− 4βn− λe7βn

)
P̃(Bk) .

Thus, using that λ ≤ e−4β/(1 + e−4β), for every k ≥ 2 we have (for β large enough) that

(4β + λe7β)n ≤ 2e3βn ≤ ( 17e
2β − 1)eβkn ,

and it follows that P̃(Bk) ≤ exp(−eβkn) as required. ■
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We need to show we aren’t losing much of the histogram of φ by consideringXk(φ) rather than φ
−1(h∗n−k).

The discrepancy between these two histograms is controlled by the total gradient of a configuration.

Lemma 3.3. There exists an absolute constant C > 0 such that, if β is large enough then

P̃
(∑
x∼y

|φx − φy| ≥ (C/β)n2
)
≤ exp(−n2) .

Proof. We can view the surface corresponding to a configuration φ as a set of
∑
x∼y |φx − φy| vertical

faces and n2 horizontal faces in the dual graph to Z3. Let C∗ > 0 be an absolute constant such that the
number of connected components of k faces intersecting a fixed initial point is at most eC∗k. Thus, taking
this initial point to be somewhere along the boundary of Λn, the number of configurations φ such that∑
x∼y |φx − φy| = k is at most eC∗(n

2+k). Considering the trivial map which sends φ 7→ 0 everywhere, and

summing over φ with k ≥ (2C∗/β)n
2, we obtain when β > 3C∗ that

P̃(
∑
x∼y

|φx − φy| ≥ (2C∗/β)n
2) ≤

∑
k≥(2C∗/β)n2

eC∗(n
2+k)−βk =

eC∗n
2−(β−C∗)(2C∗/β)n

2

1− e−(β−C∗)
≤ 2 exp(− 1

3C∗n
2) . ■

Proof of Proposition 3.1. We can sum Lemma 3.2 for k ≥ 2 and combine with Corollary 2.4 to see that

the number of vertices in some pair of
⋃
k≥2Xk(φ) is at most e−βn2 with probability 1− e−e

βn.

The vertices not in
⋃
k≥2Xk(φ) are a subset of {x : dist(x,A) ≤ 2} where A is the union of Q≥2(φ) along

with every x adjacent to a nonzero gradient of φ. By Corollary 2.4 and Lemma 3.3, we have |A| ≤ (C/β)n2

with probability 1−O(exp(−n2)). Noting |{x : dist(x,A) ≤ 2}| ≤ 13|A| concludes the proof. ■

Remark 3.4. When the fractional part ξn := ( 1
6β log n + 1

3 ) − ⌊ 1
6β log n + 1

3⌋ is above a certain (absolute)

threshold, the proof of Proposition 3.1 also goes through for h∗n − 1. To see this, notice that in the proof of

Lemma 3.2 we in fact obtained an upper bound on P̃(Bk) of the form

P̃(Bk) ≤ max
φ∈Bk

exp

(
4βn+ λ|Q≥2(φ)| −

1

n
e6β(k−1)+6βξn |X ′

k(φ)|
)
.

A more careful application of Corollary 2.4 (using Cβ = 90βe6β rather than e7β as we used in the proof
of Lemma 3.2) allows us to only consider contribution from φ with 4βn + λ|Q≥2(φ)| ≤ 100βe2βn. Setting
k = 1, whenever we have ξn ≥ 1

3 + δ0 for some absolute constant δ0 > 0, the right hand of our upper bound

on P̃(B1) is at most

max
φ∈B1

exp
(
−
(
e(2+6δ0)β

|X ′
k(φ)|
n2

− 100βe2β
)
n
)
.

Thus, for β large enough depending on δ0, the event that |X ′
k(φ)| ≥ e−δ0βn2 would have exponentially small

probability in n as needed, implying the same up to a factor of 7 for |Xk(φ)|.

Proof of Theorem 1.1. Under the identification ϕv = max{0, φv} for all v, the sets of sites not at height
{h∗n − 1, h∗n} are fixed. Thus, by Observation 1.4,

P(|{x : ϕx /∈ {h∗n − 1, h∗n}}| > C
β n

2) = P̃(|{x : φx /∈ {h∗n − 1, h∗n}}| > C
β n

2) ,

and the result follows by combining Proposition 2.1 with Proposition 3.1. ■
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