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Abstract. The cutoff phenomenon describes a sharp transition in the

convergence of a family of ergodic finite Markov chains to equilibrium.

Many natural families of chains are believed to exhibit cutoff, and yet

establishing this fact is often extremely challenging. An important such

family of chains is the random walk on G(n, d), a random d-regular graph

on n vertices. It is well known that almost every such graph for d ≥ 3 is

an expander, and even essentially Ramanujan, implying a mixing-time

of O(logn). According to a conjecture of Peres, the simple random walk

on G(n, d) for such d should then exhibit cutoff whp. As a special case

of this, Durrett conjectured that the mixing time of the lazy random

walk on a random 3-regular graph is whp (6 + o(1)) log2 n.

In this work we confirm the above conjectures, and establish cutoff in

total-variation, its location and its optimal window, both for simple and

for non-backtracking random walks on G(n, d). Namely, for any fixed

d ≥ 3, the simple random walk on G(n, d) whp has cutoff at d
d−2

logd−1 n

with window order
√

logn. Surprisingly, the non-backtracking random

walk on G(n, d) whp has cutoff already at logd−1 n with constant window

order. We further extend these results to G(n, d) for any d = no(1) that

grows with n (beyond which the mixing time is O(1)), where we establish

concentration of the mixing time on one of two consecutive integers.
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1. Introduction

A finite ergodic Markov chain is said to exhibit cutoff if its distance from

the stationary measure drops abruptly, over a negligible time period known

as the cutoff window, from near its maximum to near 0. That is, one has to

run the Markov chain until the cutoff point in order for it to even slightly

mix, and yet running it any further would be essentially redundant.

Let (Xt) be an aperiodic irreducible Markov chain on a finite state space Ω

with transition kernel P (x, y) and stationary distribution π. The worst-case

total-variation distance to stationarity at time t is defined by

d(t)
4
= max

x∈Ω
‖Px(Xt ∈ ·)− π‖TV ,
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where Px denotes the probability given X0 = x, and where ‖µ − ν‖TV, the

total-variation distance of two distributions µ, ν on Ω, is given by

‖µ− ν‖TV
4
= sup

A⊂Ω
|µ(A)− ν(A)| = 1

2

∑
x∈Ω

|µ(x)− ν(x)| .

We define tmix(ε), the total-variation mixing-time of (Xt) for 0 < ε < 1, as

tmix(ε)
4
= min {t : d(t) < ε} .

Next, let (X
(n)
t ) be a family of such chains, each with its corresponding

worst-case total-variation distance from stationarity dn(t), its mixing-times

t
(n)
mix, etc. We say that this family of chains exhibits cutoff at time t

(n)
mix(1

4)

iff the following sharp transition in its convergence to stationarity occurs:

lim
n→∞

t
(n)
mix(ε)

/
t
(n)
mix(1− ε) = 1 for any 0 < ε < 1 . (1.1)

The rate of convergence in (1.1) is addressed by the following: A sequence

wn = o
(
t
(n)
mix(1

4)
)

is called a cutoff window for the family of chains (X
(n)
t ) if

for any ε > 0 there exists some cε > 0 such that for all n,

t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ cεwn . (1.2)

That is, there is cutoff at time tn = t
(n)
mix(1

4) with window wn if and only if

t
(n)
mix(s) = (1 +O(wn)) tn = (1 + o(1))tn for any fixed 0 < s < 1 ,

or equivalently, cutoff at time tn with window wn occurs if and only if{
limλ→∞ lim infn→∞ dn(tn − λwn) = 1 ,

limλ→∞ lim supn→∞ dn(tn + λwn) = 0 .

Although many natural families of chains are believed to exhibit cutoff,

determining that cutoff occurs proves to be an extremely challenging task

even for fairly simple chains, as it often requires the full understanding of

the delicate behavior of these chains around the mixing threshold. Before

reviewing some of the related work in this area, as well as the conjectures

that our work addresses, we state a few of our main results.

The focus of this paper is on random walks on a random regular graph,

namely on G ∼ G(n, d), a graph uniformly distributed over the set of all

d-regular graphs on n vertices, for d ≥ 3 and n large. This important

class of random graphs has been extensively studied, among other reasons

due to the remarkable expansion properties of its typical instance. One

useful implication of these expansion properties is the rapid mixing of the

corresponding simple random walk (SRW), the chain whose states are the

vertices of the graph, and moves at each step to a uniformly chosen neighbor.

Namely, the SRW on such a graph has a mixing time of O(log n) with high

probability (whp), that is, with probability tending to 1 as n→∞.
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Figure 1. Distance from stationarity along time for the

SRW on a random 6-regular graph on n = 5000 vertices.

Our first result establishes both cutoff and its optimal window for the SRW

on a typical instance of G(n, d) for any d ≥ 3 fixed. As we later describe,

this settles conjectures of Durrett [17] and Peres [24] in the affirmative.

Theorem 1. Let G ∼ G(n, d) be a random regular graph for d ≥ 3 fixed.

Then whp, the simple random walk on G exhibits cutoff at d
d−2 logd−1 n

with a window of order
√

log n. Furthermore, for any fixed 0 < s < 1, the

worst case total-variation mixing time whp satisfies

tmix(s) =
d

d− 2
logd−1 n− (Λ + o(1))Φ−1(s)

√
logd−1 n ,

where Λ =
2
√
d(d−1)

(d−2)3/2
and Φ is the c.d.f. of the standard normal.

The essence of the cutoff for the SRW on a typical G ∼ G(n, d) lies in the

behavior of its counterpart, the non-backtracking random walk (NBRW),

that does not traverse the same edge twice in a row (formally defined soon).

Curiously, this chain also exhibits cutoff on G(n, d) whp, only this time the

cutoff window is constant : (1.2) holds for wn = 1 and cε logarithmic in 1/ε:

Theorem 2. Let G ∼ G(n, d) be a random regular graph for d ≥ 3 fixed.

Then whp, the non-backtracking random walk on G has cutoff at logd−1(dn)

with a constant-size window. More precisely, for any fixed ε > 0, the worst

case total-variation mixing time whp satisfies

tmix(1− ε) ≥ dlogd−1(dn)e − dlogd−1(1/ε)e ,
tmix(ε) ≤ dlogd−1(dn)e+ 3dlogd−1(1/ε)e+ 4 .
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Figure 2. Distance from stationarity along time for the

NBRW on a random 3-regular graph on n = 2000 vertices.

Red curves represent a (4 logd−1(1/ε))-wide cutoff window.

To gain insight to the above behaviors of the SRW and NBRW on a typical

instance of G(n, d), note that whp, the random d-regular graph is locally-

tree-like, its diameter is (1 + o(1)) logd−1 n and this is also the distance

between a typical pair of vertices. In a d-regular tree, the height of a SRW,

started at the root, is analogous to a biased 1-dimensional random walk with

speed (d−2)/d. Hence, the time it takes this walk to reach height logd−1 n is

concentrated around d
d−2 logd−1 n with a standard deviation of order

√
log n.

Our results establish that at this time, the walk on G(n, d) is mixed. One of

the keys to showing this is estimating the number of simple paths of length

just beyond logd−1 n between most pairs of vertices (see Lemma 3.5 for a

more precise statement). In comparison, as the NBRW started at the root

of a tree is forbidden from backtracking up, it reaches height logd−1 n after

precisely logd−1 n steps, hence the sharper cutoff window.

Establishing the above theorems requires a careful analysis of the local

geometry around typical pairs of vertices, via a Poissonization argument.

Namely, we show that the number of edges between certain neighborhoods

of two prescribed vertices is roughly Poisson. Similar arguments then allow

us to formulate analogous results for the case of regular graphs of high

degree, that is, G(n, d) where d is allowed to tend to ∞ with n, up to no(1).

1.1. Related work. The cutoff phenomenon was first identified for the case

of random transpositions on the symmetric group in [14], and for the case

of the riffle-shuffle and random walks on the hypercube in [2]. In their

seminal paper [3] from 1985, Aldous and Diaconis established cutoff (and

coined the term) for the top-in-at-random card shuffling process. See [13]
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and [12] for more on the cutoff phenomenon, as well as [27] for a survey of

this phenomenon for random walks on finite groups.

Unfortunately, there are relatively few examples where cutoff has been

rigorously shown, whereas many important chains are conjectured to exhibit

cutoff. Indeed, merely deciding whether a given family of finite Markov

chains exhibits cutoff or not (without pinpointing the precise cutoff location)

can already be a formidable task (see [13] for more on this problem).

In 2004, Peres [24] proposed the condition tmix(1
4) · gap → ∞ as a cutoff

criterion, where gap is the spectral gap of the chain (i.e., gap
4
= 1−λ where

λ is the largest nontrivial eigenvalue of the transition kernel). While this

“product-condition” is indeed necessary for cutoff in a family of reversible

chains, there are known examples where this condition holds yet there is no

cutoff (see [12, Section 6]). Nevertheless, Peres conjectured that for many

natural chains the product-condition does imply total-variation cutoff (e.g.,

this was recently verified in [15] for the class of birth-and-death chains).

An important family of chains, mentioned in this context in [24], is SRWs

on transitive “expander” graphs of fixed degree d (graphs where the second

eigenvalue of the adjacency matrix is bounded away from d). Chen and

Saloff-Coste [12] verified that such chains exhibit cutoff when measuring the

convergence to equilibrium via other (less common) norms, and mentioned

the remaining open problem of proving total-variation cutoff.

On the other hand, it is well known that almost every d-regular graph

for d ≥ 3 is an expander (see [9], and also [25] for an analogous statement

under a closely related combinatorial definition of expansion). In fact, it was

shown by Friedman [18] that the second eigenvalue of the adjacency matrix

of G ∼ G(n, d) for d ≥ 3 is whp 2
√
d− 1 + o(1), essentially as far from d as

possible. Thus, random regular graphs are a valuable tool for constructing

sparse expander graphs, and furthermore, for any fixed d ≥ 3, any statement

that holds whp for G(n, d) also holds for almost every d-regular expander.

See, [11],[21] and also [28] for more on the thoroughly studied model G(n, d).

By the above, it follows that for any fixed d ≥ 3, the mixing time of the

SRW on G ∼ G(n, d) is typically O(log n), whereas its gap is bounded away

from 0. Hence, if we consider the SRW on graphs {Gn ∼ G(n, d)} for some

fixed d ≥ 3, then the product-condition typically holds, and according to

the above conjecture of Peres, these chains should exhibit cutoff whp.

A special case of this was conjectured by Durrett, following his work with

Berestycki [8] studying the SRW on a random 3-regular graph G ∼ G(n, 3).

They showed that at time c log2 n the distance of the walk from its starting

point is asymptotically ( c3 ∧ 1) log2 n. This implies a lower bound of 3 log2 n
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(b) NBRW on G(109, 3)

Figure 3. Estimates on the total-variation distance from

stationarity for SRWs and NBRWs on large 3-regular graphs.

(a) Asymptotic behavior of tmix established by Theorem 1.

(b) Lower and upper bounds according to Theorem 2.

for the asymptotic mixing time of random 3-regular graphs, and in partic-

ular, an asymptotic lower bound of 6 log2 n for the lazy random walk (the

lazy version of a chain with transition kernel P is the chain whose transi-

tion kernel is 1
2(P + I), i.e., in each step it stays in place with probability

1
2 , and otherwise it follows the rule of the original chain). In [17], Durrett

conjectured that this latter bound is tight:

Conjecture (Durrett [17, Conjecture 6.3.5]). The mixing time for the lazy

random walk on the random 3-regular graph is asymptotically 6 log2 n.

Theorem 1 stated above confirms these conjectures of Peres and Durrett

(one can readily infer an upper bound on the mixing time of the lazy random

walk from Theorem 1). Not only does this theorem establish cutoff and its

location for the SRW on G(n, d) (an analogous result immediately holds for

the lazy walk), but it also determines the second order term in tmix(s) for any

0 < s < 1 (the term corresponding to the cutoff window of order
√

log n).

The SRW on G(n, d) for d = b(log n)ac and a ≥ 2 fixed, starting from v1

(not worst-case), was studied by Hildebrand [20]. He showed that in this

case there is cutoff whp at (1+o(1)) logd n, and asked whether this also holds

for a < 2. As we soon show, the answer to this question is positive, even

from worst-case starting point and after replacing the o(1) by an additive 2.

To describe this result, we must first discuss the NBRW in further detail.

1.2. Cutoff for the SRW and NBRW. While the SRW of a graph is a

Markov chain on its vertices, the NBRW has the set of directed edges (i.e.,

each edge appears in both orientations) as its state space: it moves from

an edge (x, y) to a uniformly chosen edge (y, z) with z 6= x. However,

in most applications for NBRWs on regular graphs (see, e.g., [7] and the
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references therein), one often considers the projection of this chain onto the

currently visited vertex (i.e., (x, y) 7→ y), as it also converges to the uniform

distribution on the vertices, and can thus be compared to the SRW.

In [5] the authors compare the SRW and this projection of the NBRW on

regular expander graphs, showing that the NBRW has a faster mixing rate

(see [22] for the definition of this spectral parameter, which for the SRW

coincides with the largest nontrivial eigenvalue in absolute value). However,

it was not clear how this spectral data actually translates into a direct

comparison of the corresponding mixing times.

Theorems 1 and 2, as a bi-product, enable us to directly compare the

mixing times of the SRW and NBRW (not only its projection onto the ver-

tices). Namely, we obtain that the NBRW indeed mixes faster than the

SRW on almost every d-regular graph, by a factor of d/(d−2). Surprisingly,

the delicate result stated in Theorem 2 also shows that once we omit the

“noise” created by the backtracking possibility of the SRW, we are able to

pinpoint the cutoff location up to O(1) (see [19] for an example of such an

O(1) cutoff window related to random walks on the symmetric group).

Recalling that the cutoff window in Theorem 2 had the form logd−1(1/ε),

one may wonder what the effect of large degrees would be. Our results

extend to the case of large d, all the way up to d = no(1), beyond which the

mixing time is constant (see, e.g., [16]) hence there is no point in discussing

cutoff. The cutoff window indeed vanishes as d→∞, and the entire mixing

transition occurs within merely two steps of the chain:

Theorem 3. Let G ∼ G(n, d) where d = no(1) tends to ∞ with n. Then

whp, for any fixed 0 < s < 1, the worst case total-variation mixing time of

the non-backtracking random walk on G whp satisfies

tmix(s) ∈
{
dlogd−1(dn)e, dlogd−1(dn)e+ 1

}
.

That is, the NBRW on G has cutoff whp within two steps of the chain.

As a corollary, the relation between NBRWs and SRWs directly implies an

analogous statement for the SRW on regular graphs of large degree. Here,

the cutoff window becomes
√

(1/d) logd n (compared to
√

log n for d fixed),

and if logn
log logn = o(d) then the walk completely coincides with the NBRW.

Corollary 4. Let G ∼ G(n, d) where d = no(1) tends to ∞ with n. Then

whp, the SRW on G has cutoff at d
d−2 logd−1 n with a window of

√
logn
d log d .

Furthermore, if d log logn
logn →∞, then for any fixed 0 < s < 1, the worst case

total-variation mixing time of the SRW on G whp satisfies

tmix(s) ∈
{
dlogd−1(dn)e, dlogd−1(dn)e+ 1

}
.
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In particular, this answers the above question of Hildebrand (the case of

d = b(log n)ac for any a > 0 fixed) in the affirmative, even from a worst

starting position. Furthermore, instead of a multiplicative 1 + o(1), the

cutoff point is determined up to an additive 2 if a ≥ 1.

1.3. Random walks on the hypercube. As mentioned above, one of the

original examples of cutoff was for the lazy random walk on the hypercube

Qm, which was shown by Aldous [2] to exhibit cutoff at 1
2m logm. When

compared to the SRW on G(2m,m), guaranteed by Corollary 4 to have cutoff

whp at (log 2+o(1))m/ logm (in this setting, d = log2 n has d log logn
logn →∞),

this demonstrates the slower than typical mixing of the hypercube.

1.4. Organization. The rest of the paper is organized as follows. Section 2

contains several preliminary facts on random regular graphs. In Sections 3

and 4 we prove the main theorems, Theorems 1 and 2 resp., and in Section 5

we extend these proofs to the case of d large.

2. Preliminaries

Let G = (V,E), and let Ē denote the set of directed edges (i.e., Ē contains

both orientations of every edge in E). Throughout the paper, we will use

x, y, . . . for vertices in V , as opposed to x̄, ȳ, . . . for directed edges in Ē.

2.1. The configuration model. This model, introduced by Bollobás [10]

and sometimes also referred to as the pairing model, provides a convenient

method of both constructing and analyzing a random regular graph. We

next briefly review some of the properties of this model which we will need

for our arguments (see [11],[21] and [28, Section 2] for further information).

Given d and n with dn even, a d-regular (multi-)graph on n vertices is

constructed via the configuration model as follows. Each vertex is identified

with d distinct points, and a random perfect matching of all these dn points

is then produced. The resulting multi-graph is obtained by collapsing every

d-tuple into its corresponding vertex (possibly introducing loops or multiple

edges). Let Simple denote the event that the outcome is a simple graph.

It can easily be verified that, on the event Simple, the resulting graph is

uniformly distributed over G(n, d). Crucially, for any fixed d,

P(Simple) = (1 + o(1)) exp
(1− d2

4

)
, (2.1)

where the o(1)-term tends to 0 as n→∞. In particular, as this probability is

uniformly bounded away from 0, any event that holds whp for multi-graphs

constructed via the configuration model, also holds whp for G(n, d).

In fact, the statement in equation (2.1) was extended to any d = o(n1/3)

by McKay [23]. Although the asymptotical behavior of this probability was
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thereafter determined for even larger values of d (see [28] for additional

information), in this work we are only concerned with the case d = no(1),

and hence this result will suffice for our purposes.

A highly useful property of the configuration model is the following: we

can expose the “pairings” sequentially, that is, given a vertex, we reveal the

d neighbors of its corresponding points one by one, and so on. This allows

us to “explore our way” into the graph, while constantly maintaining the

uniform distribution over the pairings of the remaining unmatched points.

2.2. Neighborhoods and tree excess. We need the following definitions

with respect to a given graph G = (V,E). Let dist(u, v) = distG(u, v) denote

the distance between two vertices u, v ∈ V in this graph. For any vertex

u ∈ V and integer t, the t-radius neighborhood of u, denoted by Bt(u), and

its (vertex) boundary ∂Bt(u), are defined as

Bt(u)
4
= {v ∈ V : dist(u, v) ≤ t} , ∂Bt(u)

4
= Bt(u) \Bt−1(u) . (2.2)

The abbreviated form Bt will be used whenever the identity of u becomes

clear from the context. The tree excess of Bt, denoted by tx(Bt), is the

maximum number of edges that can be deleted from the induced subgraph

on Bt while keeping it connected (i.e., the number of extra edges in that

induced subgraph beyond |Bt| − 1).

The next lemma demonstrates the well known locally-tree-like properties

of a typical G ∼ G(n, d) for any fixed d ≥ 3. Its proof follows from a stan-

dard and straightforward application of the above mentioned “exploration

process” for the configuration model.

Lemma 2.1. Let G ∼ G(n, d) for some fixed d ≥ 3, and let t = b1
5 logd−1 nc.

Then whp, tx(Bt(u)) ≤ 1 for all u ∈ V (G).

Proof. Choose u ∈ V uniformly at random, and consider the process where

the neighborhood of u is sequentially exposed level by level, according to the

configuration model. When pairing the vertices of level i (and establishing

level i+ 1) for some i ≥ 0, we are matching

mi ≤ d ∨ (d− 1)|∂Bi|

points among a pool of (1 − o(1))dn yet unpaired points. For 1 ≤ k ≤ mi,

let Fi,k denote the σ-field generated by the process of sequentially exposing

pairings up to the k-th unmatched point in ∂Bi. Further let Ai,k denote

the event that the newly exposed pair of the k-th unmatched point in ∂Bi
already belongs to some vertex in Bi+1. Clearly,

P (Ai,k | Fi,k) ≤
(mi − k) + (d− 1)(k − 1)

(1− o(1))dn
≤ (d− 1)mi

(1− o(1))dn
≤ mi

n
(2.3)



10 EYAL LUBETZKY AND ALLAN SLY

(where the last inequality holds for a sufficiently large n), and hence the

number of events {Ai,k : 1 ≤ k ≤ mi} that occur is stochastically dominated

by a binomial random variable with parameters Bin(mi,mi/n). (We say

that µ stochastically dominates ν, denoted by µ � ν, if
∫
fdµ ≥

∫
fdν for

every bounded increasing function f .) Moreover, since mi ≤ d(d − 1)i for

any 0 ≤ i ≤ t, it follows that
∑t−1

i=0 mi ≤ d(d − 1)t, and the number of

occurrences in the entire set of events {Ai,k : i < t} can be stochastically

dominated as follows:

t−1∑
i=0

mi∑
k=1

1Ai,k � Bin

(
d(d− 1)t,

d(d− 1)t−1

n

)
. (2.4)

Notice that, by definition, the number of such events that occur is exactly

the tree excess of Bt(u). We thus obtain that

P(tx(Bt) ≥ 2) ≤ O

((
d(d− 1)t

2

)
d2(d− 1)2(t−1)

n2

)
= O

(
n−6/5

)
,

where the last equality is by the assumption on t. Taking a union bound

over all vertices u ∈ V completes the proof. �

When proving cutoff for the NBRW in Section 4, we will be dealing with

directed edges rather than vertices. The t-radius neighborhood of a directed

edge x̄, denoted by Bt(x̄), and its boundary ∂Bt(x̄), then consist of directed

edges, and are defined analogously to (2.2) (with dist(x̄, ȳ) measuring the

shortest non-backtracking walk from x̄ to ȳ; note that dist(·, ·) is not nec-

essarily symmetric). The tree excess tx(Bt(x̄)) in this case will refer to the

undirected underlying graph induced on Bt(x̄).

2.3. The cover tree of a regular graph. Let G = (V,E) be a d-regular

graph and u ∈ V be some given vertex in G. The cover tree of G at u is

a mapping ϕ : T → V , where T is a d-regular tree with root ρ, and the

following holds:{
ϕ(ρ) = u ,

NG(ϕ(x)) = {ϕ(y) : y ∈ NT (x)} for any x ∈ T ,
(2.5)

where NH(u) = {v ∈ V (H) : distH(u, v) = 1} (i.e., ∂B1(v) for the graph H).

That is, the root of T is mapped to u, and ϕ respects 1-radius neighborhoods.

The following two simple facts will be useful later on. First, there is a

one-to-one correspondence between non-backtracking paths in G starting

from u and non-backtracking paths in T starting from ρ. Second, if Xt is a

simple random walk on T , then ϕ(Xt) is a simple random walk on G.



CUTOFF FOR RANDOM WALKS ON RANDOM REGULAR GRAPHS 11

3. Cutoff for the simple random walk

In this section, we prove Theorem 1, which establishes cutoff for the SRW

on a typical random d-regular graph for any fixed d ≥ 3. Throughout this

section, let d ≥ 3 be some fixed integer, and consider some G ∼ G(n, d).

We need the following definition concerning the locally tree-like geometry.

Definition 3.1 (K-root). We say that a vertex u ∈ V is a K-root if and

only if the induced subgraph on BK(u) is a tree, that is, tx(BK(u)) = 0.

Recalling Lemma 2.1, whp every vertex in our graph G ∼ G(n, d) has a

tree excess of at most 1 in its b1
5 logd−1 nc-radius neighborhood. The next

simple lemma shows that in such a graph (in fact, a weaker assumption

suffices), a “burn-in” period of Θ(log log n) steps allows the SRW from the

worst-case starting position to reposition itself in a typically “nice” vertex.

Lemma 3.2. Let K = blogd−1 log nc, and suppose that every u ∈ V has

tx(B5K(u)) ≤ 1. Then for any u ∈ V , the SRW of length 4K from (u, v)

ends at a K-root with probability 1− o(1). In particular, there are n− o(n)

vertices in G that are K-roots.

Proof. If tx(B5K(u)) = 0 then the induced subgraph on B5K is a tree and

the result is immediate.

If tx(B5K(u)) = 1 then the induced subgraph on B5K is cycle C, with

disjoint trees rooted on each of its vertices. Let Xt denote the position of

the random walk at time t, and let ρt = dist(Xt, C), that is, the length of

the shortest path between C and Xt in G.

If the random walk is on the cycle then in the next step it either leaves

C with probability d−2
d , or remains on C with probability 2

d . Alternatively,

if the random walk is not on C, then it moves one step closer to C with

probability 1
d and one step further away with probability d−1

d . Either way,

E[ρt+1 − ρt | Xt] =
d− 2

d
.

Therefore, ρt − (d−2)t
d is a martingale, and the Azuma-Hoeffding inequality

(cf., e.g., [6]) ensures that

P
(∣∣∣∣ρ4K − ρ0 −

4K(d− 2)

d

∣∣∣∣ > K

3

)
≤ exp

(
−K

72
(
1 + d−2

d

)2
)

= o(1) .

We deduce that, whp, ρ4K ≥ 4K(d−2)
d − K

3 ≥ K and hence X4K is a K-root.

To obtain the statement on the number of K-roots in G, suppose we start

from a uniformly chosen vertex. Clearly, the random walk at time 4K is

also uniform, thus the probability that a uniformly chosen vertex is not a

K-root is o(1), as required. �
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The following lemma demonstrates the control over the local geometry

around a K-root with K = Θ(log log n).

Lemma 3.3. Set R = b4
7 logd−1 nc and K = blogd−1 log nc. With high

probability, every K-root u satisfies

|∂Bt(u)| ≥ (1− o(1))d(d− 1)t−1 for all t < R .

Proof. Let u be a uniformly chosen vertex; expose its K-neighborhood, and

assume that it is indeed a K-root. Following the notation from the proof

of Lemma 2.1 we let Ai,k be the event that, in the process of sequentially

matching points, the newly exposed pair of the k-th unmatched point in

∂Bi belongs to a vertex already in Bi+1. Further recall that, by (2.3) and

the discussion thereafter, the number of events {Ai,k : 0 ≤ i < R} that

occur is stochastically dominated by a binomial variable with parameters

Bin
(
d(d− 1)R, d(d−1)R−1

n

)
. Since the expectation of this random variable is

d2(d− 1)2R−1/n ≤ O
(
n1/7

)
,

the number of events Ai,k with 0 ≤ i < R that occur is less than n1/6 (with

room to spare) with probability at least 1− exp(−Ω(n1/6)).

Each event Ai,k reduces the number of leaves in level i + 1 by at most 2

and so reduces the number of leaves in level t > i by at most 2(d− 1)t−i−1

vertices. It follows that for each 0 ≤ t < R,

|∂Bt| ≥ d(d− 1)t−1 −
∑
i<t

∑
k

1Ai,k2(d− 1)t−i−1 . (3.1)

Set L = b1
5 logd−1 nc. As u is a K-root, no events of the form Ai,k with

i < K occur, and the number of events Ai,k which occur with i < L is

exactly tx(BL(u)), giving∑
i<L

∑
k

1Ai,k2(d− 1)t−i−1 ≤ 2(d− 1)t−K−1tx(BL(u)) .

Furthermore, by the above discussion on the number of events {Ai,k} that

occur, we deduce that with probability at least 1− exp(−Ω(n1/6))

t−1∑
i=L

∑
k

1Ai,k2(d− 1)t−i−1 ≤ 2(d− 1)t−L−1n1/6 = o
(
(d− 1)t

)
.

Plugging the above in (3.1) we get that with probability 1− exp(−Ω(n1/6)),

|∂Bt| ≥ (1− o(1))d(d− 1)t−1 − 2(d− 1)t−Ktx(BL(u)) , (3.2)

and a union bound implies that (3.2) holds for all K-roots u and all t < R

except with probability exp(−Ω(n1/6)).
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Finally, Lemma 2.1 asserts that whp every u satisfies tx(BL(u)) ≤ 1.

Hence, whp, every K-root u satisfies |∂Bt| ≥ (1 − o(1))d(d − 1)t−1 for all

0 ≤ t ≤ R, as required. �

Let ∂B∗t (u) denote the set of vertices in ∂Bt(u) with a single (simple)

path of length t to u. We next wish to establish an estimate for the typical

number of such vertices, intersected with some other neighborhood Bt′(v).

Lemma 3.4. Let K = blogd−1 log nc and R = b4
7 logd−1 nc. With high

probability, any two K-roots u and v with dist(u, v) > 2K satisfy

|∂B∗t (u) \Bt+1(v)| = (1− o(1))d(d− 1)t−1 for all t < R− 1 .

Proof. The proof follows the same arguments as the proof of Lemma 3.3,

except now we begin with two randomly chosen vertices u, v. Expose BK(u)

and BK(v), at which point we may assume that both u and v are K-roots,

and that dist(u, v) > 2K. Next, we sequentially expand the layers

∂B̃i
4
= {w ∈ V : dist(w, {u, v}) = i} for K < i ≤ R .

By the above assumption on u and v, we have

|∂B̃K | = 2d(d− 1)K−1 .

Repeating essentially the same calculations as those appearing in the proof

of Lemma 3.3 now shows that with probability 1− exp(−Ω(n1/6)),

|∂B̃t| = (2− o(1))d(d− 1)t−1 for all t ≤ R , (3.3)

thus whp, the above holds for all pairs of K-roots u, v with dist(u, v) > 2K.

We claim that the statement of the lemma follows directly from (3.3). To

see this, assume that (3.3) indeed holds for u, v as above, and let t < R− 1.

Clearly, at most d(d− 1)t−1 of the vertices in ∂B̃t belong to ∂Bt(v), hence

|∂Bt(u) \Bt(v)| = (1− o(1))d(d− 1)t−1 ,

and similarly,

|∂Bt+1(v) \Bt+1(u)| = (1− o(1))d(d− 1)t .

Therefore,

|∂Bt(u) ∩Bt(v)| = o
(
d(d− 1)t−1

)
,

|∂Bt+1(v) ∩Bt+1(u)| = o
(
d(d− 1)t

)
,

and altogether we obtain that

|∂Bt(u) ∩Bt+1(v)| ≤ |∂Bt(u) ∩Bt(v)|+ |Bt(u) ∩ ∂Bt+1(v)|

= o(d(d− 1)t) .
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Since there are at most d(d − 1)t paths of length t from u to ∂Bt(u), and

since |∂Bt(u)| = (1− o(1))d(d− 1)t−1, it then follows that

|∂Bt(u) \ ∂B∗t (u)| = o(d(d− 1)t−1) .

We deduce that |∂B∗t (u) ∩Bt+1(v)| = o(d(d−1)t), and the proof follows. �

Lemma 3.5. Let K = blogd−1 log nc and T = b1
2 logd−1 nc. With high

probability, any two K-roots u and v with dist(u, v) > 2K satisfy

S2T+`(u, v) ≥ (1− o(1))
1

n
d(d− 1)2T+`−1

for all 2K ≤ ` ≤ 1
20 logd−1 n, where Sk(u, v) denotes the number of simple

paths of length k between u and v, and the o(1)-term tends to 0 as n→∞.

Proof. Fix ` as above and expose the neighborhoods of u and v up to distance

tu =
⌈

1
2(2T + `− 1)

⌉
, tv =

⌊
1
2(2T + `− 1)

⌋
respectively. Notice that this selection gives

2T + `− 1 = tu + tv , 0 ≤ tu − tv ≤ 1 .

We further define

Au = ∂B∗tu(u) \Btv(v) , Av = ∂B∗tv(v) \Btu(u) .

We may now assume that the statement of Lemma 3.4 holds with respect

to the neighborhoods of u and v already revealed (and them alone), that is

|Au| = (1− o(1))d(d− 1)tu−1 ,

|Av| = (1− o(1))d(d− 1)tv−1 .

In other words, Au has (1− o(1))d(d− 1)tu unmatched points and similarly,

Av has (1− o(1))d(d− 1)tv unmatched points.

Now, sequentially match each of the points in Au, and let Mu,v denote

the number of points of Au matched with points in Av. To obtain an upper

bound on Mu,v, we once again repeat the arguments of Lemma 2.1, implying

that it is stochastically bounded from above by a binomial variable as follows

Mu,v � Bin
(

(d− 1)|Au|,
(d− 1)|Av|

(1− o(1))dn

)
.

Since
(d− 1)2|Au||Av|

dn
≤ O(n1/10) ,

Chernoff bounds (cf., e.g., [6]) give that Mu,v ≤ n1/4 except with probability

e−Ω(n1/4). We thus assume that indeed Mu,v ≤ n1/4.

In this case, as we sequentially match points, each point in Au has at least

|Av|−n1/4 remaining points in Av which it could potentially be matched to.
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That is, conditional on previous matchings each point has at least |Av |−n
1/4

dn

probability of being matched to a point in Av. It follows that Mu,v is stochas-

tically bounded from below by a binomial variable

Mu,v � Bin
(

(d− 1)|Au|,
(d− 1)(|Av| − n1/4)

dn

)
.

Now

(d− 1)2|Au|(|Av| − n1/4)

dn
= (1− o(1))

1

n
d(d− 1)2T+`−1 = Ω(log2

d−1 n) ,

and again by Chernoff bounds we have that the number of matchings is at

least (1− o(1)) 1
nd(d− 1)2T+`−1 except with probability

exp(−Ω(log2
d−1 n)) = o(n−3) .

Each matching between a point in Au and a point in Av determines a simple

path from u to v of length 2T + `, thus

S2T+`(u, v) ≥Mu,v ≥ (1− o(1))
1

n
d(d− 1)2T+`−1 .

Taking a union bound over all u, v and ` completes the result. �

Proof of Theorem 1. Set K = blogd−1 log nc and set T = b1
2 logd−1 nc.

By Lemma 3.2, after 4K steps with high probability the random walk is at

a K-root. Since we are only seeking to establish tmix up to an accuracy of

o(
√

logd−1 n) and since K = o(
√

logd−1 n) it is enough to consider the worst

case mixing from a K-root to establish the result.

Let us assume that the statement of Lemma 3.5 holds. Let u and v be

K-roots with dist(u, v) > 2K. By Lemma 3.5,

S2T+`(u, v) ≥ 1− o(1)

n
d(d− 1)2T+`−1 for 2K ≤ ` ≤ 1

20 logd−1 n .

Now let T be the cover tree for G at u with a map ϕ, as defined in (2.5).

Since each simple path in G corresponds to a distinct simple path in T ,

# {w ∈ T : ϕ(w) = v, dist(ρ, w) = 2T + `} ≥ S2T+`(u, v)

≥ 1− o(1)

n
d(d− 1)2T+`−1 ,

when 2K ≤ ` ≤ 1
20 logd−1 n. Let Xt be a SRW on T started from ρ and let

Wt = ϕ(Xt) be the corresponding SRW on G started from u. Note that, by

symmetry, conditioned on dist(ρ,Xt) = k the random walk is uniform on

the d(d−1)k−1 points {w ∈ T : dist(ρ, w) = k}. In addition, a random walk

on a d-regular tree with d ≥ 3 is transient, since the distance from the root
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is a biased random walk with positive speed. In particular, the random walk

returns to ρ only a finite number of times almost surely. If Xt 6= ρ then(
dist(Xt+1, ρ)− dist(Xt, ρ)

)
∼
{
−1 1/d ,

1 (d− 1)/d .

Therefore, the Central Limit Theorem gives that

dist(Xt, ρ)− (d−2)t
d

2
√
d−1
d

√
t

d−→ N(0, 1). (3.4)

Let A be the set of vertices which are K-roots and whose distance from u

is greater than 2K. Since there are at most d(d − 1)2K−1 = o(n) vertices

within distance 2K of u, and since by Lemma 3.2 there are n−o(n) K-roots

in total, it follows that |A| ≥ n− o(n).

Combining these arguments, we deduce that if v ∈ A and

t =
⌊ d

d− 2
logd−1 n+ k

√
logd−1 n

⌋
(3.5)

then

P(Wt = v) =

t∑
j=0

P(dist(ρ,Xt) = j)
#{w ∈ T : ϕ(w) = v, dist(ρ, w) = j}

d(d− 1)j−1

≥

1
20

logd−1 n∑
`=2K

P(dist(ρ,Xt) = 2T + `)
1+o(1)
n d(d− 1)2T+`−1

d(d− 1)2T+`−1

= (1 + o(1)
1

n
P
(

2T + 2K ≤ dist(ρ,Xt) ≤ 2T +
1

20
logd−1 n

)
= (1 + o(1))

1

n

(
1− Φ

(
−k
Λ

))
,

where the final equality follows from equation (3.4) and where Φ is the

distribution function of the standard normal and Λ = 2
√
d−1

d−2

√
d
d−2 . Then

‖P(Wt ∈ ·)− π‖TV =
∑
v∈V

max

{
1

n
− P(Wt = v) , 0

}
≤ n− |A|

n
+
∑
v∈A

max

{
1

n
− P(Wt = v) , 0

}
≤ o(1) + (1 + o(1))|A| 1

n
Φ

(
−k
Λ

)
= (1 + o(1))Φ

(
−k
Λ

)
. (3.6)

It remains to provide a matching lower bound for ‖P(Wt ∈ ·) − π‖TV. To

this end, let M = logd−1 n−K and note that

π(BM (u)) ≤ 1

n
d(d− 1)M−1 = o(1) .
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If w ∈ T and dist(ρ, w) ≤ M then ϕ(w) ∈ BM . For the same choice of t as

given in (3.5), equation (3.4) gives that

P(dist(Xt, ρ) ≤M) = (1 + o(1))Φ

(
−k
Λ

)
,

and so

P(Wt ∈ BM ) ≥ (1 + o(1))Φ

(
−k
Λ

)
.

It follows that

‖P(Wt ∈ ·)− π‖TV ≥ P(Wt ∈ BM )− π(BM ) = (1 + o(1))Φ

(
−k
Λ

)
. (3.7)

Combining equations (3.6) and (3.7) establishes that for any 0 < s < 1

tmix(s) = logd−1 n− (Λ + o(1))Φ−1(s)
√

logd−1 n ,

completing the proof. �

4. Cutoff for the non-backtracking random walk

In this section, we prove Theorem 2 that establishes the cutoff of the

NBRW on a typical random d-regular graph for d ≥ 3 fixed. Throughout

this section, let d ≥ 3 be some fixed integer, and consider some G ∼ G(n, d).

Since the SRW induces a cutoff window of order
√

log n merely on account

of its backtracking ability, throughout our arguments in Section 3 we could

easily afford burn-in periods of order log log n. On the other hand, our

statements for the NBRW establish a constant cutoff window (and moreover,

logarithmic in 1/ε), and therefore require a far more delicate approach.

Recall that the NBRW is a Markov chain on the set of directed edges; we

thus begin by defining a directed K-root, analogous to Definition 3.1.

Definition 4.1 (directed K-root). A directed edge x̄ ∈ Ē is a directed

K-root iff the induced subgraph on BK(x̄) is a tree, i.e., tx(BK(x̄)) = 0.

As before, it is straightforward to show that the directed edges of G have

locally-tree-like neighborhoods. This is stated by the next lemma.

Lemma 4.2. Let L = b1
5 logd−1 nc. Then whp, tx(BL(x̄)) ≤ 1 for all

x̄ ∈ Ē. In addition, for any r = r(n) and h = h(n)→∞ arbitrarily slowly,

whp at least dn− h(d− 1)2r directed edges satisfy tx(Br) = 0.

Proof. Clearly, if x̄ = (u, v) ∈ Ē we have tx(Bt(x̄)) ≤ tx(Bt(v)) for any t,

thus the first statement of the lemma follows immediately from Lemma 2.1.

To show the second statement, recall the exploration process performed in

the proof Lemma 2.1, where Ai,k denoted the event that the k-th matching

generated in the i-th layer already belongs to our exposed neighborhood.

In our setting, we perform a similar exploration process on a random x̄ =
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(u, v) ∈ Ē, only this time the initial vertex v corresponds to d − 1 points

rather than d (having excluded its edge to u). Thus, (2.4) translates into

t−1∑
i=0

mi∑
k=1

1Ai,k � Bin

(
(d− 1)t+1,

(d− 1)t

n

)
.

It follows that the probability that tx(Br(x̄)) > 0 is at most O
(
d− 1)2r/n

)
,

and the expected number of such x̄ ∈ Ē is O
(
(d− 1)2r

)
, as required. �

The following lemma, which is the analogue of Lemma 3.2, shows that a

small burn-in period typically brings the NBRW to a directed L-root for a

certain L (and allows us to restrict our attention to such starting positions).

Lemma 4.3. Let ε > 0, set K = dlogd−1(2/ε)e and L = b1
6 logd−1 nc. Let

x̄ ∈ Ē be such that tx(BK+L(x̄)) ≤ 1. Then the non-backtracking walk of

length K from x̄ ends at a directed L-root with probability at least 1− ε.

Proof. Let H be the subgraph formed by the elements (directed edges) of

BK+L(x̄), and notice that the L-radius neighborhoods of all possible end-

points ȳ of a non-backtracking walk of length K from x̄ are all contained in

H. Thus, if tx(BK+L(x̄)) = 0 then clearly every such endpoint is a directed

L-root.

Otherwise, consider the undirected underlying graph of H. This graph

contains a single simple cycle C (by the assumption that tx(BK+L(x̄)) ≤ 1),

therefore the distance of any vertex u ∈ H from C is well defined. Let (W t)

denote the non-backtracking random walk started at W 0 = x̄. For some

1 ≤ t < K, write W t = (u, v) and W t+1 = (v, w). Crucially, we claim

that if dist(v, C) < dist(w,C), then W j is a directed L-root for all j ∈
{t+1, . . . ,K}. Indeed, our subgraph consists of a cycle C with disjoint trees

rooted at some of its vertices. Therefore, as soon as the non-backtracking

walk makes a single step away from C, by definition it can only traverse

further away from C with each additional step (as long as it is in H).

Furthermore, if v /∈ C (that is, v belongs to one of the trees rooted on

C), then with probability 1
d−1 the distance to C decreases by 1 in W t+1,

otherwise it increases by 1. Similarly,

P (w ∈ C | u, v ∈ C) = 1/(d− 1) .

The remaining case is the single step immediately following the first visit

to the cycle C, if such exists, where the probability of remaining on C

(traversing along one of the two possible directions on it) is 2
d−1 . Altogether,

Px̄(WK is not a directed L-root) ≤ 2(d− 1)−K ≤ ε,

as required. �
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The next two lemmas are the analogues of Lemmas 3.3 and 3.4 for directed

K-roots, and both follow by essentially repeating the original arguments.

Lemma 4.4. Set T = 51
100 logd−1 n and K = K(n). Then with probability

1− o(n−3), every directed K-root x̄ satisfies

|∂Bt(x̄)| ≥
(

1− (d− 1)−K −O(n−1/5)
)

(d− 1)t for all t ≤ T .

Lemma 4.5. Let ε > 0, T = 51
100 logd−1 n and L = d1

6 logd−1 ne. With

probability 1−o(n−3), any two directed L-roots x̄ and ȳ with dist(x̄, ȳ) > 2L

satisfy

|Bt(x̄) ∩Bt(ȳ)| < n−1/7(d− 1)t for all t ≤ T .

We now turn to prove the Poissonization argument, on which the entire

proof of Theorem 2 hinges. Recall that in Theorem 1 we could afford a

relatively large (order log log n) error, which enabled us to apply standard

large deviation arguments for the size of cuts between certain neighborhoods

of two vertices u, v (as studied in Lemma 3.5). On the other hand, here we

can only afford an O(1) error, so the number of paths of length the mixing

time between two random vertices will approximately be a Poisson random

variable with constant mean. In order to bypass this obstacle and derive the

concentration results needed for proving cutoff, we instead consider the joint

distribution of u and vertices v1, . . . , vM for some large (poly-logarithmic)

M . This approach, incorporated in the next proposition, amplifies the error

probabilities as required.

Proposition 4.6. Let ε > 0, set

K = d2 logd−1(1/ε)e , T = dlogd−1(dn)e , µ = (d− 1)T+K/dn ,

and for each x̄ ∈ Ē, define the random variable Z = Z(x̄) by

P(Z = k) =
1

dn

∣∣{ȳ ∈ Ē : NT+K−1(x̄, ȳ) = k
}∣∣ ,

where N`(x̄, ȳ) is the number of `-long non-backtracking paths from x̄ to ȳ.

Then whp, every x̄ that is a directed L-root for L = d1
6 logd−1(dn)e satisfies

E
[
|(Z(x̄)/µ)− 1|

∣∣FG] < 2ε+
5

log log n
,

where FG is the σ-field generated by the graph G ∼ G(n, d).

Proof. Condition on the statement of Lemma 4.2 for the choices r(n) = L

and h(n) = log n. That is, we assume that there are at least dn−(log n)n1/3

directed L-roots in Ē.

Let x̄ be a uniformly chosen directed edge, and expose its L-radius neigh-

borhood according to the configuration model. As the statement of the



20 EYAL LUBETZKY AND ALLAN SLY

proposition only refers to directed L-roots, we may at this point assume that

x̄ is indeed such an edge (recall that the property of being a directed L-root

is solely determined by the structure of the induced subgraph on BL(x̄), and

thus this conditioning does not affect the distribution of the future pairings).

With this assumption in mind, continue exposing the neighborhood of x̄ to

obtain B2L(x̄).

Our goal is to show that

P
(
E
[
|(Z(x̄)/µ)− 1|

∣∣FG] ≥ 2ε+ 5
log logn

)
= o(1/n) ,

in which case a first moment argument will immediately complete the proof

of the proposition.

We next consider a uniformly chosen set of M directed edges, B ⊂ Ē, for

some log2 n ≤M ≤ 2 log2 n (to be specified later), by selecting its elements

one by one. That is, after i steps (0 ≤ i < M), |B| = i and we add a directed

edge uniformly chosen over the dn − i remaining elements of Ē. With the

addition of every new element, we also develop its 2L-radius neighborhood.

Notice that, after i steps, there are at most (log n)n1/3 directed edges

which are not directed L-roots in Ē, and furthermore,

|B2L(x̄) ∪ (∪ȳ∈BB2L(ȳ))| ≤ (i+ 1)n1/3 ≤Mn1/3 .

Therefore, the probability that the (i + 1)-th element of B either belongs

to one of the existing 2L-radius neighborhoods, or is not a directed L-root,

is at most 2Mn−2/3. Clearly, the probability that 4 such “bad” edges are

selected is at most O(M4n−8/3) = o(n−2).

Altogether, we may assume with probability 1−o(n−2), the set B contains

a subset B′ = {ȳ1, . . . , ȳM ′} of sizeM ′ ≥M−3, such that the following holds:

(i) Every member of {x̄} ∪ B′ is an L-root.

(ii) The pairwise distances of {x̄} ∪ B′ all exceed 2L.

For any ȳ ∈ Ē, let Zȳ = NT+K−1(x̄, ȳ), and for any S ⊂ Ē, let ZS be

the random variable that accepts the value Zȳ with probability 1/|S| for

each ȳ ∈ S. We will use an averaging argument to show that Z can be well

approximated by ZB, which in turn is well approximated by ZB′ .

Setting

T1 = b(T +K)/2c , T2 = d(T +K)/2e − 2 ,

we wish to develop the T1-radius neighborhood of x̄ as well as the T2-radius

neighborhoods of every ȳ ∈ B′. To this end, put

U
4
= ∂BT1(x̄) , Vi

4
= ∂BT2(ȳi) ,

Ũ
4
= U \ ∪iBT2(ȳi) , Ṽi

4
= Vi \ (BT1(x̄) ∪ (∪j 6=iBT2(ȳj))) .
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Recalling Lemma 4.4 (and the fact that {x̄} ∪ B′ are all directed L-roots),

with probability 1− o(n−3) we have

|U | ≥
(

1−O(n−
1
5 )
)

(d− 1)T1 ,

|Vi| ≥
(

1−O(n−
1
5 )
)

(d− 1)T2 for all i ∈ [M ′] .

Combining this with Lemma 4.5, we deduce that for any sufficiently large n

the following holds with probability 1− o(n−3):(
1− 2n−

1
7

)
(d− 1)T1 ≤ |Ũ | ≤ (d− 1)T1 ,(

1− 2n−
1
7

)
(d− 1)T2 ≤ |Ṽi| ≤ (d− 1)T2 for all i ∈ [M ′] .

We will use a standard Poissonization approach in order to approximate the

joint distribution of the variables {Zȳ : ȳ ∈ B′} (that are fully determined

by the graph G) using the following set of variables:

Z̃ȳi
4
=
∣∣∣{u, v ∈ E : u ∈ Ũ , v ∈ Ṽi}

∣∣∣ (i ∈ [M ′]) .

We claim that Z̃ȳi ≤ Zȳi for all i. To see this, recall that Zȳi counts the

number of non-backtracking paths of length T +K−1 from x̄ to ȳi. Since Ũ

and Ṽi are disjoint subsets of the boundaries of the T1-radius neighborhood

U and the T2-radius neighborhood Vi respectively, every edge between them

corresponds to at least one distinct such path of length T1+T2+1 = T+K−1.

Therefore, by the triangle inequality,

ME
[∣∣∣ZB
µ
− 1
∣∣∣ ∣∣FG] =

∑
ȳ∈B

∣∣∣Zȳ
µ
− 1
∣∣∣ ≤ M ′∑

i=1

∣∣∣Zȳi
µ
− 1
∣∣∣+

∑
ȳ∈B\B′

Zȳ
µ

+
∣∣B \ B′∣∣

≤
M ′∑
i=1

(∣∣∣ Z̃ȳi
µ
− 1
∣∣∣+

Zȳi − Z̃ȳi
µ

)
+

∑
ȳ∈B\B′

Zȳ
µ

+ 3

=

M ′∑
i=1

∣∣∣ Z̃ȳi
µ
− 1
∣∣∣− M ′∑

i=1

Z̃ȳi
µ

+
∑
ȳ∈B

Zȳ
µ

+ 3 . (4.1)

Let Z̃ denote the first summand in the last expression:

Z̃ 4
=

M ′∑
i=1

|(Z̃ȳi/µ)− 1| .

The following lemma estimates Z, as well as the second summand in (4.1).

Lemma 4.7. Define Z̃ and Z̃ȳi for i = 1, . . . ,M ′ as above. Then:

P
(
Z̃ > ε+ 4

log logn

)
= o(n−2) , (4.2)
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and

P

(
1

M

M ′∑
i=1

Z̃ȳi
µ
≤ 1− ε− 1

log logn

)
= o(n−2) . (4.3)

Proof. We claim that, with probability 1 − o(n−2), each of the variables

Z̃ȳi is stochastically dominated from below and from above by i.i.d. pairs of

binomial variables, R−i ≤ R
+
i (coupled in the obvious manner), defined as:

R−i ∼ Bin
(

(1− n−
1
8 )(d− 1)T2+1, p−

)
, p−

4
= (1− n−

1
8 )

(d− 1)T1+1

dn
,

R+
i ∼ Bin

(
(d− 1)T2+1, p+

)
, p+ 4

= (1 + n−
1
4 )

(d− 1)T1+1

dn
,

∆i
4
= R+

i −R
−
i ≥ 0 .

To see this, consider the configuration model at the starting phase where

the vertices in Ũ ∪ (∪iṼi) all have degree 1 (that is, each of these vertices

comprise (d−1) points that still wait to be paired), and expose the pairings

of the points in Ṽi sequentially. Suppose that for all j < i we have already

constructed a coupling where R−j ≤ Z̃ȳj ≤ R+
j , and next wish to do the

same for Z̃ȳi .

By Lemma 4.5, with probability 1 − o(n−3) there still remain at least

(1−n−1/8)(d−1)T2 vertices of degree 1 in Ṽi and at least (1−n−1/8)(d−1)T1

such vertices in Ũ (otherwise the intersection of either B(ȳi) or B(x̄) with

one of B(ȳ1), . . . , B(ȳi−1) would contain at least n−1/7(d−1)T1 vertices). We

thus have at least (1 − n−1/8)(d − 1)T2+1 unmatched points corresponding

to Ṽi, and at least (1 − n−1/8)(d − 1)T1+1 unmatched points corresponding

to Ũ . Associating each such point corresponding to Ṽi with a Bernoulli

variable, which succeeds if and only if it is matched to Ũ , clearly establishes

the coupling of Z̃ȳi ≥ R−i .

Conversely, Ṽi ≤ (d − 1)T2 and Ũ ≤ (d − 1)T1 , hence there are at most

(d− 1)T2+1 unmatched points corresponding to Ṽi and at most (d− 1)T1+1

unmatched points corresponding to Ũ . Since both the T1-radius and the T2-

radius neighborhoods of any element contains O(
√
n) distinct vertices, the

probability of a point corresponding to Ṽi being matched to Ũ is at most

(d− 1)T1+1

dn−O(M
√
n)
≤ (d− 1)T1+1

(1− o(n−1/4))dn
.

Therefore, we can readily construct the coupling Z̃ȳi ≤ R+
i .

Since it was possible to construct each of the above couplings with prob-

ability 1 − o(n−3), clearly all M ′ variables can be coupled as above with

probability 1− o(n−2).
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Finally, consider a set of i.i.d. binomial random variables Qi with means

EQ1 = µ = (d− 1)T+K/dn, defined by

Qi ∼ Bin
(

(d− 1)T2+1,
(d− 1)T1+1

dn

)
,

and coupled in the obvious manner such that R−i ≤ Qi ≤ R+
i . Clearly, as

|Z̃ȳi −Qi| ≤ R+
i −R

−
i = ∆i, it follows that

Z̃ =
1

M ′

M ′∑
i=1

∣∣∣ Z̃vi
µ
− 1
∣∣∣ ≤ 1

M ′

M ′∑
i=1

∣∣∣Qi
µ
− 1
∣∣∣+

1

M ′

M ′∑
i=1

∆i

µ
. (4.4)

Since µ ≥ (d− 1)K ≥ 1/ε2, for all i ∈ [M ′] we have

E
∣∣∣Qi
µ
− 1
∣∣∣ ≤ 1

µ

√
Var(Qi) =

1 +O(n−
1
4 )

√
µ

≤
(

1 +
1

log n

)
ε ,

E∆i

µ
≤ (1− n−

1
8 )
(
n−

1
4 + n−

1
8

)
+ n−

1
8

(
1 + n−

1
4

)
= O

(
n−

1
4

)
.

where the last inequalities in both estimates hold for any sufficiently large

n. Furthermore, since the {Qi}-s are i.i.d. binomial variables, Chernoff’s

inequality implies that

P
( 1

M ′

M ′∑
i=1

Qi
µ
> 1 + 1

log logn

)
< e
− µM′

4(log logn)2 = e
−Ω

(
( logn
log logn

)2
)

= o(n−2) ,

(4.5)

and an analogous argument for the {∆i}-s (recall that by definition, we

have ∆i = ∆′i + ∆′′i , where the {∆′i}-s and {∆′′i }-s are two sequences of i.i.d.

binomial variables, independent of each other), combined with the fact that

E∆i/µ = O
(
n−1/4

)
, gives

P
( 1

M ′

M ′∑
i=1

∆i

µ
> 1

log logn

)
≤ e
−Ω

(
( logn
log logn

)2
)

= o(n−2) . (4.6)

Define

Xt
4
=

t∑
i=1

∣∣∣Qi
µ
− 1
∣∣∣− (Qi

µ
− 1
)
− E

∣∣∣Qi
µ
− 1
∣∣∣ .

Since E |(Qi/µ)− 1| ≤ (1 + 1
logn)ε < 2 for large n (with room to spare), we

deduce that Xt is a martingale with bounded increments:

|Xt+1 −Xt| ≤ 2 + E
∣∣∣Qi
µ
− 1
∣∣∣ ≤ 4 .

Therefore, Azuma’s inequality (cf., e.g., [6, Chapter 7.2]) implies that

P
(
XM ′/M

′ > 1
log logn

)
< e−

1
2
M ′/(4 log logn)2 = o(n−2) . (4.7)
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Since E |(Q1/µ)− 1| < (1 + 1
logn)ε and

1

M ′

M ′∑
i=1

∣∣∣Qi
µ
− 1
∣∣∣ = E

∣∣∣Q1

µ
− 1
∣∣∣+ (XM ′/M

′) +
1

M ′

M ′∑
i=1

(Qi
µ
− 1
)
,

the bounds in (4.5) and (4.7) now imply that

P
( 1

M ′

M ′∑
i=1

∣∣∣Qi
µ
− 1
∣∣∣ > ε+ 3

log logn

)
= o(n−2) .

Together with (4.4) and (4.6), we obtain that (4.2) indeed holds.

Similarly, since Z̃ȳi ≥ R−i for all i, and the {R−i }-s are i.i.d. binomial

variables with ER−i ≥ (1− ε− 3n−1/8)µ, we can apply Chernoff’s inequality

to derive a lower bound on
∑M ′

i=1(Z̃ȳi/µ). Keeping in mind that

1

M

M ′∑
i=1

Z̃ȳi
µ
≥
(

1− 3

M

) M ′∑
i=1

Z̃ȳi
µ

,

we obtain that (4.3) holds, as

P

(
1

M

M ′∑
i=1

Z̃ȳi
µ
≤ 1− ε− 1

log logn

)
≤ e
−Ω

(
( logn
log logn

)2
)

= o(n−2) .

This completes the proof of Lemma 4.7. �

We can now combine (4.2) and (4.3) with (4.1), and deduce that the

following statement holds with probability 1− o(n−2):

E
[∣∣∣ZB
µ
− 1
∣∣∣ ∣∣FG] ≤ 2ε− 1 + 5

log logn +
1

M

∑
ȳ∈B

Zȳ
µ

. (4.8)

To transform the above into the required bound on Z, take M = dlog2 ne,
and consider a collection of bins, each of size either M or M + 1, such that

the total of their sizes is dn. Let B′1, . . . ,B′`1 denote the M -element bins, and

let B′′1 , . . . ,B′′`2 denote the (M + 1)-element bins. Next, randomly partition

the elements of Ē into these bins (i.e., each bin B will contain a uniformly

chosen set of |B| directed edges).

Since there are at most bdn/Mc = O(n/M) different bins, and for each

bin the corresponding ZB satisfies (4.8) with probability at least 1− o(n−2),

we deduce that all the variables ZB′j and ZB′′j satisfy this inequality with
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probability at least 1−o(1/n). Therefore, with probability at least 1−o(1/n),

E
[∣∣∣Z
µ
− 1
∣∣∣ ∣∣FG] =

1

dn

∑
ȳ∈Ē

∣∣∣Zȳ
µ
− 1
∣∣∣

=
M

dn

`1∑
j=1

E
[∣∣∣ZB′j

µ
− 1
∣∣∣ ∣∣FG]+

M + 1

dn

`2∑
j=1

E
[∣∣∣ZB′′j

µ
− 1
∣∣∣ ∣∣FG]

≤ 2ε− 1 + 5
log logn +

1

dn

∑
ȳ∈Ē

Zȳ
µ

= 2ε+ 5
log logn ,

where the last equality follows from the fact that∑
ȳ

Zȳ =
∑
ȳ

NT+K−1(x̄, ȳ) = (d− 1)T+K = µdn .

This completes the proof. �

Proof of Theorem 2. Let (W t) be the non-backtracking random walk,

and let π denote the stationary distribution on Ē.

The lower bound is a consequence of the following simple claim:

Claim 4.8. Every d-regular graph on n vertices satisfies

tmix(1− ε) ≥ dlogd−1(dn)e − dlogd−1(1/ε)e for any 0 < ε < 1 .

Proof of claim. Let ε > 0 and let x̄0 ∈ Ē be any starting position. Clearly,

at time T = blogd−1(εdn)c we have

|∂BT (x̄0)| ≤ (d− 1)T ≤ εdn ,

and the set A
4
= Ē \ ∂BT (x̄0) has stationary measure at least 1− ε. Thus,

‖Px̄0(W T ∈ ·)− π‖TV ≥
∣∣Px̄0(W T ∈ A)− π(A)

∣∣ ≥ 1− ε ,

implying that tmix(1− ε) > T . The proof now follows from the fact that

dlogd−1(dn)e − dlogd−1(1/ε)e = dlogd−1(dn)e+ blogd−1 εc
≤ dlogd−1(εdn)e ≤ T + 1 . �

For the upper bound, let x̄0 be the worst starting position, and let

x̄ = W t0 , where t0 = dlogd−1(2/ε)e. Let Lr denote the event that x̄ is

a directed L-root, where L = d1
6 logd−1(dn)e. Conditioning on the state-

ments of Lemma 4.2 and Lemma 4.3 (and recalling that both hold whp) we

obtain that Px̄0(Lr) ≥ 1− ε.
Condition on the statement of Proposition 4.6, and following its notation,

let Z(x̄) accept the value NT+K−1(x̄, ȳ) with probability 1/dn, where

K = d2 logd−1(1/ε)e , T = dlogd−1(dn)e , µ = (d− 1)T+K/dn .
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The following then holds:∑
ȳ∈Ē

∣∣∣∣Px̄(W T+K = ȳ | Lr)− 1

dn

∣∣∣∣
=
∑
k

|{ȳ : NT+K−1(x̄, ȳ) = k}|
∣∣∣∣ k

(d− 1)T+K
− 1

dn

∣∣∣∣
=
∑
k

P (Z = k | FG)

∣∣∣∣kµ − 1

∣∣∣∣ = E
[
|(Z/µ)− 1|

∣∣FG] ≤ 2ε+ o(1) ,

(4.9)

where in the last inequality we applied Proposition 4.6 onto the directed

L-root x̄ (given the event Lr). We deduce that for t(ε) = t0 + T +K:∥∥∥Px̄0(W t ∈ ·)− π
∥∥∥

TV
=

1

2

∑
ȳ∈Ē

∣∣∣∣Px̄0(W t = ȳ)− 1

dn

∣∣∣∣
≤ 1

2
Px̄0(Lr)

∑
ȳ∈Ē

∣∣∣∣Px̄0(W t = ȳ | Lr)− 1

dn

∣∣∣∣+ Px̄0(Lrc)

≤ ε+ (1− ε)Px̄0(Lrc) + o(1) ≤ 2ε− ε2 + o(1) < 2ε , (4.10)

where the first inequality in the last line is by (4.9), the second one is due

to the fact that P(Lrc) ≤ ε, and the third inequality holds for sufficiently

large values of n. Therefore, for any large n we have

tmix(ε) ≤ t(ε/2) ≤ dlogd−1(dn)e+ 3
⌈
logd−1(2/ε)

⌉
+ dlogd−1 2e

≤ dlogd−1(dn)e+ 3dlogd−1(1/ε)e+ 4

(where in the last inequality we used the fact that d ≥ 3), as required. �

5. Cutoff for random regular graphs of large degree

In this section, we prove Theorem 3 and Corollary 4, which extend our

cutoff result for the SRW and NBRW on almost every random regular graph

of fixed degree d ≥ 3 to the case of d large. To prove cutoff for the NBRW, we

adapt our original arguments (from the case of d fixed) to the new delicate

setting where our error probabilities are required to be exponentially small

in d. The behavior of the SRW is then obtained as a corollary of this result.

Throughout the section, let d = d(n) → ∞ with n, and recall that we

further assume that d = no(1), since otherwise the the mixing time is O(1)

and cutoff is impossible.

5.1. NBRWs on random regular graphs of large degree. As we will

soon show, when d is large we no longer need to deal with K-roots (and the

locally-tree-like geometry of the starting point of our walk), as all vertices
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will have sufficient expansion whp. However, the analysis of the configu-

ration model becomes more delicate, as the probability that it produces a

simple graph is (1 + o(1)) exp
(

1−d2
4

)
(see (2.1)), which now decays with n.

Thus, to prove that the probability of an event goes to 0 on G(n, d), we must

now show that its probability is o
(
exp(−d2/4)

)
in the configuration model.

Lemma 5.1. With high probability, for all x̄ ∈ Ē and all t ≤ 4
7 logd−1 n,

|∂Bt(x̄)| ≥ (1− o(1))(d− 1)t . (5.1)

Proof. The proof is an adaption of Lemma 3.3. Pick a directed edge x̄

uniformly at random and expose its first level. Since we are interested in

probabilities conditioned on the graph G being simple, we may assume that

|∂B1(x̄)| = d− 1, that is, there are no self-loops or multiple edges from x̄.

We will show that (5.1) holds with probability 1 − o
(
n−1 exp(−d2/4)

)
for the above x̄ in the configuration model. Clearly, for any t < t′ we have

|∂Bt(x̄)| ≥ (d−1)t
′−t|∂Bt′(x̄)|, hence we can restrict our attention to ∂BT (x̄)

where T = b4
7 logd−1 nc.

Following the notation in the proof of Lemma 2.1, let Ai,k be the event

that, in the process of sequentially matching points, the newly exposed pair

of the k-th unmatched point in ∂Bi belongs to some vertex already in Bi+1.

Further recall that, by (2.3) and the discussion thereafter, the number of

events {Ai,k : 0 ≤ i < T} that occur is stochastically dominated by a

binomial variable with parameters Bin
(

(d− 1)T+1, (d−1)T

n

)
. By our choice

of T , the expectation of this random variable is

(d− 1)2T+1/n ≤ dn1/7 ≤ n1/7+o(1) ,

hence the number of events Ai,k with 0 ≤ i < T that occur is less than n1/6

(with room to spare) with probability at least 1− exp(−Ω(n1/6)). Next, set

L =
⌊

1
5 logd−1 n

⌋
, ρ =

⌈
4 + 2d2/ log n

⌉
= o(d2).

As before, we can stochastically dominate the number of events Ai,k that

occur in the first L levels, {Ai,k : 0 ≤ i < L}, by a binomial variable

XL ∼ Bin
(

(d− 1)L+1, (d−1)L

n

)
. Since the expected value of XL is

(d− 1)2L+1/n = o
(
n−1/2

)
,

and since L→∞ with n (by our assumption on d), it is easy to verify that

P(XL ≥ ρ) = (1 + o(1))P(XL = ρ) = o
(
n−ρ/2

)
.

Recalling the definition of ρ, it now follows that the number of events Ai,k
with 0 ≤ i < L that occur is less than ρ except with probability o(n−2e−d

2
).
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Each event Ai,k reduces the number of leaves in level i+ 1 by at most 2,

hence it reduces the number of leaves in level t > i by at most 2(d− 1)t−i−1

vertices. It then follows that for each 0 ≤ t < T ,

|∂Bt(x̄)| ≥ (d− 1)t −
∑
i<t

∑
k

1Ai,k2(d− 1)t−i−1 . (5.2)

As |∂B1(x̄)| = d− 1, there are no events of the form A0,k. Therefore, by the

discussion above, with probability 1− o(n−2e−d
2
) we have∑

i<L

∑
k

1Ai,k2(d− 1)t−i−1 ≤ 2(d− 1)t−2ρ = o
(
(d− 1)t

)
.

Furthermore, by the above discussion on the number of events Ai,k that

occur, we deduce that with probability at least 1− exp(−Ω(n1/6))

t−1∑
i=L

∑
k

1Ai,k2(d− 1)t−i−1 ≤ 2(d− 1)t−L−1n1/6 = o
(
(d− 1)t

)
.

Plugging the above in (5.2), we obtain that with probability 1− o(n−2e−d
2
)

|∂Bt(x̄)| ≥ (1− o(1))(d− 1)t , (5.3)

and a union bound implies that (5.3) holds for all directed edges x̄ which sat-

isfy |∂B1(x̄)| = d−1 except with probability O
(
d
n exp(−d2)

)
= o(exp(−d2)).

By (2.1), it now follows that (5.1) also holds whp over G(n, d). �

The following lemma, the analogue of Lemma 3.4, is proved by essentially

following the same argument as in the proof of Lemma 3.4, i.e., calculating

the size of the common neighborhood of two vertices. The difference is

again that here we need to deal with the fact that the probability that the

configuration model is a simple graph is exponentially small in d. This is

achieved by repeating the approach, demonstrated in Lemma 5.1 above, of

treating B1(x̄) separately. Applying this analysis to the neighborhoods of

the 2 starting directed edges x̄, ȳ gives the required result, with the remaining

arguments of Lemma 3.4 left unchanged (we omit the full details).

Lemma 5.2. Set T = 51
100 logd−1 n and L = 1

6 logd−1 n. Then whp, for

every x̄, ȳ ∈ Ē with dist(x̄, ȳ) > 2L and every t ≤ T ,

|Bt(x̄) ∪Bt(ȳ)| ≥ n−1/7(d− 1)t .

The final ingredient needed is the analogue of the Poissonization result of

Proposition 4.6, as given by the following proposition.

Proposition 5.3. Let ε > 0, set

T = dlogd−1(dn) + 2 logd−1(1/ε)e , µ = (d− 1)T /dn ,
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and for each x̄ ∈ Ē, define the random variable Z = Z(x̄) by

P(Z = k) =
1

dn

∣∣{ȳ ∈ Ē : NT−1(x̄, ȳ) = k
}∣∣ ,

where N`(x̄, ȳ) is the number of `-long non-backtracking paths from x̄ to ȳ.

Then whp, every x̄ satisfies

E
[
|(Z(x̄)/µ)− 1|

∣∣FG] < 2ε+
5

log log n
,

where FG is the σ-field generated by the graph G ∼ G(n, d).

The proof of the above proposition is essentially the same as the proof

of Proposition 4.6, with some minor adjustments to the estimates to ensure

that they hold with probability o
(
exp(−d2/4)

)
. The main necessary change

is to let the bin sizes depend on d, namely to set M = d3 log2 n. As only

minor adjustments to some of the bounds are required elsewhere, we omit

the details.

Proof of Theorem 3. The lower bound of tmix(s) ≥ dlogd−1(dn)e follows

immediately from Claim 4.8, whose proof remains valid without change,

even when d is allowed to grow with n.

To obtain the upper bound, let (W t) denote the non-backtracking random

walk started at W 0 = x̄. Set ε = 3s, and

T = dlogd−1(dn) + 2 logd−1(1/ε)e , µ = (d− 1)T /dn .

By Proposition 5.3 we have that whp,∑
ȳ∈Ē

∣∣∣∣Px̄(W T = ȳ)− 1

dn

∣∣∣∣
=
∑
k

|{ȳ : NT−1(x̄, ȳ) = k}|
∣∣∣∣ k

(d− 1)T
− 1

dn

∣∣∣∣
=
∑
k

P (Z = k | FG)

∣∣∣∣kµ − 1

∣∣∣∣
= E

[
|(Z/µ)− 1|

∣∣FG] ≤ 2ε+ o(1) ≤ s

for large n. We conclude that tmix(s) ≤ T ≤ dlogd−1(dn)e + 1, since

logd−1(1/ε) = o(1) by our assumption on d. �

5.2. Duality between non-backtracking and simple random walks.

The following observation is attributed to Yuval Peres:

Observation 5.4. Conditioning on being in level k of the simple random

walk on the tree, we are uniform over k-long non-backtracking random walks.
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More specifically, let T be the cover tree for G at u with a map ϕ, as

defined in (2.5). Let Xt be a SRW on T started from ρ and let Wt = ϕ(Xt)

be the corresponding SRW on G started from u. Compare this with a NBRW

random walk W t started from x̄ = (w, u) where w is chosen uniformly from

the neighbors of u. For a directed edge (y, z) let ψ(·) denote the projection

ψ((y, z)) = z, giving the vertex the NBRW is presently situated at.

Note that, by symmetry, conditioned on dist(ρ,Xt) = k the random walk

is uniform on the d(d − 1)k−1 points {w ∈ T : dist(ρ, w) = k}. By the

obvious one-to-one correspondence between paths of length k from ρ in T
and non-backtracking paths of length k in G from u, the following holds:

Conditioned on dist(ρ,Xt) = k we have that Wt is distributed as ψ(W k).

Thus, if W t is mixed at time k then a SRW will be mixed once its lift to the

cover tree reaches distance k from the root.

Proof of Corollary 4. In our proof of Theorem 1, it was shown using the

Central Limit Theorem (see equation (3.4)) that the distance from the root

of the walk in the cover tree is given by

dist(Xt, ρ)− (d−2)t
d

2
√
d−1
d

√
t

d−→ N(0, 1). (5.4)

When d grows with n this Gaussian approximation still holds provided the

variance satisfies 2
√
d−1
d

√
t → ∞ or equivalently (t/d) → ∞. When d and t

are of the same order, the number of backtracking steps is asymptotically

a Poisson random variable with mean (t/d), therefore (t− dist(Xt, ρ)) is

distributed as twice a Po(t/d) random variable. In both of these cases,

whenever t has order logd−1 n, the variance of dist(Xt, ρ) is of order logn
d log d .

Finally, when t/d → 0, the number of backtracking steps goes to 0 as well.

This understanding of dist(Xt, ρ) will allow us to translate our results on

NBRWs into statements on SRWs.

If w ∈ T and dist(ρ, w) ≤ R then ϕ(w) ∈ BR and hence,

‖P(Wt ∈ ·)− π‖TV ≥ P(Wt ∈ BR)− π(BR) ≥ P(dist(Xt, ρ) ≤ R)− π(BR).

In particular, as |BR| ≤ O
(

n
d−1

)
= o(1) for R ≤ logd−1(n)− 1, we have that

‖P(Wt ∈ ·)− π‖TV ≥ P
(
dist(Xt, ρ) ≤ logd−1(n)− 1

)
− o(1). (5.5)

Next, let %k = dTV(W k, π) be the total variation distance between the

NBRW and the stationary distribution. According to Observation 5.4 (the

correspondence between walks on the cover tree conditioned to be at distance
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k and NBRWs of length k), the following holds:

‖P(Wt ∈ ·)− π‖TV ≤
t∑

k=0

‖P (Wt ∈ · | dist(Xt, ρ) = k)− π‖TV

· P(dist(Xt, ρ) = k)

=

t∑
k=0

%kP(dist(Xt, ρ) = k) .

Now, by Theorem 3, when k > dlogd−1(dn)e we have %k = o(1), hence

‖P(Wt ∈ ·)− π‖TV ≤ P
(
dist(Xt, ρ) ≤ dlogd−1(dn)e

)
+ o(1). (5.6)

Equations (5.5) and (5.6) imply that mixing takes place when dist(Xt, ρ)

is logd−1 n+O(1). By the above discussion on the distribution of dist(Xt, ρ)

this occurs when t is around d
d−2 logd−1 n with window

√
logn
d log d .

It remains to address the case where d log logn
logn → ∞. Notice that here,

as the probability of the SRW on G making a backtracking step is 1/d, the

probability of backtracking anywhere in its first dlogd−1(dn)e+1 steps is o(1).

Hence, we can couple the SRW and NBRW in their first dlogd−1(dn)e + 1

steps whp, implying they have the same mixing time. In particular, we may

conclude that for any fixed 0 < s < 1, the worst case total-variation mixing

time of the SRW on G whp satisfies

tmix(s) ∈
{
dlogd−1(dn)e, dlogd−1(dn)e+ 1

}
,

as required. �

6. Concluding remarks and open problems

• We have established the cutoff phenomenon for SRWs and NBRWs on

almost every d-regular graph on n vertices, where 3 ≤ d ≤ no(1) (beyond

which the mixing time is O(1) and we cannot have cutoff). For both

walks, we obtained the precise cutoff location and window:

1. For the SRW, the cutoff point is whp at d
d−2 logd−1 n, and in fact,

we obtained the two leading order terms of tmix(s) for any fixed s.

2. For the NBRW, cutoff occurs at logd−1(dn) whp ( d
d−2 times faster

than the SRW) with an O(1) window. Moreover, for large d, the

entire mixing transition takes place within a 2-step cutoff window.

• Given our discussion in Section 1 on expander graphs (and the product-

criterion for cutoff), it would be interesting to extend our results to any

arbitrary family of expanders. While one may design such graphs where

the SRW has no cutoff, such constructions seem highly asymmetric, and

the following conjecture seems plausible (see also [15, Question 5.2]):
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Conjecture 6.1. The SRW on any family of vertex-transitive expander

graphs exhibits cutoff.

• Similarly, recalling the above comparison of tmix of the SRW and the

NBRW on random regular graphs, it would be interesting to extend this

result to any family of vertex-transitive expander graphs.
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