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Abstract. On any locally-finite geometry, the stochastic Ising model is known to be contractive when

the inverse-temperature β is small enough, via classical results of Dobrushin and of Holley in the 1970’s.

By a general principle proposed by Peres, the dynamics is then expected to exhibit cutoff. However, so

far cutoff for the Ising model has been confirmed mainly for lattices, heavily relying on amenability and

log Sobolev inequalities. Without these, cutoff was unknown at any fixed β > 0, no matter how small,

even in basic examples such as the Ising model on a binary tree or a random regular graph.

We use the new framework of information percolation to show that, in any geometry, there is cutoff

for the Ising model at high enough temperatures. Precisely, on any sequence of graphs with maximum

degree d, the Ising model has cutoff provided that β < κ/d for some absolute constant κ (a result which,

up to the value of κ, is best possible). Moreover, the cutoff location is established as the time at which

the sum of squared magnetizations drops to 1, and the cutoff window is O(1), just as when β = 0.

Finally, the mixing time from almost every initial state is not more than a factor of 1+εβ faster then

the worst one (with εβ → 0 as β → 0), whereas the uniform starting state is at least 2− εβ times faster.

1. Introduction

Classical results going back to Dobrushin [12] and to Holley [14] in the early 1970’s and continuing

with the works of Dobrushin and Shlosman [13] and of Aizenman and Holley [1] show that, if G is any

graph on n vertices with maximum degree d, the Glauber dynamics for the Ising model on G exhibits

a rapid convergence to equilibrium in total-variation distance at high enough temperatures. Namely, if

the inverse-temperature β is at most c0/d for some absolute c0 > 0 then the continuous-time dynamics

is contractive, whence coupling techniques show that the total-variation mixing time is O(log n).

A known consequence of contraction is that the spectral gap of the dynamics is bounded away from

0, and so, by a general principle proposed by Peres in 2004 (addressing whether or not the product

of the spectral gap and mixing time diverges with n), one expects the cutoff phenomenon1 to occur.

(For more on the cutoff phenomenon, discovered in the early 80’s by Aldous and Diaconis, see [3, 4].)

Concretely, Peres conjectured ([16, Conjecture 1],[17, §23.2]) cutoff for the Ising model on any sequence

of transitive graphs when the mixing time is O(log n), and in particular in the range β < c0/d as above.

This universality principle, whereby cutoff should accompany high enough temperatures in any

underlying geometry, is supported by the heuristic that at small enough β the model should qualitatively

behave as if β = 0. The latter, equivalent to random walk on the hypercube, was one of the first

examples of cutoff, established with an O(1)-cutoff window by Aldous [2], and refined in [5,10]. Thus,

one may further expect cutoff for the Ising model with an O(1)-window provided that β is small enough.

In contrast, cutoff for the Ising model has so far mainly been confirmed on Zd [21, 22], via proofs

that hinged on log-Sobolev inequalities (see [6–8, 30]) that are known to hold for the Ising model on

the lattice [15,24–27,32,33] as well as on the sub-exponential growth rate of balls in the lattice.

1sharp transition in the L1-distance of a finite Markov chain from equilibrium, dropping quickly from near 1 to near 0.
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Figure 1. Information percolation clusters for the stochastic Ising model on two geometries:

hyperbolic graph (left, showing largest 3 clusters of each type) and the lattice Z2
100 (right). A cluster

is red if it survives to time 0, blue if it dies out and is the history of a single vertex, and green o/w.

Figure 2. Flavor of information percolation for analyzing random initial states in 1d Ising model:

On the left, the standard framework (red clusters are those reaching t = 0) for worst-case analysis.

On the right, red clusters are redefined as those coalescing below t = 0 for the annealed analysis.

Even before requiring these powerful log-Sobolev inequalities, the restriction to sub-exponential

growth rate automatically precluded the analysis of examples as basic as the Ising model on a binary

tree at any small β > 0, or on an expander graph (e.g., a random regular graph), the hypercube, etc.

Here, using the framework of information percolation that we introduced in the companion paper [23],

we confirm that on any sequence of graphs with maximum degree d, cutoff indeed occurs whenever βd

is small enough, and with an O(1)-window (just as when β = 0). Furthermore, we analyze the effect

of the initial state on the mixing time (e.g., a warm start of i.i.d. spins vs. the all-plus starting state).
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1.1. Results. Our first result establishes that, on any geometry, at high enough temperature there is

cutoff within an O(1)-window around the point

tm = inf
{
t > 0 :

∑
v mt(v)2 ≤ 1

}
, (1.1)

where mt(v) is the magnetization at a vertex v ∈ V at time t > 0, i.e.,

mt(v) = EX+
t (v) , (1.2)

with X+
t denoting the dynamics started from all-plus. Note that on a transitive graph (such as Zdn),

the point tm coincides with the time at which
∑

v mt(v) drops to a square-root of the volume, which

has the intuitive interpretation that mixing occurs once the expected sum of spins in X+
t drops within

the normal deviations in the Ising measure. However, it turns out that for general (non-transitive)

geometries (such as trees) it is the sum of squared magnetizations
∑

v mt(v)2 that governs the mixing.

Theorem 1. There exist absolute constants κ,C > 0 such that the following holds. Let G be a graph

on n vertices with maximum degree d. For any fixed 0 < ε < 1 and large enough n, the continuous-time

Glauber dynamics for the Ising model on G with inverse-temperature 0 ≤ β < κ/d satisfies

tmix(1− ε) ≥ tm − C log(1/ε) ,

tmix(ε) ≤ tm + C log(1/ε) .

In particular, on any sequence of such graphs the dynamics has cutoff with an O(1)-window around tm.

Apart from giving a first proof of cutoff for the Ising model on any tree / expander graph at β > 0,

note that the above theorem allows the maximum degree d to depend on n in any way, and so it applies,

e.g., to the Ising model on the hypercube (with d = log2 n), a dense Erdős-Rényi graph G(n, 1
2), etc.

As mentioned above, the proof uses the new information percolation framework, which analyzes

interactions between spins viewed as a percolation process in the space-time slab. As opposed to the

application of this method in the companion paper [23] for the torus, various obstacles arise in the

present setting due to the asymmetry between vertices and lack of amenability. Moreover, a näıve

application of the method would require β to be as small as about d−d, and carrying it up to κ/d

(the correct dependence in d up to the value of κ) required several novel ingredients, notably using a

discrete Fourier expansion (see §4.2) to prescribe update rules for the dynamics that would endow the

resulting percolation clusters with a subcritical behavior.

Roughly put, the framework considers the dynamics at a designated time around tm, and for each site

develops the history of updates that led to its final spin (tracing back branching to its neighbors). The

resulting “information percolation” clusters in the space-time slab are then categorized into three types

— Red (those surviving to time zero and nontrivially depending on the initial state), Blue (those

remaining which involve a unique “ancestor”) and Green (all remaining clusters), as illustrated in

Figure 1. The green clusters (which may exhibit complicated dependencies but are independent of the

initial state) are taken out of the equation via conditioning, leaving behind a competition between blue

clusters (whose ancestor vertices are i.i.d. uniform spins by symmetry) and red clusters. Controlling

the latter, namely an exponential moment of their cumulative size, then establishes mixing.

Overall, the information percolation framework allows one to reduce challenging problems involving

mixing and cutoff for the Ising model into simpler and tractable problems on subcritical percolation.
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Furthermore, by analyzing not only on the size of the red clusters, but rather where these hit the

initial state at time zero, this framework opens the door to understanding the effect of the starting

configuration on the mixing time (where sharp results on total-variation mixing for the Ising model

were only applicable to worst-case starting states, usually via coupling techniques).

Our next result demonstrates this by comparing the worst-case mixing time (which is matched by

the all-plus starting state up to an additive O(1)-term) with a typical starting configuration, and finally

with the uniform starting configuration, i.e., each site is initialized by an independent uniform ±1 spin.

Informally, we show that the uniform starting state is roughly at least twice faster compared to all-plus,

but perhaps surprisingly, almost every deterministic starting state is about as slow as the worst one.

Formally, if µ
(x0)
t is the distribution of the dynamics at time t started from x0 then t

(x0)
mix (ε) is the

minimal t for which µ
(x0)
t is within distance ε from equilibrium, and t

(u)
mix(ε) is the analogue for the

average 2−n
∑

x0
µ

(x0)
t (i.e., the annealed version, as opposed to the quenched t

(X0)
mix for a uniform X0).

Theorem 2. Consider continuous-time Glauber dynamics for the Ising model on an n-vertex graph G

with maximum degree at most some fixed d > 0, and define tm as in (1.1). For every ε > 0 there exists

β0 > 0 such that the following hold for any 0 < β < β0 and any fixed 0 < α < 1 at large enough n.

1. (Annealed) Uniform initial state: t
(u)
mix(α) ≤ (1

2 + ε)tm.

2. (Quenched) Deterministic initial state: t
(x0)
mix (α) ≥ (1− ε)tm for almost every x0, while t

(+)
mix(α) ∼ tm.

The delicate part in the proof of the above theorem is comparing the distribution at time t directly

to the Ising measure. One often bypasses this point by coupling the distributions started at worst-case

states; here, however, that would fail as we are analyzing the dynamics well before these distributions

can couple with high probability. Instead (and as demonstrated in the companion paper for analyzing

the effect of initial states in the 1d Ising model), we appeal to the Coupling From The Past method [29].

Rather than developing the information percolation clusters until reaching time zero, we continue

until time −∞, letting all clusters eventually die. The beautiful Coupling From The Past argument

implies that, if we ignore the initial state altogether, the final configuration would be a perfect simulation

of the Ising measure. Thus, the natural coupling the information percolation clusters allows one to

compare the dynamics with the Ising measure, simply by considering the effect of replacing the spins

generated along the interval (−∞, 0] by those of the initial state.

Specifically for the annealed analysis, even if a cluster survives to time zero (and beyond) it might

still be perfectly coupled to the stationary measure, e.g., a singleton strand (and more generally, a blue

cluster) would receive a uniform spin both from the Ising measure and from the random initial state.

Hence, we modify the framework by redefining red clusters as those in which at least two branches of

the cluster reach time zero, then proceed to merge in the interval (−∞, 0), as illustrated in Figure 2.

It is this factor of 2 that eventually transforms into the factor of 2−ε improvement in the mixing time.

Organization. The rest of this paper is organized as follows. In §2 we give the formal definitions of

the above described framework, including several modification needed here (e.g., custom update rules

to be derived from a Fourier expansion) and two lemmas analyzing the information percolation clusters.

In §3 we prove the cutoff result in Theorem 1 modulo these technical lemmas, which are proved in §4.

The final section, §5, is devoted to the effect of the initial states on mixing and the proof of Theorem 2.
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2. Information percolation for the Ising model

2.1. Preliminaries. In what follows we set up standard notation for analyzing the mixing of Glauber

dynamics for the Ising model; see [21,23] and the references therein for additional information.

Mixing time and cutoff. Let (Xt) be an ergodic finite Markov chain with stationary measure π. An

important gauge in MCMC theory for measuring the convergence of a Markov chain to stationarity is

its total-variation mixing time. Denoted tmix(ε) for a precision parameter 0 < ε < 1, it is defined as

tmix(ε)
4
= inf

{
t : max

x0∈Ω
‖Px0(Xt ∈ ·)− π‖tv ≤ ε

}
,

where here and in what follows Px0 denotes the probability given X0 = x0, and the total-variation

distance ‖ · ‖tv between two probability measures ν1, ν2 on a finite space Ω is given by

‖ν1 − ν2‖tv = max
A⊂Ω
|ν1(A)− ν2(A)| = 1

2

∑
σ∈Ω

|ν1(σ)− ν2(σ)| ,

i.e., half the L1-distance between the two measures.

Addressing the role of the parameter ε, the cutoff phenomenon is essentially the case where the

choice of any fixed ε does not affect the asymptotics of tmix(ε) as the system size tends to infinity.

Formally, a family of ergodic finite Markov chains (Xt), indexed by an implicit parameter n, is said to

exhibit cutoff (a concept going back to the pioneering works [2,9]) iff the following sharp transition in

its convergence to stationarity occurs:

lim
n→∞

tmix(ε)

tmix(1− ε)
= 1 for any 0 < ε < 1 . (2.1)

That is, tmix(α) = (1 + o(1))tmix(β) for any fixed 0 < α < β < 1. The cutoff window addresses the rate

of convergence in (2.1): a sequence wn = o
(
tmix(e−1)

)
is a cutoff window if tmix(ε) = tmix(1−ε)+O(wn)

holds for any 0 < ε < 1 with an implicit constant that may depend on ε. Equivalently, if tn and wn are

sequences with wn = o(tn), we say that a sequence of chains exhibits cutoff at tn with window wn if lim
γ→∞

lim inf
n→∞

max
x0∈Ω

‖Px0(Xtn−γwn ∈ ·)− π‖tv = 1 ,

lim
γ→∞

lim sup
n→∞

max
x0∈Ω

‖Px0(Xtn+γwn ∈ ·)− π‖tv = 0 .

Verifying cutoff is often quite challenging, e.g., even for simple random walk on an expander graph, no

examples were known prior to [19,20] (while this had been conjectured for almost all such graphs), and

to date there is no known transitive example (while conjectured to hold for all transitive expanders).

Glauber dynamics for the Ising model. Let G be a finite graph G with vertex-set V and edge-set E. The

Ising model on G is a distribution over the set Ω = {±1}V of possible configurations, each corresponding

to an assignment of plus/minus spins to the sites in V . The probability of σ ∈ Ω is given by

π(σ) = Z−1eβ
∑
uv∈E σ(u)σ(v) , (2.2)

where the normalizer Z = Z(β, h) is the partition function. The parameter β is the inverse-temperature,

which we always to take to be non-negative (ferromagnetic). These definitions extend to infinite locally

finite graphs (see, e.g., [18, 24]).
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The Glauber dynamics for the Ising model (the Stochastic Ising model) is a family of continuous-time

Markov chains on the state space Ω, reversible w.r.t. the Ising measure π, given by the generator

(L f)(σ) =
∑

u c(u, σ) (f(σu)− f(σ)) (2.3)

where σu for u ∈ V is the configuration σ with the spin at the vertex u flipped. We will focus on

the two most notable examples of Glauber dynamics, each having an intuitive and useful graphical

interpretation where each site experiences updates via an associated i.i.d. rate-one Poisson clock:

(i) Metropolis: flip σ(u) if the new state σu has a lower energy (i.e., π(σu) ≥ π(σ)), otherwise perform

the flip with probability π(σu)/π(σ). This corresponds to c(u, σ) = exp (2βσ(u)
∑

v∼u σ(y)) ∧ 1.

(ii) Heat-bath: erase σ(u) and replace it with a sample from the conditional distribution given the

spins at its neighboring sites. This corresponds to c(u, σ) = 1/ [1 + exp (−2βσ(u)
∑

v∼u σ(v))].

It is easy to verify that these chains are indeed ergodic and reversible w.r.t. the Ising distribution π.

Until recently, sharp mixing results for this dynamics were obtained in relatively few cases, with cutoff

only known for the complete graph [11,16] prior to the works [21,22].

2.2. Red, green and blue information percolation clusters. In what follows, we describe the

basic setting of the framework, which will be enhanced in §2.3 to support the setting of Theorem 1

(where the underlying geometry may feature exponential growth rate and we are in the range β < κ/d).

The update sequence of the Glauber dynamics along an interval (t0, t1] is the set of tuples of the form

(J, U, τ), where t0 < τ ≤ t1 is the update time, J ∈ V is the site to be updated and U is a uniform unit

variable. Given this update sequence, Xt1 is a deterministic function of Xt0 , right-continuous w.r.t. t1.

We call a given update (J, U, τ) an oblivious update iff U ≤ θ for

θ = θβ,d := 1− tanh(βd) , (2.4)

since in that situation one can update the spin at J to plus/minus with equal probability (that is,

with probability θ/2 each) independently of the spins at the neighbors of the vertex J , and a properly

chosen rule for the case U > θ legally extends this protocol to the Glauber dynamics.

Consider some designated target time t? for analyzing the spin distribution of the dynamics on G.

The update history of Xt?(v) going back to time t, denoted Hv(t), is a subset A×{t} of the space-time

slab V × {t}, such that one we can determine Xt?(v) from the update sequence and spin-set Xt(A).

The most basic way of defining {Hv(t) : 0 ≤ t ≤ t?} is as follows:

• List the updates in reverse chronological order as {(Ji, Ui, ti)}i≥1 (i.e., ti > ti+1 for all i), and initialize

the update history by Hv(t) = {v} for all t ∈ [t1, t?].

• In step i ≥ 1, process the update (Ji, Ui, ti) to determine Hv(t) for t ∈ [ti+1, ti):

– If Ji /∈Hv(ti) then the history is unchanged, i.e., Hv(t) = Hv(ti) for all t ∈ [ti+1, ti).

– If Ji ∈Hv(ti) but Ui ≤ θ then Ji is removed, i.e., Hv(t) = Hv(ti) \ {Ji} for all t ∈ [ti+1, ti).

– Otherwise, replace Ji by its neighbors N(Ji), i.e., Hv(t) = Hv(ti)∪N(Ji)\{Ji} for all t ∈ [ti+1, ti).

The information percolation clusters are the connected components of the graph on the vertex set V

where (u, v) is an edge if Hu(t)∩Hv(t) 6= ∅ for some t ≥ 0. Denote by Cv the cluster containing v ∈ V .

We will also consider clusters in the context of the full space-time slab. The cluster of a point

(w, r) ∈ V × [0, t?], denoted Xw,r, is the connected component of
⋃
{Hv(t) : v ∈ V, 0 ≤ t ≤ t?} that

contains (w, r). (Thus, the cluster Cv is identified with the intersection of Xv,t? with the slab V ×{t?}.)
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For any A ⊂ V we use the notation HA(t) =
⋃
v∈A Hv(t), as well as HA(t1, t2) =

⋃
t1≤t≤t2 HA(t)

(both cases describing subsets of V ). Omitting the time subscript altogether would refer to the full

time interval: HA := HA(0, t?), so that, for instance, if C ⊂ V is a cluster then HC is the set of all

vertices ever visited by this cluster. (By a slight abuse of notation, we may write HX := HC with C
the cluster that X identifies with (i.e., the cluster C such that C × {t?} = (V × {t?}) ∩ X ).) A final

useful notation in this context is the collective history of V \A, defined as

H −
A = {Hv(t) : v /∈ A , t ≤ t?} .

The clusters are classified into three classes (identifying for this purpose Cv and Xv,t?) as follows:

• A cluster C is Red if, given the update sequence, its final state Xt?(C) is a nontrivial function

of the initial configuration X0; in particular, its history must survive to time zero (HC(0) 6= ∅).
• A cluster C is Blue if it is a singleton — i.e., C = {v} for some v ∈ V — whose history does

not survive to time zero (Hv(0) = ∅).
• Every other cluster C is Green.

Note that if a cluster is blue then its single spin at time t? does not depend on the initial state X0,

and so, by symmetry, it is a uniform ±1 spin. (While a green cluster is similarly independent of X0, as

multiple update histories intersect, the distribution of its spin set Xt?(C) may become quite nontrivial.)

Let VRed denote the union of the red clusters, and let HRed be the its collective history — the union

of Hv(t) for all v ∈ VRed and 0 ≤ t ≤ t? (with analogous definitions for blue/green).

A beautiful short lemma of Miller and Peres [28] shows that, if a measure µ on {±1}V is given by

sampling a variable R ⊂ V and using an arbitrary law for its spins and a product of Bernoulli(1
2) for

V \R, then the L2-distance of µ from the uniform measure is at most E2|R∩R
′|−1 for i.i.d. copies R,R′.

(See Lemma 3.1 below; also see [23, Lemma 4.3] for a generalization of this to a product of general

measures, which becomes imperative for the information percolation framework at β near criticality.)

Applied to our setting, if we condition on HGreen and look at the spins of V \ VGreen then VRed can

assume the role of the variable R, as the remaining blue clusters are a product of Bernoulli(1
2) variables.

In this conditional space, since the law of the spins of VGreen, albeit potentially complicated, is

independent of the initial state, we can safely project the configurations on V \ VGreen without it

increasing the total-variation distance between the distributions started at the two extreme states.

Hence, a sharp upper bound on worst-case mixing will follow by showing for this exponential moment

E
[
2|VRed∩V ′Red| |HGreen

]
→ 1 in probability as n→∞ , (2.5)

by coupling the distribution of the dynamics at time t? from any initial state to the uniform measure.

Finally, with the green clusters out of the picture by the conditioning (which has its own toll, forcing

various updates along history so that no other cluster would intersect with those nor become green),

we can bound the probability that a subset of sites would become a red cluster by its ratio with the

probability of all sites being blue clusters. Being red entails connecting the subset in the space-time

slab, hence the exponential decay needed for (2.5).
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2.3. Enhancements of the framework: custom update rules and modified last unit interval.

We will consider the information percolation clusters developed as above from the designated time

t? = tm + s? for s? = C log(1/ε)

where C > 0 will be specified later, and ε > 0 is the parameter for the mixing time. However, instead

of the standard procedure of developing the history, where an update at v either deletes it from the

history (via an oblivious update) or replaces it by its set of neighbors N(v), we will allow v to be

replaced (with varying probabilities) by any subset of its neighbors, in the following way.

Recall that an update of the form (J, U, t) ∈ V × [0, 1] × [0, t?] results in replacing the spin at J

at time t by some deterministic function Υ(x, U), where x =
∑

u∈N(J)Xt(u). A generalized update

rule observes updates of the form (J,A,U, t) where (J, U, t) is as before and the additional variable

A ⊂ [d] corresponds to a subset of the neighbors of vertex J . The new update rule exposes the spins

{σ1, . . . , σ|A|} of these neighbors at time t, then generates the new spin at J via ΦA(σ1, . . . , σ|A|, U).

With this generalized update rule, one unfolds the update history of a vertex {Hv(t) : 0 ≤ t ≤ t?}
as before, with the one difference that an update (Ji, Ai, Ui, ti) for which Ji ∈ Hv(ti) now results in

Hv(t) = Hv(ti)∪Ai \ {Ji} for all t ∈ [ti+1, ti). The functions {ΦA : A ⊂ [d]}, as well as the probability

distribution over the subsets A ⊂ [d] to be exposed, will be derived from a discrete Fourier expansion of

the original rule Υ (see Lemma 4.1), so that the new update procedure would, one on hand, couple with

the Glauber dynamics, and on the other, endow our percolation clusters with a subcritical behavior.

A final ingredient needed for coping with the arbitrary underlying geometry is a modification of the

update history, denoted by Ĥ : in the modified version, every vertex v ∈ V receives an (extra) update

at time t?, and no vertex is removed from the history along the unit interval (t? − 1, t?]. (For a given

update sequence, this operation can only increase any information percolation cluster, and forbidding

vertices to die in the first unit interval will be useful in the context of conditioning on other clusters.)

We will write Ĉ, X̂ , as well as ĤA(t) etc. for the corresponding notation w.r.t. the modified history Ĥ .

We end this section with two results on the information percolation clusters — Lemmas 2.1 and 2.2

— which will be central in the proof of Theorem 1. The proofs of these lemmas are postponed to §4.

As explained following the definition of the three cluster types, at the heart of the matter is estimating

an exponential moment of the size of the red clusters given HGreen, the joint history of all green clusters.

To this end, we wish to bound the probability that a subset A is a red cluster given HGreen. Define

ΨA = sup
H −
A

P
(
A ∈ Red |H −

A , {A ∈ Red} ∪ {A ⊂ VBlue}
)
, (2.6)

noting that, towards estimating the probability of A ∈ Red, the effect of conditioning on H −
A amounts

to requiring that HA must not intersect H −
A .

Lemma 2.1. If β < 1/(5d) then for any A ⊂ V and v ∈ A,

ΨA ≤ 2|A|E
[
1{A⊂Ĉv}e

τ̂v
∑
w

1{w∈ĤA(t?−τ̂v ,t?)}mt?(w)
]

where τ̂v is the time it takes the history of Ĉv to first coalesce into a single point (if at all), i.e.,

τ̂v = min
{
t ≥ 1 : |ĤĈv(t? − t)| = 1

}
∧ t? . (2.7)
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It is worthwhile noting in the context of the parameter τ̂v that, when developing the update history

backward in time, τ̂v is not a stopping time, since Ĉv is affected by any potential coalescence points for

t < t? − τ̂v; instead, one can determine τ̂v as soon as ĤĈv(t) = ∅. Also observe that τ̂v = 1 iff |Cv| = 1.

Finally, the coalescence point w at time t = t? − τ̂v (when t > 0) need not belong to Ĥv — e.g., we

may have Ĥv(t) = ∅ while w ∈ Ĥu for some u 6= v whose history intersected that of v at time t′ > t.

The subcritical nature of the information percolation clusters (prompted by our modified update

functions ΦA) allows one to control exponential moments of the cluster sizes, as in the following lemma.

Lemma 2.2. Fix 0 < η < 1 and λ > 0. There exist constants κ, γ > 0 such that the following holds.

For any point (w0, t0) in the space-time slab V × (0, t?], if β < κ/d then

E
[
exp

(
ηL(X̂w0,t0) + λ|ĤX̂w0,t0

|
)]

< γ ,

where

L(X̂ ) =
∑
u∈V

∫ t?

0
1{(u,t)∈X̂}dt .

The above lemma, whose proof follows standard arguments from percolation theory, will be applied

for absolute constants η and λ in the proof of Theorem 1 (any 1/2 < η < 1 and λ > log 8 would do),

leading to the absolute constant κ in the statement of that theorem. The above formulation will be

important in the context of Theorem 2, where one requires η that may be very close to 1 (as a function

of ε from the statement of that theorem) and λ that depends on the maximum degree.

3. Cutoff with constant window from a worst starting state

In this section we prove Theorem 1 via the framework defined in §2. As is often the case in proofs

of cutoff, the upper bound will require the lion’s share of the efforts.

3.1. Upper bound modulo Lemmas 2.1 and 2.2. Define the coupling distance d̄tv(t) to be

d̄tv(t) = max
x0,y0
‖Px0(Xt ∈ ·)− Py0(Xt ∈ ·)‖tv

(so that 1
2 d̄tv(t) ≤ dtv(t) ≤ d̄tv(t)), and observe that

d̄tv(t) ≤ E
[

max
x0,y0
‖Px0(Xt ∈ · |HGreen)− Py0(Xt ∈ · |HGreen)‖tv

]
≤ sup

HGreen

max
x0,y0
‖Px0(Xt(V \ VGreen) ∈ · |HGreen)− Py0(Xt(V \ VGreen) ∈ · |HGreen)‖tv ,

where the first inequality follows by Jensen’s Inequality and the second follows since Xt(VGreen) is

independent of the initial condition and so taking a projection onto V \ VGreen does not change the

total-variation distance between the distributions started at x0 and y0. Thus,

d̄tv(t) ≤ 2 sup
HGreen

max
x0

∥∥Px0(Xt(V \ VGreen) ∈ · |HGreen)− νV \VGreen

∥∥
tv
, (3.1)

where νA is the uniform measure on configurations on the sites in A. At this point we appeal to the

exponential-moment bound of [28], whose short proof is included here for completeness.
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Lemma 3.1 ([28]). Let Ω = {±1}V for a finite set V . For each S ⊂ V , let ϕS be a measure on {±1}S.

Let ν be the uniform measure on Ω, and let µ be the measure on Ω obtained by sampling a subset S ⊂ V
via some measure µ̃, generating the spins of S via ϕS, and finally sampling V \ S uniformly. Then

‖µ− ν‖2L2(ν) ≤ E
[
2|S∩S

′|
]
− 1 ,

where the variables S and S′ are i.i.d. with law µ̃.

Proof. Write n = |V |, and let xS (S ⊂ V ) denote the projection of x onto S. With this notation, by

definition of the L2(ν) metric (see, e.g., [31]) one has that ‖µ− ν‖2L2(ν) + 1 =
∫
|µ/ν − 1|2dν + 1 equals∑

x∈Ω

µ2(x)

ν(x)
= 2n

∑
x∈Ω

∑
S

µ̃(S)
ϕS(xS)

2n−|S|

∑
S′

µ̃(S′)
ϕS′(xS′)

2n−|S′|

by the definition of µ. Since
∑

x ϕS(xS)ϕS′(xS′) ≤ 2n−|S∪S
′| it then follows that∑

x∈Ω

µ2(x)

ν(x)
≤
∑
S,S′

2|S|+|S
′|−|S∪S′|µ̃(S)µ̃(S′) =

∑
S,S′

2|S∩S
′|µ̃(S)µ̃(S′) . �

Remark 3.2. In the special case where the distribution ϕS is a point-mass on all-plus for every S, the

single inequality in the above proof is an equality (since then
∑

x ϕS(xS)ϕS′(xS′) = #{x : xS∪S′ ≡ 1})
and so in that situation the L2-distance ‖µ− ν‖2L2(ν) is precisely equal to E

[
2|S∩S

′|]− 1.

For example, consider Glauber dynamics for an n-vertex graph at β = 0 (i.e., continuous-time lazy

random walk on the hypercube {±1}n) starting (say) from all-plus, and let S be the set of coordinates

which were not updated: here P(v ∈ S) = e−t at time t, and ‖P(X+
t ∈ ·)− ν‖2L2(ν) = (1 + e−2t)n − 1.

Applying the above lemma to the right-hand side of (3.1), while recalling that any two measures µ

and ν on a finite probability space satisfy ‖µ− ν‖tv = 1
2‖µ− ν‖L1(ν) ≤ 1

2‖µ− ν‖L2(ν), we find that

d̄tv(t?) ≤
(

sup
HGreen

E
[
2|VRed∩VRed′ |

∣∣HGreen

]
− 1
)1/2

, (3.2)

where VRed and VRed′ are i.i.d. copies of the variable
⋃
{v ∈ V : Cv ∈ Red}.

Let {YA,A′ : A,A′ ⊂ V } be a family of independent indicators satisfying

P(YA,A′ = 1) = ΨAΨA′ for any A,A′ ⊂ V . (3.3)

We claim that it is possible to couple the conditional distribution of (VRed, VRed′) given HGreen to the

variables YA,A′ in such a way that

|VRed ∩ VRed′ | �
∑

A∩A′ 6=∅

|A ∪A′|YA,A′ .

To do so, let {(Al, A′l)}l≥1 denote all pairs of intersecting subsets (A,A′ ⊂ V \VGreen with A∩A′ 6= ∅)
arbitrarily ordered, associate each pair with a variable Rl initially set to 0, then process these in order:

• If (Al, A
′
l) is such that, for some j < l, one has Rj = 1 and either Aj ∩ Al 6= ∅ or A′j ∩ A′l 6= ∅,

then skip this pair (keeping Rl = 0).

• Otherwise, set Rl to the indicator of {Al ∈ Red, A′l ∈ Red′}.



UNIVERSALITY OF CUTOFF FOR THE ISING MODEL 11

The claim is that P(Rl = 1 | Fl−1) ≤ P(YAl,A′l = 1) for all l, where Fl denotes the natural filtration

associated to the above process. Indeed, consider some (Al, A
′
l) for which we are about to set Rl to the

value of 1{Al∈Red, A′l∈Red′}, and take any Aj (j < l) such that Aj ∩ Al 6= ∅ and 1{Cj∈Red, C′j∈Red′} was

revealed (and necessarily found to be zero, by definition of the above process). The supremum over

H −
Al

in the definition of ΨAl implies that we need only consider the information Fl−1 offers on HAl :

• If Aj ∩Al 6= Al then the event {Aj ∈ Red} does not intersect the event {Al ∈ Red} ∪ {Al ⊂ VBlue}
(on which we condition in ΨAl) as it requires Aj to be a full red cluster (so a strict subset of Aj
cannot belong to a separate red cluster, nor can it contain any blue singleton).

• If Aj = Al, conditioning on {Aj ∈ Red, A′j ∈ Red′}c will not increase the probability of {Al ∈ Red}.
Either way, P(Al ∈ Red | Fl−1) ≤ ΨAl . Similarly, P(A′l ∈ Red′ | Fl−1, 1{Al∈Red}) ≤ ΨA′l

, and together

these inequalities support the desired coupling, since if v ∈ VRed ∩ VRed′ then there is some l for which

v ∈ Al ∪Al′ and Al ∈ Red, Al′ ∈ Red′, in which case every Aj intersecting Al nontrivially will receive

Rj = 0 (it cannot be red) and the first j with Aj = Al to receive Rj = 1 will account for v in Aj ∪A′j .
Relaxing |A ∪A′| into |A|+ |A′| (which will be convenient for factorization), we get

sup
HGreen

E
[
2|VRed∩VRed′ |

∣∣HGreen

]
≤ E

[
2
∑
A∩A′ 6=∅(|A|+|A′|)YA,A′

]
=

∏
A∩A′ 6=∅

E
[
2(|A|+|A′|)YA,A′

]
,

with the equality due to the independence of the YA,A′ ’s. By the definition of these indicators in (3.3),

this last expression is at most∏
v

∏
A,A′

v∈A∩A′

((
2|A|+|A

′| − 1
)
ΨAΨA′ + 1

)
≤ exp

[∑
v

(∑
A3v

2|A|ΨA

)2]
,

and so, revisiting (3.2), we conclude that

d̄tv(t?)
2 ≤

(
exp

[∑
v

(∑
A3v

2|A|ΨA

)2]
− 1

)
∧ 1 ≤ 2

∑
v

(∑
A3v

2|A|ΨA

)2

, (3.4)

where we used that ex−1 ≤ 2x for x ∈ [0, 1]. We have thus reduced the upper bound in Theorem 1 into

showing that the right-hand of (3.4) is at most ε if s? = C log(1/ε) for some large enough C = C(β).

Plugging the bound on ΨA from Lemma 2.1 shows that the sum in the right-hand of (3.4) is at most

∑
v

(∑
A3v

4|A|E
[
1{A⊂Ĉv}e

τ̂v
∑
w

1{w∈ĤA(t?−τ̂v ,t?)}mt?(w)

])2

.

In each of the two sums over A 3 v we can specify the size of Ĉv, and then relax {w ∈ ĤA(t? − τ̂v, t?)}
into {w ∈ ĤĈv} (thus permitting all 2|Ĉv | subsets to play the role of A); thus, the last display is at most∑

v

∑
k,k′

∑
w,w′

8kE
[
1

{
|Ĉv| = k, w ∈ ĤĈv

}
eτ̂vmt?(w)

]
8k
′
E
[
1

{
|Ĉv| = k′, w′ ∈ ĤĈv

}
eτ̂vmt?(w

′)
]
. (3.5)
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Denoting the indicators above by Ξ(v, w, k) and Ξ(v, w′, k′) respectively, and using the fact that∑
w,w′

mt(w)mt(w
′) ≤ 1

2

∑
w,w′

(
mt(w)2 + mt(w

′)2
)

=
∑
w,w′

mt(w)2

in (3.5) culminates in the following bound on sum in the right-hand of (3.4):∑
v

(∑
A3v

2|A|ΨA

)2

≤
∑
w

mt?(w)2
∑
k

∑
v

E
[
8kΞ(v, w, k)eτ̂v

]∑
k′

E
[
eτ̂v
∑
w′

8k
′
Ξ(v, w′, k′)

]
. (3.6)

For the summation over k′ in (3.6), we combine the facts that τ̂v ≤ 1
2L(ĤĈv(t?−τ̂v, t?))+1 ≤ 1

2L(ĤĈv)+1

(either |Ĉv| = 1 and then τ̂v = 1, or |Ĉv| ≥ 2 whence at least two strands survive for a period of τ̂v),

that at most |ĤĈv | choices for w′ support Ξ(v, w′, k) = 1 and that
∑

k′ Ξ(v, w′, k) ≤ 1, to get∑
k′

E
[
eτ̂v
∑
w′

8k
′
Ξ(v, w′, k′)

]
≤ E

[
|ĤĈv | 8

|ĤĈv |e
1
2
L(ĤĈv)+1

]
≤ γ1 (3.7)

for some absolute constant γ1 > 0, where the last inequality applied Lemma 2.2.

Next, to treat the summation over k in (3.6), recall that X̂w,r for (w, r) ∈ V ×[0, t?] is the information

percolation cluster containing the point (w, r) in the space-time slab (i.e., the cluster is exposed from

time r instead of time t? and the process of developing it moves both forward and backward in time).

Further write X̂+
w,r = limt→r+ X̂w,t and X̂−w,r = limt→r− X̂w,t.

We claim that whenever Ξ(v, w, k) = 1, necessarily v ∈ X̂−w,r for some r ∈ Πw, where Πw records the

update times for the vertex w (always including t?, by definition of Ĥ ). Indeed, if w ∈ Ĥ (t? − τ̂v, t?)
then by definition we can find some q ∈ (t? − τ̂v, t?) such that (w, q) shares the same information

percolation cluster as (v, t?). Furthermore, if r is the earliest update of w after time q then the cluster

of (w, t) for any t ∈ (q, r) will contain (w, q), and thus (v, t?) as-well. (It is for this reason that we

addressed X̂−w,r, in case the update at (w, r) should cut its information percolation cluster from (w, q).)

For that r, we further have t? − r ≤ τ̂v ≤ 1
2L(X̂−w,r) + 1, and so

∑
k

∑
v

E
[
8kΞ(v, w, k)eτ̂v

]
≤ E

[∑
r∈Πw

|ĤX̂−w,r | 8
|ĤX̂−w,r

|
e

1
2
L
(
X̂−w,r

)
1{ 1

2
L(X̂−w,r)≥t?−r−1

}]

≤ E

[∑
r∈Πw

|ĤX̂−w,r | 8
|ĤX̂−w,r

|
e

3
4
L
(
X̂−w,r

)
− 1

2
(t?−r−1)

]
,

which, recalling that Πw is the union of {t?} and a rate-1 Poisson process, is at most

E
[
|ĤĈw | 8

|ĤĈw | e
3
4
L(ĤĈw )+ 1

2

]
+

∫ t?

0
E

[∑
r∈Πw

|ĤX̂−w,r | 8
|ĤX̂−w,r

|
e

3
4
L(X̂−w,r)− 1

2
(t?−r−1)

∣∣∣∣ r ∈ Πw

]
dr

≤
√
eγ2

[
1 +

∫ t?

0
e−

1
2

(t?−r)dr

]
≤ 5γ2

for some absolute constant γ2 > 0, using Lemma 2.2 (with γ2 from that lemma) for the first inequality.
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Substituting the last two displays together with (3.7) in (3.6), while recalling (3.4), finally gives

d̄tv(t?)
2 ≤ 10γ1γ2

∑
w

mt?(w)2 . (3.8)

The proof will be concluded with the help of the next simple claim that establishes a submultiplicative

bound for the second moment of the magnetization.

Claim 3.3. For any t, s > 0 we have

e−2s ≤
∑

w mt+s(w)2∑
w mt(w)2

≤ e−2(1−βd)s .

Proof. The lower bound follows from the straightforward fact that mt+s(w) ≥ e−smt(w) for any s, t > 0

and w, since the probability of observing no updates to w along the interval (t, t+s) (thus maintaining

the magnetization without a change) is e−s. It therefore remains to prove the upper bound.

By expanding the probability of 1 in an update, which is 1
2 + 1

2 tanh(βσ) given a sum of neighbors

of σ, and using the fact that d
dx tanh(x) ≤ 1 for any x ∈ R, we have that upon updating v

P(X+
t (v) = 1)− P(X−t (v) = 1) =

1

2
E

[
tanh(β

∑
w∼v

X+
t (w))− tanh(β

∑
w∼v

X−t (w))

]

≤ β

2
E

[∑
w∼v

X+
t (w)−X−t (w)

]
= β

∑
w∼v

mt(w) ,

and so d
dtmt(v) ≤ β

∑
w∼v mt(w)−mt(v). Hence,

d

dt

∑
v

mt(v)2 = 2
∑
v

mt(v)
d

dt
mt(v) ≤ −2

∑
v

mt(v)2 + 2β
∑
v

mt(v)
∑
w∼v

mt(w) ,

and using mt(v)mt(w) ≤ 1
2(mt(v)2 + mt(w)2) it follows that

d

dt

∑
v

mt(v)2 ≤ −2 (1− βd)
∑
v

mt(v)2 ,

which implies the desired upper bound. �

Recalling that t? = tm + s?, we apply the above claim for t = tm (at which point
∑

w mtm(w)2 = 1

by definition) and s = s? to find that
∑

w mt?(w)2 ≤ exp(−2(1 − βd)s?) ≤ exp(−s?), with the last

inequality via βd ≤ 1
2 . By (3.8) (keeping in mind that γ1 and γ2 are absolute constants) this implies

that d̄tv(t?) ≤ ε if we take s? ≥ C log(1/ε) for some absolute constant C > 0, as required. �

3.2. Lower Bound. We now estimate the correlation of two vertices at an arbitrary time.

Claim 3.4. There exist absolute constants κ, γ > 0 such that, for any initial state, if β < κ/d then∑
u

Cov(Xt(u), Xt(v)) ≤ γ for any t > 0 and v ∈ V .
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Proof. Let X ′t and X ′′t be two independent copies of the dynamics. By exploring the histories of the

support we may couple Xt with X ′t and X ′′t so that, on the event {u /∈ Cv}, the history of u in Xt is

equal to the history of u in X ′t and the history of v in Xt is equal to the history of v in X ′′t . Hence,

E [Xt(u)Xt(v)] = E
[
X ′t(u)X ′′t (v) +

(
Xt(u)Xt(v)−X ′t(u)X ′′t (v)

)
1{u∈Cv}

]
≤ E

[
X ′t(u)

]
E
[
X ′′t (v)

]
+ 2P(u ∈ Cv) .

It follows that Cov(Xt(u), Xt(v)) ≤ 2P(u ∈ Cv) ≤ 2P(u ∈ Ĉv), and so∑
u

Cov(Xt(u), Xt(v)) ≤ 2E|Ĉv| ≤ γ ,

with the final equality thanks to Lemma 2.2. �

We are now ready to prove the lower bound on the mixing time in Theorem 1. To this end, we use

the magnetization to generate a distinguishing statistic at time t−? = tm − s?, given by

f(σ) =
∑
v∈V

mt−?
(v)σ(v) .

Putting Y = f
(
X+

t−?

)
for the dynamics started from all-plus and Y ′ = f(σ) with σ drawn from the

Ising distribution π, we combine Claim 3.3 with the fact that
∑

v mtm(v)2 = 1 (by definition) to get

EY =
∑
v

mt−?
(v)2 ≥ e2(1−βd)s?

∑
v

mtm(v)2 = e2(1−βd)s? ≥ es? (3.9)

(the last inequality using βd ≤ 1
2), whereas EY ′ = 0 (as E[σ(v)] = 0 for any v).

For the variance estimate, observe that

Var (Y ) =
∑
u,v

mt−?
(u)mt−?

(v) Cov
(
X+

t−?
(u), X+

t−?
(v)
)
≤ 1

2

∑
u,v

(
mt−?

(u)2 + mt−?
(v)2

)
Cov

(
X+

t−?
(u), X+

t−?
(v)
)

≤ γ
∑
v

mt−?
(v)2 = γ EY ,

using Claim 3.4 for the inequality in the last line. Furthermore, since the law of Xt converges as t→∞
to that of σ, for any v ∈ V we have∑

u

Cov(σ(u), σ(v)) = lim
t→∞

∑
u

Cov (Xt(u), Xt(v)) ≤ γ ,

and so the same calculation in the above estimate for Var(Y ) shows that

Var
(
Y ′
)
≤ γ EY .

Altogether, by Chebyshev’s inequality,

P
(
Y ≥ 2

3EY
)
≥ 1− 9γ/EY ,

whereas

P
(
Y ′ ≤ 1

3EY
)
≥ 1− 9γ/EY .

Recalling (3.9), the expression 9γ/EY can be made less than ε/2 by choosing s? ≥ C log(1/ε) for some

absolute constant C > 0, thus concluding the proof of the lower bound. �
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4. Analysis of percolation clusters

4.1. Red clusters: Proof of Lemma 2.1. As we condition on the fact that either A ∈ Red or

A ⊂ VBlue, as well as on the collective history of every v /∈ A, the history of the vertices of A must

avoid H −
A — an event that we mark as M — and then give rise to blue clusters or a single red one

(we are interested in bounding the probability of the latter). To analyze the probability ofM, for each

u ∈ A we look at the latest time at which H −
A contains it (u is “undercut” by HA−), that is,

su = su(H −
A ) = max

{
s : u ∈HV \A(s)

}
,

and focus our attention on the vertices that are undercut in the unit interval (t? − 1, t?] (which is the

first unit interval to be exposed when developing HA), writing

A′ = {u ∈ A : su > t? − 1} ,

and we denote by U the event that every u ∈ A′ received an update in the interval (su, t?], which is of

course a necessary condition for M (so as to avoid the scenario where u ∈Hu(su) and intersects H −
A

at that point). With this in mind, for any A ⊂ V and H −
A we have

P
(
A ∈ Red |H −

A , {A ∈ Red} ∪ {A ⊂ VBlue}
)

=
P(A ∈ Red ,M | U)

P({A ∈ Red} ∪ {A ⊂ VBlue} ,M | U)
.

The numerator is at most P(A ∈ Red | U), while the denominator can be bounded from below by the

probability that, in the space conditioned on U , the last update to each u ∈ A occurs in the interval

(su ∨ t? − 1, t?] and it is oblivious (implying that its history amounts to the singleton {u} dying out

prior to being possibly undercut by H −
A , and so u ∈ VBlue). Hence,

P({A ∈ Red} ∪ {A ⊂ VBlue} ,M | U) ≥ θ|A|(1− 1/e)|A\A
′| > 2−|A| ,

where the term θ|A| accounts for the probability that the latest most update is oblivious, the factor

(1 − 1/e) requires an update for vertices of A \ A′ (whose update in the last unit interval was not

guaranteed by U), and the last inequality used that θ(1 − 1/e) ≥ (1 − tanh(1
5))(1 − 1/e) > 1

2 by our

assumption on β and the definition of θ in (2.4). Overall, we find that

P
(
A ∈ Red |H −

A , {A ∈ Red} ∪ {A ⊂ VBlue}
)
≤ 2|A|P(A ∈ Red | U) . (4.1)

Recall that in order for A to form a complete red cluster, the update histories {Hu : u ∈ A} must

belong to the same connected component of the space-time slab, and moreover, the configuration of

A at time t? must be a nontrivial function of the initial configuration. Thus, either the histories

{Hu : u ∈ A} coalesce to a single point w at some time 1 ≤ T < t? — and then the spin there must

depend nontrivially on the initial state, i.e., X+
T (w) 6= X−T (w) — or the histories for all u ∈ A all join

into one cluster along (0, t?] and at least one of these survives to time 0. (The same would be true if we

did not restrict the coalescence time to be at least 1, yet in this way the conditioning on U , which only

pertains to updates along the interval (t? − 1, t?], does not cause any complications.) For the latter,

we denote by J (a, b) the event that the histories join in the interval (a, b), and for the former we let

τ ′ = min {t ≥ 1 : |HA(t? − t)| = 1} ∧ t? , T = t? − τ ′ ,
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and note that the variable τ ′ is a stopping time w.r.t. the natural filtration associated with exposing

the update histories backward from time t?; indeed, in contrast to a definition of τv analogous to (2.7)

— asking for {Hu : u ∈ Cv} to coalesce to a single point — here one only requires this for {Hu : u ∈ A}
(whereas Cv may be affected by the histories along (0, T ] as these may admit additional vertices to it).

With this notation, we deduce from the above discussion that

P(A ∈ Red | U) ≤ P
(⋃

w

{
J (T, t?) , w ∈HA(T ) , X+

T (w) 6= X−T (w)
} ∣∣∣ U) .

(If T = 0 and A ∈ Red then HA(0) 6= ∅, whence X+
0 (w) 6= X−0 (w) trivially holds for any w ∈HA(0).)

By conditioning on T as well as on HA(T, t?), the first two events on the right-hand side become

measurable, while the event X+
T (w) 6= X−T (w) only depends on the histories along (0, T ] and satisfies

P
(
X+
T (w) 6= X−T (w) | T , HA(T, t?)

)
= mT (w) ≤ et?−Tmt?(w) ,

where the final inequality used the fact, mentioned in the proof of Claim 3.3, that mt+s(w) ≥ e−smt(w)

for any s, t > 0 and w, as the probability of no updates to w along the interval (t, t+ s) (maintaining

the magnetization without a change) is e−s. Now, averaging over this conditional space yields

P(A ∈ Red | U) ≤ E
[∑

w

1{J (T,t?)}1{w∈HA(T )}e
t?−Tmt?(w)

∣∣∣ U]
≤ E

[∑
w

1{A⊂Cv}1{w∈HA(t?−τ ′,t?)}e
τ ′mt?(w)

∣∣∣ U] ,
where we increased the event J (T, t?) (the joining of HA along (T, t?]) into A ⊂ Cv (valid for any

v ∈ A) as well as the event {w ∈HA(T )} into {w ∈HA(T, t?)}, and finally plugged in that T = t?−τ ′.
Since by definition τ ′ ≤ τv = min {t ≥ 1 : |HCv(t? − t)| = 1}∧ t? on the event A ⊂ Cv, we conclude that

P(A ∈ Red | U) ≤ E
[∑

w

1{A⊂Cv}1{w∈HA(t?−τv ,t?)}e
τvmt?(w)

∣∣∣ U] . (4.2)

The final step is to eliminate the conditioning on U using the modified update history Ĥ , which we

recall does not remove vertices from the history along the unit interval (t? − 1, t?] and grants each

vertex an automatic update at time t?. As such, Hu(t) ⊂ Ĥu(t) for any vertex u and time t.

We claim that each of the terms in the right-hand of (4.2) is increasing in the percolation space-time

slab (i.e., they can only increase when adding connections to the update histories). Indeed, this trivially

holds for {A ⊂ Cv}; the variable τv is increasing as it may take only longer for Cv to coalesce to a single

point; finally, as the interval (t? − τv, t?] does not decrease and neither does HA along it, the event

{w ∈HA(t? − τv, t?)} is also increasing.

Therefore, if we do not remove vertices from the update history along (t?−1, t?] then the right-hand

of (4.2) could only increase. Further observe that, as long as no vertices are removed from the history

along that unit interval, the connected components of the update history at time t?− 1 remain exactly

the same were we to modify the update times of any vertex there, while keeping them within that unit

interval. In particular, should a vertex at all be updated in that period, we can move its latest update

time to t?.
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In this version of the update history (retaining all vertices in the given unit interval, and letting the

latest most update, if it is in that interval, be performed at time t?), the effect of conditioning on U in

that every u ∈ A′ receives an update at time t?. The fact that Po(λ | · ≥ 1) 4 Po(λ) + 1 for any λ > 0

(as the ratio P(Po(λ) = k)/P(Po(λ) > k) is monotone increasing in k) now implies (taking λ ∈ (0, 1))

that the number of updates that any u ∈ A′ receives along (t? − 1, t?] conditioned on U as part of H

is stochastically dominated by the corresponding number of updates as part of Ĥ .

Altogether we conclude that the right-hand of (4.2) can be increased to yield

P(A ∈ Red | U) ≤ E
[∑

w

1{A⊂Ĉv}1{w∈ĤA(t?−τ̂v ,t?)}e
τ̂vmt?(w)

]
,

and combining this with (4.1) completes the proof. �

4.2. Discrete Fourier expansion for the update rules. The following lemma, which constructs

the modified update rules ΦA (as described in §2), will play a key role in the proof of Lemma 2.2.

Lemma 4.1. For every ε > 0 there exists some κ > 0 such that the following holds provided βd < κ.

For any r ≤ d there are nonnegative reals {pk,r : k = 0, . . . , r} satisfying

p0,r ≥ 1− ε ,
∑
k

(
r

k

)
pk,r = 1 , and

(
r

k

)
pk,r ≤ D0(2βr)k for all k , (4.3)

where D0 is an absolute constant, such that the Glauber dynamics can be coupled to an update function

Φ that selects a subset A ⊂ [r] of the neighbors of a degree-r vertex with probability p|A|,r and applies to

it a symmetric monotone boolean function ΦA (i.e., ΦA(−x) = −ΦA(x) and ΦA(x) is increasing in x).

Proof. Setting

f(x) =
1

2
(tanh(x) + 1) =

ex

ex + e−x

we have that the Glauber dynamics update function at a given site with neighbors σ1, . . . , σr assigns

it a new spin of 1 with probability f(β
∑r

i=1 σi). Writing f(x) =
∑∞

`=0B`x
`, i.e.,

B` = [x`]f(x) ,

and so, bearing in mind that tanh(z) has no singularities in the open disc of radius π/2 around 0 in C
and thus

∑
B` converges absolutely,

B0 = B1 = 1/2 and
∑
|B`| = B for some absolute constant B > 0 .

Next, since σi ∈ {±1} the power series is multi-linear in σi, whence we can write(
β
∑

σi

)`
=
∑
A⊂[r]
|A|≤`

C`,A
∏
i∈A

σi =

`∧r∑
k=1

C`,k
∑
|A|=k

∏
i∈A

σi ,

where we used that the nonnegative coefficient C`,A depends by symmetry on |A| rather than A itself,

thus we can write C`,k for |A| = k. (Note that for ` = 1 we have C1,1 = β.)
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Now, for any particular k ≤ ` ∧ r, we can put σ1 = . . . = σr = 1 to find that

(βr)` =
`∧r∑
i=0

∑
|A|=i

C`,i ≥
∑
|A|=k

C`,k =

(
r

k

)
C`,k ,

and so

0 ≤ C`,k ≤
(βr)`(
r
k

) . (4.4)

Therefore, letting

Ck =
∞∑
`=k

C`,kB` for k ≥ 1

and recalling that
∑
|B`| = B, we see that

|Ck| ≤ B
∑
`≥k

(βr)`(
r
k

) ≤ 2B
(βr)k(
r
k

) , (4.5)

with the last inequality valid as long as βr ≤ 1/2.

We now define pk,r as follows:

pk,r =


2|Ck|(k + 1) k ≥ 2 ,

2

(
C1 −

∑
A′31
|A′|≥2

|C|A′||
)

k = 1 ,

1−
∑

k≥1

(
r
k

)
pk,r k = 0 .

(4.6)

Our first step in verifying that this definition satisfies (4.6) is to show that 0 < p1,r < 1. For the upper

bound, using (4.5) we have p1,r ≤ 2|C1| ≤ 4Bβ < 1 for β small enough. For the lower bound, observe

that since B1 = 1/2, C1,1 = β and C`,1 ≤ (βr)`/r using (4.4),

C1 ≥
β

2
−
∞∑
`=2

C`,1|B`| ≥
β

2
− B

r

∑
`≥2

(βr)` ≥ β
(

1
2 − 2βrB

)
> β/4 . (4.7)

as long as β < 1/(4rB). On the other hand, again appealing to (4.5),∑
A′31
|A′|≥2

∣∣C|A′|∣∣ =
r∑

k=2

(
r − 1

k − 1

)
|Ck| ≤ 2B

r∑
k=2

k

r
(βr)k = 2Bβ

r∑
k=2

k(βr)k−1 ≤ β/8 (4.8)

provided βr is sufficiently small. Combining the last two displays yields p1,r ≥ β/8.

Next, we wish to verify that
(
r
k

)
pk,r ≤ D0(2βr)k for some absolute constant D0 and all k. Let

D0 = 4B and note that for k = 0 the sought inequality is trivial since D0 > 1 (recall B ≥ B0 +B1 = 1)

whereas p0,r < 1 (we have shown that p1,r > 0 and clearly pk,r ≥ 0 for all k ≥ 2). For k = 1 we again

recall from (4.5) that rp1,r ≤ 2r|C1| ≤ 4βrB < D0(2βr), and similarly, for k ≥ 2 we have(
r

k

)
pk,r = 2

(
r

k

)
|Ck|(k + 1) ≤ 4B(k + 1)(βr)k ≤ 4B(2βr)k = D0(2βr)k .



UNIVERSALITY OF CUTOFF FOR THE ISING MODEL 19

For any sufficiently small βr this of course also shows that pk,r ≤ 1 for all k, as well as the final fact

that p0,d ≥ 1− ε since ∑
k≥1

(
r

k

)
pk,r ≤ D0

∑
k≥1

(2βr)k < 4βrD0 < ε (4.9)

for a small enough βr.

Having established that desired properties for {pk,r : 0 ≤ k ≤ r}, define the new update function Φ

which will examine a random subset A of the r neighbors of a vertex, selected with probability p|A|,r
(giving a proper distribution over the subsets of [r] since

∑
k

(
r
k

)
pk,r = 1 as shown above), then apply

the following function ΦA to determine the probability of a plus update given σA = {σi : i ∈ A}.

ΦA(σA) =


1
2 A = ∅ ,
1
2 + 1

2σi A = {i} ,
1
2 + 1

2(|A|+1)

[∑
i∈A σi + sign(C|A|)

∏
i∈A σi

]
|A| ≥ 2 .

(4.10)

In order to establish that Φ can be coupled to the Glauber dynamics, we need to show that f(β
∑r

i=1 σi)

identifies with E[Φ(σ1, . . . , σr)] over all inputs {σi}. Since B0 = 1/2, we must show that E[Φ]− 1/2 is

equal to
∑∞

`=1B`(β
∑
σi)

`. Indeed,

E[Φ]− 1

2
=
∑
i

σi

(
C1 −

∑
A′3i
|A′|≥2

C|A′|

)
+
∑
|A|≥2

|C|A||
(∑
i∈A

σi + sign(C|A|)
∏
i∈A

σi

)

=
∑
|A|≥1

C|A|
∏
i∈A

σi =
∞∑
`=1

`∧r∑
k=1

∑
|A|=k

C`,kB`
∏
i∈A

σi =
∞∑
`=1

B`(β
∑

σi)
` ,

with the last two equalities following from the definition of Ck and C`,k. This completes the proof. �

4.3. Exponential decay of cluster sizes: Proof of Lemma 2.2. Using the update rule from

Lemma 4.1, the probability that an update of a vertex v of degree r ≤ d will examine precisely k of its

neighbors is (
r

k

)
pk,r ≤ D0(2βr)k ≤ D0(2βd)k ,

with the inequality thanks to (4.3). The probability that a given neighbor of v, with degree some

r′ ≤ d, receives an update in which it examines both v and k − 1 additional neighbors is at most

max
r′≤d

pk,r′

(
r′ − 1

k − 1

)
≤ max

r′≤d

k

r′
D0(2βr′)k =

1

d
D0(3βd)k ,

using that x1/x ≤ e1/e < 3/2 for all x ≥ 2. Hence, the rate at which the history of the vertex v expands

to k additional vertices along the time interval (0, t?) is at most

D0 (1 + r/d) (3βd)k ≤ 2D0(3βd)k .
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By the same reasoning, the extra update at time t? that is applied to v in Ĥ connects it to k of its

neighbors (k = 0, . . . , r) with probability at most D0(2βd)k, while each of its r neighbors contributes

at most k new points with probability at most D0(3βd)k/d.

We now develop the cluster of the vertex (w0, t0) in the space-time slab by exploring the branch at

w0, both forwards and backward in time, examining which connections it has to new vertices — either

through its own updates or through those which examine it — until it terminates via oblivious updates

in both directions. We then repeat this process with one of the points discovered in the exploration

process (arbitrary chosen), until all such points are exhausted and the cluster is completely revealed.

Let Ym denote the number of vertices explored in this way after iteration m (i.e., Y1 is the number

of vertices discovered via the branch incident to (w0, t0), etc.), and let Zm be the total length of edges

in the time dimension (i.e., (z, a), (z, b) for z ∈ V and 0 ≤ a < b ≤ t?) explored by then. We can

stochastically dominate these by a process (Ȳm, Z̄m) � (Ym, Zm) given as follows.

First, for the length variable, we apply Lemma 4.1 with ε = (1− η)/4, and put

Z̄0 = 0 ,

Z̄m = Z̄m−1 +Wm where Wm ∼ 1 + Γ(2, 1− ε) ,

with the gamma variable Γ(2, 1− ε) measuring the time until the explored branch terminates (in both

ends) using the key estimate p0,r ≥ 1 − ε from Lemma 4.1, translated by 1 to account for the unit

interval (t? − 1, t?] in which vertices are not removed from Ĥ .

For the vertex count variable, with the above discussion above in mind, observe that conditioned on

Wm the number of new vertices exposed along the new branch is dominated by
∑d

k=1 V
(k)
m , in which

V (k)
m ∼ kPo

(
2D0(3βd)kWm

)
(k = 1, . . . , d)

are mutually independent, while the extra update at time t? (should the branch extend to that time)

introduces at most
∑d

k=0 V̂
(k)
m additional vertices, where all V

(k)
m and V̂

(k)
m are independent, given by

P
(
V̂ (0)
m = j

)
≤ D0(2βd)j , P

(
V̂ (k)
m = j

)
≤ D0(3βd)j/d (k = 1, . . . , d) .

Therefore, with this notation, we write

Ȳ0 = 1 ,

Ȳm = Ȳm−1 + Um where Um =

d∑
k=1

V (k)
m +

d∑
k=0

V̂ (k)
m .

Letting τ ≥ 1 be the iteration after which the exploration process exhausts all new vertices (so τ = 1

iff both ends of the branch of (v0, t0) terminated before introducing any new vertices to the cluster),

we wish to show that

E
[
exp(ηZ̄τ + λȲτ )

]
≤ γ (4.11)

for γ(λ, η) <∞. We may assume without loss of generality — recalling that ε = (1− η)/4 ≤ 1
4 — that

λ ≥ 4 log(1/ε) , (4.12)
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as the left-hand of (4.11) is monotone increasing in λ. Observe that as long as 3βdeλ < 1/2 we have

E
[
exp

(
λV̂ (0)

m

)]
≤ 1 +D0

∑
k≥1

(
2βdeλ

)k ≤ 1 + 4D0βde
λ

as well as

d∏
k=1

E
[
exp

(
λV̂ (k)

m

)]
≤ 1 + 2D0

∑
k≥1

(
3βdeλ

)k ≤ 1 + 12D0βde
λ ,

and similarly,

d∏
k=1

E
[
exp

(
λV (k)

m

) ∣∣∣Wm

]
= exp

[
2WmD0

d∑
k=1

(eλk − 1)(3βd)k
]
≤ exp

[
12WmD0βde

λ
]
.

We can further assume that

h(λ) := D0βde
λ satisfies 12h(λ) < (1− η)/2 = 1− 2ε− η ,

achievable by letting βd be sufficiently small. With this notation,

E
[
eλUm+ηWm

∣∣∣Wm

]
≤ e(12h(λ)+η)Wm+16h(λ) ,

and upon taking expectation over Wm, having 12h(λ) +η < 1−2ε implies that the moment-generating

function of the gamma distribution will only contribute a polynomial factor, giving that

E
[
eλUm+ηWm

]
≤ e28h(λ)+η

(
1− 12h(λ) + η

1− ε

)−2

≤ ε−2e28h(λ) . (4.13)

Combining this with our definition of Ȳm = 1 +
∑m

i=1 Ui and Z̄m =
∑m

i=1Wi, we find that

E
[
eλȲτ+ηZ̄τ

]
= E

[ ∞∑
m=1

e−λm+2λȲm+ηZ̄m1{τ=m}

]
≤
∞∑
m=1

e−λmE
[
e2λȲm+ηZ̄m

]
=

∞∑
m=1

eλ(2−m)
(
E
[
e2λU1+ηW1

])m
,

which, recalling (4.13) and plugging in the expression for h(2λ), is at most

e2λ
∞∑
m=1

exp
[
m
(
−λ+ 2 log

(
4

1−η ) + 28h(2λ)
)]
≤ e2λ

∞∑
m=1

exp [m (−λ/2 + 28h(2λ))] = γ <∞

using (4.12) for the first inequality and, say, that 28h(2λ) ≤ λ/3 (achieved by taking βd small enough)

for the second one. (Note that γ = γ(λ, η), as the assumption (4.12) introduces a dependence on η).

This establishes (4.11) and thereby concludes the proof. �
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5. The effect of initial conditions on mixing

In this section we consider random initial conditions (both quenched and annealed), and prove

Theorem 2. The first observation is that, thanks to Theorem 1, the worst-case mixing time satisfies

tmix(α) = tm +O(1) for any fixed 0 < α < 1 ,

with tm as defined in (1.1), and moreover, the same holds for t
(+)
mix(α), the mixing time started from

all-plus. By Claim 3.3 we have 1
2 log n ≤ tm ≤ (1

2 + εβ) log n with εβ = βd/(2− 2βd) vanishing as β ↓ 0.

Thus, we may prove the bounds on the annealed / quenched mixing times when replacing tm by 1
2 log n.

5.1. Annealed analysis. As mentioned in the introduction, rather than comparing two worst case

boundary conditions we will compare a random one directly with the stationary distribution: By

considering updates in the range t ∈ (−∞, tm] we can use the coupling from the past construction to

generate a coupling with the stationary distribution. Let Xt denote the process started from uniform

initial conditions at time 0 and let Yt be the process generated by coupling from the past.

The information percolation clusters of V will now be defined as the connected components of the

graph on the vertex set V where (u, v) is an edge iff Hu(t) ∩Hv(t) 6= ∅ for some −∞ < t ≤ tm (in

contrast to the previous definition where we had 0 < t ≤ tm). The notion of being a red cluster is

redefined to be any Cv such that
∣∣⋃

u∈Cv Hu(t′)
∣∣ ≥ 2 for all 0 ≤ t′ ≤ tm. Blue clusters will be defined as

before and green clusters will again be the remaining clusters. We claim that we can couple the spins

at time tm of all non-red clusters. Indeed if a cluster Cv is not red then there is some time t′ > 0 such

that |
⋃
u∈Cv Hu(t′)| = 1. Call this vertex w. By symmetry both Xt′(w) and Yt′(w) are equally likely

to be plus or minus and so we may couple them to be equal independently of the spins of the other

clusters. We may then also couple the spins in that cluster to be the same in both Xt and Yt to be

equal for all t > t′. Thus the configurations will agree outside of the red clusters.

Let W(A) denote the size of the smallest connected set of vertices (animal) containing A. In a graph

of maximum degree d, the number of trees of size k containing the vertex v is bounded above by (ed)k

and hence the number of animals A containing a specified vertex with W(A) = k is at most (ed)k.

Lemma 5.1. For any d,C, ε > 0 there exists β0 > 0 such that the following holds for large enough n.

If 0 < β < β0 and t? = (1
4 + ε) log n then for any A,

sup
H −
A

P
(
A ∈ Red |H −

A , {A ∈ Red} ∪ {A ⊂ VBlue}
)
≤ 1√

n log n
e−CW(A) .

Proof. Similarly to the proof of Lemma 2.1 we have the analogue of equation (4.1)

P
(
A ∈ Red |H −

A , {A ∈ Red} ∪ {A ⊂ VBlue}
)
≤ 2|A|P(A ∈ Red | U) ,

where U is defined as in the proof of Lemma 2.1. Then for any v ∈ A,

P(A ∈ Red | U) ≤ P
(
|HCv | ≥W(A) , L(Xv,0) ≥ 2t?

∣∣∣ U) ,
since the total length of a red cluster must be at least 2t? and it must contain at least W(A) vertices.

Both |HCv | and L(Xv,0) are increasing in the component sizes, and so, by the same monotonicity
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argument as Lemma 2.1, we have that

P
(
A ∈ Red |H −

A , {A ∈ Red} ∪ {A ⊂ VBlue}
)
≤ 2|A|P

(
|ĤĈv | ≥W(A) , L(X̂v,0) ≥ 2t?

)
.

Taking λ = log 2 + C and 1
4(1

4 + ε)−1 < η < 1 in Lemma 2.2 then shows that, for β0 small enough,

P
(
|ĤĈv | ≥W(A) , L(X̂v,0) ≥ 2t?

)
≤

E
[
exp

(
ηL(X̂v,0) + λ|ĤĈv |

)]
exp (2ηt? + λW(A))

≤ γ exp
(
− 2η(1

4 + ε) log n− (log 2 + C)W(A)
)

≤ 1√
n log n

2−W(A)e−CW(A)

(with room, as we could have replaced the
√
n log n by some n1/2+ε′), which completes the proof. �

We now establish an upper bound on t
(u)
mix, the mixing time starting from the uniform distribution.

Proposition 5.2. For any d, ε > 0 there exists β0 > 0 such that the following holds. If 0 < β < β0

and t? = (1
4 + ε) log n then ‖P(Xt? ∈ ·)− π‖tv → 0 as n→∞.

Proof. Having coupled Xt and Yt as described above we have that

‖P(Xt? ∈ ·)− P(Yt? ∈ ·)‖tv ≤ E
[∥∥P (Xt?(V \ VGreen) ∈ · |HGreen)− νV \VGreen

∥∥
tv

]
+ E

[∥∥P (Yt?(V \ VGreen) ∈ · |HGreen)− νV \VGreen

∥∥
tv

]
where νA is the uniform measure on the configurations on A. Similarly to the argument used to derive

equation (3.2), we find that

‖P(Xt? ∈ ·)− P(Yt? ∈ ·)‖tv ≤

(
sup

HGreen

E
[
2|VRed∩VRed′ |

∣∣HGreen

]
− 1

)1/2

.

With the same coupling as in the proof of Theorem 1, analogously to equation (3.4), we have

‖P(Xt? ∈ ·)− P(Yt? ∈ ·)‖2tv ≤ 2
∑
v

(∑
A3v

2|A|ΨA

)2

. (5.1)

Applying Lemma 5.1 with C = dlog(4ed)e (while recalling that #{A 3 v : W(A) = k} ≤ (ed)k), we get∑
A3v

2|A|ΨA ≤
∑
k

∑
A:W(A)=k

v∈A

2ke−Ck√
n log n

≤
∑
k

(2ed)ke−Ck√
n log n

≤ 1√
n log n

,

provided that β > β0 with β0 from that lemma. It follows that

‖P(Xt? ∈ ·)− P(Yt? ∈ ·)‖tv ≤ O
(
log−2 n

)
,

and in particular ‖P(Xt? ∈ ·)− π‖tv = o(1), as required. �
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Remark 5.3. In the above proof one could instead carry the analysis as in the proof of Theorem 1

(partitioning the event in Lemma 2.1 according to the events {|Ĉv| = k} when estimating the sum over

v 3 A), that way replacing the factor of (ed)k lattice animals by 2k subsets of Ĉv. Consequently, the

statement of Proposition 5.2 remains valid for any β < c0/d where c0 depends on ε but not on d.

5.2. Quenched analysis. Here we show that the mixing time from a typical random initial state is

at most a factor of 1 + εβ faster than that from the worst starting state. As before, let Xt be started

from a uniformly chosen initial state X0 and let Yt be started from the stationary distribution π.

Proposition 5.4. Let t−? = 1
2 log n−wn for some wn ↑ ∞. Then ‖PX0(Xt−?

∈ ·)−π‖tv
p→ 1 as n→∞.

Proof. Note that by the monotonicity of the update rules, for any update history of u, the spin at

u is a monotone function of X0. With probability e−t the vertex u is never updated in which case

Xt(u) = X0(u). Since by symmetry E[Xt(u)] = 0, it follows that

E[Xt(u) | X0(u) = +1] ≥ e−t , E[Xt(u) | X0(u) = −1] ≤ −e−t .

Thus we have that E[X0(u)Xt(u)] ≥ e−t and so

E
[∑

u

X0(u)Xt−?
(u)
]
≥ ne−t

−
? =
√
newn .

Let Eu,v be the event that u ∈ Cv or v ∈ Hu(0) or u ∈ Hv(0) for the history developed from time t−? .

Similarly to Claim 3.4, let X ′t and X ′′t be two independent copies of the dynamics. By exploring the

histories we may couple Xt with X ′t and X ′′t so that, on the event Ecu,v, the history of v in Xt is equal

to the history of v in X ′t and the history of u in Xt is equal to the history of u in X ′′t . Hence,

E
[
X0(u)Xt−?

(u)X0(v)Xt−?
(v)
]
≤ E

[
X ′0(u)X ′

t−?
(u)
]
E
[
X ′′0 (v)X ′′

t−?
(v)
]

+ 2P(Eu,v) ,

yielding Cov
(
X0(u)Xt−?

(u) , X0(v)Xt−?
(v)
)
≤ 2P(Eu,v). By Lemma 2.2,∑

u

Cov
(
X0(u)Xt−?

(u) , X0(v)Xt−?
(v)
)
≤ c1 .

and so

Var
(∑

u

X0(u)Xt−?
(u)
)
≤ c1n .

Thus, by Chebyshev’s inequality we infer that

P
(∑

u

X0(u)Xt−?
(u) > 1

2

√
newn

)
≥ 1−O

(
e−2wn

)
,

and so by Markov’s inequality,

P
(
P
(∑

u

X0(u)Xt−?
(u) > 1

2

√
newn

∣∣∣ X0

)
≥ 1− e−wn

)
≥ 1−O

(
e−wn

)
→ 1 . (5.2)

By the exponential decay of correlations of Y and the fact that it is independent of X we have that

Var
(∑

u

X0(u)Yt−? (u)
∣∣∣ X0

)
≤ c2n
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for some c2 > 0. Thus, since E
[∑

uX0(u)Yt−? (u) | X0

]
= 0, it follows that

P
(∑

u

X0(u)Yt−? (u) > 1
2

√
newn

∣∣∣ X0

)
= O

(
e−2wn

)
→ 0 (5.3)

uniformly in X0. Comparing equations (5.2) and (5.3) completes the result. �
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