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Abstract. We study the concentration of a degree-d polynomial of the N spins of a
general Ising model, in the regime where single-site Glauber dynamics is contracting.
For d = 1, Gaussian concentration was shown by Marton (1996) and Samson (2000)
as a special case of concentration for convex Lipschitz functions, and extended to
a variety of related settings by e.g., Chazottes et al. (2007) and Kontorovich and
Ramanan (2008). For d = 2, exponential concentration was shown by Marton (2003)
on lattices. We treat a general fixed degree d with O(1) coefficients, and show that the

polynomial has variance O(Nd) and, after rescaling it by N−d/2, its tail probabilities

decay as exp(−c r2/d) for deviations of r ≥ C logN .

1. Introduction

Concentration of measure for functions of random fields has been extensively studied
(see, e.g., [8]). A prototypical example for a system where the underlying variables are
weakly dependent is the high-temperature Ising model. The model, in its most general
form without an external magnetic field, is a probability measure over configurations
σ ∈ ΩN := {±1}N (assigning spins to the sites {1, . . . , N}), defined as follows: for a set
of coupling interactions {Jij}1≤i,j≤N , the corresponding Ising distribution π is given by

π(σ) = Z−1 exp [−H(σ)] where H(σ) = −
∑

i,j Jijσiσj ,

in which Z (the partition function) is a normalizer. For general {Jij} this includes
ferromagnetic/anti-ferromagnetic models, and spin-glass systems on arbitrary graphs.

The Gaussian concentration of functions f : ΩN → R in the high temperature regime
has been studied both using analytical methods, adapting tools from the analysis of
product spaces to the setting of weakly dependent random variables (see, e.g., [7, 12]),
and using probabilistic tools such as coupling (cf. [1]). In the presence of arbitrary cou-
plings {Jij}, our hypothesis for capturing the high-temperature behavior of the model
will be be based on contraction, as in the related works on concentration inequalities
in [1, 10,11,13], and closely related to the Dobrushin uniqueness condition in [7].

Definition. We say an Ising spin system π is θ-contracting if there exists a single-site
discrete-time Markov chain (Xt) with stationary measure π that is θ-contracting, i.e.,

max
σ,σ′:‖σ−σ′‖1=1

W1

(
Pσ(X1 ∈ ·),Pσ′(X1 ∈ ·)

)
≤ θ < 1 ,

where W1(µ, ν) := inf{E[‖X − Y ‖1] : (X,Y ) ∼ (µ, ν)} is the L1-Wasserstein distance,
and Pσ denotes the probability starting from an initial state σ.

The discrete-time heat-bath Glauber dynamics for the Ising model is the chain that,
at every step, updates the spin of a uniformly chosen spin i via Pπ(σi ∈ · | σ�{1,...,N}\{i}).
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It is well-known that, for the Ising model with interactions Jij , if maxi
∑

j |Jij | ≤ 1−α,
then the corresponding single-site heat-bath Glauber dynamics is θ-contracting with
θ = 1− α/N , a concrete case where our results apply (see, e.g., [4, §8] and [9, §14.2]).

In this case, for linear functions f(σ) =
∑

i aiσi, it is known, as a special case of
results of Marton [11] regarding Gaussian concentration for Lipschitz functions (see
also [13] as well as [1, 6, 7, 10]) that there exists c = c(a1, . . . , aN , α) > 0 such that,

P(|f − Eπ(f)| ≥ u
√
N) ≤ exp(−cu2) .

For bilinear forms, where f(σ) =
∑

ij aijσiσj , Marton [12] showed that on lattices

P(|f − Eπ(f)| ≥ uN) ≤ exp(−cu) ,

whereas Daskalakis et al. [3] showed that, for a general Ising model, in a subset of this
regime (contraction as above with α > 3

4 vs. any α > 0), Varπ(f) = O(N2 log3N).
Our main result recovers the correct variance and, up to a polynomial pre-factor, the

tail probabilities for a polynomial of any fixed degree d (for matching lower bounds,
one can take, for instance, the d-th power of the magnetization f(σ) =

∑
i σi).

Theorem 1. For every α, d > 0 there exists C(α, d) > 0 so that the following holds.
Let π be the distribution of the Ising model on N spins with couplings {Jij} satisfying∑

j:j∼i
|Jij | ≤ 1− α for all 1 ≤ i ≤ N (1.1)

For every polynomial f ∈ R[σ1, . . . , σN ] of total-degree d with coefficients in [−K,K],

Varπ(f) ≤ CK2Nd , (1.2)

and for every r > 0,

Pπ
(
N−d/2|f(σ)− Eπ[f(σ)]| ≥ r

)
≤ CNd2 exp

(
− r2/d

CK2/d

)
. (1.3)

Moreover, (1.2)–(1.3) hold for every Ising model with couplings {Jij} for which the
corresponding ferromagnetic model with interactions {|Jij |} is (1− α

N )-contracting.

Remark 1.1. In [3], the authors used their variance bounds for bilinear forms of
Ising models to study statistical independence testing for Ising models. Namely, they
gave bounds (in terms of N and ε) on the number of samples that are required to
distinguish, with high probability, between a product measure and an Ising model
whose (symmetrized Kullback-Leibler) distance to any product measure is at least ε.
In Section 4, Theorems 4.1–4.2, we present a short application of Theorem 1 to improve
the upper bounds of [3] by considering fourth-order statistics of the Ising model.

Remark 1.2. In this paper, we always consider polynomials of Ising models with no
external field. As the following example shows, in the presence of an external field,
such polynomials can be anti-concentrated. Let µi = E[σi] for all i and expand,∑

aijσiσj =
∑

aij(σi − µi)(σj − µj) +
∑

aijσiµj +
∑

aijσjµi −
∑

aijµiµj .

The first term on the right-hand side should have O(N) fluctuations while the second

and third terms
∑

i(
∑

j aijµj)σi can have order N3/2 fluctuations (e.g., if (µjaij)j all

have the same sign), implying (1.2)–(1.3) cannot hold in general under external field.
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2. Concentration for quadratic functions

In this section, we prove the special and more straightforward case of concentration
for quadratic functions of the Ising model. The proof of Theorem 1 in §3 requires some
additional ingredients but is motivated by the proof of the following.

Theorem 2.1. For every α > 0 there exists C(α) > 0 so that the following holds. Let
π be the distribution of the Ising model on N spins with interaction couplings {Jij}
satisfying (1.1). For A = {aij}Ni,j=1, the function f(σ) =

∑
i,j aijσiσj on ΩN satisfies

Varπ(f) ≤ C
∑
i,j

|aij |2 , (2.1)

and for every r > 0,

Pπ
(
N−1

∣∣f(σ)− Eπ[f(σ)]
∣∣ > r

)
≤ CN2 exp

(
− r

C‖A‖∞

)
. (2.2)

Furthermore, this holds for any {Jij} such that the Ising model is (1− α
N )-contracting.

Proof of (2.1). Recall that the variational formula for the spectral gap of a reversible
Markov chain (Xt) with transition kernel P and stationary distribution π states that

gap = inf
f

E(f, f)

Varπ(f)
where E(f, f) =

1

2

∑
σ,σ′

π(σ)P (σ, σ′)
∣∣f(σ)− f(σ′)

∣∣2 . (2.3)

For any single-site discrete-time Markov chain for the Ising model, one has that

max
σ,σ′

P (σ, σ′) ≤ γ/N for some 0 < γ ≤ 1 (2.4)

(for example, under assumption (1.1), heat-bath Glauber dynamics satisfies this for a
choice of γ = [1 + tanh(2(1− α))] /2). Thus,

E(f, f) ≤ γ

2N

∑
i

Eπ
[
(∇if)2(σ)

]
, (2.5)

where (∇if)(σ) := f(σ) − f(σi) with σi the state obtained from σ by flipping σi.
Moreover, as mentioned, since this chain satisfies (1.1), it is (1 − α

N )-contracting and
therefore has gap ≥ α/N by the results of [2] (see also [9, Theorem 13.1]).

Consider a linear function of the form g =
∑
aiσi; since |∇ig| = 2|ai|, one obtains

that E(g, g) ≤ 2γN−1
∑

i |ai|2, and therefore (2.3) implies that

Varπ(g) ≤ gap−1E(g, g) ≤ 2γ

α

∑
i

|ai|2 . (2.6)

Returning to the function f , assume w.l.o.g. that aii = 0 for all i (as σ2
i = 1) and let

gi(σ) :=
∑

j(aij + aji)σj , so |(∇if)(σ)| = 2|gi(σ)|. By symmetry, Eπ[gi(σ)] = 0, thus

E(f, f) ≤ 2γ

N

∑
i

Varπ (gi(σ)) ≤ 4γ2

αN

∑
i,j

|aij |2 ,



4 REZA GHEISSARI, EYAL LUBETZKY, AND YUVAL PERES

which, again applying (2.3), yields

Varπ(f) ≤ 4γ2

α2

∑
i,j

|aij |2 . �

We now proceed to proving the exponential tail bounds on f . Throughout the paper,
we say a function f is b-Lipschitz on a set S if for every σ, σ′ ∈ S,

|f(σ)− f(σ′)| ≤ b‖σ − σ′‖1 .
A function f is b-Lipschitz if it is so on its whole domain, in our case ΩN . For subsets
of a graph, e.g., {±1}N , endowed with the graph distance, by the triangle inequality, it
suffices to consider only σ, σ′ that are neighbors. Then f is b-Lipschitz on a connected
set S ⊂ ΩN if

max
σ,σ′∈S:‖σ−σ′‖1=1

|f(σ)− f(σ′)| ≤ b .

Proof of (2.2). We begin by bounding the Lipschitz constant of 1
N f . Observe that

1

N
|f(σ)− f(σ′)| = 1

N

∣∣∣∑
i,j

(σi − σ′i)aijσj +
∑
i,j

(σi − σ′i)ajiσ′j
∣∣∣

≤ 1

N
‖σ − σ′‖1

[
‖Aσ‖∞ + ‖ATσ′‖∞

]
,

in light of which, if we define

Sb =
{
σ : max

{
‖Aσ‖∞, ‖ATσ‖∞

}
≤ b
√
N
}
, (2.7)

then 1√
N
f is 2b-Lipschitz on Sb—note that we only consider b ≤ ‖A‖∞

√
N .

In order to upper bound Pπ(Scb), we will use the following version of concentration
inequalities for Lipschitz functions of contracting Markov chains [10]:

Proposition 2.2 ([10, Corollary 4.4, Eq. (4.13)], cf. [11, 13]). Let π be the stationary
distribution of a θ-contracting Markov chain with state space Ω, and suppose g : Ω→ R
is b-Lipschitz. Then for all r > 0,

Pπ (|g(σ)− Eπ[g(σ)]| > r) ≤ 2 exp

(
−(1− θ2)r2

2θ2b2

)
.

To see this, note that for every i and every σ, σ′ ∈ ΩN ,∣∣(Aσ)i − (Aσ′)i
∣∣ ≤ ‖A‖∞‖σ − σ′‖1 ,

and so σ 7→ (Aσ)i is ‖A‖∞-Lipschitz, and similarly σ 7→ (ATσ)i is ‖A‖∞-Lipschitz. By
a union bound and Proposition 2.2 with θ = 1− α/N , there exists κ(α) > 0 such that

Pπ(Scb) ≤ 4N exp

(
−

(2α
N −

α2

N2 )b2

2(1− α
N )2‖A‖2∞

)
≤ 4N exp

(
− b2

κ‖A‖2∞

)
. (2.8)

Next, consider the McShane–Whitney extension of N−1/2f from Sb, given by

1√
N
f̃(η) = min

σ∈Sb

[
1√
N
f(σ) + 2b‖η − σ‖1

]
; (2.9)
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by definition, N−1/2f̃ is 2b-Lipschitz on all of ΩN . As a result, by Proposition 2.2,

Pπ
(
|f̃(σ)− Eπ[f̃(σ)]| > rN

)
≤ 2e−r

2/(4κb2) . (2.10)

In order to move to the desired quantity, we need to control the difference between the
means of f, f̃ using the fact that f̃(σ) = f(σ) for all σ ∈ Sb:

|Eπ[f̃(σ)]− Eπ[f(σ)]| ≤ Eπ
[
|f̃(σ)− f(σ)|1{σ ∈ Scb}

]
≤ 12‖A‖∞N3e−b

2/(κ‖A‖2∞) , (2.11)

where in the last line we used (2.8) to bound Pπ(Scb), as well as that

max
σ
{|f(σ)|, |f̃(σ)|} ≤ ‖A‖∞N2 + 2bN3/2 ≤ 3‖A‖∞N2 .

Now let b =
√
‖A‖∞r/6 and observe that if b is such that

|Eπ[f̃(σ)]− Eπ[f(σ)]| ≤ rN/3

holds (in particular, this holds for all b > 2
√
κ‖A‖2∞ log(‖A‖∞N)), then

Pπ(|f(σ)− Eπ[f(σ)]| > rN) ≤ Pπ(|f̃(σ)− Eπ[f̃(σ)] > rN/3)

+ Pπ(|f̃(σ)− f(σ)| > rN/3) .

By (2.10), and the choice of b, the first term above has

Pπ(|f̃(σ)− Eπ[f̃(σ)]| > rN/3) ≤ 2 exp

(
− r

6κ‖A‖∞

)
.

Because f̃(σ) = f(σ) for all σ ∈ Sb, by our choice of b,

Pπ(|f̃(σ)− f(σ)| > rN/3) ≤ Pπ(Scb) ≤ 4N exp

(
− r

6κ‖A‖∞

)
.

Replacing the requirement of b > 2
√
κ‖A‖2∞ log(‖A‖∞N) with a prefactor of N2, and

combining the above two estimates, we see that

Pπ(|f(σ)− Eπ[f(σ)]| ≥ rN) . N2 exp

(
− r

6κ‖A‖∞

)
,

holds for every r > 0. �

3. Concentration for general polynomials

In order to prove Theorem 1, we will need the following intermediate lemma used to
control the mean of the gradient of f .

Lemma 3.1. For every p, α > 0 there exists C(α, p) > 0 such that the following
holds. Consider an Ising model π with couplings {Jij} and let π̃ be the Ising measure
corresponding to couplings {|Jij |}. If π̃ is a (1− α

N )-contracting Ising system and

h(σ) =
∑
i1,...,ip

bi1,...,ipσi1 · · ·σip
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is a degree-p polynomial in (σ1, ..., σN ) for a degree-p tensor B, then

|Eπ[h(σ)]| ≤ C‖B‖∞Np/2 .

Proof. Begin by considering ferromagnetic models with non-negative couplings, {Jij}.
It is well-known that in the Eπ[σi1 · · ·σip ] ≥ 0 in the ferromagnetic Ising model with no
external field (e.g., by viewing its FK representation that enjoys monotonicity). Thus,

|Eπ[h(σ)]| ≤
∑
i1,...,ip

|bi1,...,ip |Eπ[σi1 · · ·σip ] ,

and taking Mp = (‖B‖∞)1/p, we see that∑
i1,...,ip

|bi1,...,ip |Eπ[σi1 · · ·σip ] ≤ Eπ
[∣∣∣∑

i

Mpσi

∣∣∣p] .
However,

∑
iMpσi is clearly an Mp-Lipschitz function, and by spin-flip symmetry of

the Ising system, has mean 0, so by Proposition 2.2, there exists κ(α) > 0 such that

Pπ
(∣∣∣∑

i

Mpσi

∣∣∣p > rpNp/2

)
= Pπ

(∣∣∣∑
i

Mpσi

∣∣∣ > r
√
N

)
≤ e−r2/κM2

p ,

and therefore, by integrating, Eπ[|
∑

iMpσi|p] ≤ C‖B‖∞Np/2 for some C(α, p) > 0.
Now suppose that {Jij} are not all non-negative; using the FK representation of Ising

spin systems with general couplings (not necessarily ferromagnetic)—see, e.g., [5, §11.5],
and in particular Proposition 259 and Eq. (11.44)—for every i1, ..., ip,∣∣Eπ[σi1 · · ·σip ]

∣∣ ≤ Eπ̃[σi1 · · ·σip ] . (3.1)

Then, proceeding as before, we see that

|Eπ[h(σ)]| ≤
∑
i1,...,ip

|bi1,...,ip ||Eπ[σi1 · · ·σip ]| ≤ Eπ̃
[
|
∑
i

Mpσi|p
]
.

Since π̃ is contracting, we can apply Proposition 2.2 as before to obtain for the same
constant, C(p, α) > 0 that

|Eπ[h(σ)]| ≤ Eπ̃
[
|
∑
i

Mpσi|p
]
≤ C‖B‖∞Np/2 . �

Proof of (1.2). Fix d and recall the variational formula for the spectral gap, (2.3).
Following (2.5), we see that for γ defined in (2.4)

E(f, f) ≤ γ

2N

∑
`

Eπ
[
(∇`f)2(σ)

]
where (∇`f)(σ) = f(σ)− f(σ`) as before. Let

f(σ) =
∑
i1,...,id

ai1,...,idσi1 · · ·σid ,
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with ‖A‖∞ ≤ K, and w.l.o.g. (since σ2
i = 1, every polynomial can be rewritten as a

sum of monomials) assume that ai1,...,id = 0 if ik = ij for some j 6= k. Then we see that
for every ` and every σ,

|(∇`f)(σ)| = 2

∣∣∣∣ ∑
i2,...,id

a`,i2,...,idσi2 · · ·σid + · · ·+
∑

i1,...,id−1

ai1,...,id−1,`σi1 · · ·σid−1

∣∣∣∣ ,
so that g`(σ) := (∇`f)2(σ) is a 2(d−1)-degree polynomial in σ with coefficients bounded

above by 4
(2(d−1)

(d−1)

)
K2. By Lemma 3.1, there exists C(α, d) > 0 such that for every `,

Eπ[g`(σ)] ≤ 4

(
2(d− 1)

d− 1

)
CK2Nd−1 ,

so that using (2.3), (2.5), and the fact that gap ≥ α/N , for some new C(α, d) > 0,

Varπ(f) ≤ gap−1E(f, f) ≤ Nγ

2α
· CK2Nd−1 =

Cγ

2α
K2Nd . �

Proof of (1.3). Observe that since we are on the hypercube ΩN , σki = σk mod 2
i , so

that every polynomial function f of degree d can be rewritten as a sum of monomials
of degree at most d. The concentration of the lower-degree monomials can be absorbed
into a constant multiple in the prefactor in (1.3) of Theorem 1. Moreover, it suffices
by rescaling to prove the theorem for the case K = 1. Hence, we proceed to prove the
following concentration inequality for monomials: consider a (1− α

N )-contracting Ising
model π; for every d, if f is a monomial of degree d, i.e.,

f(σ) =
∑
i1,...,id

ai1,...,idσi1 · · ·σid

for a d-tensor A with ‖A‖∞ ≤ 1 and ai1...id = 0 if ij = ik for some j 6= k, there exists
C(α, d) > 0 such that for every r > 0, and every N ,

Pπ
( 1

Nd/2

∣∣f(σ)− Eπ[f(σ)]
∣∣ > r

)
≤ C[N2+d/2 log2(N)]d−1 exp

(
−C−1r2/d

)
. (3.2)

Since we are considering d fixed, throughout this section, . will be with respect to
constants that may depend on d. We prove (3.2) inductively over d ≥ 2. The base case
d = 1 is given by Proposition 2.2. Now assume that for every p ≤ d−1, Eq. (3.2) holds
and show it holds for d. Fix 1 ≤ ` ≤ N and let σ` be the configuration that differs with
σ only in coordinate `. For every σ, we can compute the gradient N−d/2(∇`f)(σ) as

N−d/2|f(σ)− f(σ`)| = 2N−d/2
∣∣∣∣ ∑
i2,...,id

a`,i2,...,idσi2 · · ·σid + · · ·

+
∑

i1,...,id−1

ai1,...,id−1,`σi1 · · ·σid−1

∣∣∣∣ . (3.3)
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Define the following set of configurations:

Sb =

{
σ : max

1≤`≤N
max

1≤j≤d

∣∣∣ ∑
i1,...,id:ij=`

ai1,...,idσi1 · · ·σij−1σij+1 · · ·σid
∣∣∣ ≤ bN (d−1)/2

}
. (3.4)

Because Sb may not be connected, Eq. (3.3) does not necessarily bound the Lipschitz
of f on Sb. Thus, for each η ∈ Sb, we set Sη,b to be the connected component of Sb
containing η. By definition of Sη,b, the triangle inequality, and (3.3), for each η ∈ Sb,
function N−(d−1)/2f is db-Lipschitz function on Sη,b.

For every η, define the McShane–Whitney extension of N−(d−1)/2f from Sη,b as

N−(d−1)/2f̃η(σ
′) = min

σ∈Sη,b

[
N−(d−1)/2f(σ) + db‖σ − σ′‖1

]
,

so that N−(d−1)/2f̃η is db-Lipschitz on all of ΩN and f̃η�Sη,b = f�Sη,b .
Now let (Xt) be the single spin-flip Markov chain which we assumed to be (1− α

N )-
contracting with stationary distribution π, and, for each η, bound

Pη(N−d/2|f(Xt)− Eπ[f(Xt)]| > r) ≤ Φ1 + Φ2 + Ψ1 + Ψ2 , (3.5)

where

Φ1 = Φ1(η, r) = Pη(N−d/2|f̃η(Xt)− Eη[f̃η(Xt)]| > r
4) ,

Φ2 = Φ2(η, r) = Pη(N−d/2|f(Xt)− f̃η(Xt)| > r
4) ,

Ψ1 = Ψ1(η, r) = 1
{
N−d/2

∣∣Eη[f̃η(Xt)]− Eη[f(Xt)]
∣∣ > r

4

}
,

Ψ2 = Ψ2(η, r) = 1
{
N−d/2

∣∣Eη[f(Xt)]− Eπ[f(Xt)]
∣∣ > r

4

}
.

In order to bound Φ1 we will need the following result of Luczak [10]:

Proposition 3.2 ([10, Eq. (4.14)]). Suppose (Yt) is a θ-contracting Markov chain on Ω
with stationary distribution π; suppose further that g : Ω→ R is a b-Lipschitz function.
Then for every Y0 ∈ Ω,

PY0
(
|f(Yt)− EY0 [f(Yt)]| ≥ r

)
≤ 2 exp

(
− r2

b2
∑t

i=0 θ
i

)
.

By Proposition 3.2 with the choice of θ = 1− α
N , there exists κ(α) > 0 such that for

every η ∈ Sb and every t,

Φ1 = Pη
(
N−d/2|f̃η(Xt)− Eη[f̃η(Xt)]| > r/4

)
≤ 2 exp

(
− r2

16κd2b2

)
. (3.6)

Second, the fact that f and f̃η identify on Sη,b implies that

Φ2 ≤ Pη(τScη,b ≤ t) = Pη(τScb ≤ t) , (3.7)

where the last equality crucially used that (Xt) is a single-site dynamics (whence start-
ing from η, exiting Sη,b and exiting Sb are equivalent).

By the definition of f̃η, we have that ‖f̃η‖∞ ≤ ‖f‖∞ +NLip(f�Sη,b), implying that

Ψ1 ≤ 1
{

(1 + d)Nd/2Pη(τScb ≤ t) >
r
4

}
. (3.8)
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Finally, if we take

t ≥ t0 := tmix(ε) for εr :=
r

4(1 + d)Nd/2
,

we have,

max
η∈ΩN

N−d/2 |Eη[f(Xt)]− Eπ[f(Xt)]| ≤ (1 + d)Nd/2εr < r/4 ,

so that for all such t, for every η ∈ ΩN , we have Ψ2 = 0. Because (e.g., [9], a Markov
chain that is θ-contracting with θ = 1− α

N has tmix & N logN) by sub-multiplicativity

of total variation distance to stationarity, this holds for t0 � N log2(N).
Combining (3.5)–(3.8), we see that for all η ∈ Sb and t ≥ t0,

Pη(N−d/2|f(Xt)− Eπ[f(Xt)]| > r) ≤ 1
{

(1 + d)Nd/2Pη(τScb ≤ t) >
r
4

}
+ Pη(τScb ≤ t) + 2 exp

(
− r2

16κd2b2

)
.

If we now average both sides over η ∼ π and set t = t0, we obtain

Pπ
(
N−d/2|f(Xt)− Eπ[f(Xt)] > r

)
≤ Pπ({η : Pη(τScb ≤ t) > r/((4 + 4d)Nd/2)})

+ Pπ(τScb ≤ t) + Pπ(Scb) + 2 exp

(
− r2

16κd2b2

)
≤
[
2t0 + (4 + 4d)r−1Nd/2t0

]
Pπ(Scb) + 2 exp

(
− r2

16κd2b2

)
, (3.9)

where we used using stationarity of the Markov chain and a union bound over all times
up to t0, and Markov’s inequality with Eπ[Pη(τScb ≤ t)] = Pπ(τScb ≤ t).

It remains to bound the probability Pπ(Scb). Let, for every 1 ≤ ` ≤ N , 1 ≤ j ≤ d,

g`,j(σ) =
∑

i1,...,id:ij=`

ai1,...idσi1 · · ·σij−1σij+1 · · ·σid ;

by the inductive hypothesis there exists C ′(α, d) > 0 such that uniformly over `, j,

Pπ(|g`,j(σ)− Eπ[g`,j(σ)]| > bN (d−1)/2)

.
[
N2+(d−1)/2 log2(N)

]d−2
exp

(
− b2/(d−1)/C ′

)
.

To upper bound Pπ(Scb), by (3.4) it suffices to show that |Eπ[g`,j ]| is at most bN (d−1)/2/2
and then union bound over `, j. Since for each `, j, the function g`,j is a d − 1 degree
polynomial of the form of h(σ) in Lemma 3.1 there exists C(α, d) > 0 such that

max
1≤`≤N

max
1≤j≤d

|Eπ[g`,j ]| ≤ CN (d−1)/2 .

Therefore, for all b ≥ 2C, by a union bound over 1 ≤ ` ≤ N and 1 ≤ j ≤ d,

Pπ(Scb) . N
[
N2+(d−1)/2 log2(N)

]d−2
exp

(
− b2/(d−1)

C ′42/(d−1)

)
. (3.10)
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Plugging (3.10) into (3.9), by stationarity of π and t0 � dN log2(N), we obtain

Pπ(N−d/2|f(σ)− Eπ[f(σ)]| > r) .
[
N2+d/2 log2(N)

]d−1
[

exp

(
− r2

16κd2b2

)
+ exp

(
− b2/(d−1)

C ′42/(d−1)

)]
,

at which point, the choice of b given by

b = r(d−1)/d ,

implies the desired (3.2) for some different C(α, d) > 0 for all r > 0. �

4. An application to testing Ising models

In [3], independence testing of Ising models was extensively studied. Namely, suppose
one is given k samples of N bits, either from a product measure I or from an Ising
measure ν satisfying (1.1) whose Kullback–Leibler distance to I is at least ε. The
goal is to decide with high probability, using a minimum number of samples, which
distribution the samples came from. Our variance bound in Theorem 1 allows us to use
a fourth-order statistic to improve on the results of [3] in the high-temperature regime
of (1.1), including obtaining the sharp result in the case of ferromagnetic Ising models.

Consider an Ising model with couplings Jij and for every i ∼ j, denote by

λπij = Eπ[σxσy]− Eπ[σx]Eπ[σy] ,

which in the absence of external field equals Eπ[σxσy]. We will be concerned with Ising
models satisfying (1.1) and therefore in their high-temperature Dobrushin regime.

The Ising model has the special property that for two Ising models π and ν on
N vertices, with couplings {Jπij} and {Jνij} and edge-magnetizations λπij and λνij , the

symmetrized Kullback–Leibler divergence dSKL(π, ν) is given by

dSKL(π, ν) = Eπ
[

log
(π
ν

)]
− Eν

[
log
(ν
π

)]
=

∑
1≤i<j≤N

(Jπij − Jνij)(λπij − λνij) .

Let I be the product measure on N independent, symmetric ±1 random variables.
That is to say that JIij = λIij = 0 for all i, j and dSKL(π, I) =

∑
i,j J

π
ijλ

π
ij . Finally, for

an Ising model π, let m denote the number of edges, i.e., the number of non-zero Jπij .

Theorem 4.1. There exists a polynomial time algorithm that uses O(N/ε) samples
from a ferromagnetic Ising model π on N vertices satisfying (1.1), and distinguishes
with probability better than 3

4 , whether π = I or dSKL(π, I) ≥ ε. In the specific case
where the edge set {(ij) : Jπij 6= 0} is known, this is improved to O(

√
m/ε) samples.

Theorem 4.2. There exists a polynomial time algorithm that uses O(N2/ε2) samples
from an Ising model π on N vertices satisfying (1.1), and distinguishes with probability
better than 3

4 whether π = I or dSKL(π, I) ≥ ε. In the specific case where the edge set

{(ij) : Jπij 6= 0} is known a priori, this is improved to O(N
√
m/ε2) samples.
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(The previous results of [3] gave a bound of O(m/ε) in the setting of Theorem 4.1,

and a bound of O(N10/3/ε2) in the setting of Theorem 4.2.)

The algorithms we use take k i.i.d. samples (σ
(1)
i )i≤N , ..., (σ

(k)
i )i≤N from π and com-

pute the test statistic,

Zk = Zk(σ
(1), ..., σ(k)) =

∑
i,j

(
1

k

∑
1≤`≤k

σ
(`)
i σ

(`)
j

)2

, (4.1)

where in the case where we do know the edge set of the underlying graph a priori, we

sum only over i ∼ j. Let P be the measure given by
⊗k

i=1 π.
Observe first that

E[Zk] =
∑
i,j

(λπij)
2 +

1

k

∑
i,j

(1− λπij) ≥
∑
i,j

(λπij)
2 . (4.2)

At the same time,

Var(Zk(σ)) =
1

k4
Var

(∑
i,j

∑
1≤`,`′≤k

σ
(`)
i σ

(`)
j σ

(`′)
i σ

(`′)
j

)
.

For every fixed k, we can view (σ
(`)
i )1≤i≤N,1≤`≤k as an Ising model on kN vertices, that

satisfies (1.1) since it corresponds to k independent copies of an Ising model each sat-
isfying (1.1). Therefore, by Theorem 1, specifically (1.2), we have Var(Zk) ≤ CN2/k2.

In the specific case where the underlying graph of the Ising model is known a priori,
we have the following.

Lemma 4.3. Consider k i.i.d. samples σ(1), ..., σ(k) from an Ising model π on a graph
G on N vertices and m edges, satisfying (1.1). Then there exists C(α) > 0 such that
Var(Zk) ≤ Cm/k2.

Proof. Again view (σ
(`)
i )i,` as an Ising model on kN vertices with measure πk =

⊗k
i=1 π.

Recall that since {Jπij} satisfy (1.1) for α > 0, the Ising model is 1− α/N contracting.

Since the spectral gap tensorizes, and π is 1 − α/N contracting, πk also has inverse
spectral gap satisfying gap−1 ≥ α/N . Using the variational form of the spectral gap as
before, we have by (2.4)–(2.5),

Var(Zk) ≤ gap−1E(Zk, Zk) ≤
2γ

α

∑
i,`

E
[
(∇i,`Zk)2(σ)

]
.

Now we compute (∇i,`Zk)2(σ) for fixed (i, `) = (i?, `?) and every σ. Expanding out,

(∇i?,`?Zk)2(σ) =
4

k4

∑
j∼i?,j′∼i?

E
[
σ`

?

j σ
`?

j′
]
E
[
(
∑
`6=`?

σ`i?σ
`
j)(
∑
`′ 6=`?

σ`
′
i?σ

`′
j′)
]

=
4

k4

∑
j∼i?,j′∼i?

E
[
σ`

?

j σ
`?

j′
]( ∑

` 6=`?,`′ 6=`?
E
[
σ`i?σ

`
jσ
`′
i?σ

`′
j′
])

.
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When ` = `′, the summands in the second sum are given by Eπ[σjσj′ ], whereas when

` 6= `′, we have E[σ`i?σ
`
jσ
`′
i?σ

`′
j ] = Eπ[σi?σj ]Eπ[σi?σj′ ]. Therefore,

(∇i?,`?Zk)2(σ) ≤ 4

k4

∑
j,j′∼i?

|Eπ[σjσj′ ]|
(
k|Eπ[σjσj′ ]|+ (k − 1)2|Eπ[σi?σj ]||Eπ[σi?σj′ ]|

)
≤ 4

k2

∑
j,j′∼i?

Eπ̃[σjσj′ ] , (4.3)

where π̃ is the ferromagnetic analogue of π with couplings J π̃ij = |Jπij | (implying it also

satisfies (1.1) with the same α) and the last inequality follows as in (3.1) from the FK
representation. But, we can write∑

j,j′∼i?
Eπ̃[σjσj′ ] = Eπ̃

[(∑
j

cjσj

)2
]
,

where cj = 1{Ji?j 6= 0}. For squares of 1-Lipschitz functions of contracting Ising
models, we previously noted in (2.6) that

Eπ̃
[(∑

j

cjσj

)2
]

= Varπ̃

(∑
j

cjσj

)
≤ 2γ

α

∑
j

|cj |2 =
2γdi?

α
,

with di? being the number of nonzero couplings incident i?. Summing over i?, and
plugging this bound into (4.3) and then into the variational form of the spectral gap,
we obtain the desired bound

Var(Zk) ≤
(

32γ2

α2

)(m
k2

)
. �

We are now in position to prove the two theorems regarding independence testing
for the Ising model.

Proof of Theorem 4.1. The algorithm we use computes Zk as defined in (4.1) for
k ≥ CN/ε (when we know the underlying graph, k ≥ C ′

√
m/ε), then outputs that

π = I if Zk ≤ ε/4 and outputs dSKL(π, I) ≥ ε otherwise. We first show that with
probability at lteast 9

10 , if π = I, the algorithm outputs that. Notice that EI [Zk] = 0,

and by the above computations of the variance, Var(Zk) ≤ CN2/k2 (when we know
the underlying edge set, Var(Zk) ≤ m/k2 by Lemma 4.3). By Chebyshev’s inequality,

P(Zk ≥ ε/4) ≤ 16Var(Zk)

ε2
,

which, after plugging in the two above bounds on Var(Zk) implies the number of samples
we require of k is sufficient for the right-hand side to be at most 9

10 .
When π is such that dSKL(π, I) ≥ ε, we again have the same bounds on Var(Zk).

We now lower bound Eπ[Zk] by (4.2) and the definition of dSKL(π, I). Note that since
π is a ferromagnetic, for all Jπij ≤ 1 by the FKG inequality of the ferromagnetic Ising
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model, λπij ≥ tanh(Jπij) ≥ Jπij/2. As a result,

E[Zk] ≥
∑
i,j

(λπij)
2 ≥ 1

2

∑
i∼j

Jπijλ
π
ij ≥

ε

2
.

Applying Chebyshev’s inequality to P(Zk ≤ ε/4), we see that the desired number of
samples we require of k is sufficient to identify in this case that dSKL(π, I) ≥ ε with
probability at least 9

10 . A union bound over the two cases π = I and π such that
dSKL(π, I) ≥ ε concludes the proof. �

Proof of Theorem 4.2. The algorithm again computes the test statistic, Zk defined
in (4.1), and now outputs that π = I if Zk ≤ ε2/2N and outputs dSKL(π, I) ≥ ε
otherwise.

First, consider the situation π = I; by similar reasoning to the proof of Theorem 4.1,
after k ≥ CN2/ε2, (when we know the underlying graph, k ≥ C ′N

√
m/ε, with proba-

bility at least 9
10 , the algorithm outputs that π = I.

Now suppose that π is such that dSKL(π, I) ≥ ε; we wish to lower bound E[Zk]. By
Cauchy–Schwarz inequality,∑

i,j

(λπij)
2 ≥

(
∑

i,j J
π
ijλ

π
ij)

2∑
i,j(J

π
ij)

2
≥ ε2

(∑
i∼j

(Jπij)
2

)−1

When (1.1) holds, we know that for every i and some α > 0, we have
∑

j:j∼i |Jπij | ≤ 1−α.
Therefore,

E[Zk] ≥ ε2

(
max
i,j
{|Jπij |} ·

∑
i

∑
j∼i
|Jπij |

)−1

≥ ε2

(∑
i

[1− α]

)−1

≥ ε2

N
.

We can then use Chebyshev’s inequality to bound

P(Zk ≤ ε2/(2N)) ≤ P(|Zk − E[Zk]| ≥ ε2/(2N)) ≤ 4N2Var(Zk)

ε4

via the aforementioned bounds on Var(Zk). Plugging in those bounds implies that the
number of samples k we require is sufficient to identify that in this case dSKL(π, I) ≥ ε
with probability at least 9

10 , at which point a union bound concludes the proof. �
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