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Abstract. Swendsen–Wang dynamics for the Potts model was proposed in the late
1980’s as an alternative to single-site heat-bath dynamics, in which global updates
allow this MCMC sampler to switch between metastable states and ideally mix faster.
Gore and Jerrum (1997) found that this dynamics may in fact exhibit slow mixing:
they showed that, for the Potts model with q ≥ 3 colors on the complete graph on n
vertices at the critical point βc(q), Swendsen–Wang dynamics has tmix ≥ exp(c

√
n).

Galanis et al. (2015) showed that tmix ≥ exp(cn1/3) throughout the critical window
(βs, βS) around βc, and Blanca and Sinclair (2015) established that tmix ≥ exp(c

√
n)

in the critical window for the corresponding mean-field FK model, which implied the
same bound for Swendsen–Wang via known comparison estimates. In both cases, an
upper bound of tmix ≤ exp(c′n) was known. Here we show that the mixing time is
truly exponential in n: namely, tmix ≥ exp(cn) for Swendsen–Wang dynamics when
q ≥ 3 and β ∈ (βs, βS), and the same bound holds for the related MCMC samplers
for the mean-field FK model when q > 2.

1. Introduction

The mean-field q-state Potts model is a canonical statistical physics model extending
the Curie–Weiss Ising model (q = 2) to q ∈ N possible states; for q ≥ 3, it is one of the
simplest models to exhibit a discontinuous (first-order) phase transition. Formally, the
mean-field q-state Potts model with parameter β is a probability distribution µn,β,q over

{1, . . . , q}n, given by µn,β,q(σ) ∝ exp(βnH(σ)), where H(σ) =
∑

i<j 1{σi = σj}. The

model exhibits a phase transition at β = βc(q) from a disordered phase (β < βc), where
the sizes of all q color classes concentrate around n/q, to an ordered phase (β > βc),
where there is typically one color class of size aβn for aβ > 1/q (see §2).

As a means of overcoming low-temperature bottlenecks in the energy landscape
(dominant color classes), Swendsen and Wang [19] introduced a non-local reversible
Markov chain, relying on the random cluster (FK) representation of the Potts model.
The mean-field FK model is the generalization of G(n, p)—the Erdős–Rényi random
graph—parametrized by (p = λ

n , q), in which the probability of a graph G = (V,E),

identified with ω ∈ Ωrc := {0, 1}(
n
2), is given by πn,λ,q(ω) ∝ p|E|(1 − p)(

n
2)−|E|qk(G),

where k(G) is the number of connected components of G (clusters of ω).
Via the Edwards–Sokal coupling [8] of the q-state Potts model at inverse temperature

β/n and the FK model with parameters (p, q) with p = 1 − e−β/n, the mean-field
Swendsen–Wang dynamics can be formulated as follows: consider a mean-field Potts
configuration σ with V1, ..., Vq being the sets of vertices Vi = {x : σx = i}. An update
of the dynamics, started from σ, first samples, independently for every i = 1, ..., q, a
configuration Gi ∼ G(|Vi|, p) on the subgraph of Vi, forming an FK configuration ω as
the union of the Gi’s; then, it assigns an i.i.d. color XC ∼ Uni({1, ..., q}) to each cluster
C in ω, and for every x ∈ C, sets σ′x = Xc in the new state σ′ of the Markov chain.
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Figure 1. The mixing times of continuous–time mean-field Potts
Glauber (green) and Swendsen–Wang (blue) dynamics when q > 2; the
dashed line represents the previous lower bound [9,13] for β ∈ (βs, βS).

As apparent from the second (coloring) stage of the Swendsen–Wang algorithm, it
can seamlessly jump between the q ordered low-temperature metastable states where
one color is dominant. It was thus expected that this MCMC sampler would converge
quickly to equilibrium at all temperatures; e.g., its total variation mixing time tmix,
formally defined in §2, would be at most polynomial in the system size for all β > 0.

Indeed, at q = 2 (the Ising model) Cooper, Dyer, Frieze and Rue [6] proved that,
on the complete graph, Swendsen–Wang has tmix = O(

√
n) at all β (it was later shown

in [17] that tmix � n1/4 at βc while tmix = O(log n) at β 6= βc), and Guo and Jerrum [14]

recently showed that for any n-vertex graph and all β, Swendsen–Wang has tmix = nO(1)

(this is in contrast to single-site dynamics, where tmix ≥ exp(cn) at low temperature [7]).
Countering this intuition, however, Gore and Jerrum [13] found in 1999 that, for

any q ≥ 3, the Swendsen–Wang dynamics for the mean-field q-state Potts model has
tmix ≥ exp(c

√
n) for some c(q) > 0 at its critical point βc(q). This is a consequence of

the discontinuity of the phase transition of the mean-field Potts model for q ≥ 3, where
at βc(q), both the q ordered phases (with one dominant color class) and the disordered
phase (with all color classes having roughly n/q sites) are metastable.

On the lattice (Z/nZ)d, the Potts model exhibits a discontinuous phase transition
for some choices of q (depending on d); there it was shown in [4], following [3], that
Swendsen–Wang dynamics in fact has tmix ≥ exp(cnd−1) for all q sufficiently large,
suggesting that an exponential lower bound in n should also hold in mean-field, believed
to approximate high-dimensional tori. (The matching upper bound of [4] applies to
general graphs and translates to tmix ≤ exp(c′n) on the complete graph.) On Z2, this
lower bound was extended [11] to q where the phase transition is first-order (all q > 4).

For the Glauber dynamics of the mean-field Potts model, when q ≥ 3, the mixing
time for all β was characterized in [7], where it was shown that, in discrete-time, tmix



EXPONENTIALLY SLOW MIXING IN MEAN-FIELD SWENDSEN–WANG DYNAMICS 3

βs ≈ 2.745 βc ≈ 2.773 βS = 3

βs < β < βc βc < β < βS
Figure 2. The free energy landscape of the 3-state Potts model in the
metastability window βs ≤ β ≤ βS . The three outer peaks correspond
to the ordered phases; middle peak corresponds to the disordered phase.

has order n log n at β < βs, order n4/3 at β = βs, and finally tmix ≥ exp(cn) at β > βs,
where βs is the spinodal point corresponding to the onset of q ordered metastable
phases. Recently, Galanis, Štefankovic and Vigoda [9] analyzed the mixing time of the
analogous mean-field Swendsen–Wang dynamics, finding it to mix in polynomial time1

both at high temperature and—unlike Glauber dynamics—at low temperatures, for all
β outside a critical window (βs, βS) around βc, where the critical point βS (mirroring
the spinodal point βs) marks the disappearance of metastability of the disordered phase.

For β ∈ (βs, βS), Swendsen–Wang was shown in [9] to slow down to tmix ≥ exp(cn1/3).
The related Glauber dynamics for the mean-field FK model (see precise definitions
in §2) with q > 2 was shown by Blanca and Sinclair [1] to have tmix ≥ exp(c

√
n)

whenever λ = np is in the critical window (λs, λS); this implied, via comparison results
of Ullrich [20], that Swendsen–Wang has tmix ≥ exp(c

√
n) throughout β ∈ (βs, βS)

(extending the lower bound at β = βc due to Gore and Jerrum).
The fact that three significant papers, over a period of almost twenty years, all

presented a lower bound no better than exp(c
√
n), left open the possibility that this is

the true order of the mixing time inside the critical window.
Our main result is that the mixing time of the mean-field Swendsen–Wang dynamics

is truly exponential in n at criticality, similar to the single-site Glauber dynamics.

Theorem 1. Let q ≥ 3 be a fixed integer, and consider the Swendsen–Wang dynamics
for the q-state mean-field Potts model on n vertices at inverse temperature β ∈ (βs, βS).
There exists some c(β, q) > 0 such that, for all n large enough, tmix ≥ exp(cn).

The case of non-integer q (the mean-field FK model) is more delicate: the analogue of
Swendsen–Wang in this setting is Chayes–Machta dynamics [5], which we analyze via a
recursive application of the fundamental lemma of Bollobás, Grimmett and Janson [2].
As in [1], comparison results of [20] extend the result to heat-bath Glauber dynamics.

Theorem 2. Fix q > 2, and consider Glauber dynamics for the mean-field FK model on
n vertices with parameters (p = λ

n , q) where λ ∈ (λs, λS). There exists c(λ, q) > 0 such
that tmix ≥ exp(cn) for large enough n. The same holds for Chayes–Machta dynamics.

1It was shown in that work that tmix = O(logn) for β /∈ [βs, βS), whereas tmix � n1/3 at β = βs.
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To outline our approach for proving Theorems 1–2, we first sketch the argument
of [13], thereafter adapted to β ∈ [βs, βS) in [9] and to the FK model in [1]. Starting
from a Potts configuration where each color class has n

q ± εn vertices, since β < βS ,

for small enough ε, this corresponds to a subcritical Erdős-Rényi random graph G(n, p)
in the first stage of the Swendsen–Wang dynamics. The exponential tail of component
sizes in this regime shows that, for a sequence k = k(n), with probability at least
1 − n exp(−ck), no cluster in the edge configuration we obtain is larger than k; on
this event, the component sizes Li satisfy

∑
i L

2
i ≤ k

∑
Li = nk, thus by Hoeffding’s

inequality, with probability 1 − O(exp[−ε2n/(2k)]), every new color class will have
n/q ± εn vertices, and in particular no dominant color class would emerge. In this
argument, choosing k �

√
n balances the two probability estimates to 1− exp(−c

√
n).

However, at β ≥ βc, the Potts model does admit a dominant color class with positive
(uniformly bounded away from 0) probability, thus the mixing time is at least exp(c

√
n).

In order to improve this lower bound into exp(cn) per Theorem 1, instead of looking
at the size of the largest component after the G(n, p) stage of the dynamics, we consider
SM , the set of vertices in connected components of size larger than M . We show that,
whenever the G(n, p) stage is subcritical and M is sufficiently large, the probability that
|SM | > ρn is at most exp(−cρn). Moreover, given |SM | ≤ ρn, Hoeffding’s inequality
implies, following the second stage of the dynamics, all the new color classes will have
n
q ±εn vertices except with probability exp[−(ε− ρ)2n/(2M)], yielding tmix ≥ exp(cn).

The proof of Theorem 2 is morally similar, but uses instead a spectral approach and
involves equilibrium estimates on conditional probabilities under πn,λ,q, as the Chayes–
Machta dynamics resamples a random proper subset of the configuration in each step.

2. Preliminaries

Throughout this paper, we use the notation f . g for two sequences f(n), g(n) to
denote f = O(g), and let f � g denote f . g . f . We re-parametrize the FK and

Potts models by λ instead of p and β via the relations p = λ/n and λ/n = 1−e−β/n, to
allow us to treat the FK and Potts models in a unified manner. We will consider these
models on the complete graph on n vertices, G = (V,E) = ({1, ..., n}, {ij}1≤i<j≤n).

Denote by µn,λ,q, the Potts measure (with β such that λ/n = 1−e−β/n) and by πn,λ,q
the corresponding FK measure with p = λ/n on the complete graph on n vertices. The
FK model with q = 1 corresponds precisely to the Erdős–Rényi random graph G(n, p)
and we use the shortened notation πn,λ = πn,λ,1. We occasionally use G(n, p, q) to
denote the mean-field FK model given by πn,λ,q.

For any FK configuration ω ∈ {0, 1}E , enumerate the clusters of ω in decreasing size
C1, C2, ... and let Li = |Ci|. For a vertex x let, Cx denote the cluster to which x belongs.

For all q ≤ 2 define the critical points λs = λc = λS = q and for q > 2, define

λs = min
z≥0

{
z +

qz

ez − 1

}
, λc =

2(q − 1) log(q − 1)

q − 2
, λS = q ,

so that for q > 2, we have λs < λc < λS (see e.g., [1, 9]). The critical points λs, λS
correspond to the parameters of emergence and disappearance of metastability, where
at λ = λc, the ordered and disordered metastable states have the same free energy.
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These two critical points can also have the following alternative interpreation [9]: λs
corresponds to the first uniqueness/non-uniqueness threshold of the ∆-regular infinite
tree, and λS should correspond to a second uniqueness/non-uniqueness threshold of the
∆-regular tree with periodic boundary conditions.

The FK and Potts phase transitions. The following give a description of the static
phase transition undergone by the mean-field FK and Potts models respectively. Let
Θr = Θr(λ, q) be the largest solution of e−λx = 1− qx

1+(q−1)x so Θr = q−2
q−1 when λ = λc.

Proposition 2.1 ([2, Thms. 2.1–2.2],[18, Thm. 19]). Consider the n-vertex mean-field
FK model with parameters (p, q) with p = λ/n; if λ < λc(q), for every ε > 0, we
have limn→∞ πn,λ,q(L1 ≤ εn) = 1 whereas if λ > λc(q), for every ε > 0, we have
limn→∞ πn,λ,q(L1 ≥ (Θr − ε)n) = 1. If λ = λc(q), there exists γ(q) ∈ (0, 1) so that for
all ε > 0, limn→∞ πn,λ,q(L1 ≤ εn) ≥ γ and limn→∞ πn,λ,q(L1 ≥ (Θr − ε)n) ≥ 1− γ.

Corollary 2.2. Consider the mean-field Potts model parametrized by λ = n(1−e−β/n)
and q. If λ < λc(q), for any ε > 0,

lim
n→∞

µn,λ,q

(
σ : max

r=1,..,q

∣∣∣ 1
n

∑
i≤n

1{σi = r} − 1
q

∣∣∣ < ε

)
= 1 ,

and if λ > λc(q), then there exists a(λ, q) > q−1 such that for sufficiently small ε > 0,

lim
n→∞

µn,λ,q

(
σ : max

r=2,...,q

{∣∣∣ 1
n

∑
i≤n

1{σi = 1} − a
∣∣∣, ∣∣∣ 1

n

∑
i≤n

1{σi = r} − 1−a
q−1

∣∣∣} < ε

)
=

1

q
.

If q > 2 and λ = λc(q), there exists γ(q) ∈ (0, 1) so that for all sufficiently small ε > 0,

lim
n→∞

µn,λ,q

(
max
r=1,..,q

∣∣∣ 1
n

∑
i≤n

1{σi = r} − 1
q

∣∣∣ < ε

)
≥ γ , and

lim
n→∞

µn,λ,q

(
max
r=2,...,q

{∣∣∣ 1
n

∑
i≤n

1{σi = 1} − a
∣∣∣, ∣∣∣ 1

n

∑
i≤n

1{σi = r} − 1−a
q−1

∣∣∣} < ε

)
≥ 1− γ

q
.

Cluster dynamics. Swendsen–Wang dynamics for the q-state Potts model onG = (V,E)

with parameter β such that p = 1 − e−β/n is the following discrete-time reversible
Markov chain. From a Potts configuration σ on G, generate a new state σ′ as follows.

(1) Introduce auxiliary edge variables and for e = xy ∈ E set ω(e) = 0 if σx 6= σy
on each of the q sets of vertices of σ of the same color, V1, .., Vq, independently
sample ω�{xy:x,y∈Vi} ∼ G(|Vi|, p).

(2) For every connected component of the resulting ω, reassign the cluster, collec-
tively, an i.i.d. color in 1, ..., q, to obtain the new configuration σ′.

Chayes–Machta dynamics for the FK model on G = (V,E) with parameters (p, q), for
q ≥ 1 and p = λ/n, is the following discrete-time reversible Markov chain: From an
FK configuration ω ∈ Ωrc on G, generate a new state ω′ ∈ Ωrc as follows.

(1) Assign each cluster C of ω an auxiliary i.i.d. variable XC ∼ Bernoulli(1/q).
(2) Resample every e = xy such that x and y belong to active clusters (Xc = 1) via

i.i.d. random variables Xe ∼ Bernoulli(λ/n), yielding a new configuration ω′.



6 REZA GHEISSARI, EYAL LUBETZKY, AND YUVAL PERES

Variants of Chayes–Machta dynamics with 1 ≤ k ≤ bqc “active colors” have also been
studied, with numerical evidence for k = bqc being the most efficient choice; see [10].

Glauber dynamics for the FK model. Swendsen–Wang dynamics is closely related to
the FK model; much of the analysis of Swendsen–Wang dynamics on general graphs has
been via the Glauber dynamics for the corresponding FK model. Discrete-time Glauber
dynamics [12] for the FK model on G = (V,E) with p = λ/n is as follows: select an edge
e = xy in E uniformly at random and update ω(e) according to πn,λ,q(·�{e} | ω�G−{e}).

Size of largest component and drift functions. For λ > 1, let θλ be the unique positive
root of e−λx = 1− x. Recall the following tail estimates for L1 in G(n, p).

Fact 2.3 (e.g., cf. [15, p. 109]). Consider G(n, p) with pn = λ < 1. Then for any x,

πn,λ,1(|Cx| ≥ k) ≤ e−
(1−λ)2k

2 .

In particular, πn,λ,1(L1 ≥ k) ≤ n exp
(
− (1− λ)2k/2

)
.

Proposition 2.4 ([17, Lemma 5.4]). Consider G(n, p) with np = λ > 1. There exists
c(λ) > 0 such that for every ε > 0,

πn,λ,1(|L1 − θλ| ≥ εn) . e−cε
2n .

For the proof of Theorem 1, following [9,13] define the drift function for the average
size of the largest color class of the Swendsen–Wang dynamics

Fλ(z) =

{
θλ + 1

q (1− θλz) for z > 1/λ
1
q for z ≤ 1/λ

}
.

The function Fλ(z) has, for some values of λ a second fixed point besides 1
q , which we

denote by aλ > 1/q, which solves

log (q−1)a
1−a = λ(a− 1−a

q−1 ) .

Proposition 2.5 ([9, Lemma 5]). If λ > λs, the fixed point aλ is such that λaλ > 1

and moreover if bλ = 1−aλ
q−1 , we have λbλ < 1. Moreover, if q > 2 and λ > λs, aλ is a

Jacobian attractive fixed point of Fλ(z) so that |F ′(aλ)| < 1.

Similarly to the above, we can define the function f given by

f(θ) = θλ(1+(q−1)θ)/q ,

which governs the mean drift of the size of the giant component in Chayes–Machta
dynamics. We can also define Θr to be the largest solution to e−λx = 1 − qx

1+(q−1)x .

Following [1], let Θmin(λ, q) = max{0, (q − λ)/(λ(q − 1))}, observe that if λ < λS ,
λ(Θmin + q−1(1−Θmin)) = 1, and define the drift function g(θ) = f(θ)− θ.

Proposition 2.6 ([1, Lemma 2.14]). When q > 2 and λ > λs, the drift function g has
two roots, Θ∗ < Θr in (Θmin, 1]; moreover, g is strictly positive on (Θ∗,Θr).
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Mixing time and spectral gap. In this section, we introduce the quantities of interest
regarding the time for the Swendsen–Wang and Glauber dynamics to reach equilibrium.
Consider a Markov chain with finite state space Ω and transition matrix P reversible
with respect to π. For two measures ν, π, define their total variation distance by

‖ν − π‖tv = sup
A⊂Ω
|ν(A)− π(A)| = 1

2‖ν − π‖`1 .

Then the mixing time of P is defined as

tmix = inf

{
t : max

X0∈Ω
‖P t(X0, ·)− π‖tv < 1/(2e)

}
.

A related quantity that is sometimes easier to work with is the spectral gap of P ;
Since P is reversible with respect to π, we can enumerate its spectrum from largest to
smallest as 1 = λ1 > λ2 > ...; then the spectral gap of P is defined as gap = 1−λ2. The
following is a standard comparison between the inverse spectral gap and the mixing
time of a Markov chain with transition matrix P (see e.g., [16]):

gap−1 − 1 ≤ tmix ≤ log(2e/πmin)gap−1 . (2.1)

Spectral gap comparisons. The following comparison inequalities between the aforemen-
tioned Markov chains are due to Ullrich.

Proposition 2.7 ([20]). Let q ≥ 2 be integer. Let gaprc be the spectral gap of Glauber
dynamics FK model on a graph G = (V,E) and let gapsw be the spectral gap of
Swendsen–Wang. Then

(1− p+ p/q)gaprc ≤ gapsw ≤ 8gaprc |E| log |E| . (2.2)

The proof of (2.2) further extends to all real q > 1, whence

gaprc . gapcm . gaprc |E| log |E| , (2.3)

as was observed (and further generalized) by Blanca and Sinclair [1, §5], where gapcm
is the spectral gap of Chayes–Machta dynamics.

3. Slow mixing of Swendsen–Wang dynamics

Towards the proof of Theorem 1, we first establish some preliminary estimates. For
ω ∈ Ωrc, we will frequently be interested in bounding the following quantity:

SM := SM (ω) = {x ∈ V : |Cx| > M} .
The bottlenecks in the proofs of Theorems 1–2 both rely on the following estimate.

Lemma 3.1. Consider ω ∼ G(n, p) with np = λ < 1. There exists c(λ) > 0 such that
for every ρ > 0, there exists M0(λ, ρ) such that for every M ≥M0,

πn,λ (|SM | ≥ ρn) . e−cρn .

Proof. Recall that by Fact 2.3, there exists c1(λ) > 0 such that πn,λ(|Cx| ≥ k) ≤ e−c1k

for all k. Moreover, conditioned on other clusters, the remaining graph is distributed
as G(m,λ) for m ≤ n, so that for any ` vertices y1, ..., y`,

πn,λ

(
|Cx| ≥ k

∣∣∣ Cy1 , . . . , Cy` , Cx ∩ (⋃`
i=1 Cyi

)
= ∅
)
≤ e−c1k .
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Let YM be the number of clusters with at least M vertices; then YM � Bin(n, e−c1M )
so that by Azuma–Hoeffding inequality,

πn,λ(YM ≥ ne−c1M + t) ≤ e−t2/(2n) .

Now let

K =
(
e−c1M +M−1

)
n ;

plugging into the Azuma-Hoeffding bound, we obtain

πn,λ(|SM | ≥ ρn) ≤ πn,λ

(
K∑
i=1

Li ≥ ρn

)
+ e−n/(2M

2) . (3.1)

In order to bound the right-hand side above, fix vertices x1, ..., xK ; the joint law of
Cx1 , ..., CxK is dominated by the sum of K i.i.d. random variables Z1, ..., ZK , where,
for some a(λ), b(λ), ν(λ) > 0 (independent of M and n), Z1 is sub-exponential with
parameters (ν, b) and has mean a. By the definition of K, for any sufficiently large M
(depending on ρ), KE[Zi] = Ka ≤ ρn/2. By a union bound and symmetry, we have

πn,λ

( K∑
i=1

Li ≥ ρn
)
≤
(
n

K

)
πn,λ

( K∑
i=1

|Cxi | ≥ ρn
)

≤
(en
K

)K
πn,λ

(
K∑
i=1

Zi ≥ KE[Zi] + ρn/2

)
.

Moreover,
∑K

i=1 Zi is also sub-exponential with parameters (Kν, b). Therefore, there
exists c2(λ) > 0 so that for all ρ > 0, there exists M0(λ, ρ) such that for all M ≥M0,

πn,λ

( K∑
i=1

Li ≥ ρn
)
≤
(

e

e−c1M +M−1

)(e−c1M+M−1)n

e−
ρn
4b . e−c2ρn .

Plugging this bound in to (3.1) concludes the proof. �

In the coloring stage of the Swendsen–Wang dynamics, the following simple applica-
tion of a Chernoff-Hoeffding inequality proves useful.

Lemma 3.2. Consider an FK realization ω on n vertices and suppose |SM (ω)| ≤ εn
for some M > 0. Independently color each cluster of ω collectively red with probability
α ∈ [0, 1], and let R be the set of all red vertices. For all δ > 0,

P(||R| − αn| ≥ (ε+ δ)n) ≤ 2 exp(− δ2n
2M ) .

Proof. We consider P(|R| ≥ (α + ε + δ)n) and P(|R| ≤ (α − ε − δ)n) separately. To
bound the former, it suffices to prove an upper bound on

P(|R ∪ SM | ≥ (α+ ε+ δ)n) = P(|R− SM | ≥ (α+ ε+ δ)n− |SM |)
≤ P(|R− SM | ≥ (α+ δ)n) ,

which by Hoeffding’s inequality satisfies

P(|R− SM | − α(n− |SM |) ≥ δn+ α|SM |) ≤ e
− (δn+α|SM |)

2

2M(n−|SM |) ≤ e−δ2n/(2M) .
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Similarly bounding P(|R| ≤ (α − ε − δ)n) ≤ P(|R − SM | ≤ (α − δ)n) by Hoeffding’s
inequality and combining the two via a union bound concludes the proof. �

We prove Theorem 1 for q > 2 separately for λ that is below, above and at λc.

3.1. The supercritical regime: proof of Theorem 1 for the case λ ∈ (λc, λS).
To prove Theorem 1 for λ ∈ (λc, λS), let ρ > 0, and define the set of configurations,

Aρ =

{
σ ∈ {1, ..., q}n : max

r=1,..,q

∣∣∣∣∣
n∑
i=1

1{σi = r} − n

q

∣∣∣∣∣ < ρn

}
.

Now consider the Markov chain (Xt)t≥0 and let vt = (v1
t , ..., v

q
t ) be the corresponding

vector counting the number of sites in each state in Xt. We need the following claim.

Claim 3.3. Consider Swendsen–Wang dynamics with λ = n(1 − e−β/n) for λ < λS;
there exists ρ0(λ, q), c(ρ, λ, q), C(λ, q) > 0 such that that for every ρ < ρ0

max
X0∈Aρ

PX0(X1 /∈ Aρ) . Ce−cn . (3.2)

Proof. Consider a fixed X0 ∈ Aρ. In the G(n, p) step of the Swendsen–Wang dynamics,
we consider the color components separately. For each of the q colored components a
new edge configuration is sampled according to πvi0,λ

where i = 1, ..., q; call the edge

configuration we obtain ωi1 and note that by definition of Swendsen–Wang dynamics,
the clusters of {ωi1}

q
i=1 will all be disconnected. Then since ‖v0 − (nq , ...,

n
q )‖∞ < ρn

and λ < λS = q, if ρ < λ−1 − q−1 =: ρ0, every colored component is sub-critical in the
G(n, p) step. Thus, for all i = 1, ..., q, by Lemma 3.1, for some c(λ) > 0, if ρ < λ−1−q−1,
for every M ≥M0(λ, ρ) and every δ > 0,

PX0(|SM (ωi1)| ≥ δn) = πvi0,λ
(|SM | ≥ δn) . e−cδn .

Union bounding over the q different such components, we obtain

PX0

(⋃q
i=1{|SM (ωi1)| ≥ δn}

)
. e−cδn .

In that case, if δ = ρ
2q and ω1 is the edge configuration induced on the whole graph after

the G(n, p) step of the dynamics, there exists c(λ, q) > 0 so that for M ≥M0(λ, ρ),

PX0

(
|SM (ω1)| ≥ ρn

2

)
. e−cρn .

We can then split up

PX0(X1 /∈ Aρ) ≤ PX0(|SM (ω1)| ≥ ρn
2 ) + PX0(X1 /∈ Aρ | |SM (ω1)| < ρn

2 ) ,

and consider the coloring step of the Swendsen–Wang dynamics. Then we obtain

PX0(X1 /∈ Aρ | |SM (ω1)| < ρn
2 ) ≤ PX0(

⋃q
i=1{|v

i
1 − n

q | ≥ ρn} | |SM (ω1)| < ρn
2 ) .

By an application of Lemma 3.2 with ε = δ = ρ
2 and a union bound, the above is, for

every ρ < λ−1 − q−1 and M ≥M0(λ, ρ), bounded above by

2q exp
(
−ρ2n/(8M)

)
.

Since all the above estimates were uniform in X0 ∈ Aρ, we obtain the desired. �
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By Corollary 2.2, since β is such that λ > λc, for every small ρ > 0, we have
µn,λ,q(A

c
ρ) >

1
2 . If X0 is such that v0 = (nq , ...,

n
q ), clearly X0 ∈ Aρ, and by Claim 3.3

and a union bound, since λ < λS , there exists c(ρ, λ, q) > 0 such that for every ρ < ρ0,

PX0(XCecn/2 ∈ A
c
ρ) . e

−cn/2 .

The definition of total variation mixing time then implies tmix & ecn/2 as desired. �

3.2. The subcritical regime: proof of Theorem 1 for λ ∈ (λs, λc). We first prove
the following consequence of Lemma 3.1.

Lemma 3.4. Consider G(n, p) with np = λ > 1. There exist c(λ), c′(λ) > 0 such that
for every ρ > 0 and ε > 0 sufficiently small and for every M ≥M0(λ, ρ), we have

πn,λ({|L1 − θλ| ≥ εn)} ∪ {|SM − C1| ≥ ρn}) . e−cρn + e−c
′ε2n .

Proof. By a union bound, rewrite the left-hand side above as

πn,λ({|L1−θλ| ≥ εn} ∪ {|SM − C1| ≥ ρn})
≤πn,λ(|SM − C1| ≥ ρn | |L1 − θλ| < εn) + πn,λ(|L1 − θλ| ≥ εn) .

Since λ > 1, by Proposition 2.4, we have that πn,λ(ω : |L1 − θλ| ≥ εn) ≤ e−cε
2n for

some c(λ) > 0. We now suppose that L1 ≥ (θλ−ε)n and appeal to a precise form of the
discrete duality principle. Observe that conditioning on C1 (if there are multiple largest
clusters of the same size, pick the one with the smallest vertex label), the remaining
graph is distributed as G(n−L1, p) conditional on the event that its largest component
has size at most L1 and has no component of size exactly L1 with smaller vertex label
than C1. Since n −L1 ≤ (1 − θλ + ε)n, the random graph G(n −L1, p) is subcritical
for all small ε, and the probability of it having a cluster of size at least θλ − ε ≤ L1

is at most ne−c(θλ−ε)n. Thus the additional conditioning on the largest cluster size of
G(n−L1, p) is negligible, and it suffices to compute probabilities under G(n−L1, p).

In that case, given n−L1 ≤ (1−θλ+ε)n and therefore subcriticality of G(n−L1, p),
by Lemma 3.1, there exists c(λ) > 0 such that for every ρ > 0, there exists M0(λ, ρ) > 0
so that for M ≥ M0, we have πn−L1,λ(|SM | ≥ ρn) ≤ e−cρn; combined with the union
bound, this implies the desired. �

The proof of Theorem 1 for λ ∈ (λs, λc) is a slight modification of the proof for
λ ∈ (λc, λS). Recall the definitions of θλ, aλ and bλ from §2. Fix λ > λs. In decreasing
order, let the number of vertices in each color class of σ be v1, ..., vq and let

A′ρ =
{
σ ∈ {1, ..., q}n : |v1 − aλ| ≤ ρn, v2 ≤ n−v1

q−1 + ρn
}
.

By Corollary 2.2, since λ < λc, for sufficiently small ρ, we have µn,λ,q(A
′
ρ) ≤ 1

2 . There-
fore, it suffices by definition of total variation mixing to prove the following.

Claim 3.5. Consider Swendsen–Wang dynamics with λ = n(1 − e−β/n) for λ > λs;
there exist ρ0(λ, q), c(ρ, λ, q), C(λ, q) > 0 such that for every ρ < ρ0,

max
X0∈Aρ

PX0(X1 /∈ A′ρ) . Ce−cn ; (3.3)
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Proof. Fix any X0 ∈ A′ρ and let (v1
0, ..., v

q
0) be its corresponding color class vector.

By definition of aλ, for some ρ′(λ, q) > 0 there exists γ ∈ (F ′(aλ), 1) such that if
|v1

0 − aλ| ≤ ρ′n, we have |F (v1
0/n)− aλ| < γ|v1

0/n− aλ|. From now on we take ρ < ρ′.
Consider the G(n, p) step of the Swendsen–Wang dynamics. Since λ > λs, λaλ > 1

and λbλ < 1, so that for ρ > 0 sufficiently small, the first colored class of X0 will be
supercritical in the G(n, p) step and the other q − 1 will all be subcritical; call the q
random graph configurations we obtain in this step ωi1 for i = 1, ..., q. Now fix such a

ρ > 0 and let ε = (1−γ)ρ
2(q+1) . By Proposition 2.4, we obtain that for some c(λ) > 0,

PX0(|L1(ω1
1)− v1

0θλv10/n| ≥ εn) . e−cε
2n .

Moreover, by Lemma 3.4, we also have for some c(λ) > 0, for every M ≥M0(λ, ε),

PX0

(
|L1(ω1

1)− v1
0θλv10/n| ≥ εn} ∪

⋃q
i=1{|SM (ωi1)− C1(ω1

1)| ≥ εn
)
. e−cεn .

On the complement of the above event, ω1 has a single giant component of size θn
for θn ∈ (v1

0θλv10/n − εn, v
1
0θλv10/n + εn), and |SM − C1| ≤ qεn. By Lemma 3.2, with

probability 1− e−cθn, the largest color class of X1 will be the one containing C1(ω1
1) so

without loss of generality, we also assume that is the case.
At that stage, observe that E[v1

1 | θ] = θn+ 1
q (1− θ)n and E[vi1 | θ] = 1

q (1− θ)n for

i 6= 1. Then, first assigning the giant component a color, then using Lemma 3.2, we
obtain that for some c(M,λ) > 0, for every M ≥M0(λ, ε),

PX0

(
|v1

1 − F (v1
0/n)| ≥ qεn+ q−1

q εn+ δn
)
. e−cδ

2n + e−cεn .

By a similar bound on the other q − 1 coloring steps and the choice δ = (1− γ)ρ/2,

PX0

(
‖(v1

1, ...v
q
1)−

(
F (v1

0/n),
1−F (v10/n)

q−1 , ...,
1−F (v10/n)

q−1

)
‖∞ ≥ (1− γ)ρn

)
. e−cεn .

By the choice of γ and the triangle inequality, this implies

PX0(X1 /∈ A′ρ) ≤ PX0

(
‖(v1

1, ..., v
q
1)− (aλ, bλ, ..., bλ)‖∞ ≥ ρn

)
. e−cεn ,

which by uniformity of the estimates over X0 ∈ A′ρ, concludes the proof. �

3.3. The critical point: proof of Theorem 1 for λ = λc. In Corollary 2.2, for every
q > 2, either γ(q) ≥ 1

2 in which case Claim 3.5 concludes the proof, or 1− γ(q) ≥ 1
2 in

which case Claim 3.3 concludes the proof. �

4. Slow mixing of Glauber dynamics for the FK model

Since for q noninteger, Chayes–Machta dynamics activates a strict subset of the
vertices at a time, we will need to use a modified argument to prove Theorem 2. We
instead construct a bottleneck set S and bound its bottleneck ratio. For A,B ⊂ Ω, let

Q(A,B) =
∑
ω∈A

π(ω)P (ω,B) =
∑
ω∈A

π(ω)
∑
ω′∈B

P (ω, ω′) ,

for a chain with stationary distribution π and kernel P ; the Cheeger constant of Ω is

Φ = max
S⊂Ω

Q(S, Sc)

π(S)π(Sc)
, and satisfies 2Φ ≥ gap ≥ Φ2/2 . (4.1)
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In order to prove the lower bound of Theorem 2, we prove such a lower bound on
the inverse spectral gap of the Chayes–Machta dynamics, then using Proposition 2.7
and a standard comparison between the spectral gap and mixing time (2.1), we obtain
the desired for the Glauber dynamics. Before the proof of Theorem 2, we prove some
preliminary equilibrium bottleneck estimates for the mean-field FK model.

The following lemma that was fundamental to the understanding of the distribution
πn,λ,q in [2] is very useful for the proof of Theorem 2.

Lemma 4.1 ([2, Lemma 3.1]). Fix α ∈ [0, 1]; consider a mean-field FK realization
ω ∼ πn,λ,q. Independently color each cluster of ω red with probability α and let R be
the collection of all red vertices. Conditional on R, the subgraph ω�R is distributed
according to π|R|,λ,rq and the subgraph ω�V−R is distributed according to π|V−R|,λ,(1−r)q.

The following corollary follows from iterating the process of Lemma 4.1 bqc times.

Corollary 4.2. Consider a mean-field FK realization ω ∼ πn,λ,q. Independently color
each cluster of ω color r1, ..., rq with probability q−1 each and r0 otherwise. Then letting
R0, R1, ..., Rq be the sets of vertices colored each of r0, ..., rq, the subgraph restricted
to Ri for i = 1, ..., q is distributed according to π|Ri|,λ,1. The subgraph restricted to

R0 := V −
⋃q
i=1Ri is distributed according to π|R0|,λ,q−bqc. Moreover, the distributions

of the dqe color classes are (conditionally on R0, ..., Rq) independent.

(Note that when q is integer, the set R0 is deterministically empty.) Via Lemma 4.1,
we prove the following analogues of Lemmas 3.1 and 3.4 when q < 1.

Lemma 4.3. Consider the mean-field FK model on n vertices with parameters (p, q)
with q < 1 and np = λ < λc = q. There exists c(λ, q) > 0 such that for all ρ > 0
sufficiently small, there exists M0(λ, ρ) > 0 such that for all M ≥M0,

πn,λ,q(|SM | ≥ ρn) . e−cρn .

Proof. We prove the desired using Lemma 4.1. Consider the random graph G(m, p)
with the choice of m = dq−1ne; applying Lemma 4.1 to G(m, p) with α = q, by [2,
Lemma 9.1], for all λ 6= q, we have P(|R| = n) ≥ C√

m
, for some C(λ) > 0. Then, we

can write for any event A ⊂ Ωrc,
m∑
l=1

Pcol,m,λ(|R| = l)πm,λ(ω�R ∈ A | R, |R| = l) = Ecol,m,λ[πm,λ(ω�R ∈ A | R)] , (4.2)

where Pcol,m,λ is the distribution over colorings of ω, averaged over realizations of
ω ∼ πm,λ. Letting A = Aρ,M = {|SM | ≥ ρn}, for every R the probability on the
right-hand side is bounded above by πm,λ(Aρ,M ) which, by Lemma 3.1, satisfies

πm,λ(Aρ,M ) . e−cρn ,

for some c(λ) > 0 and for every ρ > 0 and every M ≥M0(λ, ρ). But by Lemma 4.1,

πm,λ(ω�R ∈ · | R, |R| = l)
d
= πl,λ,q(ω ∈ ·) ,

which combined with Pcol,m,λ(|R| = n) ≥ C/
√
m implies

πn,λ,q(|SM | ≥ ρn) .
√
q−1ne−cρn . �
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Lemma 4.4. Consider the mean-field FK model on n vertices with parameters (p, q)
with q < 1 and np = λ > λc = q. There exists c(λ, q) > 0 such that for all ρ > 0
sufficiently small, there exists M0(λ, ρ) > 0 such that for all M ≥M0,

πn,λ,q(|SM − C1| ≥ ρn) . e−cρn .

Proof. As before, consider G(m, p) with m = dq−1ne; by Lemma 4.1 with α = q and
[2, Lemma 9.1], P(|R| = n) ≥ C/

√
m. Let A = Aρ,M = {|SM−C1| ≥ ρn} in (4.2). Then

observe that πm,λ(ω�R ∈ Aρ,M ) ≤ πm,λ(Aρ,M ) and by Lemma 3.4, πm,λ(Aρ,M ) . e−cρn.
Altogether, plugging the above bounds in to (4.2) implies that there exists c(λ) > 0
such that for all ρ > 0 and all M ≥M0(λ, ρ),

πn,λ,q(|SM − C1| ≥ ρn) .
√
q−1ne−cρn . �

4.1. The supercritical/critical regime, np = λ ∈ [λc, λS). We first prove the de-
sired mixing time lower bound for λ ∈ [λc, λS), using the following bottleneck estimate.

Lemma 4.5. Consider the mean-field FK model on n vertices with parameters (p, q)
where q > 2 and np = λ < λS; there exists c(ρ,M, λ, q) > 0 such that for all sufficiently
small ρ > 0, there exists M0(λ, ρ) such that for every M ≥M0,

πn,λ,q(
ρn
2 < |SM | < ρn | |SM | < ρn) . e−cn .

Proof. For ρ,M > 0 define the sets

Aρ,M = {ω ∈ Ωrc : |SM (ω)| < ρn} ,
Bρ,M = {ω ∈ Ωrc : ρn2 < |SM (ω)| < ρn} .

In order to bound πn,λ,q(Bρ,M | Aρ,M ), use the coloring scheme described in Corol-
lary 4.2. Let P be the set of all possible partitions of {1, ..., n} into dqe sets, i.e., the set
of all possible colorings of FK configurations. Denote by Pcol the probability measure
over colorings (R0, ..., Rbqc) averaged over πn,λ,q, and Pcol(· | F) the probability measure
over such colorings, averaged over πn,λ,q(· | F). For every R ∈ P,

πR =

{
π|Ri|,λ,1 on Ri for i = 1, ..., bqc
π|R0|,λ,q−bqc on V −

⋃bqc
i=1Ri =: R0

.

Then we can write, by Corollary 4.2,

πn,λ,q(Bρ,M | Aρ,M ) =
∑
R∈P

Pcol(R | Aρ,M )πR(Bρ,M | Aρ,M ) .

By Lemma 3.2, since Aρ,M implies |SM | ≤ ρn, for every i = 1, ..., bqc,

Pcol

( ∣∣∣|R1| − n
q

∣∣∣ < 2ρn
∣∣ Aρ,M) ≤ 2e−ρ

2n/(2M) .

If ||Ri| − n
q | < 2ρn for all i = 1, ..., bqc, we are left with a remainder set satisfying

|R0| ∈
(

(1− bqcq − 2ρbqc)n, (1− bqcq + 2ρbqc)n
)
.

Define the event Γρ over colorings of the mean-field FK model as

Γρ =
{
R ∈ P :

∣∣∣|Ri| − n
q

∣∣∣ < 2ρn for all i = 1, ..., bqc
}
,
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so that the above conclusion can be written as

Pcol(Γ
c
ρ | Aρ,M ) . bqce−ρ2n/(2M) .

Combined with the expression for πn,λ,q(Bρ,M | Aρ,M ), this implies that

πn,λ,q(Bρ,M | Aρ,M ) ≤ max
R∈Γρ

πR(Bρ,M )

πR(Aρ,M )
+ Pcol(Γ

c
ρ | Aρ,M )

. max
R∈Γρ

πR(|SM | ≥ ρn/2)

1− πR(|SM | ≥ ρn)
+ e−ρ

2n/(2M) .

By a union bound, the first term on the right-hand side is bounded above by

max
R∈Γρ

π|R0|,λ,q−bqc(|SM | ≥
ρn

2dqe) +
∑

i=1,...,bqc π|Ri|,λ,1(|SM | ≥ ρn
2dqe)

1− π|R0|,λ,q−bqc(|SM | ≥
ρn
dqe)−

∑
i=1,...,bqc π|Ri|,λ,1(|SM | ≥ ρn

dqe)
. (4.3)

We lower bound the numerator and upper bound the denominator simultaneously as
they entail similar estimates.

Since λ < λS = q, there exists ρ0(λ, q) such that for all ρ < ρ0, the random graph

G(nq + 2bqcρn, p) is subcritical and the FK model G((1 − bqcq + 2ρbqc)n, p, q − bqc) is

also subcritical. In other words, if ρ < ρ0(λ, q), for every R ∈ Γρ, the distributions
π|Ri|,λ for i = 1, ..., bqc and π|R0|,λ,q−bqc are all subcritical. As such, by Lemma 3.1,
there exists c(λ, q) > 0 such that for every M ≥M0(λ, ρ),

max
R∈Γρ

∑
i=1,...,bqc

π|Ri|,λ,1(|SM | ≥ ρn
2dqe) . e

−cρn/2 , and

max
R∈Γρ

∑
i=1,...,bqc

π|Ri|,λ,1(|SM | ≥ ρn
dqe) . e

−cρn .

Similar bounds under π|R0|,λ,q−bqc follow immediately for a different c(λ, q) > 0 from
Lemma 4.3. Altogether, this implies that for every ρ < ρ0 and every M ≥ M0(λ, ρ),
there exists c(ρ,M, λ, q) > 0 such that

πn,λ,q(Bρ,M | Aρ,M ) . e−cn . �

Proof of Theorem 2: the case np = λ ∈ [λc, λS). For ρ,M > 0, recall the defini-
tions of Aρ,M and Bρ,M . By Proposition 2.1, for λ ∈ [λc, λS), for sufficiently small
ρ > 0 and large M , there exists c(λ, q) > 0 such that πn,λ,q(A

c
ρ,M ) ≥ c. Then by (4.1)

it suffices to prove an exponentially decaying upper bound on

Q(Aρ,M , A
c
ρ,M )

πn,λ,q(Aρ,M )
. max

X0∈Aρ,M−Bρ,M
P (X0, A

c
ρ,M ) + πn,λ,q(Bρ,M | Aρ,M ) , (4.4)

where P,Q are the transition matrix and edge measure, respectively, of the Chayes–
Machta dynamics. We first bound the first term in the right-hand side of (4.4).

Consider some X0 ∈ Aρ,M − Bρ,M . In the activation stage of the Chayes–Machta

dynamics, clusters are activated with probability 1
q ; denote by A1 the set of activated
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vertices in this stage of the dynamics. Since X0 ∈ Aρ,M − Bρ,M , by Lemma 3.2 with
the choice of ε = δ = ρ/2,

PX0

(∣∣∣|A1| − n
q

∣∣∣ ≥ ρn) ≤ 2e−ρ
2n/(8M) .

Since λ < λS = q, for ρ < λ−1 − q−1, the random graph G((1
q + ρ)n, p) is subcritical.

In that case, by Lemma 3.1, there exists c(λ, ρ) > 0 such that for every M ≥M0(λ, ρ),

PX0(X1 /∈ Aρ,M | ||A1| − n
q | < ρn) ≤ PX0(|SM (X1�A1

)| ≥ ρn
2 | ||A1| − n

q | < ρn)

. e−cρn/2 ,

Union bounding over the event ||A1| − n/q| ≥ ρn and its complement, there exists
c(ρ,M, λ, q) > 0 such that for every ρ < λ−1 − q−1, for every M ≥M0(λ, ρ),

max
X0∈Aρ,M−Bρ,M

P (X0, A
c
ρ,M ) . e−cn .

Lemma 4.5 yields a similar exponentially decaying upper bound on the second term on
the right-hand side of (4.4), concluding the proof. �

4.2. The subcritical/critical regime, np = λ ∈ (λs, λc]. Recall the definitions
of Θ∗(λ, q) and Θr(λ, q) corresponding to the drift function g. When λ ∈ (λs, λc],
we will need the following intermediate lemma, before proceeding to the analogue of
Lemma 4.5. This is a straightforward adaptation of an argument of [1].

Lemma 4.6. Consider the mean-field FK model on n vertices with parameters (p, q)
with np = λ ∈ (λs, λS); let ω0 ∈ Aρ,ε,M = {ω : L1 ≥ (Θ∗ + ε)n, |SM − C1| < ρn}.
Color C1 red and independently color each cluster in ω0 − C1 red with probability 1

q ; let

R be the set of all red vertices. Resample ω0�R ∼ π|R|,λ,1 and let ω1 be the resulting
configuration on n vertices; there exists c(ρ, ε,M, λ) > 0 so that for sufficiently small
ρ, ε > 0, for every M ≥M0(λ, ρ), uniformly in ω0 ∈ Aρ,ε,M ,

P(ω1 /∈ {L1 ≤ (Θ∗ + ε)n}) . e−cn .
Proof. Fix any ω0 ∈ Aρ,ε,M and let nθ0 = L1(ω0) for θ0 ≥ Θ∗ + ε. Then

E [|R|] = θ0n+ 1
q (1− θ0)n =: µ0 ,

so that by Lemma 3.2, for all ρ > 0,

P (||R| − µ0| ≥ ρn) ≤ 2e−ρ
2n/(8M) .

Therefore, we can write for every δ > 0,

P(|L1(ω1)−nf(θ0)| ≥ δn)

≤ max
a:|a−µ0|≤ρn

πa,λ(|L1 − nf(θ0)| ≥ δn) + 2e−ρ
2n/(8M) .

For all θ0 ≥ Θ∗+ε, for sufficiently small ρ > 0, using θ0 > Θ∗ > Θmin, since λ < λS ,the
random graph G(µ0 − ρn, p) is supercritical. By continuity of f , for any δ > 0, there
exists ρ > 0 sufficiently small such that maxa:|a−µ0|≤ρn |f(θ0) − θλa/n| < δ; moreover,
by Proposition 2.4, for every δ > 0

max
a:|a−µ0|≤ρn

πa,λ(|L1 − θλa/nn| ≥ δn) . e−cδ
2n ,
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for some c(λ, ρ) > 0. Thus, for sufficiently small ρ > 0, we have, for some c(ρ,M, λ) > 0,

P(|L1(ω1)− nf(θ0)| ≥ 2δn) . e−cδ
2n + e−ρ

2n/(8M) .

It remains to argue that for ε > 0 sufficiently small, there exists δ > 0 such that for all
θ0 ≥ Θ∗+ε, we have nf(θ0)−2δn ≥ (Θ∗+ε)n. If θ0 > Θr−ε, then by [1, Lemma 2.14],
f(θ0) ≥ Θr−ε > Θ∗+ε and for small enough ε letting δ = 1

2(Θr−Θ∗−2ε) > 0 yields the
desired. If θ0 ≤ Θr− ε, since g is positive on (Θ∗,Θr), for ε small, f(θ0) > θ0 ≥ Θ∗+ ε.
By continuity of f , for ε < 1

2(Θr −Θ∗), letting δ = 1
2 min[Θ∗+ε,Θr−ε] g, we obtain

f(θ0)− 2δ ≥ θ0 + g(θ0)− min
[Θ∗+ε,Θr−ε]

g ≥ θ0 ≥ Θ∗ + ε .

Together, for ε > 0 sufficiently small, there exists c(ρ, ε,M, λ) > 0 such that

P(L1(ω1) ≤ (Θ∗ + ε)n) . e−cn . �

The following is the analogue of Lemma 4.5 in the presence of a giant component.

Lemma 4.7. Consider the mean-field FK model on n vertices with parameters (p, q)
with q > 2 and np = λ ∈ (λs, λS); for every ρ, ε,M > 0 let

Eρ,ε,M = {L1 ≥ (Θ∗ + ε)n, ρn2 < |SM − C1| < ρn} .

There exists c(ρ,M, λ, q) > 0 such that for sufficiently small ρ, ε > 0, for M ≥M0(λ, ρ),

πn,λ,q (Eρ,ε,M | L1 ≥ (Θ∗ + ε)n, |SM − C1| < ρn) . e−cn .

Proof. Fix np = λ > λs and for ρ, ε,M > 0, define the sets

Aρ,ε,M = {L1 ≥ (Θ∗ + ε)n, |SM − C1| < ρn} ,
Bρ,M = {ρn2 < |SM − C1| < ρn} .

We prove the lemma similarly to Lemma 4.5, after treating the giant component sepa-
rately. Using the coloring scheme of Corollary 4.2, with Pcol and πR defined as before,
by considering the color class to which C1 belongs, and using symmetry, we obtain

πn,λ,q(Eρ,ε,M | Aρ,ε,M )= q
bqc

∑
R∈P

Pcol(R | C1 ⊂ R1, Aρ,ε,M )πR(Eρ,ε,M | C1 ⊂ R1, Aρ,ε,M )

+ q
q−bqc

∑
R∈P

Pcol(R | C1 ⊂ R0, Aρ,ε,M )πR(Eρ,ε,M | C1 ⊂ R0, Aρ,ε,M ) .

Call the two sums on the right hand side I and II respectively and consider them
separately. Conditional on Aρ,ε,M and C1 ⊂ R1, if µI = (Θ∗ + ε)n+ 1

q (1−Θ∗ − ε)n,

Pcol (|R1| ≥ µI − 2ρn) | C1 ⊂ R1, Aρ,ε,M ) ≤ e−ρ2n/(2M) ,

where we used Lemma 3.2 with ε = δ = ρ. Following the proof of Lemma 4.5, let

ΓI
ρ =

{
R : |R1| ≥ µI − 2ρn,

∣∣|Ri| − n−|R1|
q−1

∣∣ < 2ρn for all i = 2, ..., bqc
}
.

By Lemma 3.2 and a union bound, Pcol((Γ
I
ρ)
c | C1 ⊂ R1, Aρ,ε,M ) ≤ 2dqee−ρ2n/(2M).
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Using the fact that for every ε > 0, Eρ,ε,M ⊂ Bρ,M , we can write

I ≤ Pcol((Γ
I
ρ)
c | C1 ⊂ R1, Aρ,ε,M ) + max

R∈ΓI
ρ

πR(Eρ,ε,M | Aρ,ε,M , C1 ⊂ R1)

. qdqe
bqc e

−ρ2n/(2M) + q
bqc max

R∈ΓI
ρ

πR(Bρ,M | L1 ≥ (Θ∗ + ε)n, C1 ⊂ R1)

πR(Aρ,ε,M | L1 ≥ (Θ∗ + ε)n, C1 ⊂ R1)
.

If R ∈ ΓI
ρ, for sufficiently small ρ > 0, the definition of Θ∗ and λ > λs implies G(|R1|, p)

is supercritical, and both G(n−|R1|
q−1 + 2ρn, p) and G(|R0|, p, q − bqc) are subcritical. By

a union bound we can expand the numerator above as at most

max
R∈ΓI

ρ

(
π|R1|,λ(|SM − C1| ≥ ρn

2dqe | L1 ≥ (Θ∗ + ε)n) +
∑

i=2,...,bqcπ|Ri|,λ(|SM | ≥ ρn
2dqe)

+ π|R0|,λ,q−bqc(|SM | ≥
ρn

2dqe)

)
+ e−cΘ

∗n ,

and analogously, the denominator as at least

min
R∈ΓI

ρ

(
1− π|R1|,λ(|SM − C1| ≥ ρn

dqe | L1 ≥ (Θ∗ + ε)n)− π|R0|,λ,q−bqc(|SM | ≥
ρn
dqe)

−
∑

i=2,...,bqcπ|Ri|,λ(|SM | ≥ ρn
dqe)

)
− e−cΘ∗n .

(In both of the above, we paid a cost of e−cΘ
∗n for the assumption L1(ω) = L1(ω�R1

).)

By Lemma 3.4, (for every L1 ≥ (Θ∗ + ε)n and R ∈ ΓI
ρ, G(|R1| −L1, p) is subcritical)

there exists c(λ, q) > 0 such that for sufficiently small ρ, ε > 0 and every M ≥M0(λ, ρ),

max
R∈ΓI

ρ

π|R1|,λ,1(|SM − C1| ≥ ρn
2dqe | L1 ≥ (Θ∗ + ε)n) . e−cρn/2 , and

max
R∈ΓI

ρ

π|R1|,λ,1(|SM − C1| ≥ ρn
dqe | L1 ≥ (Θ∗ + ε)n) . e−cρn .

Moreover, as in the proof of Lemma 4.5, by Lemmas 3.1 and 4.3, we also have that
for i = 2, ..., bqc that there exists c(λ, q) > 0 such that for every M ≥M0(λ, ρ),

max
R∈ΓI

ρ

π|Ri|,λ,1(|SM | ≥ ρn
dqe) . e

−cρn , and

max
R∈ΓI

ρ

π|R0|,λ,q−bqc(|SM | ≥
ρn
dqe) .

√
ne−cρn .

Clearly, analogous bounds hold for the above when replacing ρn
dqe with ρn

2dqe . Combining

all of the above bounds and plugging them in to the right-hand side of

I . max
R∈ΓI

ρ

πR(Bρ,M | L1 ≥ (Θ∗ + ε)n, C1 ⊂ R1)

πR(Aρ,ε,M | L1 ≥ (Θ∗ + ε)n, C1 ⊂ R1)
+ e−ρ

2n/(2M) ,

yields an exponentially decaying upper bound on the sum I. The bound on the sum II

is very similar. Letting µII = (Θ∗ + ε)n+ q−bqc
q (1−Θ∗ − ε)n, we define

ΓII
ρ =

{
|R0| ≥ µII − 2ρn,

∣∣|Ri| − n−|R0|
bqc

∣∣ < 2ρn for all i = 1, ..., bqc
}
.
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As before, by Lemma 3.2, we can write

II . e−ρ
2n/(2M) + max

R∈ΓII
ρ

πR(Bρ,M | L1 ≥ (Θ∗ + ε)n, C1 ⊂ R0)

πR(Aρ,ε,M | L1 ≥ (Θ∗ + ε)n, C1 ⊂ R0)
,

and observe that for every R ∈ ΓII
ρ , since λ ∈ (λs, λS), for sufficiently small ρ > 0, the

FK model π|R0|,λ,q−bqc is supercritical and the random graphs G(|Ri|, λ) are subcritical
for all i = 1, ..., bqc. By Lemmas 3.1 and 4.4, there exists c(λ, q) > 0 such that for every
ρ > 0 sufficiently small and every M ≥M0(λ, ρ),

max
R∈ΓII

ρ

π|R0|,λ,q−bqc(|SM − C1| ≥ ρn
dqe | L1 ≥ (Θ∗ + ε)n)

≤ max
R∈ΓII

ρ

π|R0|,λ,q−bqc(|SM − C1| ≥ ρn
dqe) . e

−cρn , and

max
R∈ΓII

ρ

π|Ri|,λ,1(|SM | ≥ ρn
dqe) . e

−cρn for all i = 1, ..., bqc ,

and by the same reasoning, analogous bounds hold when replacing ρn
dqe with ρn

2dqe . Then

expanding the fraction in the upper bound on II as done in the bound on I implies
there exists c(λ, q) > 0 such that for sufficiently small ρ, ε > 0 and every M ≥M0(λ, ρ),

π(Eρ,ε,M | Aρ,ε,M ) . I + II . e−cρn + e−cΘ
∗n + e−ρ

2n/(2M) . �

We are now in position to complete the proof of Theorem 2.

Proof of Theorem 2: the case np = λ ∈ (λs, λc]. The proof when λ ∈ (λs, λc] is
similar to the extension of slow mixing for the Swendsen–Wang dynamics when λ ∈
[λc, λS) to λ ∈ (λs, λc]. Recall that for fixed λ > λs, the two zeros of g(θ) = f(θ) − θ
were denoted Θ∗ < Θr so that g is positive on (Θ∗,Θr). We again use a conductance
estimate to lower bound the inverse gap of the Chayes–Machta dynamics. Define for
every ρ, ε,M > 0,

Aρ,ε,M = {L1 ≥ (Θ∗ + ε)n, |SM − C1| < ρn} ,
Eρ,ε,M = {L1 ≥ (Θ∗ + ε)n, ρn2 < |SM − C1| < ρn} .

As in (4.4), by (4.1) it suffices to show an exponentially decaying upper bound on

Q(Aρ,ε,M , A
c
ρ,ε,M )

πn,λ,q(Aρ,ε,M )
. max

X0∈Aρ,ε,M−Eρ,ε,M
P (X0, A

c
ρ,ε,M ) + πn,λ,q(Eρ,ε,M | Aρ,ε,M ) ,

for sufficiently small ρ, ε > 0 and large M ; this is because by Proposition 2.1, for all
small enough ε, ρ, we have πn,λ,q(A

c
ρ,ε,M ) ≥ c > 0. We bound the two terms above

separately as in the proof for λ ∈ [λc, λS). First of all, note by Lemma 4.7 that the
second term on the right-hand side is bounded above by e−cn for some c(ρ,M, λ, q) > 0
for every sufficiently small ε, ρ > 0 and every M ≥M0(λ, ρ).

Now consider any X0 ∈ Aρ,ε,M −Eρ,ε,M and bound P (X0, A
c
ρ,ε,M ) under the Chayes–

Machta dynamics. We split the transition probability of the Chayes–Machta dynamics
into the case when C1(X0) is activated and C1(X0) is not activated; let A1 denote the
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set of activated vertices. If C1(X0) 6⊂ A1, we have E[|A1| | C1 6⊂ A1] ≤ 1
q (1−Θ∗ − ε)n

and since X0 ∈ Aρ,ε,M , by Lemma 3.2, if ε > ρ, then

PX0

(
|A1| ≥ 1

q (1−Θ∗ − ε)n+ εn | C1(X0) 6⊂ A1

)
≤ 2e−ε

2n/(2M) .

If |A1| ≤ 1
q (1 − Θ∗ − ε)n + εn, for sufficiently small ε > 0, since λ < λS = q, the

random graph G(|A1|, p) is subcritical, in which case with probability at least 1−e−cΘ∗n,
C1(X1) = C1(X0). By Lemma 3.1, there exists c(ρ,M, λ, q) > 0 such that for 0 < ρ < ε
sufficiently small and every M ≥M0(λ, ρ),

PX0(|SM (X1)− C1(X1)| ≥ ρn | C1(X0) 6⊂ A1)

. π 1
q

(1−Θ∗+(q−1)ε)n,λ,1(|SM | ≥ ρn
2 ) + e−ε

2n/(2M) + e−cΘ
∗n

. e−cρn + e−ε
2n/(2M) + e−cΘ

∗n .

Thus, for some c(ρ, ε,M, λ, q) > 0, for small enough 0 < ρ < ε, and everyM ≥M0(λ, ρ),

max
X0∈Aρ,ε,M−Eρ,ε,M

PX0(X1 6∈ Aρ,ε,M | C1(X0) 6⊂ A1) . e−cn .

Now suppose that C1(X0) ⊂ A1; then one step of Chayes–Machta dynamics is de-
scribed precisely by the set up of Lemma 4.6, with ρ replaced by ρ/2, yielding

max
X0∈Aρ,ε,M−Eρ,ε,M

PX0(L1 ≤ (Θ∗ + ε)n | C1(X0) ⊂ A1) . e−c
′n

for some c′(ε, ρ,M, λ, q) > 0 for all sufficiently small ε, ρ > 0 and M ≥ M0(λ, ρ). On
the complement of that event, deterministically C1(X1) = C1(X1�A1

). By Lemma 3.4,
for some c(λ, q) > 0, for small ε, ρ > 0 and large M ≥M0(λ, ρ),

P(|SM (X1�A1
)− C1(X1�A1

)| ≥ ρn/2 | C1(X0) ⊂ A1) . e−cρn/2 .

Combining the above, we deduce that there exists c(ρ, ε,M, λ, q) > 0 such that for all
sufficiently small 0 < ρ < ε, for every M ≥ M0(λ, ρ), we have P (X0, A

c
ρ,ε,M ) . e−cn,

concluding the proof of Theorem 2 when λ ∈ (λs, λc]. �
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