
Instant Randomness

H
ow many swipes of your spoon will it take to stir your

milk into your coffee? How many shuffles of a deck of

cards does it take to randomize them? In many systems

like these, the onset of randomness turns out to be quite sud-

den. Mathematically speaking, the system goes from unmixed

to mixed in the blink of an eye.

The name for this abrupt mixing behavior is the “cutoff phe-

nomenon,” and the time T when mixing occurs is called the

mixing time. To be more precise, when you stir your coffee or

shuffle your cards a little bit less than the prescribed amount

of time, your system is still a long way from being mixed. If you

go a little past the mixing time, your system is essentially com-

pletely mixed, and further stirring or shuffling will not make

very much difference.

The cutoff phenomenon was first observed in the 1980s, in

some models chosen more for their mathematical tractabil-
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ity and symmetry than their relevance to physics. But recently,

a team of mathematicians at Microsoft Research showed that

cutoff occurs in several of the most important models of sta-

tistical physics, such as the Ising model (which simulates ferro-

magnetism), the Potts model, and the hard-core gas model. The

result, announced by Eyal Lubetzky and Allan Sly, lends plausi-

bility to a broad conjecture about mixing made a few years ago

by Yuval Peres, also of Microsoft Research.

Peres has conjectured that cutoff is a general feature of sys-

tems inwhich the timeforasmall, localdeviation fromrandom-

ness to become smoothed out (called the “relaxation time”) is

less than the time for the entire system to achieve randomness

(called the “mixing time”). Intuitively, the idea behind Lubetzky

and Sly’s work is this: if relaxation happens faster than mixing,

then small deviations from randomness in different locations

(such as small patches of milk in your coffee) do not have time

to communicate with each other. Thus they evolve almost in-

dependently, and they are governed by the statistical laws of

independent processes. In a nearly psychic way, once one patch

becomes randomized, nearly all of them do. “My feeling, and

conjecture, is that cutoff represents what happens to temporal

dynamics when you have relative spatial independence,” says

Peres.

“When I first heard about Peres’ conjecture, I said, ‘Give me a

break.’ I didn’t believe it,” says Persi Diaconis of Stanford Uni-

versity. “Now we’re proving it in example after example.”

Although Peres’ hypothesis remains unconfirmed in gen-

eral, for the Ising model—perhaps the most thoroughly studied

system in statistical physics—Lubetzky and Sly’s theorem is

“hard and original and definitive,” Diaconis says. The cutoff

phenomenon occurs in every case where you can reasonably

expect it, and their work determines the cutoff timeT precisely.
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Simple Yet Confounding
The Ising model is named after Ernst Ising, who wrote about

it in his 1924 doctoral thesis; sometimes it is called the Lenz-

Ising model, because Ising’s dissertation advisor Wilhelm Lenz

had described it earlier in 1920. It is one of the simplest exam-

ples of a physical system that exhibits a phase transition. Even

though it does not literally describe what happens in a magnet,

it has served physicists well as an analogue or paradigm of the

ferromagnetic phase transition.

In the Ising model, the magnet is considered to be a lattice of

point atoms, each one of which can have a “spin” of +1 or −1.

Neighboring atoms in the lattice like to have the same spin, and

so an energy penalty accrues for each neighboring pair with op-

posite spins. For simplicity, the energy of a matching pair can
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be assumed to be −1 and the energy of a pair with opposing

spins is +1. The energy of an entire configuration of spins σ ,

denoted by H(σ), is the sum of the energy of all the adjoining

pairs:

H(σ) = −
∑

u∼v
σ(u)σ(v).

(Here the sum is taken over all pairs of adjacent vertices in

the lattice; u ∼ v signifies that the vertices u and v are adja-

cent; andσ(u) is the spin at vertexu, either+1 or−1. Note that

σ(u)σ(v) = 1 when the spins at u and v match.)

Ising and Lenz assumed that the probability of any particu-

lar configuration of spins,µ(σ), decreases exponentially as the

energy of the configuration increases. High-energy configura-

tions are not impossible; they are merely unlikely. In symbols,

their assumption can be written as follows:

µ(σ) ∝ e−βH(σ).

Two points should be made about this equation. First, the

proportionality constant β plays the role of an inverse tem-

perature. When β is large (i.e., the temperature is near zero),

high-energy configurations are very improbable. In such a

state, the system should have a very strong preference for

having all the atoms with the same spin. As β decreases (or

the temperature increases), configurations with high energyH

become more likely. This means that the system can tolerate

a lot of non-matching spins, and there is more disorder—

as we would expect at a higher temperature. Finally, when

β = 0 (or the temperature is infinite), the system is completely

disordered; every configuration has an equal probability of

occurring.

The second point is that the exact probability density func-

tion µ, called the Gibbs distribution, is beyond the power of

any computer, now or in the future, to compute. The reason is

that µ has to be normalized so that the sum of all the probabil-

ities is 1. To do this, you would have to compute the weighting

factor e−βH(σ) for every single configurationσ , and then divide

by the sum. (This sum is called the “partition function.”) How

many configurations are there? Even for a tiny, 10-by-10 lat-

tice, there are 100 vertices and 2100 different ways to assign a

spin to each of them. To store all of this information you would

need a computer the size of the universe. Now imagine trying

to do the same thing for a billion-by-billion-by-billion lattice,

representing a real-world crystal!
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