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Abstract. We introduce a new framework for analyzing Glauber dynamics for the Ising model. The
traditional approach for obtaining sharp mixing results has been to appeal to estimates on spatial
properties of the stationary measure from within a multi-scale analysis of the dynamics. Here we propose
to study these simultaneously by examining “information percolation” clusters in the space-time slab.

Using this framework, we obtain new results for the Ising model on (Z/nZ)d throughout the high
temperature regime: total-variation mixing exhibits cutoff with an O(1)-window around the time at
which the magnetization is the square-root of the volume. (Previously, cutoff in the full high temperature
regime was only known in dimensions d ≤ 2, and only with an O(log log n)-window.)

Furthermore, the new framework opens the door to understanding the effect of the initial state
on the mixing time. We demonstrate this on the 1d Ising model, showing that starting from the
uniform (“disordered”) initial distribution asymptotically halves the mixing time, whereas almost every
deterministic starting state is asymptotically as bad as starting from the (“ordered”) all-plus state.

1. Introduction

Glauber dynamics is one of the most common methods of sampling from the high-temperature Ising
model (notable flavors are Metropolis-Hastings or Heat-bath dynamics), and at the same time provides
a natural model for its evolution from any given initial configuration.

We introduce a new framework for analyzing the Glauber dynamics via “information percolation”
clusters in the space-time slab, a unified approach to studying spin-spin correlations in Zd over time
(depicted in Fig. 1–2 and described in §1.2). Using this framework, we make progress on the following.

(i) High-temperature vs. infinite-temperature: it is believed that when the inverse-temperature β is
below the critical βc, the dynamics behaves qualitatively as if β = 0 (the spins evolve independently).
In the latter case, the continuous-time dynamics exhibits the cutoff phenomenon1 with an O(1)-window
as shown by Aldous [2] and refined in [6, 11]; thus, the above paradigm suggests cutoff at any β < βc.
Indeed, it was conjectured by Peres in 2004 (see [16, Conjecture 1] and [17, Question 8, p316]) that
cutoff occurs whenever there is O(log n)-mixing2. Moreover, one expects the cutoff window to be O(1).

Best-known results on Zd: cutoff for the Ising model in the full high-temperature regime β < βc was
only confirmed in dimensions d ≤ 2 ([20]), and only with a bound of O(log log n) on the cutoff window.

(ii) Warm start (random, disordered) vs. cold start (ordered): within the extensive physics literature
offering numerical experiments for spin systems, it is common to find Monte Carlo simulations at high
temperature started at a random (warm) initial state where spins are i.i.d. (“disordered”); cf. [15, 31].
A natural question is whether this accelerates the mixing for the Ising model, and if so by how much.

Best-known results on Zd: none to our knowledge — sharp upper bounds on total-variation mixing
for the Ising model were only applicable to worst-case starting states (usually via coupling techniques).

1sharp transition in the L1-distance of a finite Markov chain from equilibrium, dropping quickly from near 1 to near 0.
2this pertains β < βc, since at β = βc the mixing time for the Ising model on (Z/nZ)d is at least polynomial in n by

results of Aizenman and Holley [1, 13] (see [13, Theorem 3.3]) whereas for β > βc it is exponential in nd−1 (cf. [23]).
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Figure 1. Information percolation clusters for the 2d stochastic Ising model:
showing the largest 25 clusters on a {1, . . . , 200}2 × [0, 20] space-time slab.

The cutoff phenomenon plays a role also in the second question above: indeed, whenever there is
cutoff, one can compare the effect of different initial states x0 on the asymptotics of the corresponding

mixing time t
(x0)
mix (ε) independently of ε, the distance within which we wish to approach equilibrium.

(For more on the cutoff phenomenon, discovered in the early 80’s by Aldous and Diaconis, see [3, 5].)

1.1. Results. Our first main result confirms the above conjecture by Peres that Glauber dynamics
for the Ising model on Λ = (Z/nZ)d, in any dimension d, exhibits cutoff in the full high temperature
regime β < βc. Moreover, we establish cutoff within an O(1)-window (as conjectured) around the point

tm = inf
{
t > 0 : mt(v) ≤ 1/

√
|Λ|
}
, (1.1)

where mt(v) is the magnetization at the vertex v ∈ Λ at time t > 0, i.e.,

mt(v) = EX+
t (v) (1.2)

with (X+
t ) being the dynamics started from the all-plus starting state (by translational invariance we

may write mt for brevity). Intuitively, at time tm the expected value of
∑

vX
+
t (v) becomes O(

√
|Λ|),

within the normal deviations of the Ising distribution, and expect mixing to occur. For instance, in
the special case β = 0 we have mt = e−t and so tm = 1

2 log |Λ|, the known cutoff location from [3,6,11].

Theorem 1. Let d ≥ 1 and let βc be the critical inverse-temperature for the Ising model on Zd.
Consider continuous-time Glauber dynamics for the Ising model on the torus (Z/nZ)d. Then for any
inverse-temperature β < βc the dynamics exhibits cutoff at tm as given in (1.1) with an O(1)-window.
Moreover, there exists C = Cβ,d > 0 so that for any fixed 0 < ε < 1 and large n,

tmix(1− ε) ≥ tm − C log(1/ε) ,

tmix(ε) ≤ tm + C log(1/ε) .

This improves on [20] in two ways: (a) A prerequisite for the previous method of proving cutoff for
the Ising model on lattices (and all of its extensions) was that the stationary measure would satisfy
the decay-of-correlation condition known as strong spatial mixing, valid in the full high temperature
regime for d ≤ 2. However, for d ≥ 3 it is known to hold only for β small enough3; Theorem 1 removes
this limitation and covers all β < βc (see also Theorem 3 below). (b) A main ingredient in the previous
proofs was a reduction of L1-mixing to very-fine L2-mixing of sub-cubes of poly-logarithmic size, which
was achieved via log-Sobolev inequalities in time O(log log n). This led to a sub-optimal O(log log n)
bound on the cutoff window, which we now improve to the conjectured O(1)-window.

3At low temperatures on Zd (see the discussion above Theorem 3) there might not be strong spatial mixing despite an
exponential decay-of-correlations (weak spatial mixing); however, one expects to have strong spatial mixing for all β < βc.
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Figure 2. Top view of information percolation clusters for the 2d stochastic Ising model:
sites of a 200× 200 square color-coded by their cluster size (increasing from red to white).

The lower bound on the tmix(1− ε) in Theorem 1 is realized from the all-plus starting configuration;
hence, for any d ≥ 1 this is (as expected) the worst-case starting state up to an additive O(1)-term:

t
(+)
mix(ε) = tm +O

(
log(1/ε)

)
for any β < βc and 0 < ε < 1 . (1.3)

This brings us to the aforementioned question of understanding the mixing from specific initial states.
Here the new methods can be used to give sharp bounds, and in particular to compare the warm start
using the uniform (i.i.d.) distribution to various deterministic initial states. We next demonstrate this
on the 1d Ising model (we treat higher dimensions, and more generally any bounded-degree geometry,
in the companion paper [22]), where, informally, we show that

• The uniform starting distribution is asymptotically twice faster than the worst-case all-plus;
• Almost all deterministic initial states are asymptotically as bad as the worst-case all-plus.

Formally, if µ
(x0)
t is the distribution of the dynamics at time t started from x0 then t

(x0)
mix (ε) is the

minimal t for which µ
(x0)
t is within distance ε from equilibrium, and t

(u)
mix(ε) is the analogue for the

average 2−|Λ|
∑

x0
µ

(x0)
t (i.e., the annealed version, as opposed to the quenched t

(x0)
mix for a uniform x0).

Theorem 2. Fix any β > 0 and 0 < ε < 1, and consider continuous-time Glauber dynamics for the
Ising model on (Z/nZ). Letting tm = 1

2θ log n with θ = 1− tanh(2β), the following hold:

1. (Annealed) Starting from a uniform initial distribution: t
(u)
mix(ε) ∼ 1

2 tm.

2. (Quenched) Starting from a deterministic initial state: t
(x0)
mix (ε) ∼ t(+)

mix(ε) ∼ tm for almost every x0.

Unlike the proof of Theorem 1, which coupled the distributions started at worst-case states, in order
to analyze the uniform initial state one is forced to compare the distribution at time t directly to the
stationary measure. This delicate step is achieved via the Coupling From The Past method [28].

Remark. The bound on t
(x0)
mix (ε) applies not only to a typical starting state X0, but to any deterministic

X0 which satisfies that 1/
∑

v(EXtm(v))2 is sub-polynomial in n — e.g., O((log n)100) — a condition
that can be expressed via X0(Ytm) where Yt is continuous-time random walk on Zn; see Proposition 6.5.
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As noted earlier, the new framework relaxes the strong spatial mixing hypothesis from previous works
into weak spatial mixing (i.e., exponential decay-of-correlation, valid for all β < βc in any dimension).
This has consequences also for low temperatures: there it is strongly believed that in dimension d ≥ 3
(see [23, §5] and [4]) under certain non-zero external magnetic field (some fixed h 6= 0 for all sites)
there would be weak but not strong spatial mixing. Using the periodic boundary conditions to preclude
boundary effects, our arguments remain valid also in this situation, and again we obtain cutoff:

Theorem 3 (low temperature with external field). The conclusion of Theorem 1 holds in (Z/nZ)d for
any large enough fixed inverse-temperature β in the presence of a non-zero external magnetic field.

We now discuss extensions of the framework towards showing universality of cutoff, whereby the
cutoff phenomenon — believed to be widespread, despite having been rigorously shown only in relatively
few cases — is not specific to the underlying geometry of the spin system, but instead occurs always at
high temperatures (following the intuition behind the aforementioned conjecture of Peres from 2004).
Specializing this general principle to the Ising model, one expects the following to hold:

On any locally finite geometry the Ising model should exhibit cutoff at high temperature
(i.e., cutoff always occurs for β < cd where cd depends only on the maximum degree d).

The prior technology for establishing cutoff for the Ising model fell well short of proving such a result.
Indeed, the approach in [20], as well as its generalization in [21], contained two major provisos:
(i) heavy reliance on log-Sobolev constants to provide sharp L2-bounds on local mixing (see [7–9,29]);

the required log-Sobolev bounds can in general be highly nontrivial to verify (see [14,23–26,32,33]).
(ii) an assumption on the geometry that the growth rate of balls (neighborhoods) is sub-exponential;

while satisfied on lattices (linear growth rate), this rules out trees, random graphs, expanders, etc.
Demonstrating these limitations is the fact that the required log-Sobolev inequalities for the Ising model
were established essentially only on lattices and regular trees, whereas on the latter (say, a binary tree)
it was unknown whether the Ising model exhibits cutoff at any small β > 0, due to the second proviso.

In contrast with this, the above mentioned paradigm instead says that, at high enough temperatures,
cutoff should occur without necessitating log-Sobolev inequalities, geometric expansion properties, etc.
Using the new framework of information percolation we can now obtain such a result. Define the
non-transitive analogue of the cutoff-location tm from (1.1) to be

tm = inf
{
t > 0 :

∑
v mt(v)2 ≤ 1

}
, (1.4)

with mt(v) = EX+
t (v) as in (1.2). The proof of the following theorem — which, apart from the necessary

adaptation of the framework to deal with a non-transitive geometry, required several novel ingredients
to obtain the correct dependence of β on the maximal degree — appears in a companion paper [22].

Theorem 4. There exists an absolute constant κ > 0 so that the following holds. Let G be a graph
on n vertices with maximum degree at most d. For any fixed 0 < ε < 1 and large enough n, the
continuous-time Glauber dynamics for the Ising model on G with inverse-temperature 0 ≤ β < κ/d has

tmix(1− ε) ≥ tm − C log(1/ε) ,

tmix(ε) ≤ tm + C log(1/ε) .

In particular, on any sequence of such graphs the dynamics has cutoff with an O(1)-window around tm.

The companion paper further extends Theorem 2 to any bounded-degree graph at high temperature:
the mixing time is at least (1−εβ)tm from almost every deterministic initial state x0, yet from a uniform

initial distribution it is at most (1
2 + εβ)tm, where εβ can be made arbitrarily small for β small enough.
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Figure 3. Information percolation clusters in Glauber dynamics for the 1d Ising model:
red (reaching time zero), blue (dying out quickly) and green clusters on n = 256 sites.

In summary, on any locally-finite geometry (following Theorems 1–2 for Zd) one roughly has that
(1) the time needed to couple the dynamics from the extreme initial states, X+

t and X−t , via the
monotone coupling (a standard upper bound on the mixing time) overestimates tmix by a factor of 2;
(2) the worst-case mixing time tmix, which is asymptotically the same as when starting from almost every
deterministic state, is another factor of 2 worse compared to starting from the uniform distribution.

1.2. Methods: red, green and blue information percolation clusters. The traditional approach
for obtaining sharp mixing results for the Ising model has been two-fold: one would first derive certain
properties of the stationary Ising measure (ranging from as fundamental as strong spatial mixing to as
proprietary as interface fluctuations under specific boundary conditions); these static properties would
then drive a dynamical multi-scaled analysis (e.g., recursion via block-dynamics/censoring); see [23].

We propose to analyze the spatial and temporal aspects of the Glauber dynamics simultaneously by
tracking the update process for the Ising model on (Z/nZ)d in the (d+ 1)-dimensional space-time slab.
Following is an outline of the approach for heat-bath dynamics4; formal definitions of the framework
(which is valid for a class of Glauber dynamics that also includes, e.g., Metropolis) will be given in §2.

As a first step, we wish to formulate the dynamics (Xt) so that the update process, viewed backward
in time, would behave as subcritical percolation in (Z/nZ)d × R+; crucially, establishing this subcrit-
ical behavior will build on the classical fact that the site magnetization mt (defined in (1.2)), decays
exponentially fast to 0 (the proof of which uses the monotonicity of the Ising model; see Lemma 2.1).
Recall that each site of (Z/nZ)d is updated via a Poisson point process, whereby every update utilizes
an independent unit variable to dictate the new spin, and the probability of both plus and minus is
bounded away from 0 for any fixed β > 0 even when all neighbors have the opposing spin. Hence, we
can say that with probability θ > 0 bounded away from 0 (explicitly given in (2.4)), the site is updated
to a ±1 fair coin flip independently of the spins at its neighbors, to be referred to as an oblivious update.

Clusters definition. For simplicity, we first give a basic definition that will be useful only for small β.
Going backward in time from a given site v at time t, we reveal the update history affecting Xt(v): in
case of an oblivious update we “kill” the branch, and otherwise we split it into its neighbors, continuing
until all sites die out or reach time 0 (see Figure 1). The final cluster then allows one to recover Xt(v)
given the unit variables for the updates and the intersections of the cluster with the initial state x0.

4A single-site heat-bath update replaces a spin by a sample from the Ising measure conditioned on all other spins.



6 EYAL LUBETZKY AND ALLAN SLY

Note that the dependencies in the Ising measure show up in this procedure when update histories of
different sites at time t merge into a single cluster, turning the spins at time t into a complicated function
of the update variables and the initial state. Of course, since the probability of an oblivious update θ
goes to 1 as β → 0, for a small enough β the aforementioned branching process is indeed subcritical,
and so these clusters should have an exponential tail (see Figure 2). For β close to the critical point in
lattices, this is no longer the case, and one needs to refine the definition of an information percolation
cluster — roughly, it is the subset of the update history that the designated spin truly depends on
(e.g., in the original procedure above, an update can cause the function determining Xt(v) to become
independent of another site in the cluster, whence the latter is removed without being directly updated).

The motivation behind studying these clusters is the following. Picture a typical cluster as a single
strand, linking between “sausages” of branches that split and quickly dye out. If this strand dies before
reaching time 0 then the spin atop would be uniform, and otherwise, starting e.g. from all-plus, that
spin would be plus. Therefore, our definition of the cutoff time tm has that about

√
|Λ| of the sites

reach time 0; in this way, most sites are independent of the initial state, and so Xt would be well mixed.
Further seen now is the role of the initial state x0, opening the door to non-worst-case analysis: one
can analyze the distribution of the spins atop a cluster in terms of its intersection with x0 at time 0.

Red, green and blue clusters. To quantify the above, we classify the clusters into three types: informally,
• a cluster is Blue if it dies out very quickly both in space and in time;
• a cluster is Red if the initial state affects the spins atop;
• a cluster is Green in all other situations.

(See §2 for formal definitions, and Figure 3 for an illustration of these for the Ising model on Z/nZ.)
Once we condition on the green clusters (to be thought of as having a negligible effect on mixing), what
remains is a competition between red clusters — embodying the dependence on the initial state x0 —
and blue ones, the projection on which is just a product measure (independent of x0). Then, one wants
to establish that red clusters are uncommon and “lost within a sea of blue clusters”. This is achieved
via a simple yet insightful lemma of Miller and Peres [27], bounding the total-variation distance in
terms of a certain exponential moment; in our case, an exponential of the intersection of the set of
vertices in Red clusters between two i.i.d. instances of the dynamics. Our main task — naturally
becoming increasingly more delicate as β approaches βc — will be to bound this exponential moment,
by showing that each red set behaves essentially as a uniformly chosen subset of size O(e−cs

√
|Λ|) at

time tm + s; thus, the exponential moment will approach 1 as s→∞, implying mixing.

Flavors of the framework. Adaptations of the general framework above can be used in different settings:
• To tackle arbitrary graphs at high enough temperatures (Theorem 4), a blue cluster is one that dies

out before reaching the bottom (time 0) and has a singleton spin at the top (the target time t), and
a red cluster is one where the spins at the top have a nontrivial dependence on the initial state x0.
• For lattices at any β < βc, the branching processes encountered are not sufficiently subcritical, and

one needs to boost them via a phase in which (roughly) some of the oblivious updates are deferred,
only to be sprinkled at the end of the analysis. This entails a more complicated definition of blue
clusters, referring to whether history dies out quickly enough from the end of that special phase,
whereas red clusters remain defined as ones where the top spins are affected by the initial state x0.
• For random initial states (Theorem 2) we define a red cluster as one in which the intersection with
x0 is of size at least 2 and coalesces to a single point before time 0 under Coupling From The Past.
The fact that pairs of sites surviving to time 0 are now the dominant term (as opposed to singletons)
explains the factor of 2 between the annealed/worst-case settings (cf. the two parts of Theorem 2).
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1.3. Organization. The rest of this paper is organized as follows. In §2 we give the formal definitions of
the above described framework, while §3 contains the modification of the general framework tailored to
lattices up to the critical point, including three lemmas analyzing the information percolation clusters.
In §4 we prove the cutoff results in Theorems 1 and 3 modulo these technical lemmas, which are
subsequently proved in §5. The final section, §6, is devoted to the analysis of non-worst-case initial
states (random vs. deterministic, annealed vs. quenched) and the proof of Theorem 2.

2. Framework of information percolation

2.1. Preliminaries. In what follows we set up standard notation for analyzing the mixing of Glauber
dynamics for the Ising model; see [20] and its references for additional information and background.

Mixing time and the cutoff phenomenon. The total-variation distance between two probability measures
ν1, ν2 on a finite space Ω — one of the most important gauges in MCMC theory for measuring the
convergence of a Markov chain to stationarity — is defined as

‖ν1 − ν2‖tv = max
A⊂Ω
|ν1(A)− ν2(A)| = 1

2

∑
σ∈Ω

|ν1(σ)− ν2(σ)| ,

i.e., half the L1-distance between the two measures. Let (Xt) be an ergodic finite Markov chain with
stationary measure π. Its total-variation mixing-time, denoted tmix(ε) for 0 < ε < 1, is defined to be

tmix(ε)
4
= inf

{
t : max

x0∈Ω
‖Px0(Xt ∈ ·)− π‖tv ≤ ε

}
,

where here and in what follows Px0 denotes the probability given X0 = x0. A family of ergodic finite
Markov chains (Xt), indexed by an implicit parameter n, is said to exhibit cutoff (this concept going
back to the works [2, 10]) iff the following sharp transition in its convergence to stationarity occurs:

lim
n→∞

tmix(ε)

tmix(1− ε)
= 1 for any 0 < ε < 1 . (2.1)

That is, tmix(α) = (1 + o(1))tmix(β) for any fixed 0 < α < β < 1. The cutoff window addresses the rate
of convergence in (2.1): a sequence wn = o

(
tmix(e−1)

)
is a cutoff window if tmix(ε) = tmix(1−ε)+O(wn)

holds for any 0 < ε < 1 with an implicit constant that may depend on ε. Equivalently, if tn and wn are
sequences with wn = o(tn), we say that a sequence of chains exhibits cutoff at tn with window wn if lim

γ→∞
lim inf
n→∞

max
x0∈Ω

‖Px0(Xtn−γwn ∈ ·)− π‖tv = 1 ,

lim
γ→∞

lim sup
n→∞

max
x0∈Ω

‖Px0(Xtn+γwn ∈ ·)− π‖tv = 0 .

Verifying cutoff is often quite challenging, e.g., even for the simple random walk on a bounded-degree
graph, no examples were known prior to [19], while this had been conjectured for almost all such graphs.

Glauber dynamics for the Ising model. Let G be a finite graph G with vertex-set V and edge-set E. The
Ising model on G is a distribution over the set Ω = {±1}V of possible configurations, each corresponding
to an assignment of plus/minus spins to the sites in V . The probability of σ ∈ Ω is given by

π(σ) = Z−1eβ
∑
uv∈E σ(u)σ(v)+h

∑
u∈V σ(u) , (2.2)

where the normalizer Z = Z(β, h) is the partition function. The parameter β is the inverse-temperature,
which we always to take to be non-negative (ferromagnetic), and h is the external field, taken to be 0
unless stated otherwise. These definitions extend to infinite locally finite graphs (see, e.g., [18, 23]).
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Figure 4. Heat-bath dynamics for the 1d Ising model, marking oblivious updates by ⊕ and 	 and
non-oblivious updates by N and H to denote σ(i) 7→ σ(i− 1)∧σ(i+ 1) and σ(i) 7→ σ(i− 1)∨σ(i+ 1).

The Glauber dynamics for the Ising model (the Stochastic Ising model) is a family of continuous-time
Markov chains on the state space Ω, reversible w.r.t. the Ising measure π, given by the generator

(L f)(σ) =
∑
u∈Λ

c(u, σ) (f(σu)− f(σ)) (2.3)

where σu is the configuration σ with the spin at u flipped and c(u, σ) is the rate of flipping (cf. [18]).
We focus on the two most notable examples of Glauber dynamics, each having an intuitive and useful
graphical interpretation where each site receives updates via an associated i.i.d. rate-one Poisson clock:

(i) Metropolis: flip σ(u) if the new state σu has a lower energy (i.e., π(σu) ≥ π(σ)), otherwise perform
the flip with probability π(σu)/π(σ). This corresponds to c(u, σ) = exp (2βσ(u)

∑
v∼u σ(y)) ∧ 1.

(ii) Heat-bath: erase σ(u) and replace it with a sample from the conditional distribution given the
spins at its neighboring sites. This corresponds to c(u, σ) = 1/ [1 + exp (−2βσ(u)

∑
v∼u σ(v))].

It is easy to verify that these chains are indeed ergodic and reversible w.r.t. the Ising distribution π.
Until recently, sharp mixing results for this dynamics were obtained in relatively few cases, with cutoff
only known for the complete graph [12,16] prior to the works [20,21].

2.2. Update history and support. The update sequence along an interval (t0, t1] is a set of tuples
(J, U, T ), where t0 < T ≤ t1 is the update time, J ∈ Λ is the site to be updated and U is a uniform unit
variable. Given this update sequence, Xt1 is a deterministic function of Xt0 , right-continuous w.r.t. t1.
(For instance, in heat-bath Glauber dynamics, if s is the sum of spins at the neighbors of J at time T
then the update (J, U, T ) results in a minus spin if U ≤ 1

2(1− tanh(βs)), and in a plus spin otherwise.)
We call a given update (J, U, T ) an oblivious update iff U ≤ θ for

θ = θβ,d := 1− tanh(∆β) where ∆ = 2d is the vertex degree , (2.4)

since in that situation one can update the spin at J to plus/minus with equal probability (that is,
with probability θ/2 each via the same U) independently of the spins at the neighbors of the vertex J ,
and a properly chosen rule for the case U > θ legally extends this protocol to the Glauber dynamics.
(For instance, in heat-bath Glauber dynamics, the update is oblivious if U ≤ 1− θ/2 or U ≥ 1− θ/2,
corresponding to minus and plus updates, respectively; see Figure 4 for an example in the case d = 1.)
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The following functions will be used to unfold the update history of a set A at time t2 to time t1 < t2:

• The update function Fupd(A, t1, t2): the random set that, given the update sequence along the interval
(t1, t2], contains every site u ∈ Λ that A “reaches” through the updates in reverse chronological order;
that is, every u ∈ Λ such that there exists a subsequence of the updates (Ji, Ui, Ti) with increasing
Ti’s in the interval (t1, t2], such that J1, J2, . . . is a path in Λ that connects u to some vertex in A.
• The update support function Fsup(A, t1, t2): the random set whose value, given the update sequence

along the interval (t1, t2], is the update support of Xt2(A) as a function of Xt1 ; that is, it is the minimal
subset S ⊂ Λ which determines the spins of A given the update sequence (this concept from [20]
extends more generally to random mapping representations of Markov chains, see Definition 4.1).

The following lemma establishes the exponential decay of both these update functions for any β < βc.
Of these, Fsup is tied to the magnetization mt whose exponential decay, as mentioned in §1.2, in a sense
characterizes the one phase region β < βc and serves as a keystone to our analysis of the subcritical
nature of the information percolation clusters. Here and in what follows, for a subset A ⊂ Zd and
r > 0, let B(A, r) denote the set of all sites in Zd with L∞ distance at most r from A.

Lemma 2.1. The update functions for the Ising model on Λ = (Z/nZ)d satisfy the following for any
β < βc. There exist some constant cβ,d > 0 such that for any Λ′ ⊂ Λ, any vertex v ∈ Λ′ and any h > 0,

P(Fsup(v, t− h, t) 6= ∅) = mh ≤ 2e−cβ,dh (2.5)

with mh = mh(v) as defined in (1.1), whereas for ` > 20dh,

P(Fupd(v, t− h, t) 6⊂ B(v, `)) ≤ e−` . (2.6)

Proof. The left-hand equality in (2.5) is by definition, whereas the right-hand inequality was derived
from the weak spatial mixing property of the Ising model using the monotonicity of the model in the
seminal works of Martinelli and Olivieri [24,25] (see Theorem 3.1 in [24] as well as Theorem 4.1 in [23]);
we note that this is the main point where our arguments rely on the monotonicity of the Ising model.
As it was shown in [13, Theorem 2.3] that limt→∞

−1
t logmt = gap where gap is the smallest positive

eigenvalue of the generator of the dynamics, this is equivalent to having gap be bounded away from 0.
We therefore turn our attention to (2.6), which is a consequence of the finite speed of information

flow vs. the amenability of lattices. Let W denote the set of sequences of vertices

W =
{
w̃ = (w1, w2, . . . , w`) : w1 = v, ‖wi−1 − wi‖1 = 1

}
.

For Fupd(v, t−h, t) 6⊂ B(v, `) to hold there must be some w ∈ W and a sequence t > t1 > . . . > t` > t−h
so that vertex wi was updated at time ti. If this event holds call it Mw̃. It is easy to see that

P(Mw̃) = P(Po(h) ≥ `) ≤ e−`(log(`/h)−1) ,

where the last transition is by Bennet’s inequality. By a union bound overW we have that for ` > 20dh,

P (Fupd(v, t− h, t) 6⊂ B(v, `)) ≤ (2d)` exp(−`(log(`/h)− 1)) ≤ e−` ,

thus establishing (2.6) and completing the proof. �

2.3. Red, green and blue clusters. In what follows, we describe the basic setting of the framework,
which will be enhanced in §3 to support all β < βc. Consider some designated target time t? for
analyzing the distribution of the dynamics on Λ = (Z/nZ)d. The update support of Xt?(v) at time t is

Hv(t) = Fsup(v, t, t?) ,
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0.59 x4
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Figure 5. Update support for heat-bath dynamics for the 1d Ising model at β = 0.4 (θ ≈ 0.34);
zoomed-in part shows the update history with the root spin as a deterministic function of the leaves.

0

t?

Figure 6. Red, blue and green information percolation clusters as per Definition 2.3.

i.e., the minimum subset of sites whose spins at time t determine Xt?(v) given the updates along (t, t?].
Developing {Hv(t) : t ≤ t?} backward in time, started at time t?, gives rise to a subgraph Hv of the
space-time slab Λ× [0, t?], where we connect (u, t) with (u, t′) (a temporal edge) if u ∈Hv(t) and there
are no updates along (t′, t], and connect (u, t) with (u′, t) (a spatial edge) when u ∈Hv(t), u

′ /∈Hv(t)
and u′ ∈Hv(t− δ) for any small enough δ > 0 due to an update at (u, t) (see Figure 5).

Remark 2.2. An oblivious update at (u, t) clearly removes u from Hv(t − δ); however, the support
may also shrink due to non-oblivious updates: the zoomed-in update history in Figure 5 shows x1, x3

being removed from Hv(t) due to the update x3 7→ x2 ∨ x4, as the entire function then collapses to x4.

The information percolation clusters are the connected components in the space-time slab Λ× [0, t?]
of the aforementioned subgraphs {Hv : v ∈ Λ}.

Definition 2.3. An information percolation cluster is marked Red if it has a nonempty intersection
with the bottom slab Λ × {0}; it is Blue if it does not intersect the bottom slab and has a singleton
in the top slab, v × {t?} for some v ∈ Λ; all other clusters are classified as Green. (See Figure 6.)

Observe that if a cluster is blue then the distribution of its singleton at the top does not depend on
the initial state x0; hence, by symmetry, it is (1

2 ,
1
2) plus/minus.
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Let ΛRed denote the union of the red clusters, and let HRed be the its collective history — the union
of Hv(t) for all v ∈ ΛRed and 0 ≤ t < t? (with analogous definitions for blue/green). A beautiful short
lemma of Miller and Peres [27] shows that, if a measure µ on Ω is constructed by sampling a random
variable R ⊂ Λ and using an arbitrary law for its spins and a product of Bernoulli(1

2) for Λ \ R, then

the L2-distance of µ from the uniform measure is bounded by E2|R∩R
′| − 1 for two i.i.d. copies R,R′.

(See Lemma 4.3 below for a generalization of this, as we will have a product of complicated measures.)
Applied to our setting, if we condition on HGreen and look at the spins of Λ \ ΛGreen then ΛRed can
assume the role of the variable R, as the remaining blue clusters are a product of Bernoulli(1

2) variables.
In this conditional space, since the law of the spins of ΛGreen, albeit potentially complicated, is

independent of the initial state, we can safely project the configurations on Λ\ΛGreen without increasing
the total-variation distance between the distributions started at the two extreme states. Hence, a sharp
upper bound on worst-case mixing will follow by showing for this exponential moment

E
[
2|ΛRed∩Λ′Red|

∣∣HGreen

]
→ 1 in probability as n→∞ , (2.7)

by coupling the distribution of the dynamics at time t? from any initial state to the uniform measure.
Finally, with the green clusters out of the picture by the conditioning (which has its own toll, forcing
various updates along history so that no other cluster would intersect with those nor become green),
we can bound the probability that a subset of sites would become a red cluster by its ratio with the
probability of all sites being blue clusters. Being red entails connecting the subset in the space-time
slab, hence the exponential decay needed for (2.7).

Example 2.4 (Red, green and blue clusters in the 1d Ising model). Consider the relatively simple
special case of Λ = Z/nZ to illustrate the approach outlined above. Here, since the vertex degree
is 2, an update either writes a new spin independently of the neighbors (with probability θ) or, by
symmetry, it takes the spin of a uniformly chosen neighbor. Thus, the update history from any vertex
v is simply a continuous-time simple random walk that moves at rate 1 − θ and dies at rate θ; the
collection of these for all v ∈ Λ forms coalescing (but never splitting) histories (recall Figure 3).

The probability that Fsup(v, 0, t) 6= ∅ (the history of Xt(v) is nontrivially supported on the bottom
of the space-time slab) is therefore e−θt, which becomes 1/

√
n once we take t = tm = 1

2θ log n. If
we ignore the conditioning on the green clusters (which poses a technical difficulty for the analysis—
as the red and blue histories must avoid them—but does not change the overall behavior by much),
then P(v ∈ ΛRed ∩ Λ′Red) = P(Hv(0) 6= ∅)2 = e−2θt? by the independence of the copies ΛRed,Λ

′
Red.

Furthermore, if the events {v ∈ ΛRed ∩ Λ′Red}v∈Λ were mutually independent (of course they are not,

yet the intuition is still correct) then E[2|ΛRed∩Λ′Red|] = E
[∏

v(1 + 1{v∈ΛRed∩Λ′Red})
]

would translate into∏
v

E
[
1 + 1{v∈ΛRed∩Λ′Red}

]
=
(

1 + e−2θt?
)n
≤ exp

(
ne−2θt?

)
,

which for t? = tm + s is at most exp(e−2θs). As we increase the constant s > 0 this last quantity
approaches 1, from which the desired upper bound on the mixing time will follow via (2.7).

The above example demonstrated (modulo conditioning on HGreen and dependencies between sites)
how this framework can yield sharp upper bounds on mixing when the update history corresponds to a
subcritical branching process. However, in dimension d ≥ 2, this stops being the case midway through
the high temperature regime in lattices, and in §3 we describe the additional ideas that are needed to
extend the framework to all β < βc.
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Figure 7. Regular phases (Ik) and deferred phases (I ′k) of the update history in the range t > tm:
no vertices are removed from the support along the deferred phases (marked by shaded regions).

3. Enhancements for the lattice up to criticality

To extend the framework to all β < βc we will modify the definition of the support at time t for t > tm,
as well as introduce new notions in the space-time slab both for t > tm and for t < tm within the cutoff
window. These are described in §3.1 and §3.2, resp., along with three key lemmas (Lemmas 3.1–3.3)
whose proofs are postponed to §5.

3.1. Post mixing analysis: percolation components. Let λ > 0 be some large enough integer,
and let s? > 0 denote some larger constant to be set last. As illustrated in Figure 7, set

t? = tm + s? ,

for k = 0, 1, . . . , λ let

τk = tm + ks?/λ ,

and partition each interval (τk−1, τk] for k = 1, . . . , λ into the subintervals

Ik = (τk−1, τk − 1] , I ′k = (τk − 1, τk] .

We refer to Ik as a regular phase and to I ′k as a deferred phase.

Definition (the support Hv(t) for t > tm). Starting from time t? = tm + s? and going backwards to
time tm we develop the history of a vertex v ∈ V rooted at time t? as follows:

• Regular phases (Ik for k = 1, . . . , λ): For any τk−1 < t ≤ τk − 1,

Hv(t) = Fsup(Hv(τk − 1), t, τk − 1) .

Note that an oblivious update at time t to some w ∈ Hv(t) will cause it to be removed from the
corresponding support (so w /∈Hv(t−δ) for any small enough δ > 0), while a non-oblivious update
replaces it by a subset of its neighbors. We stress that w may become irrelevant (thus ejected from
the support) due to an update to some other, potentially distant, vertex z (see Remark 2.2).
• Deferred phases (I ′k for k = 1, . . . , λ): For any τk − 1 < t ≤ τk,

Hv(t) = Fupd(Hv(τk), t, τk) .

Here vertices do not leave the support: an update to w ∈Hv(t) adds its 2d neighbors to Hv(t−δ).
Recalling the form (Ji, Ui, Ti) of updates (see §2.2), let the undeferred randomness U be the updates
along (tm, t?] excluding the uniform unit variables Ui when Ti ∈ ∪kI ′k, and let the deferred randomness
U ′ denote this set of excluded uniform unit variables (corresponding to updates in the deferred phases).
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Figure 8. Components A = {Ai} and B = {Bi} corresponding to {Υi}. Each Υi joins vertices of Υ
via history intersection; Υ4 and Υ7 also join vertices via final proximity and initial proximity, resp.

Remark. Observe that this definition of {Hv(t) : t > tm} is a function of the undeferred randomness
U alone (as the deferred phases I ′k involved Fupd as opposed to Fsup); thus, Xt? may be obtained from
Xtm by first exposing U , then incorporating the deferred randomness U ′ along the deferred phases I ′k.
Remark. The goal behind introducing the deferred phases I ′k is to boost the subcritical behavior of
the support Hv(t) towards an analog of the exponential moment in (2.7). In what follows we will
describe how the set of sites with Hv(tm) 6= ∅ are partitioned into components (according to proximity
and intersection of their histories); roughly put, by exposing U but not U ′ one can identify, for each set
of vertices B in such a component, a time t in which HB(t) is suitably “thin” (we will refer to it as a
“cut-set”) so that — recalling that a branch of the history is killed at rate θ > 0 via oblivious updates
— one obtains a good lower bound on the probability of arriving at any configuration for the spin-set
HB(t) (which then determines Xt?(B)) once the undeferred randomness U ′ is incorporated.

Blocks of sites and components of blocks. Partition Zd into boxes of side-length s2
?, referred to as blocks.

We define block components, composed of subsets of blocks, as follow (see Figure 8).

Definition (Block components). Given the undeferred update sequence U , we say that u ∼ v if one
of the following conditions holds:

(1) History intersection: Hu(t) ∩Hv(t) 6= ∅ for some t ∈ (tm, t?].
(2) Initial proximity: u, v belong to the same block or to adjacent ones.
(3) Final proximity: there exist u′ ∈ Hu(tm) and v′ ∈ Hv(tm) belonging to the same block or to

adjacent ones.
Let Υ = {v : Hv(tm) 6= ∅} be the vertices whose history reaches tm. We partition Υ into components
{Υi} via the transitive closure of ∼. Let HΥi(t) = ∪v∈ΥiHv(t), let Ai be the minimal set of blocks
covering HΥi(tm) and let Bi be the minimal set of blocks covering HΥi(t?) = Υi. The collection of all
components {Ai} is denoted A = A(U) and the collection of all components {Bi} is denoted B = B(U).

We now state a bound on the probability for witnessing a given set of blocks. In what follows, let
W(S) denote the size, in blocks, of the minimal lattice animal5 containing the block-set S. Further let
{R! S} denote the event for some i the block-sets (R,S) satisfy R = Ai ∈ A and S = Bi ∈ B; i.e.,
R,S correspond to the same component, some Υi, as the minimal block covers of HΥi(t) at t = tm, t?.

Lemma 3.1. Let β < βc. There exist constants c(β, d), λ0(β, d) such that, if λ > λ0 and s? > λ2, then
for every collection of pairs of block-sets {(Ri, Si)},

P
(⋂

i

{Ri! Si}
)
≤ exp

[
− cs?

λ

∑
i

W(Ri ∪ Si)
]
.

5A lattice animal is a connected subset of sites in the lattice.
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Cut-sets of components. The cut-set of a component Ai is defined as follows. For k = 1, . . . , λ let

χi,k = HΥi(τk) ,

Ξi,k =
∏
v∈χi,k

(
1
4θTv,k

)
where θ = 1 − tanh(2dβ) is the oblivious update probability, and Tv,k is the time elapsed since the
last update to the vertex v within the deferred phase I ′k until τk, the end of that interval. That is,
Tv,k = (τk− t)∧1 for the maximum time t < τk at which there was an update to v. With this notation,
the cut-set of Ai is the pair (ki, χi) where ki is the value of 1 ≤ k ≤ λ minimizing Ξi,k and χi = χi,ki .
The following lemma will be used to estimate these cut-sets.

Lemma 3.2. Let β < βc. Let S be a set of blocks, let χk(S) = HS(τk) and Ξk(S) =
∏
v∈χk(S)

(
1
4θTv,k

)
where Tv,k is the time that elapsed since the last update to the vertex v within the deferred phase I ′k
until τk. If λ is large enough in terms of β, d and s? is large enough in terms of λ then

E
[
min
k

{
(Ξk(S))−4 : 1 ≤ k ≤ λ

}]
≤ 2λ+3e|S| .

3.2. Pre mixing analysis: percolation clusters. Going backwards from time tm to time 0, the
history is defined in the same way as it was in the regular phases (see §3.1); that is, for any 0 < t ≤ tm,

Hv(t) = Fsup(Hv(tm), t, tm) .

Further recall that the set of sites Υ = {v : Hv(tm) 6= ∅} were partitioned into components Υi (see §3.1),
and for each i we let Ai be the minimal block-set covering HΥi(tm).

Definition (Information percolation clusters). We write Ai ∼ Aj if the supports of these components

satisfy either one of the following conditions (recall that B(V, r) = {x ∈ Zd : minv∈V ‖x− v‖∞ < r}).
(1) Intersection: Fsup(Ai, t, tm) ∩Fsup(Aj , t, tm) 6= ∅ for some 0 ≤ t < tm.
(2) Early proximity: Fsup(Ai, t, tm) ∩B(Aj , s

2
?/3) 6= ∅ for some tm − s? ≤ t ≤ tm, or the analogous

statement when the roles of Ai, Aj are reversed.

We partition A = {Ai} into clusters C(1), C(2), . . . according to the transitive closure of the above
relation, and then classify these clusters into three color groups:

• Blue: a cluster C(k) consisting of a single Ai (for some i = i(k)) which dies out within the interval
(tm − s?, tm] without exiting the ball of radius s2

?/3 around Ai:

C(k) = {Ai} ,
⋃
v∈Ai

Fsup(v, tm − s?, tm) = ∅ ,
⋃

t>tm−s?, v∈Ai

Fsup(v, t, tm) ⊂ B(Ai, s
2
?/3) .

• Red: a cluster C(k) containing a vertex whose history reaches time 0:⋃
v∈Ai∈C(k)

Fsup(v, 0, tm) 6= ∅ .

• Green: all other clusters (neither red nor blue).

Let ARed be the set of components whose cluster is red, and let HRed be the collective history of all
v ∈ ARed going backwards from time tm, i.e.,

HRed =
{
Hv(t) : v ∈ ARed , t ≤ tm

}
,
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setting the corresponding notation for blue and green clusters analogously.
For a generic collection of blocks C, the collective history of all v /∈ C is defined as

H −
C =

{
Hv(t) : v /∈ ∪{Ai ∈ C} , t ≤ tm

}
,

and we say H −
C is C-compatible if there is a positive probability that C is a cluster conditioned on H −

C .
Central to the proof will be to understand the conditional probability of a set of blocks C to be a

single red cluster as opposed to a collection of blue ones (having ruled out green clusters by conditioning
on HGreen) given the undeferred randomness U and the history up to time tm of all the other vertices:

ΨC = sup
X

P
(
C ∈ Red |H −

C = X , {C ∈ Red} ∪ {C ⊂ Blue} , U
)

(3.1)

The next lemma bounds ΨC in terms of the lattice animals for C and the individual Ai’s; note that the
dependence of this estimate for ΨC on U is through the geometry of the components Ai. Here and in
what follows we let |x|+ = x ∧ 0 denote the positive part of x.

Lemma 3.3. Let β < βc. There exists c(β, d), s0(β, d) > 0 such that, for any s? > s0, any large enough
n and every C ⊂ A, the quantity ΨC from (3.1) satisfies

ΨC ≤
s4d
?√
|Λ|

e
4
∑
i |Ai|−cs?

∣∣∣W(C)−
∑
Ai∈C

W(Ai)
∣∣∣+
. (3.2)

4. Cutoff with a constant window

4.1. Upper bound modulo Lemmas 3.1–3.3. Let U be the undeferred randomness along (tm, t?]
(the update sequence excluding the uniform unit variables of updates in the deferred phases ∪λk=1I ′k).
Let d̄(t,U) be the coupling time conditioned on this update sequence, that is,

d̄(t,U) = sup
x0,y0

‖Px0(Xt ∈ · | U)− Py0(Xt ∈ · | U)‖tv .

Towards an upper bound on d̄(t,U) (which will involve several additional definitions; see (4.4) below),
our starting point would be to consider the notion of the support of a random map, first introduced
in [20]. Its following formulation in a more general framework appears in [21]. Let K be a transition
kernel of a finite Markov chain. A random mapping representation for K is a pair (g,W ) where g is a
deterministic map and W is a random variable such that P(g(x,W ) = y) = K(x, y) for all x, y in the
state space of K. It is well-known that such a representation always exists.

Definition 4.1 (Support of a random mapping representation). Let K be a Markov chain on a state
space ΣΛ for some finite sets Σ and Λ. Let (g,W ) be a random mapping representation for K. The
support corresponding to g for a given value of W is the minimum subset ΛW ⊂ Λ such that g(·,W ) is
determined by x(ΛW ) for any x, i.e.,

g(x,W ) = fW (x(ΛW )) for some fW : ΣΛW → ΣΛ and all x.

That is, v ∈ ΛW if and only if there exist x, x′ ∈ ΣΛ differing only at v such that g(x,W ) 6= g(x′,W ).

Lemma 4.2 ([21, Lemma 3.3]). Let K be a finite Markov chain and let (g,W ) be a random mapping
representation for it. Denote by ΛW the support of W w.r.t. g as per Definition 4.1. Then for any
distributions ϕ,ψ on the state space of K,

‖ϕK − ψK‖tv ≤
∫
‖ϕ|ΛW − ψ|ΛW ‖tv dP(W ).
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To relate this to our context of seeking an upper bound for d̄(t,U), recall that (as remarked following
the definition of the regular and deferred phases in §3) Hv(t) for t > tm is a function of the undeferred
randomness U alone. Hence, both the Ai’s and their corresponding cut-sets (ki, χi) are completely
determined from U . Letting Zχ denote the joint distribution of Xτki

(χi) for all the components Ai,

we can view (Xt? ∈ · | U) as a random function of (∪iXτki
(χi) | U) whose randomness arises from

the deferred updates U ′ (using which every Xt?(v) for v ∈ Υi can be deduced from Xτki
(χi),U , while

Xt?(v) for v /∈ Υ is completely determined by U). It then follows from Lemma 4.2 that

d̄(t?,U) ≤ E
[

sup
x0,y0

‖Px0(Zχ ∈ · | U)− Py0(Zχ ∈ · | U)‖tv
∣∣∣ U] . (4.1)

Conditioning on HGreen in the main term in (4.1), then taking expectation,

sup
x0,y0

‖Px0(Zχ ∈ · | U)− Py0(Zχ ∈ · | U)‖tv

≤ sup
HGreen

sup
x0,y0

∥∥Px0

(
Z ′χ ∈ · |HGreen, U

)
− Py0

(
Z ′χ ∈ · |HGreen, U

)∥∥
tv

(4.2)

where Z ′χ is the joint distribution of Xτki
(χi) for Ai /∈ AGreen, i.e., the projection onto cut-sets of blue

or red components. (The inequality above replaced the expectation over HGreen by a supremum, then
used the fact that the values of {Xτki

(χi) : Ai ∈ AGreen} are independent of the initial condition, and

so taking a projection onto the complement spin-set does not change the total-variation distance.)
Now let νi be the distribution of the spins at the cut-set of Ai when further conditioning that Ai is

blue, i.e.,

νi =
(
Xτki

(χi) ∈ ·
∣∣HGreen, U , Ai ∈ ABlue

)
,

and further set

ν∗i = min
x
νi(x) , ν =

∏
i:Ai /∈AGreen

νi .

The right-hand side of (4.2) is then clearly at most

2 sup
HGreen

sup
x0

∥∥Px0

(
Z ′χ ∈ · |HGreen, U

)
− ν
∥∥
tv

≤ 2 sup
HGreen

sup
x0

[ ∥∥Px0

(
Z ′χ ∈ · |HGreen, U

)
− ν
∥∥
L2(ν)

∧ 1
]
. (4.3)

At this point we wish to appeal to the following lemma — which generalizes [27, Proposition 3.2],
via the exact same proof, from unbiased coin flips to a general distribution — bounding the L2-distance
in terms of an exponential moment of the intersection between two i.i.d. configurations.

Lemma 4.3. Let {Λi : i ∈ I} be a partition of Λ, and let νi (i ∈ I) be a measure on {±1}Λi. For
each S ⊂ I, let ϕS be a measure on {±1}∪i∈SΛi. Let µ be a measure on configurations in Ω = {±1}Λ
obtained by sampling a subset S ⊂ I via some measure µ̃, then sampling ∪i∈SΛi via ϕS and setting
each Λi for i /∈ S via an independent sample of νi. Letting ν =

∏
i∈I νi,

‖µ− ν‖2L2(ν) ≤
[∑
S,S′

( ∏
i∈S∩S′

min
xi∈{±1}Λi

νi(xi)

)−1

µ̃(S)µ̃(S′)

]
− 1 .
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Proof. For any S ⊂ I, let xS denote the projection of x onto ∪i∈SΛi. With this notation, by definition
of the L2(ν) metric (see, e.g., [30]) one has that ‖µ− ν‖2L2(ν) + 1 =

∫
|µ/ν − 1|2dν + 1 is equal to∑

x∈Ω

µ2(x)

ν(x)
=
∑
x∈Ω

1∏
νi(xi)

∑
S,S′

µ̃(S)µ̃(S′)ϕS(xS)ϕS′(xS′)
∏
i/∈S

νi(xi)
∏
i/∈S′

νi(xi)

by the definition of µ. This can in turn be rewritten as∑
S,S′

( ∑
xS∩S′

ϕS(xS∩S′)ϕS′(xS∩S′)∏
i∈S∩S′ νi(xi)

)( ∑
x(S∪S′)c

∏
i∈(S∪S′)c

νi(xi)

)

·
( ∑
xS\S′

ϕS(xS\S′ | xS∩S′)
)( ∑

xS′\S

ϕS′(xS′\S | xS′∩S)

)
µ̃(S)µ̃(S′)

=
∑
S,S′

( ∑
xS∩S′

ϕS(xS∩S′)ϕS′(xS∩S′)∏
i∈S∩S′ νi(xi)

)
µ̃(S)µ̃(S′) ,

which is at most∑
S,S′

( ∏
i∈S∩S′

min
xi∈{±1}Λi

νi(xi)

)−1( ∑
xS∩S′

ϕS(xS∩S′)ϕS′(xS∩S′)

)
µ̃(S)µ̃(S′)

≤
∑
S,S′

( ∏
i∈S∩S′

min
xi∈{±1}Λi

νi(xi)

)−1

µ̃(S)µ̃(S′) . �

Applying the above lemma to the quantity featured in (4.3) yields∥∥Px0

(
Z ′χ ∈ · |HGreen, U

)
− ν
∥∥2

L2(ν)
≤ E

[ ∏
Ai∈ARed∩ARed′

1

ν∗i

∣∣∣HGreen, U
]
− 1 ,

where ARed and ARed′ are two i.i.d. samples conditioned on HGreen and U . Combining the last
inequality with (4.1),(4.2) and (4.3), we conclude the following.

d̄(t?,U) ≤ 2 sup
HGreen

sup
x0

[(
E
[ ∏
Ai∈ARed∩ARed′

1

ν∗i

∣∣∣HGreen, U
]
− 1

) 1
2

∧ 1

]
. (4.4)

Note that the expectation above is only w.r.t. the update sequence along the interval (0, tm]. Indeed,
the variables ARed and ARed′ do not depend on the deferred randomness U ′, which in turn is embodied
in the measures νi (and consequently, the values ν∗i ).

The expectation in the right-hand side of (4.4) is treated by the following lemma.

Lemma 4.4. Let β > βc, let ARed and ARed′ denote the collection of components within red clusters
in two independent instances of the dynamics, and define ΨC as in (3.1). Then

E
[ ∏
Ai∈ARed∩ARed′

1

ν∗i

∣∣∣HGreen, U
]
≤ exp

[ ∑
C∩C′ 6=∅

ΨCΨC′
∏
Aj∈C

1

ν∗j

∏
Aj∈C′

1

ν∗j

]
.

One should emphasize the dependence of the bound given by this lemma on HGreen and U : the
dependence on HGreen was eliminated thanks to the supremum in the definition of ΨC . On the other
hand, both ΨC and ν∗j still depend on U .
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Proof of Lemma 4.4. We first claim that, if {YC} is a family of independent indicators given by

P(YC = 1) = ΨC ,

then, conditioned on HGreen, one can couple the distribution of ARed to {YC : C ⊂ A \ AGreen} in
such a way that

{C : C ∈ Red} ⊂ {C : YC = 1} . (4.5)

To see this, order all C ⊂ A \AGreen arbitrarily as {Cl}l≥1 and let Fl correspond to the filtration that
successively reveals 1{Cl∈Red}. Then P(Cl ∈ Red | Fl−1) ≤ ΨCl since

P(Cl ∈ Red | Fl−1) ≤ sup
X

P
(
Cl ∈ Red | Fl−1, {Cl ∈ Red} ∪ {Cl ⊂ Blue} ,H −

Cl = X
)
,

and in the new conditional space the variables {Cj ∈ Red}j<l are measurable since

(i) the event {Cj ∈ Red} for any Cj disjoint from Cl is determined by the conditioning on H −
Cl ;

(ii) any Cj nontrivially intersecting Cl is not red under the conditioning on {Cl ∈ Red}∪{Cl ⊂ Blue}.
This establishes (4.5).

Consequently, our next claim is that for a family {YC,C′} of independent indicators given by

P(YC,C′ = 1) = ΨCΨC′ for any C, C′ ⊂ A \ AGreen ,

one can couple the conditional distributions of ARed and ARed′ given HGreen in such a way that∏
Ai∈ARed∩ARed′

1

ν∗i
≤

∏
C,C′⊂A\AGreen

C∩C′ 6=∅

(
1 + YC,C′

( ∏
Aj∈C

1

ν∗j

∏
Aj∈C′

1

ν∗j
− 1
))

. (4.6)

To see this, take {YC} achieving (4.5) and {Y ′C} achieving its analog for Red′. Letting {(Cl, C′l)}l≥1 be
an arbitrary ordering of all pairs of potential clusters that intersect (C, C′ ⊂ A\AGreen with C∩C′ 6= ∅),
associate each pair with a variable Rl initially set to 0, then process them sequentially:

• If (Cl, C′l) is such that for some j < l we have Rj = 1 and either Cj ∩ Cl 6= ∅ or C′j ∩ C′l 6= ∅, then

we skip this pair (keeping Rl = 0).
• Otherwise, we set Rl to be the indicator of {Cl ∈ Red, C′l ∈ Red′}.

Observe that, if Fl denote the natural filtration corresponding to this process, then for all l we have

P(Rl = 1 | Fl−1) ≤ P(YCl = 1, YC′l = 1) = ΨCΨC′ ,

since testing ifRl = 1 means that we received only negative information on {YCl = 1} and {YC′l = 1}; this

implies the existence of a coupling in which {l : Rl = 1} ⊂ {l : YCl,C′l = 1}. Hence, if Ai ∈ ARed∩ARed′

then Ai ∈ Cl ∩ C′l for some l where YCl = YC′l = 1, so either YCl,C′l = 1, or else YCj ,C′j = 1 for a previous

pair (Cj , C′j) in which Cj = Cl or C′j = C′l (a nontrivial intersection in either coordinate will not yield a

red cluster). Either way, the term 1/ν∗i is accounted for in the right-hand of (4.6), and (4.6) follows.
Taking expectations in (4.6) within the conditional space given HGreen,U , and using the definition

(and independence) of the YC,C′ ’s, we find that

E
[ ∏
Ai∈ARed∩ARed′

1

ν∗i

∣∣∣HGreen, U
]
≤

∏
C∩C′ 6=∅

(
1 + ΨCΨC′

∏
Aj∈C

1

ν∗j

∏
Aj∈C′

1

ν∗j

)

≤ exp

[ ∑
C∩C′ 6=∅

ΨCΨC′
∏
Aj∈C

1

ν∗j

∏
Aj∈C′

1

ν∗j

]
. �
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Corollary 4.5. Let β > βc. With the above defined ΨC and Ξj’s we have

d̄(t?) ≤ 4

(
E
[ ∑
C∩C′ 6=∅

ΨCΨC′
∏
Aj∈C

1

Ξj

∏
Aj∈C′

1

Ξj

])1/2

. (4.7)

Proof of Corollary 4.5. Plugging the bound from Lemma 4.4 into (4.4), then integrating over the
undeferred randomness U , produces an upper bound on the total-variation distance at time t?:

d̄(t?) ≤ 2E

[(
exp

[ ∑
C∩C′ 6=∅

ΨCΨC′
∏
Aj∈C

1

Ξj

∏
Aj∈C′

1

Ξj

]
− 1

)1/2

∧ 1

]
,

where E denotes expectation w.r.t. U , and we used the observation that ν∗j ≥ Ξj by construction.
Indeed, ν∗j denotes the minimal measure of a configuration of the spins in the cut-set χj of a blue

component Aj given U ,HGreen at time τkj (where kj is the index of the phase optimizing the choice
of the cut-set). Clearly, any particular configuration η ∈ {±1}χj can occur at time τkj if every x ∈ χj
were to receive an oblivious deferred update — with the appropriate new spin of ηx — before its
first splitting point in the deferred phase I ′kj . Since oblivious updates occur at rate θ, this event has

probability at least 1
2(1 − exp(−θTx)) ≥ 1

4θTx where Tx is the length of the interval between τkj and

the first update to x in I ′kj , and the inequality used 1 − e−x ≥ x − x2/2 ≥ x/2 for x ∈ [0, 1] (with

x = θTx ≤ 1). The independence of the deferred updates therefore shows that ν∗j ≥ Ξj .

Since
√
ex − 1 ≤ 2

√
x for x ∈ [0, 1], the inequality (

√
ex − 1 ∧ 1) ≤ 2

√
x holds for all x ≥ 0; thus,

Jensen’s inequality allows us to derive (4.7) from the last display, as required. �

It now remains to show that the expectation over U on the right-hand side of (4.7) is at most ε(s?)
for some ε(s?) > 0 that is exponentially small in s?, which will be achieved by the following lemma.

Lemma 4.6. Let β > βc. With the above defined ΨC and Ξj’s we have

E
[ ∑
C∩C′ 6=∅

ΨCΨC′
∏
Ai∈C

1

Ξi

∏
Ai∈C′

1

Ξi

]
≤ e−

1
5 cs?/λ .

Proof of Lemma 4.6. We begin by breaking up the sum over potential clusters C, C′ in the left-hand
side of the sought inequality as follows: first, we will root a single component A ∈ C ∩ C′; second, we
will enumerate over the partition of these clusters into components: C = {Aij} and C′ = {Aik}; finally,
we will sum over the the block-sets {Bi} that are the counterparts (via U) at time t? to the block-sets
{Ai} at time tm. Noting that the event {Ai! Bi} — testing the consistency of {Ai} and {Bi} — is
U-measurable, we have

E

[ ∑
C∩C′ 6=∅

ΨCΨC′
∏
Aj∈C

1

Ξj

∏
Aj∈C′

1

Ξj

]

≤
∑
A

∑
C={Aij }3A
C′={Aik}3A

∑
{Bj}
{B′k}

E
[(∏

j

1{Aij!Bj}
1

Ξij

)
ΨC

(∏
k

1{Aik!B′k}
1

Ξik

)
ΨC′

]
. (4.8)

Recall from (3.1) that Lemma 3.3 provides us with an upper bound on ΨC in terms of the components
{Aij} of C and uniformly over U . Letting Ψ̄{Aij } denote this bound (i.e., the right-hand side of (3.2))
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for brevity, we can therefore deduce that the expectation in the last display is at most

E

[(∏
j

1{Aij!Bj}
1

Ξij

)(∏
k

1{Aik!B′k}
1

Ξik

)]
Ψ̄{Aij }Ψ̄{Aik}

.

Hölder’s inequality now implies that the last expectation is at most[
P
(⋂

j

{Aij ! Bj}
)
E
[∏

j

1

Ξ4
ij

]
P
(⋂

k

{Aik ! B′k}
)
E
[∏

k

1

Ξ4
ik

]] 1
4

,

and when incorporating the last two steps in (4.8) it becomes possible to factorize the terms involving
C, C′ and altogether obtain that

E

[ ∑
C∩C′ 6=∅

ΨCΨC′
∏
Ai∈C

1

Ξi

∏
Ai∈C′

1

Ξi

]
≤
∑
A

[ ∑
C={Aij }
A∈C

∑
{Bj}

P
(⋂

j

{Aij ! Bj}
) 1

4

E
[∏

j

1

Ξ4
ij

] 1
4

Ψ̄{Aij }

]2

.

(4.9)

The term P(
⋂
j{Aij ! Bj}) is bounded via Lemma 3.1. The term E[

∏
j Ξ−4

ij
] is bounded via Lemma 3.2

using the observation that one can always restrict the choice of phases for the cut-sets (only worsening
our bound) to be the same for all the components, whence

∏
j Ξij identifies with a single variable Ξ

whose source block-set at time t? is ∪jBj . Finally, Ψ̄{Aij } corresponds to the right-hand side of (3.2)

from Lemma 3.3, in which we may decrease the exponent by a factor λ (only relaxing the bound as
λ > 1). Altogether, for some c = c(β, d) > 0 (taken as c1

4 ∧ c2 where c1, c2 are the constants from
Lemmas 3.1 and 3.3, respectively) the last expression is at most

∑
A

( ∑
C={Aij }
A∈C

∑
{Bj}

2λ+3s4d
?√
|Λ|

e
−c(s?/λ)

(∣∣∣W(C)−
∑

W(Aij )
∣∣∣++

∑
W(Aij∪Bj)

)
+4
∑
|Aij |+

1
4

∑
|Bj |
)2

. (4.10)

It is easy to see that since |W (C)−
∑

j W(Aij )|+ ≥ 1
2(W (C)−

∑
j W(Aij ∪Bj)), we have that∑

j

W(Aij ∪Bj) +
∣∣∣W (C)−

∑
j

W(Aij )
∣∣∣+ ≥ 1

2
W(C) +

1

2

∑
j

W(Aij ∪Bj) .

Since each of the summands |Aij | and |Bj | in the exponent above is readily canceled by W(Aij ∪Bj),
we deduce that if cs?/λ is large enough then (4.10) is at most

22λ+6s8d
?

|Λ|
∑
A

( ∑
C={Aij }
A∈C

∑
{Bj}

exp

[
− c

4

s?
λ
W
(
C ∪

⋃
j

Bj

)])2

. (4.11)

Now, the number of different lattice animals containing κ blocks and rooted at a given block X is easily
seen to be at most (2d)2(κ−1), since these correspond to trees on κ vertices containing a given point
in Zd, and one can enumerate over such trees by traveling along there edges via a depth-first-search:
beginning with 2d options for the first edge from the root, each additional edge has at most 2d options
(at most 2d−1 new vertices plus one edge for backtracking, where backtracking at the root is regarded
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as terminating the tree). The bound on the number of rooted trees (and hence the number of rooted
lattice animals) now follows from the fact that each edge is traversed precisely twice in this manner.

Next, enumerate over collections of blocks {Aij , Bj} with W(C) = S and
∑

j W(Aij ∪Bj) = R:

• There are at most (2d)2(S−1) ways to choose C containing A by the above lattice animal bounds.
• There are at most 2S choices of blocks Dj ∈ C so that each Dj ∈ Aij will be in a distinct Aij .

• There are at most 2R choices of rj representing W(Aij ∪Bj) since
∑

j rj = R.

• For each j there are at most (2d)2(rj−1) choices of minimal lattice animals of size rj rooted at

Dj which will contain Aij ∪Bj . Together, this is at most (2d)
∑
j 2(r−1) ≤ 2R.

• For each lattice animal there are 2rj ways to assign the vertices to be either in or not in Aij
and 2rj choices to be either in or not in Bj . In total this gives another 4R choices.

Altogether, we have that the number of choices of the {Aij , Bj} is at most 2S8R(2d)2(S+R). Thus,∑
C={Aij }
A∈C

∑
{Bj}

exp

[
− c

4

s?
λ

(
W(C) +

∑
j

W(Aij ∪Bj)
)]
≤
∑
S,R≥1

e−
c
4
s?
λ

(S+R)2S8R(2d)2(S+R) ≤ e−
c
5
s?
λ

provided s? is large enough compared to d. Plugging this in (4.11) finally gives

E
[ ∑
C∩C′ 6=∅

ΨCΨC′
∏
Ai∈C

1

Ξi

∏
Ai∈C′

1

Ξi

]
≤ 22λ+6s8d

?

|Λ|
∑
A

e−
2
5 cs?/λ ≤ e−

1
5 cs?/λ ,

where the last inequality holds whenever, e.g., s? ≥ λ2 and λ is large enough in terms of β, d. �

Combining Corollary 4.5 and Lemma 4.6 shows that d̄(t?) ≤ 4 exp[− 1
10cs?/λ], and so in particular,

once we fix λ larger than some λ0(β, d), the total-variation distance at time t? will decrease in s? as
O(exp[−c′s?]) for some c′(β, d) > 0, concluding the proof. �

4.2. Lower bound on the mixing time. We begin with two simple lemmas, establishing exponential
decay for the magnetization in time and for the correlation between spins in Xt in space.

Lemma 4.7. There exist c1(β, d) and c2(β, d) such that for all 0 < h < t,

mt ≤ c1e
−c2hmt−h.

Proof. By Lemma 2.1,

E
∣∣Fupd(v, t− h, t)

∣∣2 ≤ |B(v, 20dh)|2 +
n∑

k=20dh

k2dP (Fsup(v, tm − h, tm) 6⊂ B(v, k))

≤ |B(v, 20dh)|2 +
n∑

k=20dh

k2de−ck = O(h2d) .

Then by Cauchy-Schwarz,

E
∣∣Fsup(v, t− h, t)

∣∣ ≤ E
[∣∣Fupd(v, t− h, t)

∣∣1{Fsup(v,t−h,t)6=∅}
]

≤
(
E
[∣∣Fupd(v, t− h, t)

∣∣2]P(Fsup(v, t− h, t) 6= ∅)
)1/2

≤ O(hde−ch/2) .
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If Fsup(v, 0, t) 6= ∅ then Fsup(u, t − h, t) 6= ∅ for some u ∈ Fupd(v, t − h, t). Using the translational
invariance of the torus (which implies that all vertices have the same magnetization),

mt = P(Fsup(v, 0, t) 6= ∅) ≤ E
[∣∣Fupd(v, t− h, t)

∣∣]P(Fsup(v, t− h, t) 6= ∅) ≤ O(hde−ch/2)mt−h ,

as claimed. �

Lemma 4.8. There exist c1(β, d), c2(β, d) > 0 so that starting from any initial condition X0,

Cov(Xt(u), Xt(v)) ≤ c1 exp(−c2|u− v|) for any t > 0 and u, v ∈ Λ .

Proof. Let E denote the event that the supports of u and v intersect, that is

E =

{ ⋃
0<t′<t

(
Fsup(v, t′, t) ∩Fsup(v, t′, t)

)
= ∅
}
.

Let X ′t and X ′′t be two independent copies of the dynamics. By exploring the histories of the support
we may couple Xt with X ′t and X ′′t so that on the event E the history of v in Xt is equal to the history
of v in X ′t and the history of u in Xt is equal to the history of u in X ′′t . Hence,

E [Xt(v)Xt(u)] = E
[
X ′t(v)X ′′t (u) +

(
Xt(v)Xt(u)−X ′t(v)X ′′t (u)

)
1E
]

≤ E
[
X ′t(v)

]
E
[
X ′′t (u)

]
+ 2P(E)

and so Cov(Xt(v), Xt(u)) ≤ 2P(E). Define the event

Kv,r =
{
Fsup

(
v, t− r

40ed , t
)

= ∅, Fupd

(
v, t− r

40ed , t
)
⊂ B

(
v, r2
)}

.

By Lemma 2.1,

P(Kv,r) ≥ 1− exp(−c′ r
40ed) .

If Kv,|u−v| and Ku,|u−v| both hold then the histories of u and v do not intersect and so

P(E) ≤ P(Kc
v,|u−v| ∪K

c
u,|u−v|) ≤ 2 exp

(
−c′ |u−v|40ed

)
.

This completes the proof, as it implies that

Cov(Xt(v), Xt(u)) ≤ 2P(E) ≤ 4 exp
(
−c′ |u−v|40ed

)
. �

We are now ready to prove the lower bound for the mixing time. To lower bound the total variation
distance at time tm − h we take the magnetization as a distinguishing statistics. By Lemma 4.7,

E
[∑
v∈Λ

X+
tm−h(v)

]
= |Λ|mtm−h ≥ c1e

c2h|Λ|mtm = c1e
c2h
√
|Λ| ,

while Lemma 4.8 implies that

Var

(∑
v∈Λ

X+
tm−h(v)

)
=
∑
u,v∈Λ

Cov(X+
t (u), X+

t (v)) = |Λ|
∑
u∈Λ

c1e
−c2|u−v| ≤ c′|Λ|

for some c′ = c′(β, d) > 0. By Chebyshev’s inequality,

P
(∑
v∈Λ

X+
tm−h(v) >

1

2
|Λ|mtm−h

)
≥ 1−

Var
(∑

v∈ΛX
+
tm−h(v)

)
1
2E
[∑

v∈ΛX
+
tm−h(v)

] ≥ 1− c′e−2c2h.
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Now if σ is a configuration drawn from the stationary distribution then E[
∑

v∈Λ σ(v)] = 0, and since

X+
t converges in distribution to the stationary distribution,

Var

(∑
v∈Λ

σ(v)

)
= lim

t→∞
Var

(∑
v∈Λ

X+
t (v)

)
≤ c′|Λ| .

Hence, by Chebyshev’s inequality, the probability that the magnetization is at least 1
2 |Λ|mtm−h satisfies

P
(∑
v∈Λ

σ(v) >
1

2
|Λ|mtm−h

)
≤ c′e−2c2h.

Thus, considering this as the distinguishing characteristic yields

dtv(X+
t , π) ≥ P

(∑
v∈Λ

X+
tm−h(v) > 1

2 |Λ|mtm−h

)
− P

(∑
v∈Λ

σ(v) > 1
2 |Λ|mtm−h

)
≥ 1− 2c′e−2c2h ,

concluding the proof of the lower bound. �

5. Analysis of percolation components and clusters

5.1. Percolation component structure: Proof of Lemma 3.1. To each v ∈ Λ, associate the

column Qv = B(v, s
3/2
? )× (tm, t?] in the space-time slab Zd× (tm, t?]. Recall that the history of vertices

gives rises to edges in the above space-time slab as per the description in §3. Namely, if at time t there
is a non-oblivious update at site x we mark up to 2d intervals [(x, t), (y, t)] for x ∼ y, and if a site x is
born at time t′ and dies at time t′′ we mark the interval [(x, t), (x, t′′)]. Given these marked intervals,
we say that a column Qv is exceptional if it contains one of the following:

• spatial crossing: a path connecting (x, t) to (y, t′) for |x− y| ≥ 1
2s

3/2
? and some t, t′ ∈ (tm, t?].

• temporal crossing: a path connecting (v, t?) to B(v, s
3/2
? )× {tm}.

Eq. (2.6) from Lemma 2.1 tells us that, even if all phases were deferred (i.e., the update support were

ignored and vertices would never die) then the probability of witnessing a spatial crossing of length s
3/2
?

starting from a given site x during a time interval of s? is at most exp(−s3/2
? ) provided that s? > (20d)2.

In lieu of such a spatial crossing, the number of points reachable from (v, t?) at time τk − 1 = t? − 1

(marking the transition between the deferred phase I ′k and the regular phase Ik) is O(s
3d/2
? ). By

Eq. (2.5) from that same lemma, there exists some c1 = c1(β, d) > 0 so that the probability that the
history of a given u would survive the interval Ik is at most 2 exp(−c1

s?
λ ). A union bound now shows

that, overall, the probability that Qv is exceptional is O(s
3d/2
? exp(−c1

s?
λ )), which is at most exp(− c1

2
s?
λ )

if, say, s? ≥ λ2 and λ is large enough in terms of β, d.
Consider now the collection of block-set pairs {(Ri, Si)}. If Ri! Si on account of some component

Υji at times tm and t? (i.e., Υji is minimally covered by Si while HΥji
(tm) is minimally covered by Ri)

then every block S ∈ Si contains some v ∈ Υji such that (v, t?) is connected by a path (arising from
the aforementioned marked intervals) to (Ri, tm) and every Ri contains some w ∈ HΥji

(tm) such that

(w, tm) is connected to (Si, t?). Moreover, the set of blocks traversed by these paths necessarily forms a
lattice animal (by our definition of the component Υji via the equivalence relation on blocks according
to intersecting histories or adjacency at times tm or t?). We claim that for any block X in this lattice
animal, either X contains some vertex v such that Qv is exceptional, or one of its 2d neighboring blocks
does (and belongs to the lattice animal). Indeed, take x ∈ X such that there is a path P from some
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v ∈ Si to some w ∈ Ri going through x (such a path exists by the construction of the lattice animal).

If P is contained in B(x, 1
2s

3/2
? )× (tm, t?], and hence also in B(v, s

3/2
? ), then it gives rise to a temporal

crossing in Qv and v belongs either to a neighboring block of X or to X itself. Otherwise, P visits

both x and some y ∈ ∂B(x, 1
2s

3/2
? ) and in doing so gives rise to a spatial crossing in Qx, as claimed.

It follows that if (Ri, Si) are the blocks corresponding to the components Υji for all i then there are
pairwise disjoint lattice animals, with mi ≥ W(Ri ∪ Si) blocks each (recall that W(S) is the smallest
number of blocks in a lattice animal containing S), such that each block either contains some v for
which Qv is exceptional, or it has a neighboring block with such a vertex v. Therefore, by going
through the blocks in the lattice animals according to an arbitrary ordering, one can find a subset
S of at least

∑
mi/(2d + 1) blocks, such that each block in S contains a vertex with an exceptional

column. Similarly, we can arrive at a subset S′ ⊂ S of size at least
∑
mi/(2d + 1)2 such that every

pair of blocks in it has distance (in blocks) at least 2. Since the event that Qv is exceptional depends

only on the updates within B(v, s
3/2
? ), the distances between the blocks in S′ ensure that the events of

containing such a vertex v are mutually independent. Hence, the probability that a given collection of
lattice animals complies with the event {Ri! Si} for all i is at most exp[− c1

2
s?
λ (2d+ 1)−2

∑
mi], or

exp(−c2
s?
λ

∑
mi) for c2 = c2(β, d).

Finally, recall from the discussion below (4.11) that the number of different lattice animals containing

m blocks and rooted at a given block is at most (2d)2(m−1). Combined with the preceding discussion,
using mi ≥W(Ri ∪ Si) we find that

P(∩i{Ri! Si}) ≤
∏
i

∑
mi≥W(Ri∪Si)

(2d)2mie−c2
s?
λ
mi ≤ exp

[
− c2

2

s?
λ

∑
i

W(Ri ∪ Si)
]

if for instance s? ≥ 4λ log(2d)/c2, readily guaranteed when s? ≥ λ2 for any λ that is sufficiently large
in terms of β, d. �

5.2. Cut-sets estimates: Proof of Lemma 3.2. Partition the space-time slab Λ×(tm, t?] into cubes
of the form Q×(t, t+r] where r is some large integer to be later specified (its value will depend only on

β and d) and Q ⊂ Zd is a box of side-length r2. We will refer to Q+× (t, t+ r] for Q+ := B(Q, r3/2) as
the corresponding extended cube. Let us first focus on some regular phase Ik. Similar to the argument
from the proof of Lemma 3.1 (yet modified slightly), we will say that a given cube Q × (t, t + r] is
exceptional if one of the following conditions is met:

• spatial crossing: the cube has a path connecting (x, t′) to (y, t′′) for some x, y ∈ Q such that

|x− y| ≥ r3/2.
• temporal crossing: the extended cube has a path connecting (x, t+ r) to (y, t) for some x, y ∈ Q+.

As before, the probability that a given cube contains a spatial crossing is O(r2d exp(−r3/2)) provided
that r > (20d)2, by the bound from Eq. (2.6). Similarly, the probability of the aforementioned temporal
crossing within the regular phase is O(r2d exp(−c1r)) for some c1 = c1(β, d) > 0 by Eq. (2.5). Combin-
ing the two, the probability that a cube is exceptional is at most exp(−c2r) for some c2 = c2(β, d) > 0
if r is a large enough in terms of β, d.

Next, break the time interval Ik = (τk−1, τk − 1] into length-r subintervals Ik,1, . . . , Ik,m (so that
m = s?

(λ−1)r ) in reverse chronological order, i.e.,

Ik,l = (τk − lr − 1, τk − (l − 1)r − 1] (l = 1, . . . ,m) .
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Further let Ik,0 = τk − 1, and let Yk,l for l = 0, . . . ,m count the number of cubes Q×Ik,l (boxes when
l = 0) that, at time t = τk − (l − 1)r − 1 (the end of the subinterval Ik,l), intersect the history of S.

Our next goal is now to bound the exponential moments of Yk,m, the number of cubes intersecting
the history of S at time τk−1, which will be achieved by the following claim:

Claim 5.1. For any k = 1, . . . , λ, the above defined variables (Yk,l) satisfy

E
[
eaYk,m

]
≤ 1 +

(
3
4

)m
exp

[
(2

3)maYk,0
]

for any 0 < a < 1
3 . (5.1)

Proof. Throughout the proof of the claim we drop the subscript k from the Yk,l’s and simply write (Yl).
If v ∈ Q× τk − (l− 1)r− 1 belongs to the history-line, we can trace its origin in the cube Q×Ik,l−1

and necessarily either that cube is exceptional or one of its 2d neighbors is (as otherwise there will not
be a path from v making it to time t?). Hence, Yl+1 ≤ (2d+ 1)Xl+1, where Xl+1 counts the number of
exceptional cubes in the k-th subinterval. Moreover, starting from Yl cubes covering the history, the set
of exceptional cubes counted by Xl+1 is comprised of Yl lattice animals — each rooted at one of those
Yl cubes. So, if Yl = a for some integer a and we consider lattice animals of sizes w1, . . . , wa (cubes) for

each of these, the number of configurations for these lattice animals would be at most (2d)2
∑
wi as was

noted in the proof of Lemma 3.1. Out of these, we can always extract a subset of (
∑
wi)/(2d+1) cubes

which are pairwise non-adjacent, whereby the events of being exceptional are mutually independent.
Combining these ingredients, and setting δ = 1

2c2(2d+ 1)−2, if Fk,l is the σ-algebra generated by the
updates in the subintervals Ik,l′ for l′ ≤ l then

E
[
eδrYl+1 | Fk,l

]
≤ E

[
e(2d+1)δrXl+1 | Fk,l

]
≤

∑
w1,...,wYl

exp
[[

(2d+ 1)δr + 2 log(2d)− c2(2d+ 1)−1r
]∑

wi

]

=

[∑
w

e−[(2d+1)δr−2 log(2d)]w

]Yl
≤
[∑

w

e−2dδrw

]Yl
≤ exp

[
e−δrYl

]
, (5.2)

where the last two inequalities hold provided that δr is sufficiently large, i.e., when r a large enough
function of β and d. In particular, by Markov’s inequality this implies that for any y > 0,

P (Yl+1 ≥ y | Fk,l) ≤ exp
[
e−δrYl − δry

]
≤ exp

[
1
4Yl − y

]
,

provided that δr is large. This enables us to complement the bound in (5.2) when taking a small factor
instead of δr; namely, for any 0 < a < 1 we have

E
[
eaYl+1 | Fk,l

]
=

∫ ∞
0

P
(
eaYl+1 ≥ t | Fk,l

)
≤
∫ ∞

0

(
1 ∧

exp
[

1
4Yl
]

t1/a

)
dt

= e
a
4
Yl + e

1
4
Yl

∫ ∞
e
a
4 Yl

t−
1
adt = e

a
4
Yl +

a

1− a
e
a
4
Yl =

e
a
4
Yl

1− a
.

When Yl ≥ 6 we can upper bound the last exponent by exp(−3
2a+ 1

2aYl) and get that for any 0 < a < 1
3 ,

E
[
eaYl+1 − 1 | Fk,l , Yl ≥ 6

]
≤ e−

3
2
a

1− a
e
a
2
Yl − 1 ≤ 3

4

(
e

2
3
aYl − 1

)
,

where the last inequality used 1− a ≥ exp(− a
1−a) ≥ exp(−3

2a) for 0 < a < 1
3 , followed by the fact that

ex/α − 1 ≤ α(e2x − 1) for any 0 < α ≤ 1 and x ≥ 0 thanks to Jensen’s inequality. On the other hand,
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if Yl ≤ 6 then again by Jensen’s inequality (now taking α = a/δr) and Eq. (5.2),

E
[
eaYl+1 − 1 | Fk,l , Yl ≤ 6

]
≤ a

δr

(
ee
−δrYl − 1

)
≤ 3

4

(
e

2
3
aYl − 1

)
,

with the last inequality justified since exp(e−δrYl) ≤ exp(6e−δr) ≤ 2 for large δr, so its left-hand side
is at most a/δr ≤ a/3 (again for large δr), while using Yl ≥ 1 in its right-hand side (when Yl = 0 both
sides are 0) shows it is always at least a/2.

We have thus established the above relation for all values of Yl; iterating it through the m subintervals
of Ik yields (5.1), as required. �

Moving our attention to the deferred phase I ′k, here we would like to stochastically dominate the
number of vertices in the history at any given time by a rescaled pure birth process Zk,t along a unit
interval, where each particle adds 2d new ones at rate 1 (recall that by definition particles do not die in
deferred phases, and their splitting rate is 1 + tanh(−2dβ) < 1) and furthermore, every vertex receives
an extra update at time τk. Indeed, these can only increase the size of the history at τk − 1, which
in turn can only increase the quantity exp(

∑
i 4Ξi) (by introducing additional cut-vertices in deferred

phases further down the history) that we ultimately wish to bound.
Overestimating the splitting rate suffices for our purposes and simplifies the exposition. On the

other hand, introducing the extra update at time τk plays a much more significant role: Let Mk denote
the number of vertices in the history at the beginning of each phase I ′k. By the discussion above, the

variables Mk in our process dominate those in the original dynamics, and so (Ξk) < (Ξ+
k ) jointly, where

Ξ+
k =

∏
v∈Mk

(
1
4θTv,k

)
for Tv,k ∼ (Exp(1) ∧ 1) (5.3)

is the analog of Ξk in the modified process (the variable Tv,k corresponding to what would be the
update time to v ∈Mk nearest to τk in I ′k in lieu of the extra update at time τk). Crucially, thanks to

the extra updates, Ξ+
k depends only on Mk and has no effect on the history going further back (and

in particular on the Mj ’s for j < k). Therefore, we will (ultimately) condition on the values of all the
Mk’s, and thereafter the variables (Ξ+

k ) will be readily estimated, being conditionally independent.
Indexing the time 0 ≤ t ≤ 1 of the process Zk,t in reverse chronological order along I ′k (identifying

t = 0 and t = 1 with τk, τk − 1, resp.), the exponential moments of Zk,1 can be estimated as follows.

Claim 5.2. For any k = 1, . . . , λ, the above defined variables (Zk,t) satisfy

E
[
ea1Zk,1 | Zk,0

]
≤ exp

[
2e2da1Zk,0

]
for any 0 < a1 ≤ 1

2d log
(

1
1−e−3d

)
. (5.4)

Proof. Throughout the proof of the claim, put Zt as short for Zk,t for brevity.
One easily sees that for any α > 0,

d

dt
E
[
eα(t)Zt

]
= E

[[
α′(t)Zt + (e2dα(t) − 1)Zt

]
eα(t)Zt

]
since d

dtE[eαZt | Zt] = limh→0 e
αZt(e2dα−1)P(Zt+h 6= Zt | Zt) for fixed α. Taking α(t) to be the solution

to α′(t) + exp[2dα(t)]− 1 = 0, namely

α(t) =
1

2d
log

(
1

1− ζe−2dt

)
for ζ > 0 ,
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we find that exp[α(t)Zt] is a martingale and in particular

E
[
eα(1)Z1 | Z0

]
= eα(0)Z0 . (5.5)

Therefore, if we set

ζ = e2d
(

1− e−2da1

)
for 0 < a1 ≤

1

2d
log

(
1

1− e−3d

)
then 0 < ζ ≤ e−d and so α(t) is real and decreasing along [0, 1] to α(1) = a1. For this choice of
parameters we obtain that

α(0) ≤ 1

2d
log

(
1

1− ζ

)
≤ 1

2d

e2d(1− e−2da1)

1− e−d
≤ 2e2da1 ,

using that 1/(1 − e−d) ≤ 2 for any d ≥ 1 and 1 − x ≤ e−x for x > 0. Overall, for any small
enough a1 in terms of d (as in the condition above, matching the one in (5.4)) we have by (5.5) that
E[ea1Z1 | Z0] ≤ exp[2e2da1Z0]. �

Going through the regular phase will enable us to apply Claim 5.2 with a value of a1 which is
exponentially small in s?, let alone small enough in terms of d, easily satisfying the upper bound of
roughly e−3d/2d from the condition in (5.4).

Putting together the analysis of the deferred and regular phases I ′k, Ik in the last two claims, we can

establish a recursion for Mk, the number of vertices in HS(τk). Using Yk,0 ≤ Zk,1 while Mk ≤ r2dYk,m
(by crudely taking the entire volume of each of the cubes that survived to that point), and recalling (5.1),
gives

E
[
eaMk | Fk+1

]
≤ 1 +

(
3
4

)m (
exp

[
2(er)2d

(
2
3

)m
aMk+1

]
− 1
)

as long as a < 1
3r
−2d (to have a′ = r2da qualify for an application of (5.1)). Setting

â = 1
4r
−2d (5.6)

and seeing as for large enough s? (and therefore large enough m) compared to r and d, the pre-factor
of Mk+1 is at most (3

4)m, we finally arrive at

E
[
eâMk | Fk+1

]
≤ 1 +

(
3
4

)m (
exp

[(
3
4

)m
âMk+1

]
− 1
)
,

Mλ ≤ s2d
? |S| .

(5.7)

We will now utilize (5.7) for a bound on the probability that the median of the Mk’s exceeds a
given integer b ≥ 0. More precisely, consider the event that the median of {M0,M1, . . . ,Mλ−2}, which
we denote as medk<λ−1Mk, exceeds b (it will suffice for our purpose to consider this event — which
excludes Mλ−1 before taking the median — and it is convenient to do so since Mλ was pre-given as
input, and hence Iλ is exceptional compared to any other Ik, where we have better control over Mk).
To this end, notice that if max{Mk : k < λ} ≤ λb then the event {medk<λ−1Mk > b} necessitates at
least (λ− 1)/2 values of 1 ≤ k ≤ λ− 1 for which Mk−1 ≥ b even though Mk ≤ λb. Therefore,

P
(

med
k<λ−1

Mk > b

)
≤ P

(
max
k<λ

Mk ≥ λb
)

+ 2λ
[

sup
k<λ

P (Mk−1 > b |Mk ≤ λb)
]λ−1

2

. (5.8)
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The first term in the right-hand side of (5.8) can be estimated via (5.7):

P
(

max
k<λ

Mk ≥ λb
)
≤
∑
k<λ

P
(
eâMk ≥ eâλb

)
≤ λ exp

[
−λâb+ (3

4)mâMλ

]
≤ λ exp

[
− λâb+ (3

4)m( s?r )2d|S|
]
.

Similarly, for the second term, we get from (5.7) that for any k < λ,

P (Mk−1 > b |Mk ≤ λb) ≤ exp
[
−âb+ (3

4)mâλb
]
≤ exp

[
−1

2 âb
]

provided that s? (and hence m) is large enough in terms of λ (so (3
4)mλ < 1

2). Plugging these two

inequalities in (5.8), while using that (λ− 1)/2 > λ/3 for λ large and (3
4)ms2d

? ≤ 1 for s? large enough
in terms of r and λ, yields

P
(

med
k<λ−1

Mk > b

)
≤ 2λ+1 exp

[
− 1

6λâb+ |S|
]
. (5.9)

The final step is to derive the desired upper bound on mink{(Ξ+
k )−4} from the estimate (5.9) on the

median of the Mk’s. Write

E
[

min
k

{
(Ξ+

k )−4
} ∣∣ {Mk} , med

k<λ−1
Mk = b

]
=

∫
dtP

(
min
k

{
(Ξ+

k )−
1
2

}
≥ t

1
8

∣∣∣ {Mk}, med
k<λ−1

Mk = b

)
,

(5.10)

consider some t > 1 and b ≥ 0 and condition on the event medk<λ−1Mk = b. Revisiting (5.3), there
are at least λ−1

2 values of k ∈ {0, . . . , λ− 1} such that

Ξ+
k <

b∏
j=1

(
1
4θTvj ,k

)
for i.i.d. Tvj ,k ∼ (Exp(1) ∧ 1) ,

whence, by the independence of the Tvj ,k’s, if T ∼ Exp(1) ∧ 1 then

E
[
(Ξ+

k )−
1
2

]
≤
(
E
[

2√
θT

])b
.

The expectation above (involving a single T ) is easily seen to be equal to∫
dxP

(
T <

4

θx2

)
= O

(∫
dx

θx2

)
< Cβ,d ,

for some Cβ,d > 1 depending only on θ. Hence, by Markov’s inequality, under the above conditioning
we have

P
(

(Ξ+
k )−

1
2 ≥ t1/8

)
≤ Cbβ,dt−1/8 ,

and already the first 10 (say) out of these λ−1
2 values of k show that

P
(

min
k<λ−1

{
(Ξ+

k )−
1
2

}
≥ t1/8

)
≤ (Cβ,d)

10bt−5/4 .
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(Here we could replace 10 by any integer larger than 8, and it is convenient to use an absolute constant
rather than a function of λ so as to keep the effect of the constant Cβ,d under control). Using (5.10)
we find that

E
[

min
k<λ−1

{
(Ξ+

k )−4
} ∣∣ {Mk}, med

k<λ−1
Mk = b

]
≤
∫
dt

(Cβ,d)
10b

t5/4
= 4(Cβ,d)

10b ,

and an integration with respect to P(medk<λ−1Mk = b) via (5.9) establishes that as long as, say,
λâ > 100 logCβ,d, we have

E
[

min
k<λ−1

{
(Ξ+

k )−4
}]
≤ 2λ+3e|S| .

In summary, the required result holds for a choice of r = λ3d provided that λ is large enough in
terms of d, β (so r is large enough in terms of these as well, while (as we recall that â = 1

4r
−2d) in

addition λâ = 1
4r
d is large) and that s? is then large enough in terms of λ (so m ≥ s?/(rλ) is large).

For these choice, we may take, e.g., s? ≥ λ10d, whence m ≥ sλ−(3d+1) ≥
√
s and all the requirements

above are met for λ large enough in terms of d, β. �

5.3. Blue percolation clusters given the history of their exterior. In this section we prove the
following lower bound on the probability of a cluster to be Blue given the update sequence U along
the (tm, t?] and the complete history up to time tm of every vertex in its exterior:

Lemma 5.3. There exists s0(β, d) > 0 so that for any s? > s0, any sufficiently large n and any C ⊂ A,

inf
H −
C

P
( ⋂
Ai∈C
{Ai ∈ Blue}

∣∣∣H −
C , U

)
≥ e−

∑
Ai∈C

|Ai| ,

where the infimum is over all C-compatible histories.

Proof. Since H −
C is C-compatible, the histories of all A ∈ A\C do not enter B(C, s2

?/3) before time s?.
Therefore, it is enough to verify for all Ai ∈ C that ∪tm−s?<t<tmFsup(Ai, t, tm) ⊂ B(Ai, s

2
?/3) and that

Fsup(Ai, tm − s?, tm) = ∅. Since these events depend on disjoint updates and do not depend on U ,

inf
H −
C

P
( ⋂
A∈C
{Ai ∈ Blue} |H −

C

)
=
∏
Ai∈C

P
(

Fsup(Ai, tm − s?, tm) = ∅ ,
⋃

tm−s?<t<tm

Fsup(Ai, t, tm) ⊂ B(Ai, s
2
?/3)

)
,

and so we will treat the Ai’s separately. For any Ai we cover B(Ai, s
2
?/3) with a set of tiles as follows.

Let 0 = r0 < r1 < . . . < r` = n be such that rk − rk−1 ∈ {s4d
? , 2s

4d
? }. For each u ∈ [s4d

? ]d and k ∈ [`]d

denote

Vk,u := {u1 + rk1−1 + 1, . . . , u1 + rk1} × . . .× {ud + rkd−1 + 1, . . . , ud + rkd}
where we embed {uj + rkj−1 + 1, . . . , uj + rkj} into {1, . . . , n} modulo n. Let ∂Vk,u denote the interior
boundary of Vk,u, that is the subset of vertices of Vk,u adjacent to a vertex in its complement. Then
by construction

1

|[s4d
? ]d|

∑
u∈[s4d? ]d

∑
k∈[`]d

|∂Vk,u ∩B(Ai, s
2
?/3)| ≤ 2d|B(Ai, s

2
?/3)|

s4d
?

,

since in each vertex v and each coordinate i there are at most two choices of ui for which v will be
on the boundary of a block in coordinate i. Hence, it is possible for us to choose some u ∈ [s4d

? ]d
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such that
∑

k∈[`]d |∂Vk,u ∩ B(Ai, s
2
?/3)| ≤ 2d|B(Ai,s

2
?/3)|

s4d?
. Let V denote the set of tiles Vk,u such that

Vk,u ∩B(Ai, s
2
?/3) 6= ∅. Each block of Ai is in at most 2d tiles, so |V| ≤ 2d|Ai|.

For each Vk ∈ V, let Ṽk denote an isomorphic copy of the graph induced by Vk disconnected from
everything else together with a graph bijection ϕk : Ṽk → Vk. Let Λ̃i = ∪Vk∈V Ṽk and let X̃t denote the

Glauber dynamics on Λ̃i started from the all-plus configuration at time tm − s? and run until time tm.
Since the Ṽk are disconnected, the projections of the chain onto each Ṽk are independent. We define
the update and support functions F̃upd and F̃sup analogously. Let Ẽk denote the event that for all
v ∈ Ṽk the following hold.

(1) The support function dies out by time s?, F̃sup(v, tm − s?, tm) = ∅.
(2) The update function does not travel too far,

F̃upd (v, tm − s?, tm) ⊂ ϕ−1
k

(
Vk ∩B(v, s2

?/4)
)
.

(3) All vertices have at most 10s? updates in the interval [tm − s?, tm].

By Lemma 2.1 and the fact that the number of updates of a vertex in time s? is Po(s?),

P(Ẽk) ≥ 1− |Ṽk|Ce−cs? ≥ exp(2−d−1) ,

for large enough s?.
Recall that we encode the dynamics Xt by a series of updates (Ji, Ui, Ti) for vertices Ji ∈ Λ, unit

variables Ui and times Ti. If Si is the sum of spins of the neighbors of Ji at time Ti, then the update

sets the new spin of Ji to −1 if Ui <
e−Siβ

e−Siβ+eSiβ
and to +1 otherwise. We couple the updates of X̃t to

those of Xt as follows. For v ∈ Ṽk such that ϕk(v) ∈ B(Ai, s
2
?/3), we couple the update times, i.e., v has

an update at time t ∈ [tm − s?, tm] in X̃ if and only if ψk(v) has one in X. Furthermore, if in addition
ϕk(v) 6∈ ∂Vk then we also couple the unit variable of the update. Otherwise (the case ϕk(v) ∈ ∂Vk),
the unit variables of the updates are taken as independent.

Further recall that an update is oblivious if either Ui ∈ [0, e−2dβ

e−2dβ+e2dβ
] (the new spin is −1 irrespective

of the neighbors of Ji) or Ui ∈ [ e2dβ

e−2dβ+e2dβ
, 1] (similarly, the new spin is +1). Let Rk denote the event

that all updates of ϕk(v) ∈ ∂Vk ∩B(Ai, s
2
?/3) are oblivious updates and that the updated values X̃t(v)

and Xt(ϕ(v)) agree. This has probability e−2dβ

e−2dβ+e2dβ
for each update. Since on Ẽk there are at most

10s?|∂Vk ∩B(Ai, s
2
?/3)| updates on ∂Vk ∩B(Ai, s

2
?/3), we have that

P(Rk | Ẽk) ≥ exp
[
−C1s?

∣∣∂Vk ∩B(Ai, s2
?/3
)∣∣] ,

where C1 = 10 log e−2dβ+e2dβ

e−2dβ . Since these are independent for each k,

P(∩k∈V(Rk ∩ Ẽk)) ≥ exp
[
−2−d−1|V| − C1s?

∣∣∂Vk ∩B(Ai, s2
?/3
)∣∣]

≥ exp

(
−1

2
|Ai| − C1s?

2d
∣∣B (Ai, s2

?/3
)∣∣

s4d
?

)
≥ exp(−|Ai|) ,
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provided that s? is sufficiently large, as |B(Ai, s
2
?/3)| ≤

(
5
3

)d
s2d
? |Ai| and 2d|V| ≤ |Ai|. By Eq. (??), to

complete the lemma it therefore suffices to show that the event ∩k∈V(Rk ∩ Ẽk) implies

Fsup (Ai, tm − s?, tm) = ∅ , (5.11)⋃
tm−s?<t<tm

Fsup (Ai, t, tm) ⊂ B
(
Ai, s

2
?/3
)
. (5.12)

The updates on ∂Vk ∩B(Ai, s
2
?/3) are oblivious updates and hence do not examine the values of their

neighbors on the eventRk. Combining this with property (2) of the definition of Ẽk and the construction

of the coupling implies that for v ∈ Ṽk such that ϕk(v) ∈ Ai, the support of ϕk(v) is contained in Vk.
Hence, by the coupling it follows that

Fsup (ϕk(v), t, tm) ⊂ ϕk
(
F̃upd (v, t, tm)

)
⊂ Vk ∩B(ϕk(v), s2

?/3) ,

which implies (5.12). It remains to prove (5.11).
Knowing the updates of course allows one to determine the configuration at a later time from

the configuration of an earlier time. We then define Ỹ η
t (w) as follows. It is the the spin at time

t ∈ [tm − s?, tm] of the vertex w ∈ F̃upd(v, t, tm) generated from the Glauber dynamics with initial

configuration η on F̃upd(v, tm − s?, tm) at time tm − s? using the updates of X̃t. Note that, by the

definition of F̃upd, these are the only initial values that need to be specified. Define Y η
t in the same way

except with the updates ofXt instead of X̃t, where we take the domain of η to be ϕk(F̃sup(v, tm−s?, tm)).
As usual, + and − denote the all +1 and −1 initial conditions, respectively.

Since the initial condition for X̃t is all-plus, by the construction of the coupling for every time
t ∈ [t, tm] and vertex w ∈ F̃upd(v, t, tm) we have that

X̃t(w) = Ỹ +
t (w) = Y +

t (ϕk(w)) .

We claim that for all t and w ∈ F̃upd(v, t, tm), Ỹ −t (w) ≤ Y −t (ϕk(w)). This can be seen by induction
applying the updates in turn. Let {(ti, wi)} denote the set of updates in the update history of v in
the interval [tm − s?, tm] ordered so that tm − s? < t1 < t2 < . . . < tq < tm. For all updates with

wi ∈ Ṽk \∂Ṽk this follows by the fact that the updates use the same unit variables, monotonicity of the

update rule and the inductive assumption on the values of the neighbors. For updates wi ∈ ∂Ṽk note
that

Ỹ −ti (wi) ≤ Ỹ +
ti

(w) = Y +
ti

(ϕk(wi)) = Y −ti (ϕk(wi)) ,

where the first inequality is by monotonicity while the final equality is by the fact that the boundary
updates are oblivious ones. Hence, by induction, Ỹ −tm(v) ≤ Y −tm(ϕk(v)). We know that Ỹ +

tm(v) = Ỹ −tm(v)
by the definition of the support and Ek and so combining the above results yields

Y +
tm(ϕk(w)) = Ỹ +

tm(v) = Ỹ −tm(v) ≤ Y −tm(ϕk(v)) ≤ Y +
tm(ϕk(v)) ,

so Y +
tm(ϕk(v)) = Y −tm(ϕk(v)). This verifies (5.11), completing the proof. �

5.4. Red percolation clusters given the history of their exterior. This section is devoted to the
proof of the following upper bound on the probability of a cluster to be Red given the update sequence
U along the (tm, tm + s?] and the history up to time tm of every vertex in its exterior:

For any cluster of components C and each ` ≥ 1 we define the relation

Ai ∼` Aj iff B
(
Ai, s

2
?

(
2`−2 + 1

4

))
∩B

(
Aj , s

2
?

(
2`−2 + 1

4

))
6= ∅ ,
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and extend the relation to an equivalence relation. Let V` denote the set of equivalence classes given
by the equivalence relation and for each v ∈ V` let Av denote the union of the components in v. We
define L to be the largest ` such that |V`| > 1. We let V0 = C be the set of Ai.

Claim 5.4. For any cluster of components C,

L∑
`=0

2`|V`| ≥W(∪Ai∈CAi)−
∑
Ai∈C

W(Ai) .

Proof. Let Âi denote a minimal lattice animal containing Ai so that Ai ⊂ Âi and |Âi| = W(Ai). We

construct a lattice animal covering ∪iAi by adding blocks to ∪iÂi as follows. Starting with ` = 1
we add the minimum number of blocks needed so that for all v ∈ V` all the Ai ∈ v are connected
together. By definition, if Ai ∼` Aj then these can be connected with at most 2`−1 blocks. Thus,
after connecting together all sets of components at level ` − 1 for each v ∈ V` we need to add at
most 2`−1 (|{v′ ∈ V`−1 : v′ ⊂ v}| − 1) additional blocks to connect together all the components of V`.
Summing over ` from 1 to L + 1 we add a total number of blocks of

L+1∑
`=1

∑
v∈V`

2`−1
(
|{v′ ∈ V`−1 : v′ ⊂ v}| − 1

)
=

L+1∑
`=1

2`−1(|V`−1| − |V`|) ≤
L∑
`=0

2`|V`| .

Since adding
∑L

`=0 2`|V`| blocks to the Âi yields a connected component, the desired result follows. �

Lemma 5.5. There exists c(β, d), s0(β, d) > 0 such that, for any s? > s0, any large enough n and
every C ⊂ A, the quantity ΨC from (3.1) satisfies

P
(
C ∈ Red |H −

C , U
)
≤ s4d

?

mtm

e
3
∑
i |Ai|−cs?

∣∣∣W(C)−
∑
Ai∈C

W(Ai)
∣∣∣+
. (5.13)

Proof. The bound is trivial for histories which are not C-compatible so we may restrict our attention to
the supremum over C-compatible histories. Denote the event E that the history of C does not intersect
the history H −

C . The set of clusters A depends only on U and this is the only dependence on U in the
bound. Given A, the partition into clusters and their colors depends only on the updates in [0, tm].
Hence, we can view Red as a function Red(A). We can extend this definition to any set of components
and write Red(A′) to denote the set of red clusters had the set of components instead been A′. Now
if C ∈ Red(A) then one also has C ∈ Red(C).

We let E(H) denote the event that the history of C does not intersect H ⊂ Λ× [0, tm], a space-time
slab. If C is a cluster then E(H −

C ) must hold. Exploring the history of C we see that it does not depend

on the history of its complement, H −
C , until the point at which they intersect (since they depend on

disjoint updates) and hence

P(HC ∈ ·, E(H) |H −
C = H, U) = P(HC ∈ ·, E(H) | U) ≤ P(HC ∈ ·) .

Since the event C ∈ Red(C) is HC-measurable we have that,

P(C ∈ Red |H −
C , U) ≤ P(C ∈ Red(C), E(H −

C ) |H −
C , U) ≤ P(C ∈ Red(C)) .

Next, we bound P(C ∈ Red(C)). At least one vertex of C must have support at time 0 so by a union,

P(C ∈ Red(C)) = P(Fsup(∪iAi, 0, tm)) ≤ s2d
? mtm

∑
i

|Ai| = s2d
?

1√
|Λ|

∑
i

|Ai| ;
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this implies (3.2) in the case W(∪iAi) −
∑

iW(Ai) ≤ 0, which we note includes the case |C| = 1. We
may thus restrict our attention to the case W(∪iAi)−

∑
iW(Ai) > 0, in which |C| ≥ 2 and so |VL| ≥ 2.

Our approach will be to define a collection of events that must hold if C ∈ Red(C), one that depends
on the structure of C and its above defined decomposition. For ` ≤ L and v ∈ V` define the event Kv,`,
which roughly says that the update set of Av spreads unexpectedly quickly, as

Kv,` =
{
∃u ∈ B(Av,

3
72`s2

?) \B(Av,
2
52`s2

?) : Fupd(u, tm − 2`s?, tm) 6⊂ B(u, 2`

100s
2
?)
}
,

and the event

Jv,` =

{
Fsup

(
B
(
Av,

(
2
5 + 1

100

)
2`s2

?

)
, tm − 2`s?, tm − 2`−1s?

)
6= ∅, Kc

v,`

}
,

which roughly says that the support of Av lasts for a large time. Combined, we define Rv,` = Kv,`∪Jv,`.
For the final level ` = L we define a slight variant of these in terms of κ, some large positive constant
to be fixed later,

K̂v,` =
{
∃u ∈ B(Av,

3
72`s2

?) \B(Av,
2
52`s2

?) : Fupd(u, tm − κ2`s?, tm) 6⊂ B(u, 2`

100s
2
?)
}
,

as well as

Ĵv,` =

{
Fsup

(
B
(
Av,

(
2
5 + 1

100

)
2`s2

?

)
, tm − κ2`s?, tm − 2`−1s?

)
6= ∅, K̂c

v,`

}
and R̂v,` = K̂v,` ∪ Ĵv,`. Finally, we need to consider events describing how the history connects to time
0. For v ∈ VL, denote

J̆v,` =

{
Fsup

(
B
(
Av,

(
2
5 + 1

100

)
2`s2

?

)
, 0, tm − 2`−1s?

)
6= ∅, K̂c

v,`

}
.

Define the set

Γ = Fupd

(
B(∪Ai∈CAi, 2Ls2

?), tm − κ2Ls?, tm

)
and the event

JΓ =

{
Fsup

(
Γ, 0, tm − κ2Ls?

)
6= ∅
}
.

Claim 5.6. If C ∈ Red(C) then the events Rv,` and R̂v,` hold for all 0 ≤ ` ≤ L and v ∈ V`. Furthermore,

either ∪v∈VL J̆v,L or JΓ ∩ (∪v∈VLK̂v,L) hold.

Proof of claim. If C ∈ Red(C) then the history of Av must connect to the remainder of the component.
This can occur either by the support of Av and C \ Av meeting in the interval [tm − 2`s?, tm] in which
case Kv,` holds. Alternatively, the support of Ai ∈ Av may enter B(Aj , s

2
?/3) for some Aj ∈ C \ Av

in the interval [tm − s?, tm], in which case again Kv,` holds. Another option is that the support of
Aj ∈ C \Av enters B(Ai, s

2
?/3) for some Ai ∈ Av in the interval [tm − s?, tm], whence again Kv,` holds.

The final possibility is that the support survives until time tm−2`s? (i.e., Fsup(Av, , tm−2`s?, tm) 6= ∅).
In this case one of the following must hold:

• The support travels far in space by time tm − 2`−1s? and

Fsup

(
Av, tm − 2`−1s?, tm

)
6⊂ B

(
Av,

(
2
5 + 1

100

)
2`s2

?

)
,

in which case Kv,` holds.
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• The support survives until time tm − 2`s?, given it did not travel too far by time tm − 2`−1s?, and

Fsup

(
B
(
Av,

(
2
5 + 1

100

)
2`s2

?

)
, tm − 2`s?, tm − 2`−1s?

)
6= ∅ ,

in which case Rv,` holds.

This set of possibilities is exhaustive and completes the claim. The other claims follow similarly. �

We now observe that the events Rv,` are independent as they depend on disjoint sets of updates.
The event Kv,` depends only on updates in the space time block(

B(Av,
(

3
7 + 1

100

)
2`s2

?) \B(Av,
(

2
5 −

1
100

)
2`s2

?)

)
× [tm − 2`s?, tm]

while Jv,` depends only on the same set (through the event Kc
v,` in its definition) plus updates in(

B
(
Av,

(
2
5 + 2

100

)
2`s2

?

))
× [tm − 2`s?, tm − 2`−1s?] .

Since these sets are disjoint for different v it follows that the Rv,`’s are independent. Similarly, the R̂v,`’s

are independent for ` = L and independent of the Rv,`’s for ` < L. The event J̆v,` is also independent

of the Rv,`’s and R̂v,`’s. The set Γ depends only on updates in (Λ \B(Av, 2
`s2
?))× (tm − κ2`s?, tm) and

hence independent of all our constructed events except JΓ, and JΓ is independent of all our constructed
events except J̆v,`.

We now estimate the probability of the above events using Lemma 2.1. Noting that∣∣∣B(Av, α2`s2
?

)∣∣∣ ≤ (1 + 2α)d2`ds2d
? |Av| ≤ eC(`+log s?)+2−`|Av |

for some c′ > 0, we have that

P(Kv,`) ≤
∣∣∣B(Av, 3

72`s2
?

)∣∣∣ e−c2`s2? ≤ e−c′2`s2?+2−`|Av |

for large enough s?. Similarly,

P(K̂v,`) ≤ e−c
′2`s2?+2−`|Av | .

Again by Lemma 2.1 it follows that

P(Jv,`) ≤
∣∣∣B(Av, (2

5 + 1
100

)
2`s2

?

)∣∣∣ e−c2`s? ≤ e−c′2`s?+2−`|Av | ,

and similarly

P(Ĵv,`) ≤
∣∣∣B(Av, (2

5 + 1
100

)
2`s2

?

)∣∣∣ e−cκ2`s? ≤ e−c′κ2`s?+2−`|Av | .

As P(Fsup(u, 0, t) 6= ∅) = mt and mt+h ≥ e−hmt we have that

P(J̆v,L) ≤
∣∣∣B(Av, (2

5 + 1
100

)
2Ls2

?

)∣∣∣mtm−2L−1s? ≤ exp(2Ls? + 2−`|Av|)mt .

For h ≥ 1/3 and s? large enough we have that

P
(
Fupd(v, tm − κ2`s?, tm) 6⊂ B

(
v, h2`s2

?

))
≤ e−s?2`h ,
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and so E|Fupd(v, tm − κ2`s?, tm)| ≤ s2d
? 2`d. Hence,

E|Γ| ≤
∣∣∣B( ∪Ai∈C Ai, 2Ls2

?

)∣∣∣ s2d
? 2`d ≤

(
3 · 22Ls4

?

)d∑
i

|Ai| .

Finally, by a union bound over u ∈ Γ,

P (JΓ | Γ) ≤ mtm−κ2Ls? |Γ| ≤ mtme
κ2Ls? |Γ| .

Combining the above estimates with the claim and the independence of the events we have that

P (C ∈ Red(C)) ≤ P

(( L−1⋂
`=0

⋂
v∈V`

Rv,`

)
∩
( ⋃
v∈VL

J̆v,L
⋂

u∈VL\{v}

R̂u,L

))

+ P

(( L−1⋂
`=0

⋂
v∈V`

Rv,`

)
∩
( ⋃
v∈VL

K̂v,L

⋂
u∈VL\{v}

R̂u,L

)
∩ JΓ

)
.

The right-hand side, in turn, is at most

exp

(
−c′s?

L−1∑
`=0

2`|V`| − c′κ2L(|VL| − 1) + 2
∑
i

|Ai|

)
|VL|mtm

(
e2Ls? + e−c

′2`s2?EΓeκ2`s?
)

≤ 1√
|Λ|

exp

(
−c′s?

L∑
`=0

2`|V`|+ 3
∑
i

|Ai|

)
,

where the final inequality comes from the fact that |VL| ≥ 2 and

|VL|
(
e22Ls? + e−c

′2`s2?(3 · 2Ls4
?)
deκ2`s?

∑
i

|Ai|
)
e−c

′(κ−1)2L−
∑
i |Ai| ≤ 1 ,

provided that c′(κ−1) > 1 and s? is large. Combining this with Claim 5.4 gives (5.13), as required. �

5.5. Proof of Lemma 3.3. The desired bound in (3.2) is similar to the one we obtained in (5.13), with
the difference being an extra conditioning on GC := {C ∈ Red} ∪ {C ⊂ Blue}. Since {C ∈ Red} ⊂ GC ,

P
(
C ∈ Red |H −

C , GC ,U
)

=
P
(
C ∈ Red |H −

C , U
)

P
(
GC |H −

C , U
) ≤

P
(
C ∈ Red |H −

C , U
)

P(
⋂
Ai∈C{Ai ∈ Blue} |H −

C , U)
,

from which Eq. (3.2) follows after applying Lemmas 5.3 and 5.5 to the numerator and denominator of
the right-hand side, respectively. �

6. Random vs. deterministic initial states

In this section we consider the Ising model on the cycle Z/nZ for small β > 0 with a random
initial state, both quenched and annealed. Rather than comparing two worst case initial states we will
compare a random one directly with the stationary distribution using coupling from the past. Recall
that for the 1d Ising model we can give a special update rule: with probability θ = θβ,d = 1− tanh(2β)
update to a uniformly random value and with probability 1 − θ copy the spin of a random neighbor.
The history of a vertex is simply a continuous time random walk which takes steps at rate 1 − θ and
dies at rate θ; when such walks meet they coalesce and continue together until dying. Each component
can only decrease in size over time and all vertices in the component receive the same spin.
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In the sequel, the annealed setting (Part 1 of Theorem 2) is studied in §6.1 and §6.2 (upper and lower
bounds on mixing, respectively), whereas §6.3 focuses on the quenched setting (Part 2 of Theorem 2).

6.1. Annealed analysis: upper bound. We define Yt to be the process coupled from the past, so
the spins at time tm are independent on each of the components with equal probability. Now let Xt

be the process started from an i.i.d. configuration at time 0. Since the magnetization is simply the
probability that the walk has not yet died it follows that mt = e−θt. We will consider the total variation
distance at time t′m = 1

4θ log n+ 1
θ log logn− s? for some large constant s? > 0.

Theorem 6.1. With t′? = 1
4θ log n+ 1

θ log log n we have that ‖P(Xt′? ∈ ·)− π(·)‖tv → 0.

Set t′m = t′? − s? where s? > 0 is a large constant. In order to couple the process with the stationary
distribution we consider updates in the range t ∈ (−∞, t′?] with the block components constructed
using the updates in the range [t′m, t

′
?] with deferred and undeferred randomness similarly as before.

In this analysis it is necessary to directly compare the annealed distribution with the stationary
distribution and for this we use the coupling from the past paradigm and hence consider updates
before time 0. We modify the Intersection property of the construction of clusters to identify Ai and
Aj if Fsup(Ai, t, tm)∩Fsup(Aj , t, tm) 6= ∅ for some −∞ < t < tm (in place of the condition 0 ≤ t < tm).

We also redefine the notion of a red cluster to be one containing two vertices whose history reaches
time 0 without coalescing, that is,

C ∈ Red iff
∣∣∣ ⋃
v∈Ai∈C

Fsup(v, 0, tm)
∣∣∣ ≥ 2 (6.1)

(note that the histories of vertices are always of size one). We define blue clusters as before and green
clusters as the remaining clusters. We can thus couple Xt and Yt so that they agree on the blue and
green components at time tm but possibly not on the red components.

Recalling that W(S) is the smallest lattice animal of blocks covering S, we let

W2(S) := min
S1,S2 :S1∪S2=S

W(S1) + W(S2) .

We denote V`, equivalence classes of components of C as in §5.4 and this time define L′ to be the largest
` such that |V`| > 2. The following claim is a simple extension of Claim 5.4.

Claim 6.2. For any cluster of components C,

L′∑
`=0

2`|V`| ≥W2(∪Ai∈CAi)−
∑
Ai∈C

W(Ai) .

The proof is essentially the same as Claim 5.4.

Lemma 6.3. There exists c(β, d), s0(β, d) > 0 such that, for any s? > s0, any large enough n and
every C ⊂ A, the quantity ΨC from (3.1) satisfies

P
(
C ∈ Red |H −

C , U
)
≤ s4d

?

e2θt′m
e

3
∑
i |Ai|−cs?

∣∣∣W2(C)−
∑
Ai∈C

W(Ai)
∣∣∣+
. (6.2)

Proof. The proof is similar to Lemma 5.5 and we describe the necessary changes. Throughout the
proof we change all instances of L to L′ and tm to t′m. We must incorporate the fact that two histories
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independently reaching time 0 are required for red so we denote

J̆ ′v,v′,` =

{∣∣∣∣Fsup

(
B
(
Av ∪Av′ ,

(
2
5 + 1

100

)
2`s2

?

)
, 0, t′m − 2`−1s?

) ∣∣∣∣ ≥ 2, K̂c
v,`, K̂

c
v′,`

}
.

Since the probability that two separate histories reach time 0 without coalescing is bounded by the
square of the probability of a single walk reaching time 0, we have that

P(J̆ ′v1,v2,L) ≤ e−2θt′m

2∏
i=1

|B
(
Avi ,

(
2
5 + 1

100

)
2`s2

?

)
| ≤ exp

(
2Ls? + 2−`(|Av1 |+ |Av2 |)

)
e−2θt′m .

By essentially the same proof as above we have that E|Γ| ≤
(
3 · 22Ls4

?

)2d
(
∑

i |Ai|)2. Also, as we require
two histories to reach time 0, we let

J ′Γ =

{∣∣∣∣Fsup

(
Γ, 0, t′m − κ2Ls?

) ∣∣∣∣ ≥ 2

}
and

P (JΓ | Γ) ≤ m2
tm−κ2Ls?

|Γ|2 ≤ e−2θt′me2κ2Ls? |Γ|2 .
With this notation,

P (C ∈ Red(C)) ≤ P

(( L′−1⋂
`=0

⋂
v∈V`

Rv,`

)
∩
( ⋃
v,v′∈VL′

J̆ ′v,v′,L′
⋂

u∈VL′\{v,v′}

R̂u,L′

))

+ P

(( L′−1⋂
`=0

⋂
v∈V`

Rv,`

)
∩
( ⋃
v∈VL′

K̂v,L′
⋂

u∈VL′\{v}

R̂u,L′

)
∩ J ′Γ

)
.

The result now follows similarly to Lemma 5.5 by substituting our bounds for each of the events. �

Since red components under our modified definition are also red components under the previous
definition we have by Lemma 5.5,

P
(
C ∈ Red |H −

C , U
)
≤ s4d

?

eθt
′
m
e

3
∑
i |Ai|−cs?

∣∣∣W(C)−
∑
Ai∈C

W(Ai)
∣∣∣+
,

and combining this with (6.2) yields

P
(
C ∈ Red |H −

C , U
)
≤ s4d

?

e2θt′m
e

3
∑
i |Ai|−cs?

∣∣∣W2(C)−
∑
Ai∈C

W(Ai)
∣∣∣+−cs?∣∣∣W(C)−W2(C)− θ

cs?
t′m

∣∣∣+
. (6.3)

Altogether, this translates into the bound

Ψ̄{Aij } ≤
s4d
?

e2θt′m
e

4
∑
i |Ai|−cs?

∣∣∣W2(C)−
∑
Ai∈C

W(Ai)
∣∣∣+−cs?∣∣∣W(C)−W2(C)− θ

cs?
t′m

∣∣∣+
.

Having coupled Xt and Yt as described above where only the red components differ in the two versions
of the chain, we can follow the analysis of §4 and in place of equation (4.11) arrive at

22λ+6s8d
?

e4θt′m

∑
A

( ∑
C={Aij }
A∈C

∑
{Bj}

exp

[
− c

4

s?
λ

[
W(C) +

∑
j

W(Aij ∪Bj) +
(
W(C)−W2(C)− t′m

)+
]])2

.

(6.4)
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We now count the number of rooted animals C with W(C) = S and W2(C) = S ′. We must cover C with
two lattice animals, one containing the root A and the second rooted at A′. Since the distance from A
to A′ is at most S there are at most (2S + 1)d choices for A′. There are S ′ ways to choose the sizes of

the two animals as some k and S ′ − k and then (2d)2k+2(S′−k) ways of choosing the animals. In total,

we have at most S ′(2S + 1)d(2d)2S′ choices of C. The total number of choices of {Aij} and Bj with

W(C) = S, W2(C) = S ′ and
∑

j W(Aij ∪Bj) = R is therefore S ′(2S + 1)d2S
′
8R(2d)2(S′+R); thus,∑

C={Aij }
A∈C

∑
{Bj}

exp

[
− c

4

s?
λ

[
W(C) +

∑
j

W(Aij ∪Bj) +
(
W(C)−W2(C)− t′m

)+
]]

≤
∑
S′,R≥1
S≥S′

e−
c
4
s?
λ

(S′+R+(S−S′−t′m)+)S ′(2S + 1)d2S
′
8R(2d)2(S′+R) ≤ t′me−

c
5
s?
λ

provided s? is large enough compared to d. Plugging this into (6.4) gives an upper bound on the total
variation distance of

22λ+6s8d
?

e4θt′m
|Λ|(t′m)2e−

2c
5
s?
λ

which tends to 0 for t′m = 1
4θ log n+ 1

θ log logn− s?, establishing the upper bound on the mixing time.

6.2. Annealed analysis: lower bound. We now prove a matching lower bounded on the mixing
time from an annealed initial configuration.

Theorem 6.4. For t = 1
4θ log n− 2

θ log logn we have that ‖P(Xt ∈ ·)− π(·)‖tv → 1 .

It will be convenient to simply omit the deferred and undeferred regions and directly analyze the
update support function from time t = 1

4θ log n− 2
θ log logn. Taking the coupling above, two vertices v

and v′ have the same spins in X if their histories merge before time 0 and are conditionally independent
otherwise. By contrast, for Y the spins are equal if the histories merge at any time in the past and are
conditionally independent otherwise. Defining Av,v′ as the event that the histories of v and v′ survive
to time 0 and merge at some negative time, we have that

P
(
Yt(v) = Yt(v

′)
)
− P

(
Xt(v) = Xt(v

′)
)

=
1

2
P
(
Av,v′

)
.

Now, as the history of v and v′ are both continuous time random walks,

P
(
Fsup(v, 0, t) = {v}, Fsup(v′, 0, t) = {v′}

)
≥ c1

1

(t′m)2
e−2θt ,

since the probability is that two random walks started from neighboring vertices do not intersect until
time t′m and return to their starting locations is at least c1/(t

′
m)2 and the probability that neither walk

dies is at least e−2θt. They then have a constant probability of merging for some t1 < 0 so

P
(
Av,v′

)
≥ c2

1

(t′m)2
e−2θt ,

and if we label the vertices around the cycle as u1, . . . , un then for large n,

E
[ n−1∑
i=1

Yt(ui)Yt(ui+1)−Xt(ui)Xt(ui+1)

]
≥ c2

1

(t′m)2
e−2θtn ≥

√
n log n .
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By the exponential decay of correlation in the stationary distribution of the 1d Ising model,

Var

( n−1∑
i=1

Yt(ui)Yt(ui+1)

)
≤ Cn .

Since the spins in different clusters are independent and with probability at least 1 − n−10 there
are no clusters whose diameter is greater than C log logn for some large C(β) we have that when
|i− i′| ≥ C log n then

Cov

(
Xt(ui)Xt(ui+1), Xt(ui′)Xt(ui′+1)

)
= O(n−10) ,

and hence

Var

( n−1∑
i=1

Xt(ui)Xt(ui+1)

)
≤ Cn log n .

It follows by Chebyshev’s inequality that

P

(
n−1∑
i=1

Yt(ui)Yt(ui+1) ≥ E
[ n−1∑
i=1

Yt(ui)Yt(ui+1)

]
− 1

2

√
n log n

)
= 1− o(1)

while

P

(
n−1∑
i=1

Xt(ui)Xt(ui+1) < E
[ n−1∑
i=1

Yt(ui)Yt(ui+1)

]
− 1

2

√
n log n

)
= 1− o(1) ,

and hence ‖Xt − π‖tv → 1.

6.3. Quenched analysis. Here we show that on the cycle, there is at most a minor, O(log log n)
improvement when starting from a typical random initial configuration, since almost all configurations
bias the magnetizations of most vertices. For a configuration x0 denote

Rt(u, x0) =
∑
u′∈V

Pt(u, u
′)x0(u′) , (6.5)

where Pt(u, u
′) is the transition probability of a continuous time walk with jumps at rate (1 − θ).

Observe that
Ex0 [Xt(u)] = e−θtRt(u, x0) . (6.6)

Proposition 6.5. Suppose that there exists some sequence an = no(1) such that for any large n,

1

n

∑
u∈Λ

|Rt(u, x0)| ≥ 1

an
at t =

1

2θ
log n− 1

θ
log logn− 1

θ
log an . (6.7)

Then ‖Px0(Xt ∈ ·)−π(·)‖tv = 1− o(1) as n→∞. Furthermore, if x0 is uniformly chosen over {±1}Λ
then there exists some C = C(β) > 0 such that (6.7) holds with probability 1− o(1) for an = C log n.

Proof. Let X0 be a uniformly chosen initial configuration. Since Rt(u,X0) is a sum of independent
increments, when t and n are both large, Rt(u,X0) is approximately N (0,

∑
u′∈V Pt(u, u

′)2) by the
Central Limit Theorem; in particular, E|Rt(u,X0)| ≥ c/t for some fixed c > 0, and

E
[

1

n

∑
u∈Λ

|Rt(u,X0)|
]
≥ c

log n
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for another fixed c > 0 provided t has order log n. From the decay of Pt(u, u
′) we infer that if

|u− u′| ≥ C log n for a large enough C > 0 then Cov(|Rt(u)|, |Rt(u′)|) ≤ n−10, thus implying that

Var

(
1

n

∑
u∈Λ

|Rt(u,X0)|
)

= O

(
log n

n

)
,

and altogether

P
(

1

n

∑
u∈Λ

|Rt(u,X0)| > c

2 log n

)
→ 1 .

This establishes (6.7) with probability going to 1 for an = C log n with a suitably chosen C = C(θ) > 0.
By the same decay of correlations, for vertices with |u− u′| ≥ C log n for some large enough C > 0

the histories do not merge in the interval (0, t] with probability 1−O(n−10). In this case,

Covx0

(
sign(Rt(u, x0))Xt(u) , sign(Rt(u

′, x0))Xt(u
′)
)

= O(n−10) ,

and again we can deduce that

Var

(
1

n

∑
u∈Λ

sign(Rt(u, x0)Xt(u)

)
= O

(
log n

n

)
.

Recalling from (6.6) that Ex0 [sign(Rt(u, x0))Xt(u)] = e−θt|Rt(u, x0)|, Chebyshev’s inequality yields

Px0

(
1

n

∑
u∈Λ

(
sign(Rt(u, x0))Xt(u)− |Rt(u, x0)|

)
>

1

2an

)
≤ O

(
log n

n

(
eθtan

)2)
= O

(
1

log n

)
by the definition of t. Thus, we conclude that for any x0 satisfying (6.7),

Px0

(
1

n

∑
u∈Λ

sign(Rt(u, x0))Xt(u) >
1

2an

)
→ 1 . (6.8)

By contrast, if Y is chosen independently according to the Ising measure then by the exponential decay
of spatial correlations we have that

Var

(
1

n

∑
u∈Λ

sign(Rt(u, x0))Y (u)

)
= O(1/n) ,

and since E
∑

u∈Λ sign(Rt(u))Y (u) = 0 while 1/an � 1/
√
n we can infer that

P
(

1

n

∑
u∈Λ

sign(Rt(u, x0))Y (u) >
1

2an

)
→ 0 . (6.9)

Comparing equations (6.8) and (6.9) implies that

‖Px0(Xt ∈ ·)− π(·)‖tv = 1− o(1) ,

completing the result. �
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