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Abstract. Dobrushin (1972) showed that the interface of a 3D Ising model with minus boundary conditions

above the xy-plane and plus below is rigid (has O(1)-fluctuations) at every sufficiently low temperature.

Since then, basic features of this interface—such as the asymptotics of its maximum—were only identified
in more tractable random surface models that approximate the Ising interface at low temperatures, e.g., for

the (2+1)D Solid-On-Solid model. Here we study the large deviations of the interface of the 3D Ising model

in a cube of side-length n with Dobrushin’s boundary conditions, and in particular obtain a law of large
numbers for Mn, its maximum: if the inverse-temperature β is large enough, then Mn/ logn → 2/αβ as

n→∞, in probability, where αβ is given by a large deviation rate in infinite volume.

We further show that, on the large deviation event that the interface connects the origin to height h, it
consists of a 1D spine that behaves like a random walk, in that it decomposes into a linear (in h) number

of asymptotically-stationary weakly-dependent increments that have exponential tails. As the number T of

increments diverges, properties of the interface such as its surface area, volume, and the location of its tip,
all obey CLTs with variances linear in T . These results generalize to every dimension d ≥ 3.

1. Introduction

We study the plus-minus Ising interface in d-dimensions at sufficiently low temperatures, where for d ≥ 3
the interface is known to be rigid and yet its large deviations, including the asymptotic behavior of its
maximum, were unknown. The Ising model on a finite subgraph Λ ⊂ Zd is an assignment of ±1 to the
d-dimensional cells of Zd (faces when d = 2 and cubes of side-length 1 when d = 3), collected in the set C(Λ).
These cells are identified with their midpoints, corresponding to the vertices of the dual graph (Z+ 1

2 )d, and
u, v ∈ C(Λ) are considered adjacent (denoted u ∼ v) if their midpoints are at Euclidean distance 1. The
Ising model on Λ is then the Gibbs distribution µΛ = µΛ,β over configurations in Ω = {±1}C(Λ) given by

µΛ(σ) ∝ exp [−βH(σ)] , for H(σ) =
∑
u∼v

1{σu 6= σv} ,

where β > 0 is the inverse temperature. Placing boundary condition η on the model, µηΛ, refers to the condi-
tional distribution of µH , for some larger given graph H ⊃ Λ, where the configuration of C(H)\C(Λ) coincides
with η. These definitions extend to infinite graphs via weak limits, and in the low temperature regime studied
here, different boundary conditions η on boxes in Zd lead to distinct limiting Gibbs distributions [32, §6.2].

Here, we consider β > β0 for some fixed β0 and Λ = Λn, the infinite cylinder of side-length 2n in Zd,
Λn = J−n, nKd−1 × J−∞,∞K = {−n, . . . , n}d−1 × {−∞, . . . ,∞} ,

with boundary conditions that are (+) in the lower half-space C(Zd−1 × {−∞, . . . , 0}) and (−) elsewhere,
called Dobrushin’s boundary conditions. Let µn = µ∓Λn,β denote the Ising model with these boundary condi-

tions, and note that every σ ∼ µn defines a set of (d−1)-cells separating disagreeing spins, which in turn give
rise to an interface I separating the minus and plus phases: in 2D, it is a (maximal) connected component
of such separating edges connecting (−n, 0) and (n, 0); in three dimensions, it is the (maximal) connected
component of such separating faces containing ∂Λn∩(Zd−1×{0}) (we defer more detailed definitions to §2.1).

The classical argument of Peierls, which established the phase transition in the Ising model for d ≥ 2,
shows that in the above described setting, the size of “bubbles” (finite connected components of plus or
minus spins) has an exponential tail. One thus looks to determine the behavior of the interface I.

In the 2D Ising model, the properties of this random interface between plus/minus phases in µn is very
well-understood: for β > βc, the critical point of the Ising model, this interface converges to a Brownian
bridge as n→∞, and detailed quantitative estimates are available for its fluctuations and large deviations for
large n, mimicking those of a random walk (see, e.g., [24,25,35–37,42,43]). In view of its height fluctuations
that diverge with n (in this case, with variance Cβn in the bulk), the interface is referred to as rough.

For the 3D Ising model (and in fact extending to every dimension d ≥ 3), Dobrushin [28] famously
showed that, for large enough β, the plus/minus interface I is rigid (localized) around height 0: the height
fluctuations are O(1) everywhere. Namely, Dobrushin established that the probability that the interface
I reaches height at least h above any given xy-coordinate in J−n, nK2 is O(exp(− 1

3βh)). An important

consequence of rigidity is that the Gibbs distribution µ∓Z3 arising as the weak limit of µn is not translation-
invariant in its z-coordinate. It is believed that the interface becomes rigid only after a roughening threshold
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Figure 1. The plus/minus interface I in the 3D Ising model µn (side length n = 64) with
Dobrushin’s boundary conditions, when conditioning on I reaching height h = 64.

βr > βc, with this roughening phase transition being exclusive to dimension 3. Interfaces of tilted Dobrushin
boundary conditions are, unlike the flat ones, believed to always be rough; see §1.4 for more details.

Since Dobrushin’s work showing that the interface I is typically a flat surface at height 0, basic features of
this interface—such as the asymptotics of its maximum, the shape of the surface near the maximum and the
effect of entropic repulsion—were only identified in more tractable random surface models that approximate
the Ising interface at low temperatures, e.g., the (2+1)D Solid-On-Solid model by Bricmont, El-Mellouki
and Fröhlich [9] and Caputo et al. [16,17], and the Discrete Gaussian and |∇φ|p-models in [39] (in these, the
surfaces are height functions, with no overhangs or interacting bubbles that do exist in the Ising model).

In what follows, for the sake of the exposition, we state our new results on the interface I in the context
of the 3D Ising model, noting that they extend to any dimension d ≥ 3 (see Remark 1.1).

1.1. Maximum height. Let Mn be the maximum height (z-coordinate) of a face in I. Dobrushin’s estimate
that µn(I 3 (y1, y2, h)) = O(exp(− 1

3βh)) shows, by a union bound, that Mn/ logn ≤ Cβ in probability as
n→∞ for some Cβ > 0. As we later explain, a lower bound of matching order, Mn/ logn ≥ cβ in probability
for some other cβ > 0, can also be deduced from those methods via decorrelation estimates. Our main goals
here are obtaining the asymptotics of Mn (law of large numbers (LLN) for the maximum) and characterizing
the typical structure of the surface around points conditioned to achieve large deviations. The first result
establishes the LLN and expresses the limit in terms of a large deviation (LD) rate function of having the

origin be ∗-connected to height h via (+)-spins (denoted
+←→) within C(Z2 × J0, hK) in the measure µ∓Z3 .

Theorem 1 (LLN for the maximum). There exists β0 such that, for all β > β0, the maximum Mn of the
interface I in the 3D Ising model with Dobrushin’s boundary conditions µ∓Λn,β satisfies

lim
n→∞

Mn

log n
=

2

αβ
in probability , (1.1)

where the constant αβ > 0 is given by

αβ = lim
h→∞

− 1

h
logµ∓Z3

(
( 1

2 ,
1
2 ,

1
2 )

+←−−−−−−→
C(Z2×J0,hK)

((Z + 1
2 )2 × {h− 1

2})
)
, (1.2)

and satisfies αβ/β → 4 as β →∞.

Note that the existence of the limit in (1.2) is both nontrivial and essential, and its proof (see §6.2 and
in particular Proposition 6.7) relies on our results on the structure of the interface I conditioned on large
deviations in µn, which drive an approximate sub-additivity argument.
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Figure 2. The pillar above a point x, denoted Px; in blue, the spine, partitioned into increments.

1.2. Structure of tall pillars. To formalize the notion of I achieving a large deviation above a point x,
define the pillar associated to a point x ∈ J−n + 1

2 , n −
1
2K2 × {0} (we defer detailed definitions to §2.3):

from a configuration σ ∼ µn, repeatedly delete every finite cluster of (+) or (−) by flipping its spins (thus
eliminating all bubbles), then discard C(J−n, nK2×Z−); the pillar of x, denoted Px, is the resulting (possibly
empty) ∗-connected component of (+) cells containing x+ (0, 0, 1

2 ), along with all faces of I that bound it.
The height of the pillar Px, denoted ht(Px), is the maximal y3 such that some (y1, y2, y3) ∈ Px. The proof

of (1.1) in Theorem 1 hinges on a large deviation estimate for ht(Px) stating (see Proposition 6.1) that

lim
h→∞

− 1

h
logµn(ht(Px) ≥ h) = αβ .

(Observe that the upper bound on Mn/ log n in (1.1) readily follows from this by a union bound over x.)
A key step in the analysis of the typical structure of Px conditioned on {ht(Px) ≥ h} is to decompose the

pillar into increments: define the cut-points of Px to be every y = (y1, y2, y3) ∈ Px such that y is the unique
cell in the horizontal slab with height y3 belonging to Px. Ordering the cut-points as v1, . . . , vT with an
increasing third coordinate, their role mimics regeneration points of random walks (though the increment
sequence is far from Markovian); thus we refer to the subset of Px delimited by vi, vi+1 (including these
two cells) as a pillar increment (see Figure 2). Let X be the (countable infinite) set of possible increments,
and let A(X) be the surface area (number of bounding dual-faces) of an increment X. Our next result is a
central limit theorem (CLT) for averages of a function along the pillar increment sequence.

Theorem 2 (CLT for the increments). There exist β0, κ0 > 0 so that the following holds for all β > β0: for
every sequence T = Tn with 1� T � n, every non-constant observable on increments f : X→ R such that

f(X) ≤ eκ0A(X) for every X ∈ X ,

and every x = (x1, x2, 0) with (x1, x2) ∈ J−n+ ∆n + 1
2 , n−∆n − 1

2K2 for some ∆n � T , if (X1, . . . ,XT ) is
the random increment sequence of Px, then conditional on the event {T ≥ T}, one has that

1√
T

T∑
t=1

(f(Xt)− E[f(Xt)]) =⇒ N (0,σ2) for some σ(β, f) > 0 .

The variance σ2 and asymptotic behavior of 1√
T

∑T
t=1 E[f(Xt)] in Theorem 2 are expressed in terms of a

stationary distribution on increments (see Theorem 4(iv), and Proposition 9.1 for their explicit expressions).
While the above is only conditional on {T ≥ T}, we find that T and the height of Px are typically compa-
rable (see Lemma 3.3): limh→∞ µn(T ≥ (1 − δβ)h | ht(Px) ≥ h) = 1 (and ht(Px) ≥ T deterministically).
In fact, we establish (see Theorem 4) that, conditioned on {T ≥ T}, the first cut-point typically appears at
height O(log T ), and the increment sequence captures all but a negligible portion of the pillar Px.
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Figure 3. Two views of a pillar Px with T = 20 increments and its cut-points highlighted.
On left: every pillar Py whose “shadow” (its projection on R2 × {0}) intersects that of Px
will belong to the same wall in Dobrushin’s interface decomposition into walls and ceilings.

A special case of the above CLT is that the distribution of the “tip” of the pillar conditioned on having
at least T increments is asymptotically Gaussian, as are its volume V (Px) and surface area A(Px).

Corollary 3. There exists β0 such that, for every β > β0 and sequences T = Tn with 1 � T � n and
x = (x1, x2, 0) where (x1, x2) ∈ J−n + ∆n + 1

2 , n−∆n − 1
2K2 for some ∆n � T , the pillar at x has that its

number of increments T = T (Px) and height ht(Px) satisfy, for some λ(β) > 1,

ht(Px)/T
p−→ λ conditional on {T ≥ T} . (1.3)

Furthermore, conditional on {T ≥ T}, the height of Px is asymptotically Gaussian, and moreover:

(1) distribution of the tip: the variables (Y1, Y2,ht(Px)) ∈ Px (arbitrarily chosen if ambiguous) satisfy

(Y1, Y2,ht(Px))− (x1, x2, λT )√
T

=⇒ N
(

0,

(
σ2 0 0
0 σ2 0
0 0 (σ′)2

))
for some λ(β) > 1 and σ(β),σ′(β) > 0 .

(2) volume and surface area: there exist λi(β) > 1 and σi(β) > 0 (i = 1, 2) such that

V (Px)− λ1T√
T

=⇒ N (0,σ2
1) , and

A(Px)− λ2T√
T

=⇒ N (0,σ2
2) .

In order to establish the above results, one must control the behavior of the pillar below its first cut-point.
But, it is precisely this part of the pillar where the effect of neighboring pillars is the most difficult to control:
the abundance of nearby pillars around height 0 might in principal cause a pillar, conditioned to contain T
increments, to have a large (diverging with T ) segment preceding its first increment. We account for this via
a novel decomposition of the pillar into a base and a spine: the next result shows that the former’s total size
is typically negligible, while the latter admits a detailed characterization in terms of its increment sequence.

Theorem 4 (pillar structure). There exists β0 > 0 such that the following holds for all β > β0: for every
sequence T = Tn with 1� T � n and x = (x1, x2, 0) with (x1, x2) ∈ J−n+ ∆n + 1

2 , n−∆n − 1
2K2 for some

∆n � T , there exist c, C > 0 such that, conditional on T ≥ T , the pillar Px has the following structure:

(i) [Base] There is a cut-point vτsp so that the base of Px, defined as Bx = {y ∈ Px : ht(y) ≤ ht(vτsp)},
satisfies diam(Bx) ≤ r except with probability O(exp(−cβr)) for every C log T ≤ r ≤ T .

(ii) [Spine] The increments Xτsp+1, . . .XT of the spine Sx := Px \Bx satisfy, for every k, r ≤ h, that the
probability that A(Xτsp+k) ≥ r is O(exp(−cβr)) (letting A(Xt) := 0 for t > T ).

(iii) [α-mixing] For every k(T ) > j(T ), if A1 ∈ F1 := σ((Xi)
j
i=C log T ) and A2 ∈ F2 := σ((Xi)

T
i=k) then the

probability of A1 ∩A2 differs from the product of the probabilities of Ai by O((k − j)−10).
(iv) [Asymptotic stationarity] There exists a stationary distribution ν on XZ so that the conditional law of

the increments (. . . ,XT/2−1,XT/2,XT/2+1, . . .) given T ≥ T converges weakly to ν.
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(These are special cases of stronger statements, which do require additional definitions; for those results
implying Items (i)–(iv), see Prop. 5.1, Prop. 4.1, Prop. 7.1 and Cor. 7.3, respectively.) As mentioned, each of
these require delicately designed maps on interfaces, for which we can control both the change in probability
under the map, and its multiplicity; the maps for Items (i)–(iv) are depicted in Figures 9–12 respectively.

Remark 1.1. Theorems 1–4 generalize naturally to all dimensions d ≥ 3; the main changes will be that

the maximum Mn will have Mn

logn →
(d−1)
αβ

in probability, and αβ/β → 2(d− 1) as β →∞. The results and

proofs are otherwise unchanged except that the constants will depend on the dimension d, and the lattice
notation would be changed, e.g., the interface will be a connected set of (d− 1)-cells, or plaquettes. For the
sake of clarity of exposition and visualization we present all proofs in the most physical d = 3 setting.

Remark 1.2. While Theorems 1–4 are w.r.t. the measure µn (which is the Ising model on the infinite
cylinder Λn with Dobrushin boundary conditions), the fact that the same results hold on the box J−n, nKd
follows from a standard coupling argument. Indeed, by the exponential tails on interface fluctuations and on
bubbles, the interfaces on Λn and J−n, nKd can be coupled to match with probability 1− O(e−cn); likewise
their pillars Px conditioned on having at least T increments, agree with probability 1−O(e−cn) since T � n.

1.3. Tools and key ideas.

Cluster expansion vs. Peierls maps under mixed boundary conditions. The classical Peierls map—an injection
from configurations with a specified bubble (a connected set of (d−1)-cells homeomorphic to a (d−1)-sphere)
to ones without it, demonstrating that the energetic cost of such a bubble outweighs its entropy at large
enough β—is a strikingly effective and robust tool for handling low-temperature behavior under homogeneous
boundary conditions. There (within the plus or minus phase) it implies that for any dimension d ≥ 2, bubbles
are microscopic (and their size obeys an exponential tail) at low enough temperature. However, Peierls maps
are insufficient to address the rigidity of the interface in the presence of Dobrushin’s boundary conditions:
the natural attempt to define a Peierls map on configurations which would “flatten” the interface is hindered
by (a) the interaction of the interface with nearby bubbles, and (b) its self-interactions due to overhangs.

To overcome this obstacle, Dobrushin used cluster expansion (cf. also [40]), a robust machinery that, in
this case, allows one to disregard the floating bubbles and move to a distribution over interfaces I given by

µn(I) ∝ exp

[
− β|I|+

∑
f∈I

g(f, I)

]
, (1.4)

where g is a function (over interfaces I with a marked face f) which is uniformly bounded and local in the
sense that |g(f, I)−g(f ′, I ′)| decays exponentially in the radius r about which the balls Br(f) in I and the
local neighborhoods of f in I and f ′ in I ′ are isomorphic (see Theorem 2.21 in §2.5 for the full statement).
N.b. that by moving to distributions on random interfaces, hiding the interacting bubbles in the Ising model,
one loses several useful features of the Ising model: the law of I does not have the domain Markov property,
and there are long range interactions between faces in I.

With this representation, properties of the Ising interface can be deduced from Peierls-like maps. The
general strategy for utilizing such maps is as follows. Suppose we wish to show that some set of interfaces Ar
(e.g., those with height oscillations of at least r above the origin) is exponentially in r rare at β large. Then
we construct a map Ψ sending Ar to a subset Ψ(Ar) of interfaces for which we have the following control:

(1) energy gain: for every I ∈ Ar, the map Ψ induces an energy gain |I| − |Ψ(I)| ≥ r.
(2) weight modification: for every I ∈ Ar, we obtain µn(I)

µn(Ψ(I)) ≤ e
−cβ(|I|−|Ψ(I)|) from (1.4).

(3) multiplicity: for all ` ≥ r, every J in the image of Ψ has at most C` pre-images I with |I|− |J | = `.

(If we wish to show Ar has small probability conditionally on some set B, we further require Ψ(Ar) ⊂ B.)
The complication in carrying this out is, of course, the function g, which captures the very same obstacles
that hindered the basic Peierls approach—the (hidden in the cluster expansion framework) bubbles in the
Ising model and self-interactions of the interface. Ideally, one would be able to bound the effect of g by
comparing the faces f ∈ I which were modified under Ψ to faces f ′ ∈ J with isomorphic local neighborhoods.

Dobrushin’s walls and ceilings decomposition and why it fails for LLN. Dobrushin was able to carry out the
above approach via a clever combinatorial decomposition of the interface, which reduced the analysis of the
maps on the 3D interface to two-dimensional interactions. This decomposition is based on the following
partition of I tailored to view it as a perturbation of the flat interface L0 := F(R2 × {0}):
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• A ceiling face f ∈ I is a horizontal face whose projection on the xy-plane is unique among all faces
of the interface I. A ceiling of I is a maximal connected component of ceiling faces.

• A wall face f ∈ I is a non-ceiling face. A wall of I is a maximal connected component of wall faces.

Consequently, one can “disregard” the ceilings as well as the vertical positions of every wall, and “standardize”
each wall by moving it down to height zero, obtaining a standard wall representation of the 3D Ising interface.
Importantly, this yields a bijection between collections of standard walls, and interfaces (see Lemma 2.12),
akin to the contour representation of the 2D Ising configuration.

The natural attempt at a map Ψ is then to have it delete a specific wall W rooted at a face x ∈ L0, from
the standard wall representation of the interface I, then recover from the resulting standard wall collection,
the interface Ψ(I). The difficulty is, as usual, due to the function g, and specifically due to non-deleted faces
whose local neighborhoods would be vertically shifted by Ψ. To circumvent this, one may further delete any
wall that is “too close” to W ; formally, one defines a group of walls according to some criterion of proximity,
while relying on the fact that when walls are sufficiently far apart, the exponential decay of g will negate
their interaction. However, deleting too many additional walls can forfeit the second requirement from the
map—control over its multiplicity. Dobrushin’s criterion was a carefully chosen middle-ground, importantly
based solely on two-dimensional distances in the xy directions (see also Definition 2.23):

• Two walls W and W ′ are said to be “close” if the interface I contains at least dist(x, x′)2 faces above
x or above x′ for some x, x′ ∈ L0 in the projections of W and W ′ onto L0 respectively.

• A group of walls if a maximal component of pairwise close walls.

(Note that “tall” walls are easier to group with, and the seemingly arbitrary threshold dist(x, x′)2 plays a
special role, via an isoperimetric inequality, in the analysis of faces deleted vs. ones that are only shifted.)
The advantage in Dobrushin’s combinatorial decomposition is then that under the map Ψ, faces only undergo
vertical shifts, and xy-distances between faces are preserved: as such the radius r coming from g can be
expressed in terms of an xy-distance to the nearest deleted wall, so that the above definition of closeness
enables the desired control on the contribution from the g terms in (1.4) in terms of β(|I| − |J |).

This argument showed that the group of walls adjacent to a fixed face x ∈ L0 in I has an exponential tail,
implying the rigidity of I and that its maximum height is O(log n) with probability tending to 1. However,
it is far too crude to handle subtle quantities of interest such as the asymptotics of the maximum (LLN) and
the structure of the interface in a local neighborhood surrounding it (e.g., results à la Corollary 3):

1. The classification of faces into walls and ceilings does not relate well to the local spin configuration—as it
depends on the behavior of the interface far above/below a face. But, the LLN (Theorem 1) does embed
local spin-spin correlation: the leading order term of the maximum of I is given in terms of a connective
constant of spin agreement in infinite volume, which operations of walls are too coarse to reflect.

2. Recall that treating connected sets of wall faces as a single wall means any two connected wall-sets with
intersecting shadows on the xy-plane are one and the same. While crucial to Dobrushin’s reduction of
the problem to 2D, this comes in the way of analyzing the connected component of plus spins emanating
from a fixed face x ∈ L0; the taller this component is, the more pronounced this issue is (see Fig. 3, left).

3. Further bundling of walls into groups of walls attaches an extra layer of walls to a connected component
of plus spins; moreover, the criterion for this bundling says that if the wall Wx of some face x ∈ L0

has h faces above x, then it will collect every distinct wall Wy for y within a circle of area h centered
about x (and so on, in a cascading manner). This would make it impossible to use this framework for
more delicate questions such as tightness for the centered maximum (Problem 1.4).

4. Analyzing the effect of operations on walls (beyond simply deleting the entire group of walls of x ∈ L0)
is problematic: the collection of walls does not enjoy monotonicity / FKG inequalities, nor a domain
Markov property (these properties are critical in the proof of sub-multiplicativity, as explained below).

Maps on the increment sequence and base. Unlike Dobrushin’s proof of the rigidity of I which used maps to
compare I to flatten interfaces, in this work we construct Peierls-type arguments with reference interfaces
that, rather than flat, have a three-dimensional large deviation above a point x ∈ L0:

1. At a high level, we would like our maps to “straighten” the pillar in the input interface I, namely we
would like to replace an increment in the pillar by a straight column of singleton boxes. The potential
interactions of the pillar with its base, whose size and shape are much more difficult to control, necessitates
that every map should first “flatten” the base as well. Consequently, we wish to use a map with a reference
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Figure 4. Typical pillars of the Discrete Gaussian model (left), the SOS model (middle),
and the 3D Ising model (right) conditioned on the large deviation event ht(Px) ≥ h.

Figure 5. The pillar Px vs. the (+)-component P above x: on left, Px = ∅ whereas P 6= ∅
(the interface tunnels underneath P); on right, Px 6= ∅ whereas P = ∅ (a minus bubble).

interface consisting of a flat plane appended to a modification of the random pillar Px (altered at its base
and the designated increment we wish to control). This is achieved in two steps:

(i) A map Ψi to straighten the increment Xi (see §4.1 for its definition, and §4.2 for its proof strategy).
(ii) A map ΦB to flatten the base (see §5.1 for its definition, and §5.2 for its proof strategy).

2. Whereas Dobrushin proofs only had vertical shifts, and thus interaction distances were controlled by 2D
distances, in the above maps we must account for both horizontal and vertical shifts and their interplay.
The subtle choice of vτsp , the “source point” for the spine as given in Theorem 4, serves as a key ingredient:
in a sense it protects the pillar from interaction with neighboring ones (whose analysis is essential in the
LLN for the maximum—see below) and isolates the effects of horizontal and vertical shifts: below vτsp
faces will only be shifted vertically by our maps, and above it they will only undergo horizontal shifts.

Establishing the limiting LD rate function. As the leading order constant of the maximum of the interface
is given by a solution to the LD problem of plus connectivity in infinite volume (much like the maximum of
the surface in approximating models for the 3D Ising model such as the (2 + 1)D SOS and DG models were
governed by LD problems; see Figure 4), a prerequisite to the proof of Theorem 1 is to establish existence of
the limit given in (1.2). A standard approach to accomplish this would be to establish sub-multiplicativity
or super-multiplicativity for ah := µ∓Z3(Ah), where Ah is the event in the right-hand of (1.2):

• One may expect (ah) to be super-multiplicative, just like other increasing connection events in the
Ising model and other monotone spin systems. However, if we reveal the + connection up to height
h1 due to Ah1

in hope that only positive information is given on Ah1+h2
(whereby FKG would

provide the sought estimate), we find that at height h1 the measure is more negative than at height
0—the non-translation invariance of the boundary conditions makes a connection from h1 to h2

exponentially less likely than one from height 0 to h1.
• Instead, we prove approximate sub-multiplicativity via a crucial application of Theorem 4(i). The

notion of a pillar is well-suited to describe the (+)-component of x above height 0—which we may
reveal up to height h1. The (−) spins on its boundary yield negative information, which we may
discard via monotonicity and domain Markov; however, this reveals additional (+)-spins at height 0,
which encompass positive information. Yet these are part of the base Bx, which Theorem 4 shows
has size at most C log2 h1 with probability 1 − o(1). Tilting the measure by these (+)-spins thus

costs a factor of eO(log2 h1) = eo(h1), which does not affect the sought sub-multiplicativity bound.

A subtle point worthwhile stressing is that, despite the close connection between the pillar Px and the
(+)-component above x in R2 × [0,∞), neither one necessarily contains the other (see Figure 5).
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Maps on pairs of interfaces for mixing and stationarity. In order to prove the more refined α-mixing and
stationarity properties of the increment sequence, we introduce 2-to-2 maps that act not on a single interface,
but on a pair of interfaces. Importantly, with mixing and stationarity, our aim is not to show some set of
interfaces is unlikely, but rather that some set of interfaces have roughly equal probability to some other set
of interfaces: e.g., the pair (Xj ,Xk) = (Xj , Xk) is roughly equally likely as (Xj ,Xk) = (Xj , X

′
k) in the case

of mixing, and Xj = X is roughly equally likely as Xk = X in the case of stationarity. There is no relative
energy gain here, so we need the cost in the exponent coming from the function g in (1.4) to be o(1). To
resolve this, we instead pair up interfaces, and apply the map to pairs of interfaces, performing a swapping
operation to be able to identify each face in the original pair of interfaces, with some face in the image pair
of interfaces. We explain the subtleties in carrying this through in more detail in §7.1.1 and §7.2.1.

Stein’s method argument for the CLT. The proof of the CLT in Proposition 9.1 (which implies Corollary 3)
uses a Stein’s method type argument which was used by Bolthausen [4] to handle stationary, mixing sequences
of random variables (appealing to the new results on α-mixing and stationarity obtained via the 2-to-2 maps).
We explain the complications in our setting compared to that of [4] in §9.1.

Comparison to Ornstein–Zernike theory. We pause to compare our proof approach above to the well-known
Ornstein–Zernike (OZ) theory of which the results of Theorem 4 may be reminiscent. Since the pioneering
works [13,14], there has been a remarkable line of work analyzing the structure of “long connections” in the
high-temperature Ising model (all β < βc) in all dimensions d ≥ 2 using what is known as modernized OZ
theory; the analysis was extended to the FK and Potts models (see, e.g., [15, 38]).

Namely, these works have analyzed, in the setting of the Ising model, the shape of a plus cluster connecting
the origin to a site ~x at distance ‖x‖. Via a decomposition into cut-points or cone-points, and increments be-
tween these, these works have identified a renewal structure in the long finite clusters of the high-temperature
Ising model, with diffusive random-walk behavior at cut-points, and microscopic excursions in between.

In d = 2, by the duality between β < βc and β > βc, OZ theory directly translates to the low-temperature
interface under Dobrushin boundary conditions. As such, for all β > βc, the 2D Ising interfaces have been
decomposed into cut-points with a renewal structure, and small increments in between with rapid decay of
correlations; this was instrumental in pushing convergence of the interface to a Brownian bridge all the way
to βc [34]. In d ≥ 3, there is no correspondence between high-temperature connections and low-temperature
interfaces; rather, the more naturally analogous low-temperature event is a truncated connection event of
the origin being connected by pluses to some x under the infinite-volume minus measure—in percolation
language, a connection from 0 to x not connected to the unique infinite component.

By contrast, in our setting, the pillars of the plus phase are part of the infinite plus component, and are
thinned by the distinct infinite minus component whose coexistence is forced by the boundary conditions.
By Theorem 4, these pillars appear to have similar behavior beyond their first cut-point to long finite plus
clusters in the minus phase. But, below that first cut-point there is a strong influence from the connection
to the infinite plus component. The cut-point, increment decomposition is not helpful for dealing with these
interactions with other branches of the infinite component (at the base); thus, controlling the base of the
pillar is the most delicate part of our analysis.

It is therefore important to stress that, while appearing similar to our cut-point decomposition of pillars,
one cannot hope to characterize the pillars of the low temperature 3D Ising interface via the OZ theory.
Indeed, the OZ behavior is valid for all β > βc in any dimension, whereas rigidity, let alone the results we
prove, is conjectured to be false near βc in dimension d = 3, as well as under any tilt in dimension d = 3.

1.4. Related work and open problems. In this section, we give a (by no means complete) overview of
literature related to the analysis of random interfaces/surfaces describing separation of phases, and highlight
some unresolved problems. As discussed, the pioneering work of Dobrushin rigorously established results on
such interfaces of the Ising model via cluster expansion, including in particular rigidity at low temperatures
in three (and higher) dimensions, and thus the existence of (infinite-volume) Gibbs measures describing the
coexistence of phases. The approach of [28], outlined in §2.2–2.6, has been used to show rigidity for various
other statistical physics models in d ≥ 3, e.g., for the Widom–Rowlinson model [11,12], the Falicov–Kimball
models [20] and percolation and random-cluster/Potts models [33, 49]. We also mention that Van-Beijeren
gave an elegant and simplified proof of the rigidity of the Ising interface using correlation inequalities in [48].
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Subsequently, cluster expansion was instrumental in analyzing the analogous interface in two dimensions.
This line of work culminated in the seminal monograph [25], showing that the shape of a macroscopic minus
droplet in the plus phase takes after the Wulff shape, the convex body minimizing the surface energy to
volume ratio (where the former is in terms of some explicit, analytic, surface tension τβ > 0). Microscopic
properties of an interface of angle θ in an n×n box are by now also very well-understood, with fluctuations on
O(
√
n) scales, and a scaling limit to a Brownian bridge [24,25,34,35]; these hold up to the critical βc [36,37].

In dimensions three and higher, the microscopic features of the interface are only well-understood for
approximations to the random surface separating the plus and minus phases, given by integer valued height
functions φ : J−n, nK2 → Z on an n × n box. Perhaps the most well-studied of these approximations is the
Solid-On-Solid (SOS) model, going back to the 1950’s (see [47] and [1]); the (2 + 1)-dimensional SOS model
(approximating 3D Ising) is a special case of |∇φ|p models: a class of gradient models with Hamiltonians
H(φ) =

∑
x

∑
i |∇iφ(x)|p (p = 1 is the SOS model, and p = 2 is the discrete Gaussian model (DG)). In

particular, the SOS Hamiltonian matches that of Ising with Dobrushin boundary conditions restricted to
configurations where the intersection of the plus spins with each column {(x1, x2, h) : h ∈ Z} is connected
(i.e., SOS configurations have no overhangs or bubbles, which are microscopic in Ising in the β →∞ limit).

In the setting of the SOS model at low temperatures, the maximum of the surface is typically of order log n
(see [9]). In [16,17], its maximum was found to be tight around 1

2β log n, by showing that the probability of

a “pillar above a face x reaching height h” is exp[−4βh + O(1)]; on this large deviation event the interface
looks like a vertical column of height h+O(1) with an O(1) “base” (c.f., Corollary 3, where for instance, the
tip is delocalized, and see the depiction in Figure 4). Related properties in the presence of a floor inducing
entropic repulsion were studied in [17], and extended to the discrete Gaussian and other |∇φ|p-models in [39].

Problem 1.3. For αβ defined in (1.2), what are the asymptotics of αβ − 4β (next order asymptotics of αβ)
as β →∞? in particular, is it the case that αβ < 4β, so that 3D Ising is “rougher” than (2 + 1)D SOS?

While cluster expansion only converges at sufficiently large β, it is natural to ask if the rigidity of the
interface, and our new results, hold for all β > βc. This is not believed to be the case, as the Ising model
is widely believed to undergo a roughening transition for d = 3 (and no other dimension): much like the
SOS and DG approximations, which exhibit phase transitions in β—whereby they roughen and resemble the
discrete Gaussian free field [8, 30] for small β—it is conjectured that for the 3D Ising model there exists a
point βr > βc such that, for β ∈ (βc, βr), the model has long-range order, yet the typical fluctuations of its
horizontal interface diverge with n; proving this transition is a longstanding open problem (see, e.g, [1,10]).

Much progress has been made in recent years on understanding the distribution of the maximum of the
2D discrete Gaussian free field and its local geometry. It is known for instance ([5–7]; see also, e.g., [50])

that this maximum is tight around an expected maximum that is asymptotically 2
√

2/π(log n− 3
8 log log n),

and that the centered maximum has the law of a randomly shifted Gumbel random variable.

Problem 1.4. What are the asymptotics of E[Mn]− 2
αβ

log n (next order asymptotics of E[Mn]) as n→∞?

Are the fluctuations of the centered maximum O(1), i.e., is the sequence {µn(Mn − E[Mn] ∈ ·)} tight?

We end this section with other well-studied perspectives on the 3D Ising model at low temperatures. While
the interface-based approach of Dobrushin [28] proved to be extremely fruitful in 2D (where the results hold
for interfaces in any angle), in 3D the combinatorics of that argument break down as soon as the ground state
is not flat. It remains a well-known open problem to show that there do not exist non-translation invariant
Gibbs measures corresponding to interfaces other than those parallel to the coordinate axes. The progress
to date on roughness and fluctuations of “tilted interfaces” has been limited either to 1-step perturbations of
a flat interface [41], or to results at zero temperature using rich connections to exactly solvable models [18].

In lieu of these approaches, a coarse-graining technique of Pisztora [44] enabled the establishment of surface
tension and a Wulff shape scaling limit for the 3D Ising model at low-temperature: Cerf and Pisztora [19]
considered an Ising model on an n×n×n box with all-plus boundary conditions, and showed that conditional
on having (1 + ε)µ+(σ0 = −1)n3 minus spins (atypically many), the largest minus cluster macroscopically
takes on the corresponding Wulff shape. Results of this sort are focused on the macroscopic behavior of
the model (as opposed to the interface-based approach) and do not describe the fluctuations around the
limiting shape. In particular, the convergence to the Wulff shape holds all the way up to βc (when combined
with [2, 3]), even though near βc (above the roughening transition) it is expected that the interface is not
only delocalized, but that the minus cluster actually percolates all the way to the boundary of the box [10].
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1.5. Outline of Paper. In §2, we first overview the notation of the paper and introduce Dobrushin’s
decomposition of the interface I into walls and ceilings; then, in §2.6, we recap the proof of rigidity from [28]
and the bounds this implies on µn(ht(Px) ≥ h). In §3, we define increments of Px, and use them to split Px
into its base and spine; in §4, we show that spine increments have an exponential tail on their size. In §5,
we prove that the base of a pillar consisting of T increments has an exponential tail on its diameter beyond
C log T . Then in §6, we use the structural results of §3–5 to prove the existence of the large deviations
rate (1.2); with this we prove the law of large numbers for the maximum, Theorem 1. In §7, we analyze
finer properties of the increment sequence of Px, showing in §7.1 that correlations between increments decay
polynomially in their distance, and in §7.2 that the increment sequences are asymptotically stationary. With
these in hand, in §8, we prove a priori estimates on the mean and variance of observables of the increment
sequence of Px, and in §9 combine the above to prove the CLT of Theorem 2 and deduce Corollary 3.

2. Preliminaries: interfaces, cluster expansion and rigidity

In this section, we introduce key definitions from Dobrushin’s decomposition of 3D Ising interfaces into
walls and ceilings and recap his proof of rigidity of the Ising model interface. We modify the presentation
of [28] slightly to track certain constants, and this will serve as a useful indication of the difficulties we will
encounter when our reference interface is no longer a flat plane.

2.1. Notation. In this section we compile much of the notation used globally throughout the paper.

2.1.1. Lattice notation. Since the object of study in the present paper is the interface separating the plus
and minus phases, we consider the Ising model as an assignment of spins to the vertices of the dual graph
(Z3)∗ = (Z + 1

2 )3 so that spins are assigned to the cells of Z3 and interfaces are subsets of the faces of Z3.

Namely, let Z3 be the integer lattice graph with vertices at (x1, x2, x3) ∈ Z3 and edges between nearest
neighbor vertices (at Euclidean distance one). A face of Z3 is the open set of points bounded by four edges
(or four vertices) forming a square of side-length one, lying parallel to one of the coordinate axes. A face is
horizontal if its normal vector is ±e3, and is vertical if its normal vector is one of ±e1 or ±e2.

A cell or site of Z3 is the open set of points bounded by six faces (or eight vertices) forming a cube
of side-length one. We will frequently identify edges, faces, and cells with their midpoints, so that points
with two integer and one half-integer coordinate are midpoints of edges, points with one integer and two
half-integer coordinates are midpoints of faces, and points with three half-integer coordinates are midpoints
of cells. A subset Λ ⊂ Z3 identifies an edge, face, and cell collection via the edges, faces, and cells whose
bounding vertices are all in Λ; denote this edge set E(Λ), its face set F(Λ) and its cell set C(Λ).

Two edges are adjacent if they share a vertex; two faces are adjacent if they share a bounding edge; two
cells are adjacent if they share a bounding face. A set of faces (resp., edges, cells) is connected if for any
pair of faces (edges, cells), there is a sequence of adjacent faces (edges, cells) starting at one and ending at
the other. We will denote adjacency by the notation ∼.

It will also be useful to have a notion of connectivity in R3 (as opposed to Z3); we say that an edge/face/cell
is ∗-adjacent to another edge/face/cell if and only if they share a bounding vertex.

Throughout the paper, we will use the notation d(x, y) = |x− y| to denote the Euclidean distance in R3

between two points x, y (or if they are edges/faces/cells their respective midpoints). Similarly, we will use
the notation Br(x) to denote the (closed) Euclidean ball of radius r about the point x. When these balls are
viewed as subsets of edges/faces/cells, we include all those whose midpoint is in Br(x). We further denote
by A⊕B the symmetric difference of the face sets A and B.

Subsets of Z3. The main subsets of Z3 with which we will be concerned are of the form of cubes and cylinders.
In view of that, define the centered 2n× 2m× 2h box,

Λn,m,h := J−n, nK× J−m,mK× J−h, hK ⊂ Z3 ,

where Ja, bK := {a, a + 1, . . . , b − 1, b}. We can then let Λn denote the special case of the cylinder Λn,n,∞.
The (outer) boundary ∂Λ of the cell set C(Λ) is the set of cells in C(Z3) \ C(Λ) adjacent to a cell in C(Λ).

Additionally, for any h ∈ Z let Lh be the subgraph of Z3 having vertex set Z2 ×{h} and correspondingly
defined edge and face sets E(Lh) and F(Lh). For a half-integer h ∈ Z+ 1

2 , let Lh collect the faces and cells in

F(Z3)∪C(Z3) whose midpoints have half-integer e3 coordinate h. Finally we occasionally use L>0 =
⋃
h>0 Lh

for the upper half-space and L<0 =
⋃
h<0 Lh for the lower half-space.
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2.1.2. Ising model. An Ising configuration σ on Λ ⊂ Z3 is an assignment of ±1-valued spins to the cells of
Λ, i.e., σ ∈ {±1}C(Λ). For a finite connected subset Λ ⊂ Z3, the Ising model on Λ with boundary conditions
σ(∂Λ) = η is the probability distribution over σ ∈ {±1}C(Λ) given by

µηΛ(σ) ∝ exp [−βH(σ)] , where H(σ) =
∑

v,w∈C(Λ)
v∼w

1{σv 6= σw}+
∑

v∈C(Λ),w∈∂Λ
v∼w

1{σv 6= ηw} .

Throughout this paper, we will be considering the boundary conditions ηw = −1 if w is in the upper half-
space (w3 > 0) and ηw = +1 if w is in the lower half-space (w3 < 0). We refer to these boundary conditions
as Dobrushin boundary conditions, and denote them by η = ∓; for ease of notation, let µn,m,h = µ∓Λn,m,h .

Domain Markov and FKG properties. The Ising model is said to satisfy the domain Markov property, mean-
ing that for any two finite subsets A ⊂ B ⊂ C(Z3), and every configuration η on B \A,

µB(σA ∈ · | σB\A = ηB\A) = µη∂AA (σA ∈ ·) ,

where we use σA to denote the restriction of the configuration to the set A. It also satisfies an important
consequence of its monotonicity, known as the FKG inequality. That is, for any two increasing (in the natural
partial order on configurations) functions f, g : {±1}C(Λ), we have

EµΛ

[
f(σ)g(σ)

]
≥ EµΛ

[
f(σ)

]
EµΛ

[
g(σ)

]
.

A special case of this inequality, is when f and g are indicator functions of increasing events A and B
(meaning that if σ ≤ σ′ and σ ∈ A, then σ′ ∈ A, and similarly for B), yielding µΛ(A,B) ≥ µΛ(A)µΛ(B).

An increasing event that will appear in the proof of Theorem 1, is a connection event. Namely, we call a
cell set a connected set of plus sites in σ, if it is a connected set of cells such that all the cells are assigned +1

under σ. A plus cluster in σ is a maximal connected set of plus sites. If we denote by {v +←→ w} the event
that v, w ∈ C(Λ) are in the same plus cluster, we see that this is an increasing event. Finally, for a subset

Λ′ ⊂ Λ, denote by {v +←−→
Λ′

w} the event that v, w are part of the same plus cluster using only cells of Λ′.

Infinite-volume measures. Care is needed to define the Ising model on infinite graphs, as the partition
function becomes infinite; infinite-volume Gibbs measures are therefore defined via what is known as the
DLR conditions; namely, for an infinite graph G, a measure µG on {±1}G, defined in terms of its finite
dimensional distributions, satisfies the DLR conditions if for every finite subset Λ ⊂ G,

EµG(σG\Λ∈·)
[
µG(σΛ ∈ · | σG\Λ)

]
= µG(σΛ ∈ ·) .

On Zd, infinite-volume Gibbs measures arise as weak limits of finite-volume measures, say n→∞ limits of
the Ising model on boxes of side-length n with certain prescribed boundary conditions. At low temperatures
β > βc(d), the Ising model on Zd admits multiple infinite-volume Gibbs measures; taking plus and minus
boundary conditions on boxes of side-length n yield the distinct infinite-volume measures µ+

Z3 and µ−Z3 [40].

2.2. Interfaces under Dobrushin boundary conditions. We begin with the key combinatorial de-
composition from [28] describing the interface separating the minus and plus phases under the Dobrushin
boundary conditions. We refer the reader to [28] for more details.

Definition 2.1 (Interfaces). For a domain Λn,m,h with Dobrushin boundary conditions, and an Ising con-
figuration σ on C(Λn,m,h), the interface I = I(σ) is defined as follows:

(1) Extend σ to a configuration on C(Z3) by taking σv = +1 (resp., σv = −1) if v ∈ L<0 \ C(Λn,m,h)
(resp., v ∈ L>0 \ C(Λn,m,h)).

(2) Let F (σ) be the set of faces in F(Z3) separating cells with differing spins under σ.
(3) Call the (maximal) ∗-connected component of L0 \ F(Λ) in F (σ), the extended interface. (This is

also the unique infinite ∗-connected component in F (σ).)
(4) The interface I is the restriction of the extended interface to F(Λn,m,h).

It is easily seen (by Borel–Cantelli) that taking the h → ∞ limit µn,m,h to obtain the infinite-volume
measure µ∓n,m,∞, the interface defined above stays finite almost surely. Thus, µ∓n,m,∞-almost surely, the
above process also defines the interface for configurations on all of C(Λn,m,∞).
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Figure 6. Three distinct standard walls, with their interior ceiling faces (purple) and wall
faces (vertical in teal, horizontal in light blue) as per Definition 2.4. Middle example features
two distinct (+) components in R2 × R+ which correspond to two distinct pillars but form
a single wall (consistent with the fact that projections of distinct walls on L0 are disjoint).

Remark 2.2. In lieu of the above definition of the interface due to [28], one could consider other flavors,
e.g., letting I be a minimal connected set of faces separating differing spins (or following some splitting rule
which singles out a unique connected set of such faces, e.g., along the northeast diagonal in 2D). A simple
Peierls argument implies that the set difference between that definition and Dobrushin’s definition consists
of finite connected sets of faces with exponential tails on their size.

Remark 2.3. Just as Ising configurations with Dobrushin boundary conditions define an interface, every
interface uniquely defines a configuration with exactly one ∗-connected plus component and exactly one
∗-connected minus component. For every I, we can obtain this configuration σ(I) by iteratively assigning
spins to C(Λn,m,h), starting from the boundary and proceeding inwards, in such a way that adjacent sites
have differing spins if and only if they are separated by a face in I. Informally, σ(I) is distinguishing the
sites that are in the “plus phase” and “minus phase” given the interface I.

(Note that the extended interface also splits C(Z3) into precisely two infinite connected (as opposed to
∗-connected) components, along with possibly additional finite connected components.)

Following [28], we can decompose the faces in I and define certain useful subsets of I. For a face f ∈ F(Z3),
its projection ρ(f) is the edge or face of L0 given by {(x1, x2, 0) : (x1, x2, s) ∈ f for some s ∈ R} ⊂ R2×{0}.
Specifically, the projection of a horizontal face (a face that is parallel to the plane L0) is a face in F(L0),
while the projection of a vertical face (one that is not parallel to L0) is an edge in E(L0). The projection of
a collection of faces F is ρ(F ) :=

⋃
f∈F ρ(f), which may consist both of edges and faces of L0.

Definition 2.4 (Ceilings and walls). A face f ∈ I is a ceiling face if it is horizontal and there is no
f ′ ∈ I \ {f} such that ρ(f) = ρ(f ′). A face f ∈ I is a wall face if it is not a ceiling face. A wall is a
(maximal) ∗-connected set of wall faces. A ceiling of I is a (maximal) ∗-connected set of ceiling faces.

Definition 2.5 (Floors of walls). For a wall W , the complement of its projection (a subset of R2)

ρ(W )c := (E(L0) ∪ F(L0)) \ ρ(W )

splits into one infinite component, and some finite ones. Any ceiling adjacent to the wall W projects into
one of these components; the one that projects into the infinite component is called the floor of W .

This can be reinterpreted with the following notion of nesting of walls and ceilings.

Definition 2.6. We say an edge or face u ∈ E(L0) ∪F(L0) is interior to a wall W if u is not in the infinite
component of ρ(W )c.

A wall W is interior to (or nested in) a wall W ′ if every element of ρ(W ) is interior to W ′. Similarly, a
ceiling C is interior to a wall W if every element of ρ(C) is interior to W .

Observe that of the ceilings C0, C1, ..., Cl adjacent to a wall W , one of them is the floor of W—say C0—and
the rest are interior to W . For any admissible pair of standard walls, as their projections are disjoint, either
one wall is nested in the other, or ρ(Wx) is contained in the infinite component of ρ(Wy)c and vice versa.

Definition 2.7 (Standard walls). A wall W is a standard wall if there exists an interface IW such that IW
has exactly one wall, W—as such it must have as its unique floor a subset of L0. A collection of standard
walls is admissible if they are all disjoint and have pairwise disjoint projections (see Figure 6).
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Figure 7. Correspondence between an interface and its standard wall representation
(Lemma 2.12): three distinct standard walls (left) and their corresponding interface (right).

Lemma 2.8 ([28]). For a projection of the walls of an interface, each connected component of that projection
(as a subset of edges and faces) corresponds to a single wall. Moreover, there is a 1-1 correspondence between
the ceilings adjacent to a standard wall W and the connected components of ρ(W )c. Similarly, for a wall
W , all other walls W ′ 6= W can be identified to the connected component of ρ(W )c they project into, and in
that manner they can be identified to the ceiling of W to which they are interior.

Definition 2.9 (Standardization of walls). To each ceiling C, we can identify a unique height ht(C) since
all faces in the ceiling have the same x3 coordinate. For every wall W , we can define its standardization
θst(W ) which is the translate of the wall by (0, 0,−s) where s is the height of its floor.

Remark 2.10. We can index walls as follows: assign an ordering of the faces of L0, and index W by the
minimal face in L0 that shares an edge with ρ(W ), and lies either in F(ρ(W )) or in one of the finite connected
components of ρ(W )c. For any admissible collection of standard walls, the indices of the walls are distinct.

We then have the following important bijection between interfaces and their standard wall representation.

Definition 2.11. Let the standard wall representation of an interface I be the collection of standard walls
given by standardizing all walls of I.

Lemma 2.12 ([28]). There is a 1-1 correspondence between the set of interfaces and the set of admissible
collections of standard walls. In particular, the standardization θst(W ) of a wall W is a standard wall.

Proof. From an interface, the standard wall representation is an admissible collection of standard walls as
projections of distinct walls are disjoint. To obtain an interface from an admissible collection of standard
walls, it suffices to take the standard wall representation of an interface I and describe how the addition
of one standard wall θst(Wt0), compatible with the standard walls of I and not interior to any walls in I,
changes I to I ′. (One could then construct an interface I from its standard wall representation by beginning
with the interface L0 with empty standard wall representation, and iterating the above procedure, adding
the standard walls from innermost outward).

Consider an interface I with standard wall collection (θstWt)t 6=t0 such that ((θstWt)t6=t0) ∪ θst(Wt0) is
admissible; suppose further that θst is not interior to any wall of I. Let JWt0

be the interface whose only
wall is the standard wall θstWt0 , and denote its floor by C0 and non-floor ceilings by C1, ..., Cl.

Construct a face set from I and θstWt0 as follows:

(1) Remove all horizontal faces of I in ρ(Wt0).
(2) Vertically shift every face of I projecting into one of ρ(Ci)1≤i≤l by ht(Ci).
(3) Add all faces of θstWt0 .

The resulting face set is evidently a valid interface I ′ and one can check that it has standard wall represen-
tation (θstWt)t6=t0) ∪ θstWt0 . �

We note the following important observation based on the above bijection.

Observation 2.13. Consider interfaces I and J , such that the standard wall representation of I contains
that of J (and additionally has the standardizations W = W1, ...,Wr). By the construction in Lemma 2.12,
there is a 1-1 map between the faces of I \W and the faces of J \ H where H is the set of faces in J
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projecting into ρ(W). Moreover, this bijection can be encoded into a map f 7→ f̃ that only consists of vertical
shifts, and such that all faces projecting into the same component of ρ(W)c undergo the same vertical shift.

Finally, we introduce a notion of nested walls which will prove useful to bounding the base of tall pillars.

Definition 2.14. To any edge/face/cell x, we can assign a nested sequence of walls Wx =
⋃
sWus that is

composed of all walls that ρ(x) is interior to (by Definition 2.6, this forms a nested sequence of walls).

Observation 2.15. For u ∈ L0, for a nested sequence of walls Wu, one can read off the height of the face(s)
of I projecting onto u. In particular, if a face f ∈ I has height h, its nested sequence of walls must be such
that the sum of the heights of the walls in Wρ(f) exceeds h.

2.3. Interface pillars. The above definitions were all from [28] and, informally, they reduce the analysis
of 3D Ising interfaces to that of a low-temperature 2D polymer model given by the projections of walls. For
us, this is insufficient as we aim to study the structure of tall walls, wherein the projection does not carry
much information about the shape and height. As such, we define the notion of a pillar above x ∈ L0.

Definition 2.16 (Pillars). For every interface I, consider the restriction σ(I)�L>0
of the Ising configuration

σ(I) to the upper half-space. For any face x ∈ L0, the cell-set σ(Px) of the pillar Px = Px(I) above x will
be the (possibly empty) ∗-connected plus component in σ(I)�L>0

containing x+ (0, 0, 1
2 ). The pillar Px will

have face-set consisting of the bounding faces of σ(Px) in the upper half-space, so that it is a subset of I.

Pillars can be viewed as a subset of some collection of nested walls along with their ceilings as follows:

Observation 2.17. The pillar Px is described by Wx together with all walls that are nested in some wall
of Wx; namely, if we index walls by enumerating faces of L0 in terms of distance to x, then the set of walls⋃
y: d(y,x)≤diam(Bx)Wy contain all the information about the pillar Px. Moreover, Px ∩ (R2 × (bht(v1)c,∞))

(possibly with the exception of one upper delimiting face) is all a subset of a single wall.

Much of this paper is interested in the large deviations regime for the height of such pillars, so we formally
define heights of interface subsets.

Definition 2.18. For a point (x1, x2, x3) ∈ R3, we say its height is ht(x) = x3. The height of a cell is the
height of its midpoint. For a pillar Px ⊂ I, its height is given by

ht(Px) = sup{x3 : (x1, x2, x3) ∈ f, f ∈ Px} .
It is important to distinguish between situations where Px is empty because the interface lies exactly at face
x, and when it goes below face x; in view of this, if Px = ∅, we say that ht(Px) = 0 if x− (0, 0, 1

2 ) is in the

plus phase (i.e., is plus in σ(I)), and ht(Px) < 0 if x− (0, 0, 1
2 ) is in the minus phase.

2.4. Excess area. For a pair of interfaces, we need to quantify the energy cost/gain of having one interface
over the other. The competition of this energy cost with respect to the interface L0 with the entropy gain
from additional fluctuations governs the behavior of the Dobrushin interface.

Definition 2.19 (Excess area). For two interfaces I, I ′, the excess area of I with respect to I ′, denoted
m(I; I ′), is given by

m(I; I ′) := |I| − |I ′| ,
where these are the cardinalities of the face-sets of I and I ′ respectively. Evidently, for any Dobrushin
interface I, we have that m(I;L0 ∩ Λ) ≥ 0.

We can also define excess areas for subsets of interfaces, and interpret these as the “excess area of the
interface that contains the subset with respect to a reference one that does not.” For instance, for a standard
wall W , if we denote by IW the interface whose only wall is W , then m(W ) = m(IW ;L0 ∩ Λ). For a wall
W , its excess area is given by the excess area of the standard wall θst(W ). The excess area of a collection
of walls F is analogously defined, and one can easily see that m(F ) =

∑
W∈F m(W ).

Finally, define the excess area of a pillar m(Px), and of one pillar with respect to another, m(Px;P ′x), via
the excess areas of the unique interfaces consisting only of the faces in Px (resp., P ′x) along with faces of L0.

Remark 2.20. Notice that for a wall Wx, its excess area is exactly given by

m(Wx) = m(θst(Wx)) = |Wx| − |F(ρ(Wx))|
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where F(ρ(Wx)) is the face set of the projection ρ(Wx). Moreover, for an interface I having standard wall
representation (Wt)t∈L0 per Lemma 2.12, we have that

m(I) = m(I;L0 ∩ Λ) =
∑

W∈(Wx)x∈L0

m(W ) .

As observed in [28], this form of the excess area makes a few key properties clear:

m(Wx) ≥ 1

2
|Wx| and m(Wx) ≥ |E(ρ(Wx)|+ |F(ρ(Wx))| . (2.1)

Moreover, any two faces x, y ∈ L0 interior to the projection ρ(Wx) satisfy |x− y| ≤ m(Wx).

2.5. Cluster expansion for interfaces describing phase coexistence. Cluster expansion is a classical
tool for expressing the partition function of a spin system on a domain as a product of polymer weights (in
an appropriate polymer representation of the model) rather than as a sum over weights of configurations.
Crucially, this product is an infinite product that only converges in perturbative regimes (e.g., for us β � 1).

In our setting of the Ising model, these polymers are minimal connected sets of faces which separate
differing spins, and are the bounding face-set of a connected set of cells. The associated weight of such a
face-set γ is given by e−β|γ|. The polymers are then endowed with hard-core interaction rules encoding the
admissibility of a collection of polymers, so that it in fact encodes uniquely, an Ising spin configuration. For
a full derivation of the validity of cluster expansion, we refer the reader to the book [29, Chapter 5]. In our
setting, the hard-core polymer interactions preclude distinct polymers from sharing any edges or vertices.

Using this cluster expansion, [40] proved properties of the single-phase Ising measures µ−Z3 and µ+
Z3 at low

temperatures. An easy implication of this cluster expansion is that one can take a limit of µ∓Λn,n,h as h→∞
and obtain an infinite-volume Gibbs measure on the cylinder Λn = Λn,n,∞ whose interface is finite almost
surely (for each fixed n), and this limit does not depend on the boundary conditions taken at the top and
bottom of Λn,n,h: see [28, (2.7) as well as Lemma 3]. Denote this limiting measure µn = µ∓Λn,n,∞ .

Applying the cluster expansion one can compute probabilities of interfaces under this µn measure.

Theorem 2.21 ([28, Lemma 1]). Consider the Ising measure µn = µ∓n on the cylinder Λn,n,∞. There exists
β0 > 0 and a function g such that for every β > β0 and any two interfaces I and I ′,

µn(I)

µn(I ′)
= exp

(
− βm(I; I ′) +

(∑
f∈I

g(f, I)−
∑
f ′∈I′

g(f ′, I ′)
))

and g satisfies the following for some c̄, K̄ > 0 independent of β: for all I, I ′ and f ∈ I and f ′ ∈ I ′,

|g(f, I)| ≤ K̄ (2.2)

|g(f, I)− g(f ′, I ′)| ≤ K̄e−c̄r(f,I;f ′,I′) (2.3)

where r(f, I; f ′, I ′) is the largest radius around the origin on which I − f (I shifted by the midpoint of the
face f) is congruent to I ′ − f ′. That is to say,

r(f, I; f ′, I ′) := sup{r : (I − f) ∩Br(0) ≡ (I ′ − f ′) ∩Br(0)}

where the congruence relation ≡ is equality as subsets of R3, up to, possibly, reflections and ±π2 rotations in
the horizontal plane.

Throughout the rest of the paper, the constants c̄ and K̄ will be reserved for those of (2.2)–(2.3).

Remark 2.22. In [28] and other works, the congruence above is written only as a congruence up to trans-
lation. However, one can see by following the derivation of Theorem 2.21, that this congruence can also be
up to reflections and ±π2 rotations in the xy-plane (under which the Ising Hamiltonian is invariant). More
precisely, for polymer weights w(γ) and interactions δ(γ, γ′), we can define the Ursell functions as

ϕ(γ1, . . . , γm) =
1

m!

∑
G⊂Km

∏
(i,j)∈G

[δ(γi, γj)− 1] ,
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where the sum is over connected subgraphs of the complete graph on m vertices. The cluster expansion
formally expresses the partition function of the Ising model on a graph as

Z = exp
[ ∑
m≥1

∑
γ1,...,γm

ϕ(γ1, . . . , γm)
∏
i≤m

w(γi)
]
.

Theorem 2.21 arises from viewing µ∓n with interface I as a cost from the disagreements along I, along with
one Ising model above I with minus boundary conditions, and one below I with plus boundary conditions.
The function g is therefore given by simple algebraic manipulations from the Ursell functions and polymer
weights, all of which are invariant under reflections and rotations in the xy-plane.

We end this section with a piece of terminology that we will use frequently. We will say that the radius
r(f, I; f ′, I ′) is attained by a face g ∈ I (resp., g′ ∈ I ′) of minimal distance to f (resp., f ′) whose presence
prevents r(f, I; f ′, I ′) from being any larger.

2.6. Rigidity of Dobrushin interfaces. For the benefit of the reader, we include Dobrushin’s proof of
rigidity for 3D interfaces from [28], namely that the walls corresponding to horizontal interfaces have expo-
nential tails on their excess areas. This will straightforwardly imply that the probability that the pillar above
a face x ∈ L0 reaches a height h has an exponentially decaying tail. We will need the following definition
of [28] that collects walls that are close, and therefore excessively interact with one another, together.

Definition 2.23. For a wall W , for every edge or face u ∈ ρ(W ), let Nρ(u) = #{f ∈ W : ρ(f) = u}. We
say that two walls W1 and W2 are close if there exist u1 ∈ ρ(W1) and u2 ∈ ρ(W2) such that

|u1 − u2| ≤
√
Nρ(u1) +

√
Nρ(u2) .

Then an admissible set of standard walls F =
⋃
iWi is a group of walls if it is a maximal connected component

(via the adjacency relation induced by closeness) of walls i.e., every wall in F is close to some other wall in
F and no wall not in F is close to a wall of F . Index a group of walls by the minimal index of its walls, and
let (Fx)x∈L0

be the admissible group of wall collection of I.

Following the definition of admissible sets of standard walls and Lemma 2.12, it should be clear how
admissible collections of groups of walls would be defined, and that the set of all admissible collections of
groups of walls are in 1-1 correspondence with the set of all possible Dobrushin interfaces (see §5 of [28]).

Remark 2.24. The procedure for sorting the faces of L0 and using this ordering to identify each group of
walls by the appropriate minimal face in L0 that can be used to identify the group of walls, will be called
an indexing of I. Our results will easily be seen to hold uniformly over this indexing (i.e., uniformly over all
orderings of the faces in L0).

Lemma 2.25 ([28, Lemma 8]). There exists β0 and a universal C such that for β > β0, for any admissible
collection of groups of walls (Fy)y 6=x, Fx, we have

µn(Fx = Fx, (Fy)y 6=x = (Fy)y 6=x)

µn(Fx = ∅, (Fy)y 6=x = (Fy)y 6=x)
≤ exp[−(β − C)m(Fx)

]
.

The above readily implies an exponential tail on the size of the group of walls indexed by face x ∈ L0. In
fact, it can easily be used to show that the probability that the interface intersects the column {(x1, x2, s) :
s ∈ R} above a height H decays exponentially in H, and with our definition of pillars, we can also use it to
show that it implies an exponential tail on ht(Px).

Theorem 2.26 ([23, 27, 28], see also [12]). There exists C > 0 such that for every β > β0, for every
x ∈ L0 ∩ Λ, and every r ≥ 1,

µn(m(Fx) ≥ r) ≤ exp
[
− (β − C)r

]
.

Furthermore, we have that for every h ≥ 1,

µn(ht(Px) ≥ h) ≤ exp
[
− 4(β − C)h

]
.
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Proof of Lemma 2.25. Let Φx be the map that takes an interface I and eliminates its group of walls Fx

(if such a group of walls is nonempty), generating the new interface as per Lemma 2.12. Now for ease of
notation, let I be the interface with the collection of groups of walls (Fy)y = (Fy)y and let I ′ be the one
with the collection of groups of walls (F ′y)y where F ′y = Fy for y 6= x whereas F ′x = ∅, so that I ′ = Φx(I)
and m(I; I ′) = |I| − |I ′| = m(Fx). By Theorem 2.21, we have

µn(Fx = Fx, (Fy)y 6=x = (Fy)y 6=x)

µn(Fx = ∅, (Fy)y 6=x = (Fy)y 6=x)
=

µn(I)

µn(I ′)
= exp

(
− βm(Fx) +

(∑
f∈I

g(f, I)−
∑
f ′∈I′

g(f ′, I ′)
))
.

We wish to bound the absolute value of the difference of the sums in the right-hand side. Denote the walls
constituting Fx by Wx1 ,Wx2 , . . . ,Wxl for some l. Recall from Observation 2.13, the 1-1 correspondence
between I \ Fx, and the faces of I ′ that do not project in to F(ρ(Fx)) and encode it with the notation

f 7→ f̃ . Then, we have∣∣∣∑
f∈I

g(f, I)−
∑
f ′∈I′

g(f ′, I ′)
∣∣∣ ≤ ∑

f∈Fx

|g(f, I)|+
∑

f ′∈I′:ρ(f ′)∈F(ρ(Fx))

|g(f ′, I ′)|+
∑
f /∈Fx

∣∣g(f, I)− g(f̃ , I ′)
∣∣

≤ 3K̄m(Fx) +
∑
f /∈Fx

K̄ exp
[
− c̄r

(
f, I; f̃ , I ′

)]
.

It is clear by construction, that for every f, f̃ the distance r(f, I; f̃ , I ′) is attained by the distance to a wall
face. Since the distance between two faces is at least the distance between their projections, and projections
of distinct walls are distinct,∑

f /∈Fx

K̄ exp
[
−cr(f, I; f̃ , I ′)

]
≤
∑
f /∈Fx

K̄ max
u∈ρ(Fx)

exp
[
− c̄d(ρ(f), u)

]
.

Then by the definition of groups of walls and closeness of walls, for a ceiling face f , Nρ(ρ(f)) = 1, and for a
wall face f /∈ Fx, Nρ(ρ(f)) ≤ |ρ(f)− ρ(g)|2 for all g ∈ Fx. Thus this is at most∑

u∈ρ(Fx)c

K̄Nρ(u) max
u′∈ρ(Fx)

exp[−c̄d(u, u′)] ≤
∑

u′∈ρ(Fx)

∑
u∈ρ(Fx)c

K̄(|u− u′|2 + 1) exp[−c̄|u− u′|] .

which by integrability of exponential tails is easily seen to be at most C̄(|E(ρ(Fx))| + |F(ρ(Fx)|) for some
constant C̄, which is in turn at most C̄m(Fx) by (2.1). �

It is also important for us to control the number of interfaces that get mapped to the same interface under
application of the map Φx. We begin with the following geometric observation.

Observation 2.27 (e.g., Lemma 2 in [28]). The number of ∗-connected collections of k faces in Zd containing
a specified face f? is at most sk for some universal (only lattice-dependent) s > 0.

The following follows from Observation 2.27 and Definition 2.23; we do not include the proof here, but it
can be found as part of the proof of the more complicated combinatorial estimate in Proposition 5.7.

Lemma 2.28 ([28, Lemma 9]). There exists s such that for any x ∈ L0∩Λ, the number of possible groups of
walls Fx with excess area m(Fx) = k is at most sk. Likewise, there exists s′ such that the number of possible
groups of walls F containing x in their interior, with m(F ) = k is at most (s′)k .

Together, Lemmas 2.25 and 2.28 imply an exponential tail on groups of walls. In various papers [12,27,33]
proving rigidity for such models, they were used to show that the height of the interface above a face
x = (x1, x2, 0) ∈ L0, defined there as max{h : (x1, x2, h) ∈ I}, has an exponential tail. Since that definition
of height above x differs from the pillar-based perspective we take in the present paper, we modify the
argument therein slightly to prove an exponential tail on the height of the pillar ht(Px).

Proof of Theorem 2.26. We begin with the first estimate. Let IFx=∅ = Im(Φx) be the set of interfaces
where the group of walls Fx is empty. By Lemma 2.28 (and the definition of the map Φx defined above,
relying on Lemma 2.12), we see that for every I ′ ∈ IFx=∅, the pre-image

{I ∈ Φ−1
x (I ′) : m(I; I ′) = k}
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has cardinality at most sk. Then by Lemma 2.25, for every r ≥ 1,

µn(m(Fx) ≥ r) ≤
∑
k≥r

∑
I′∈IFx=∅

∑
I∈Φ−1

x (I′):m(I;Φx(I))=k

µn(I) ≤
∑
k≥r

∑
I′∈IFx=∅

µn(I ′)sk exp[−(β − C)k]

from which we obtain by summability of exponential tails, that for some C ′, for β > β0,

µn(m(Fx) ≥ r) ≤ C ′ exp[−(β − C ′)r]µn(IFx=∅) ≤ C ′ exp[−(β − C ′)r] .

We now turn to bounding the probability of ht(Px) ≥ h.
In order for ht(Px) ≥ h, by Observation 2.17, there must be one sequence of nested walls Wx = (Wxs)s all

of which contain x in their interior, with
∑
sm(Wxs) = h1, along with a sequence of nested walls Wy = (Wyt)t

with yt 6= xs for any t, s, containing some y in the interior ceilings of Wx, such that
∑
tm(Wyt) ≥ 4h− h1.

In order to bound this, we can therefore write

µn( ht(Px) ≥ h)

≤ µn(m(Wx) ≥ 4h) +
∑
h1≤4h

µn(m(Wx) = h1)µn(∃y : |y − x| ≤ h1,m(Wy) ≥ 4h− h1 | m(Wx) = h1)

≤ µn(m(Wx) ≥ 4h) +
∑
h1≤4h

µn(m(Wx) ≥ h1)
∑

y:|y−x|≤h1

sup
(Wxs )s:m(Wx)=h1

µn(m(Wy) ≥ 4h− h1 | (Wxs)s) .

To bound the probabilities expressed above, let us turn to groups of walls instead of walls, denoting by Fx
the group of walls of the nested sequence Wx and Fy corresponding to the nested sequence of walls of Wy.
Following [12,27], for a group of walls Fz, set

φxz (Fz) = m(Fz)1{m(Fz)≥|z−x|}

and notice that m(Wx) ≤
∑
z φ

x
z (Fz). Indeed, every wall Wy ∈ Wx must nest x and therefore must have

excess area at least d(y, x), from which it follows that its group of walls Fy in turn has m(Fy) ≥ d(y, x). By
the tail estimates of part (1) of Theorem 2.26, we can bound

Eµn [e(β−2C)φxz (Fz) | (Fz′)z′ 6=z] ≤ 1 + Ce−C|z−x|

(where Eµn is expectation with respect to µn) which implies (by iteratively revealing (Fz) for all z) that

E[e(β−2C)
∑
z φ

x
z (Fz)] ≤

∏
z

(1 + Ce−C|z−x|) ≤ K <∞ .

By Markov’s inequality, then,

µn(m(Fx) ≥ r) ≤ µn
(
e(β−2C)

∑
φxz (Fz) ≥ e(β−2C)r

)
≤ Ke−(β−2C)r . (2.4)

By the same reasoning, for any collection Fx = (Fxs)s, since the exponential tail of Theorem 2.26 on Fy for
y 6= xs for any s holds conditionally on (Fxs)s, we see that similarly,

sup
(Fxs )s:m(Fx)=h1

µn(m(Fy) ≥ r | (Fxs)s) ≤ Ke−(β−2C)r .

Using that m(Wx) ≤ m(Fx) deterministically, we can plug in these estimates to see that

µn(ht(Px) ≥ h) ≤ Ke−4(β−2C)h +K
∑
h1≤4h

e−βh1+2Ch1h2
1e
−(β−2C)(4h−h1)

≤ K
∑
h1≤4h

h2
1e
−4βh+8Ch ≤ 16Kh4e−4βh+8Ch

which for h large, is at most exp[−4(β − C ′)h] for some other universal constant C ′. �

By pairing the Dobrushin result with a straightforward forcing argument, we see the following.

Proposition 2.29. There exist β0, C > 0 such that for every β > β0, every n, h large and x ∈ L0 ∩ Λn,

−4β − e−4β ≤ 1

h
logµn(ht(Px) ≥ h) ≤− 4β + C .



MAXIMUM AND SHAPE OF INTERFACES IN 3D ISING CRYSTALS 19

Proof. The upper bound here was given by the second part of Theorem 2.26. It remains to prove the lower
bound; this proof will follow a more traditional coupling argument. First of all, with probability 1− εβ for
some εβ vanishing as β → ∞, we have that ht(Px) ≥ 0 using e.g., the reflected version of Theorem 2.26;
(also notice that the event {ht(Px) ≥ 0} is an increasing event).

Let P∅ be the set of all sites {x + (0, 0, ` − 1
2 ) : ` = 1, . . . , h}. On the intersection of ht(Px) ≥ 0 with

σ(P∅) ≡ +1, the interface has ht(Px) ≥ h, so that by the FKG inequality, it suffices to show the lower bound

1

h
logµn(σ(P∅) ≡ +1) > −4βh− e−4βh .

In order to show this estimate, we can expose the spins of P∅ from bottom up, starting with the one at
x+ (0, 0, 1

2 ). With probability at least 1
2 , σx−(0,0, 12 ) = +1, and by monotonicity, at worst, all other spins in

σ(Pc∅) are minus; by the domain Markov property and an elementary calculation, the probability of the spin

at x + (0, 0, 1
2 ) being plus is at least exp(−4β)

1+exp(−4β) = 1
2 (1 − tanh(2β)). Continuing on to the next site in P∅,

conditional on the first one being plus, the same lower bound applies. As such, we can lower bound

µn

(
σ(P∅) = +1

∣∣ σx−(0,0, 12 ) = +1
)
≥ e−4βh

(1 + e−4β)h
> e−4βh−e−4βh ,

concluding the proof as long as h is sufficiently large. �

3. Increments and the shape of tall pillars

In this section, we give a structural decomposition of a pillar, in the large deviation regime where it reaches
a height of h. We prove that it is composed of a base—shown in §5 to have an exponential tail beyond height
O(log h))—and a spine protruding from this base up to a height of h. This spine is further decomposed
into a sequence of increments between cut-points where the spine is one-dimensional and vertical. In the
remainder of this section, we give preliminary bounds regarding this decomposition, showing that the total
number of increments is comparable to h, and has an exponential tail beyond that. In the following §4, we
analyze individual increments, showing that they each have an exponential tail on their excess area.

3.1. Increments of the pillar. We begin by defining the building blocks of the pillar where the 3D Ising
interface undergoes an atypical fluctuation.

Definition 3.1 (Cut-points). Call a height h ∈ Z + 1
2 a cut-height of the pillar Px if the intersection of the

slab Lh with σ(Px) consists of exactly one (midpoint of a) cell. We can call that single plus site v ∈ σ(Px)
a cut-point and identify it with its midpoint.

Definition 3.2 (Increments of the pillar). For a pillar P, we define its increment collection (Xi)i as follows.
Enumerate the cut-points of P as v1, v2, . . . , vT , vT +1 in order of increasing height, for some T . The k-th
increment of the pillar P is the set of all plus sites in σ(P) centered at heights between ht(vk) and ht(vk+1),
inclusively (this is also identified with the bounding sets of faces in P∩R2×(bht(vk)c, dht(vk+1)e), as before).
Denote by Ix,T the set of interfaces which have T ≥ T .

Since the pillar does not necessarily end at a cut-point, there may be a remainder of plus sites in the pillar
above the height ht(vT +1). We can call this the remainder and denote it by X>T ; in fact for any t ≤ T ,
we could denote the remainder beyond the t-th increment X>t which consists of (Xt+1, . . . ,XT ,X>T ).

3.2. Comparability of height and number of increments. In this section, we show that the number
of increments (as defined in the preceding subsection) serves as a good proxy for the height of a pillar. We
remark that the converse part of the next lemma would have readily followed had we had an exponential
tail for m(Px) (when added to Proposition 2.29)—however, this is false, since Px may contain a wall with
surface area r2 and εr2 nested thermal fluctuations (resulting in m(Px) ≥ cr2) at a cost of only exp(−cr).

Lemma 3.3. One always has Ix,k ⊂ {ht(Px) ≥ k+1} for every k. Conversely, there exist absolute constants
C, c > 0 such that, if β > β0 and T = b(1− C/β)hc then

µn(Ix,T | ht(Px) ≥ h) ≥ 1−O(e−ch) .
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Proof. The first assertion follows from the fact that, by definition, each increment increases the height of
the pillar by at least 1 and the extremal increment contributes two to the height.

The lower bound is substantially more involved, and requires the use of a map that replaces a pillar of
height h and fewer than b(1−C/β)hc increments, by a straight column of height h (consisting of h− 1 total
increments). This will combine the proof of Lemma 2.25 with some new ideas that will serve as a warm-up
for the more sophisticated maps on pillars used in Section 4 and especially Section 5.

Let Φx,h be the map that takes an interface I and generates an interface J as follows:

(1) Let (Wz)z∈L0 be the standard wall representation of I per Lemma 2.12.
(2) If [x] := {x}∪

⋃
f∈L0:f∼x{f} delete from the collection (Wz)z∈L0

, F[x] :=
⋃
f∈[x] Ff as well as Fρ(v1).

(3) If the interface I ′ whose standard wall representation equals F[x]∪Fρ(v1) has a cut-height below ht(v1),

let h† be the highest such cut-height and let y† be the index of a wall of Px that attains height h†

and is not included in F[x] ∪ Fρ(v1). Delete Fy† from the standard wall representation obtained after

step (2). (The existence of such a y† is guaranteed by the definition of v1 as the lowest cut-point.)
(4) Add to this standard wall representation the bounding vertical faces of a straight column of h cells

above x, centered at x+ (0, 0, `− 1
2 ) : ` = 1, . . . , h.

(5) Let J be the interface with the standard wall representation resulting from step (4) as per Lemma 2.12.

The map is well-defined because after step (2), there are no walls incident to x nor its bounding edges and
the addition of the standard wall in step (4) maintains the admissibility of the standard wall collection. The
resulting J therefore has a pillar PJx consisting of exactly a column of h− 1 increments, attaining height h.

We next claim that if I is such that {ht(Px) ≥ h} but T < (1− δ)h (for δ to be chosen later), then

m(I;J ) = |F[x] ∪ Fρ(v1) ∪ Fy† | − 4h ≥ 2δh . (3.1)

By Observation 2.17, the entirety of the pillar above ht(v1) is deleted and therefore, for each height between
ht(v1) and h that is not a cut-height, there is an excess area contribution of 2 faces (due to 6 faces bounding
two cells vs. 4 faces bounding one cell), totaling to 2(h− 1

2 −ht(v1)−T ). For heights between 0 and ht(v1),
we claim that the interface having standard wall representation F[x] ∪ Fρ(v1) ∪ Fy† has no cut-heights, in

which case it would follow that those heights together contribute at least 2(ht(v1) − 1
2 ) to the excess area

and (3.1) would follow. Indeed, if no y† is chosen in step (3), then by definition there were no cut-heights
of the interface corresponding to F[x] ∪ Fρ(v1) below ht(v1), so suppose there was a highest such cut-height

at h† and a corresponding y† was selected (noting that then Wy† must be distinct from Wρ(v1)). Then since

the walls Wy† and Wρ(v1) must each attain the height h†, there can be no cut-heights at or below h† in

the interface corresponding to Wρ(v1) ∪Wy† and therefore there also cannot be any at or below h† in the
interface corresponding to F[x] ∪ Fρ(v1) ∪ Fy† .

Having constructed the map Φx,h, the proof now proceeds in two parts: (1) we show that the relative
weight µn(I)/µn(J ) is exponentially decaying in (β − C)m(I;J ) and (2) we show that the multiplicity of
the map Φx,h is at most exponentially growing in m(I;J ).

To begin with the first, it suffices for us to show the bound∣∣∣∑
f∈I

g(f, I)−
∑
f ′∈J

g(f ′,J )
∣∣∣ ≤ C[m(I;J ) + h] ≤ C[1 + δ−1]h . (3.2)

To establish such a bound, we decompose I and J into different subsets of faces as follows:

• Let E be the set of all faces in the groups of walls F[x] ∪ Fρ(v1) ∪ Fy† .
• Let F be the set of f ∈ J such that ρ(f) ∈ ρ(F(E)), added in place of a removed horizontal wall

face in ρ(E) to “fill in” the interface.
• Let G be the bounding vertical faces of a column of h cells above x, added in step (4) of Φx,h.

Under this decomposition, there is a 1-1 correspondence between I \ E and J \ (F ∪G) via vertical shifts

as determined by Observation 2.13; encode this into f 7→ f̃ . Then,∣∣∣∑
f∈I

g(f, I)−
∑
f ′∈J

g(f ′,J )
∣∣∣ ≤∑

f∈E

|g(f, I)|+
∑
f ′∈F

|g(f ′,J )|+
∑
f ′∈G

|g(f ′,J )|+
∑

f∈I\E

∣∣∣g(f, I)− g(f̃ ,J )
∣∣∣ .

The first quantity is bounded by K̄|E| = K̄|F[x] ∪ Fρ(v1) ∪ Fy† | ≤ 2K̄(1 + 2δ−1)m(I;J ) by (2.1) and (3.1).

Similarly, the second term is at most K̄(1+2δ−1)m(I;J ) and the third term is at most 4K̄h which is in turn
at most 2K̄δ−1m(I;J ). The last term is bounded similarly to the proof of Lemma 2.25. By construction,
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for every f , the radius r(f, I; f̃ ,J ) is attained by the distance to a wall face, and as before, moving to the
distance between projections,∑

f∈I\E

K̄ exp[−c̄r(f, I; f̃ ,J )] ≤
∑

f∈I\E

K̄ max
u∈ρ(E∪G)

exp[−c̄d(ρ(f), u)]

and using the definition of closeness of walls, there is a C̄ > 0 such that this is at most∑
u′∈ρ(E∪G)

∑
u∈ρ(E)c

K̄(|u− u′|2 + 1) exp[−c̄|u− u′|] ≤ C̄K̄|E ∪G| ,

yielding (3.2) by applying (2.1) and (3.1) as above.
We next wish to bound the multiplicity of the map, i.e., we wish to show that for every M and every J

in the image of Φx,h, the size of the set {I ∈ Φ−1
x,h(J ) : m(I;J ) = M}. Every such I can be identified with

the choices of the standard walls in F[x] ∪ Fρ(v1) ∪ Fy† , so that it suffices to bound the number of possible
such choices leading to excess area M . By iteratively applying Lemma 2.28 (first choosing how many walls
constitute F[x], and then the size of each such that the total size is at most 2M), then enumerating over the

at most M2 choices of where to place ρ(v1) and ρ(y†) (using Observation 2.17 these must be interior to some
wall of Wx), and then enumerating over the choices for Fρ(v1) and Fy† , we see that for some universal s̄ > 0,

{I ∈ Φ−1
x,h(J ) : m(I;J ) = M} ≤ s̄M .

(See e.g., the proof of Proposition 5.7 for more details on a similar enumeration process.)
We now combine the two parts above to conclude the desired. Expressing µn(Icx,(1−δ)h,ht(Px) ≥ h) as∑

I∈Ic
x,(1−δ)h,ht(Px)≥h

µn(I) ≤
∑

M≥2δh

∑
J :ht(PJx )≥h

∑
I∈Φ−1

x,h(J ):m(I;J )=M

µn(J )e−βM+C(1+δ−1)M

≤
∑

M≥2δh

s̄Me−βM+C(1+δ−1)M+M log s̄µn(ht(Px) ≥ h) ,

from which the lemma follows by dividing through by µn(ht(Px) ≥ h) and taking β large and δ = C ′/β for
some sufficiently large C ′. �

3.3. Spine and base of pillars. The fundamental difficulty in understanding the structure of pillars con-
ditionally on reaching a height h, or on having T increments, is the interactions of the pillar with nearby
oscillations of the interface, particularly at low heights, where these are plentiful. Towards this, it will be
important to us to isolate the portion of the pillar which interacts most strongly with other pillars near
it—called the base—and the rest of the pillar, which climbs above all oscillations in some ball of radius
O(h ∨ T ) about x, called the spine. The ball of proximity grows with the number of increments T we are
conditioning on having, as the pillar’s (xy)-coordinates diffuse as T grows; this creates the complication that
the definitions of the spine and base must be T dependent.

For a set A ⊂ F(Z3), let Cr(A) denote the points in R3 whose projection is distance at most r from ρ(A):

Cr(A) = {y : min
f∈A
|ρ(y)− ρ(f)| ≤ r} .

Let R0 be some sufficiently large constant, e.g., to be chosen in Lemma 3.15 to be 100. For two faces
x, y ∈ L0, let 〈〈x, y〉〉 be a minimal connected set of faces of L0 connecting x to y. For ease of notation, for
a cut-point v, we’ll define

Cv,x,T := CR0T

(
〈〈ρ(v), x〉〉

)
.

Definition 3.4 (Spine). Consider an interface I with pillar Px = Px(I). For each T , let τsp = τsp(T ) be
the minimal index i ≥ 1 such that the cut-point vi of Px lies above the largest height attained by walls in
I \Px indexed by faces in Cvi,x,T (in every possible ordering of F(L0)). We then call vTτsp the T -source-point.
When T is understood from the context (e.g., for I ∈ Ix,T ) we drop it from the notation and write vτsp . With
respect to that T the spine Sx will then be the ∗-connected component of Px consisting of all sites/faces
above ht(vτsp)− 1

2 , i.e., consisting of the increments Xτsp , . . . ,XT ,X>T .

Definition 3.5 (Base). For an interface I in Ix,T with pillar Px, let the base Bx of the pillar be given by the
entirety of the pillar below the height ht(vτsp) + 1

2 . In general, a base can be identified with the set-difference
Px \ Sx, along with the four bounding faces of the T -source-point vτsp .
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Figure 8. A stretch of the spine (right) decomposes into a collection of rooted increments
which are members of X (left). The increments X1, X2 and X6 are trivial increments X∅.

(For reference, in Figures 2 and 10, the spine is shaded in blue, and the base is shaded in pink and orange.)
We will show in Section 5 that, with high probability, most of the increments of a pillar belong to the spine.

3.4. Properties of increments. Let X be the set of all possible rooted increments, where an increment is
identified with a ∗-connected subset of plus sites in the upper half-space of Z3 consisting of a cut-point plus
site at ( 1

2 ,
1
2 ,

1
2 ), as well as a cut-point plus site at its largest height, and such that no height in between these

is a cut-height. As usual, we also identify such increments with a ∗-connected collection of faces that bound
its plus sites; however, in this face set F(X) we exclude the bottom-most and top-most delimiting faces
(since, viewing this increment as a subset of an interface, those faces would not be present in the interface).

Let Xrem be the set of rooted remainders i.e., ∗-connected subsets of plus sites in the upper half-space of
Z3 where we only impose that they have exactly one cell in the slab L 1

2
at ( 1

2 ,
1
2 ,

1
2 ). Correspondingly, its

face set is the set of faces that bound it, now excluding only the bottom-most delimiting face (at ( 1
2 ,

1
2 , 0)).

Definition 3.6. For each increment Xi in the pillar Px, recall that its bottom-most and top-most cells are
vi and vi+1 respectively. We define the height of an increment Xi ∈ X by ht(Xi) = ht(vi+1)− ht(vi).

Lemma 3.7. There is a 1-1 correspondence between the triplets of vτsp , the collection of T rooted increments
(Xi)i≤T for Xi ∈ X, and remainder increment X>T ∈ Xrem, and the set of spines of at least T increments.

Proof. Identifying the increment sequence given a spine was described by the definition of increments. Ob-
taining from this increment sequence, the rooted increments, consists only of shifting each by the vector
−vi + ( 1

2 ,
1
2 ,

1
2 ); the rooted remainder is similarly recovered.

Given a sequence of T rooted increments, a source point vτsp and a remainder X>T , we can reconstruct
the cell-set of the spine by taking the union over i of the translates of Xi by the vectors −( 1

2 ,
1
2 ,

1
2 ) + vj

where vj are defined inductively as increments are stacked. (Naturally, the rooted remainder X>T is shifted
by −( 1

2 ,
1
2 ,

1
2 ) + vT+1.) As a consequence, we can identify the set of all rooted spines of at least T increments

with the set XT × Xrem. See Figure 8 for a visualization of this scheme. �

We will always use the notation X∅ to denote the trivial increment that consists of exactly two plus cells,
one on top of the other (the rooted one has the plus sites centered at ( 1

2 ,
1
2 ,

1
2 ) and ( 1

2 ,
1
2 ,

3
2 )). The trivial

remainder increment consists of exactly one plus cell at ( 1
2 ,

1
2 ,

1
2 ).
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Definition 3.8. The excess area of an increment X ∈ X is given by its excess area as compared to the
trivial increment X∅ so that

m(X) := |F(X)| − |F(X∅)| = |F(X)| − 8 .

The excess area of a remainder X>T is measured with respect to the trivial remainder increment, so that
m(X>T ) := |F(X>T )| − 5 (recall that the remainder increment includes its upper delimiting face(s)).

Remark 3.9. Notice that m(Xi) ≥
√

2|ρ(vi+1) − ρ(vi)| (the nontrivial increment X of height 2 consisting
of two ∗-adjacent cubes has |F(X)| = 10 and m(X) = 2) and for every X 6= X∅,

m(X) ≥ 1

5
|F(X)| and |F(X)| ≥ 6(ht(X)− 1) + 8 .

Definition 3.10. For a spine Sx of T − τsp increments (Xi)τsp≤i≤T and remainder X>T , the excess area
of the spine m(Sx) with respect to a trivial increment sequence of height t− τsp,

mt(Sx) = m(I; I∅,t) = m(X>t) +
∑

τsp≤i≤t

m(Xi) ,

and if t > T , we set mt(Sx) = m(Sx). The excess area of the spine (dropping the index t) is m(Sx) := mT (Sx).
The height of a spine Sx is ht(Sx) = ht(Px)− 1

2 − ht(vτsp) = ht(X>T ) +
∑
τsp≤i≤T ht(Xi).

Definition 3.11. For any interface I ∈ Ix,T , let Itr be its truncation, with cell-set σ(Itr) := (σ(I)\σ(Sx))∪
{vτsp} where we have removed all plus sites of the spine besides vτsp from I, and face-set consisting of the
faces in I that bound cells in σ(Itr). A truncation is T -admissible if its pillar Px(Itr) has a T -source point
vτsp and nothing above ht(vτsp) + 1

2 . (Recall that the property of being a T -source point is independent of
the increment sequence of the spine above it).

3.5. Exponential tail on the number of increments. Here, we show that a spine Sx of an interface
in Ix,T has an exponential tail on the surface area (as well as excess area) of its remainder X>T . This
implies an exponential tail on the number of increments beyond T in a spine conditioned on having at least
T increments. Since we are only looking at a portion of the increment above a cut-point, it is droplet-like,
and the proof does not involve any of the more delicate issues we will encounter in later sections.

Lemma 3.12. There exists C > 0 such that for every β > β0, every T and every r > 0,

µn
(
m(X>T ) ≥ r

∣∣ Ix,T
)
≤ exp

[
− (β − C)r

]
.

In particular, µn(Ix,T+k | Ix,T ) ≤ exp[−4k(β − C)]. Moreover, these estimates also hold conditionally on
any T -admissible truncation Itr and spine increment sequence (Xi)τsp≤i≤T = (Xi)τsp≤i≤T .

Proof. Let ΦT : Ix,T 7→ Ix,T be the map that, for each I ∈ Ix,T , generates the interface ΦT (I) by replacing
X>T with the trivial remainder, and agrees with I otherwise. It should be clear that ΦT (I) ∈ Ix,T \ Ix,T+1;
moreover, the pillar of ΦT (I) will have height equal to ht(vT+1) + 1

2 . By Theorem 2.21, for any I ∈ Ix,T ,

µn(I)

µn(ΦT (I))
= exp

(
− βm(I; ΦT (I)) +

∑
f∈I

g(f, I)−
∑

f ′∈ΦT (I)

g(f ′,ΦT (I))
)
.

By definition of excess areas of remainders, m(I; ΦT (I)) = m(X>T ). Suppose without loss of generality
that I has remainder X>T such that m(X>T ) ≥ 1 as the lemma is trivially satisfied for r = 0. For ease of
notation, let I ′ = ΦT (I) and consider the difference of the sums in the exponential. By (2.2)–(2.3),∣∣∣∑

f∈I

g(f, I)−
∑
f ′∈I′

g(f ′, I ′)
∣∣∣ ≤ ∑

f∈I∩I′
|g(f, I)− g(f, I ′)|+

∑
f∈I\I′

|g(f, I)|+
∑

f∈I′\I

|g(f, I ′)|

≤
∑

f∈I∩I′

∑
f ′∈I⊕I′

K̄ exp[−c̄d(f, f ′)] +
∑

f∈I⊕I′
K̄ ≤ (C̄ + K̄)|I ⊕ I ′| ,

for some constant C̄. But by construction, we have that |I ⊕ I ′| = m(X>T ) + 2, where the additive 2 comes
from the upper-bounding face of the remainder, which is shifted between I and I ′. Consequently, we have
that for some universal C independent of β, for every I ∈ Ix,T ,

µn(I)

µn(I ′)
≤ exp

[
− (β − C)m(I; I ′)

]
= exp

[
− (β − C)m(X>T )] .
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At the same time, we claim that for every I ′ ∈ Ix,T \ Ix,T+1, there are at most sk elements in the pre-image

Φ−1
T (I ′) with excess area k, for some universal s > 0. Since m(I; I ′) = |I ⊕ I ′| − 2, to every I ∈ Φ−1

T (I ′) of
excess area m(I; I ′) = k, we can uniquely identify the connected set of faces constituting I⊕I ′ of cardinality
k + 2 containing the upper bounding face of vT+1. By Observation 2.27, the number of such sets is at most
sk+2. We now can expand the probability µn(m(X>T ) ≥ r, Ix,T )∑

I∈Ix,T :m(X>T )≥r

µn(I) =
∑
k≥r

∑
I∈Ix,T :m(X>T )=k

µn(I) ≤
∑
k≥r

∑
I′∈ΦT (Ix,T )

e−(β−C)ksk+2µn(I ′) ,

At this point, since ΦT (Ix,T ) ⊂ Ix,T , we see that for β > β0, this is at most∑
I′∈ΦT (Ix,T )

C ′e−(β−C′)rµn(I ′) ≤ C ′e−(β−C′)rµn(Ix,T ) ,

for some other constant C ′ > 0 independent of β; dividing both sides by µn(Ix,T ) implies the first inequality.
The second inequality follows because I ∈ Ix,T+1 implies that m(I; ΦT (I)) = m(X>T ) ≥ 4.

To see the analogous conditional estimates, fix a T -admissible truncation Itr and first T increments of
the spine (Xi)i≤T , and let Îx,T be the set of interfaces in Ix,T having Itr and (Xi)i≤T = (Xi)i≤T . Repeating

the argument above, we see that µn(m(X>T ) ≥ r, Îx,T ) can be expressed as∑
I∈Ix,T :m(X>T )≥r

µn(I) =
∑
k≥r

∑
I∈Ix,T :m(X>T )=k

µn(I) ≤
∑
k≥r

∑
I′∈ΦT (Ix,T )

e−(β−C)ksk+2µn(I ′) .

Observing that ΦT (Îx,T ) ⊂ Îx,T , we see that the right-hand side is at most C ′e−(β−C′)rµn(Îx,T ) and dividing

through by µn(Îx,T ) yields the desired conditional estimate. �

3.6. Increment sequences are typically tame. Before turning to the tail estimates on the increments
themselves, we prove an easy preliminary estimate, showing that under the event Ix,T , the probability that
Sx is not contained in a ball of radius of order T centered at vτsp is exponentially small in T .

Let r0 be a large constant, say 20, and let R0 := 5r0; we will reserve these letters for these specific
constants. We now define a notion of tameness for spines, and subsequently in Lemma 3.15 demonstrate
that with high probability, a spine is tame.

Definition 3.13. Fix T ; for every t, a spine in Sx ∈ Xt × Xrem is tame with respect to Ix,T if

m(Sx) ≤ r0T , and ht(Sx) ≤ r0T .

Call an interface I ∈ Ix,T tame if its spine Sx is tame, and denote by Īx,T the set of tame interfaces in Ix,T .

Before turning to the proof that spines are typically tame, we pause to comment on the usefulness of
restricting to tame spines going forward.

Remark 3.14. First of all, notice that the tameness of a spine is only a property of the increment sequence
constituting the spine XT −τsp × Xrem and does not depend on the truncation below it. Moreover, note
that any spine Sx with source point vτsp that is tame is such that the spine Sx is contained entirely in a
cylinder of radius r0T and height r0T above (and centered at) vτsp . This is in turn confined to the cylinder
C2r0T (vτsp) ⊂ Cvτsp ,x,T , so that for any x such that d(x, ∂Λn) ≥ 100T , adjoining to any T -admissible interface

Itr any tame spine (identified with an element of XT −τsp × Xrem), yields a valid interface in Īx,T .

Additionally, notice that, by construction, if I ∈ Īx,T , for any face f ∈ Sx, the distance d(f, Itr) is
attained by a face in Itr ∩ CR0T (vτsp) ⊂ Cvτsp ,x,T , as the distance to Itr \ CR0T (vτsp) is at least 3r0T while
the distance to vτsp is at most 2r0T .

We now prove that spines of interfaces in Ix,T are exponentially unlikely in T to not be tame.

Lemma 3.15. There exists C, β0 > 0 such that for every β > β0, such that for every T , every T -admissible
truncated interface Itr, we have that for every r ≥ 8T

µn(mT (Sx) ≥ r | Itr, Ix,T ) ≤ exp[−(β − C)r] .

In particular, µn(Īx,T | Itr, Ix,T ) ≥ 1−O(e−(β−C)r0T ), and hence also µn(Īx,T | Ix,T ) ≥ 1−O(e−(β−C)r0T ).
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Proof. The second statement follows from the fact that m(Sx) ≤ mT (Sx) and ht(Sx) ≤ T + 1
4mT (Sx) and

T ≤ 3
4r when r ≥ 8T . Therefore, we focus on proving the bound on {mT (Sx) ≥ r}. Let I ∈ Ix,T be such

that it has T -admissible truncation Itr with source-point index τsp, and spine Sx with increment collection
(Xi)τsp≤i≤T and X>T , such that mT (Sx) = m(X>T ) +

∑
τsp≤i≤T m(Xi) ≥ r. Let I∅,T be the interface with

the same T -admissible truncation and spine of exactly T −τsp increments that are all X∅. By Theorem 2.21,

µn(I)

µn(I∅,T )
= exp

(
− βm(I; I∅,T ) +

∑
f∈I

g(f, I)−
∑

f ′∈I∅,T

g(f ′, I∅,T )
)
,

and we recall that m(I; I∅,T ) = mT (Sx). Denote by Sx(I∅,T ) the spine of I∅,T . We can bound the difference,∣∣∣∑
f∈I

g(f, I)−
∑

f ′∈I∅,T

g(f ′, I∅,T )
∣∣∣ ≤ ∑

f /∈Sx

|g(f, I)− g(f, I∅,T )|+
∑
f∈Sx

|g(f, I)|+
∑

f ′∈Sx(I∅,T )

|g(f ′, I∅,T )| .

By (2.2), the latter two terms contribute at most K̄(|Sx|+ 4T + 1) = K̄(m(I; I∅,T ) + 8T + 2). By (2.3), the
first term is bounded as∑

f /∈Sx

K̄ exp
[
− c̄r(f, I; f, I∅)

]
≤
∑
f /∈Sx

∑
f ′∈I⊕I∅

K̄e−c̄d(f,f ′) ≤
∑

f ′∈I⊕I∅

∑
f∈Z3

K̄e−c̄d(f,f ′) ,

which by integrability of exponential tails is at most C̄|I⊕I∅,T | ≤ C̄(m(I; I∅,T )+8T +2) for some universal
C̄. As such, once m(I; I∅,T ) ≥ 8T , say, this is comparable up to a universal constant to mT (Sx) = m(I; I∅,T ).
Also, notice that the number of possible spines Sx of excess area mT (Sx) = k is at most the number of
connected sets of faces of size k + 1 incident to the upper-delimiting face of vτsp , which is at most sk+1, for
some universal s by Observation 2.27. Thus, there is a universal C such that for any r ≥ r0T , we have

µn(mT (Sx) ≥ r | Itr, Ix,T ) ≤
∑
k≥r

∑
Sx:Sx∪Itr∈Ix,T

mT (Sx)=k

µn(Sx | Itr) ≤
∑
k≥r

∑
Sx:Sx∪Itr∈Ix,T

mT (Sx)=k

µn(Sx, Itr)

µn(Sx(I∅,T ), Itr)

≤
∑
k≥r

sk+1 exp[−(β − C)k] ,

at which point, absorbing the sk into the exponential, yields the desired bound for some different C. �

Remark 3.16. If T is comparable to h, we can attain a version of Lemma 3.15 that also conditions on the
event {ht(Px) ≥ h}. Namely, for any Itr, if we set T ′ = T ∨ (ht(Px)− 1

2 −ht(vτsp)+τsp), and apply the proof
of Lemma 3.15 with respect to I∅,T ′ , we would see see that for every I ∈ Ix,T ∩ {ht(Px) ≥ h}, we have

µn(I)

µn(I∅,T ′)
≤ exp

[
− (β − C)mT ′(Sx) + 8CT ′

]
.

As long as r ≥ 8T ′, this would imply that µn(mT ′(Sx) ≥ r | Itr, Ix,T ,ht(Px) ≥ h) ≤ exp(−(β − C)r);

therefore, as long as 8T ′ ≤ 8(T ∨ h) is less than 20T , e.g., as long as h
2 ≤ T ≤ h, we have for every Itr,

µn
(
Īcx,T | Ix,T ,ht(Px) ≥ h, Itr

)
≤ exp

[
− 4(β − C)h)

]
. (3.3)

4. Exponential tail on increment excess areas

In this section, we control the excess areas of the increments that constitute the spine of a tall pillar.
Of course it could be that the source point of the spine is itself an order T distance from x and the base
contributes macroscopically to the surface area, but this is ruled out in Section 5. Henceforth, take T to be
large and take x to be any point in the “bulk” of L0 ∩ Λn,n,∞ relative to T , e.g., d(x, ∂Λn) ≥ 100T .

We show an exponential tail on the excess area of the i-th increment of the spine of an interface I ∈ Īx,T ;
the bound will be uniform over both the truncated interface and all the increments below the i-th one.

Proposition 4.1. There exists c0 > 0 such that for every β > β0, every T , and every i ≤ T , we have that

µn
(
m(Xτsp+i) ≥ r | Īx,T

)
≤ exp[−c0βr] ,

where if τsp + i > T , we define m(Xτsp+i) = 0. In fact, for every T -admissible truncation Itr and every
sequence of increments (Xτsp+j)j<i ∈ X, we have the same estimate:

µn
(
m(Xτsp+i) ≥ r | Itr, (Xτsp+j)j<i = (Xτsp+j)j<i, Īx,T

)
≤ exp

[
− c0βr

]
.
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A useful corollary of the above proposition is the following tail estimate on a quantity measuring the
interaction of the spine with the truncated interface Itr.

Corollary 4.2. Let c0 > 0 be the constant from Proposition 4.1. There exists some C > 0 such that for
every β > β0 and every T , for each T -admissible truncation Itr and every r > 0,

µn

(∑
i≥1

|F(Xτsp+i)|e−c̄i + |F(X>T )|e−c̄(T+1−τsp) ≥ r | Itr, Īx,T
)
≤ C exp

[
− 1

2c0β(r − C)
]
.

Similarly, for every T -admissible truncation Itr and increment sequence (Xτsp+i)i≤i0 , we have

µn

(
|F(X>T )|e−c̄(T+1−τsp−i0) +

∑
i≥i0

|F(Xτsp+i)|e−c̄(i−i0) ≥ r
∣∣ Itr, (Xτsp+i)i<i0 = (Xτsp+i)i<i0 , Īx,T

)
≤ C exp

[
− 1

2c0β(r − C)
]
.

Proof. By Proposition 4.1, and in particular its second assertion, for any T -admissible truncated interface
Itr with source-point index τsp, the sequence (m(Xτsp+i))i≥1 is dominated by a sequence of i.i.d. exponential
random variables ξi with rate c0β (as seen by revealing the increments one at a time from bottom to top).
Noting that for every 0 < λ ≤ 1

2c0β and every i ≥ 1,

Eµn [exp
(
λe−c̄iξi

)
] =

[
1− λe−c̄i/(c0β)

]−1 ≤ 1 + 2(c0β)−1λe−c̄i ≤ exp(e−c̄i) ,

we set λ = 1
2c0β and obtain that

Eµn
[

exp
(
λ
∑
i≥1

|F(Xτsp+i)|e−c̄i
)
| Itr, Īx,T

]
≤
∏
i≥1

E
[

exp
(
λ(ξi + 4)e−c̄i

)]
≤ exp

(∑
i≥1

(1 + 4λ) e−c̄i
)

≤ exp

(
1 + 2c0β

1− e−c̄

)
.

Letting γ = 1/(1− e−c̄), this implies by Markov’s inequality that

µn

(∑
i≥1

|F(Xτsp+i)|e−c̄i ≥ r | Itr, Īx,T
)
≤ e(1+2c0β)γ−λr = eγ exp

[
− 1

2c0β(r − 4γ)
]
.

The matching conditional bounds follow from the analogous conditional estimates in Proposition 4.1. �

We prove Proposition 4.1 by constructing a map for shrinking increments of the pillar. In order to do so,
we define a map between collections of pillars that replaces increments of the pillar with X∅, decreasing the
excess area of the increment and, in turn the pillar—the complication is that unlike the map Φx of [28], the
effect of this removal is not localized and translates the entirety of the pillar above that increment.

4.1. The increment reduction map Ψi. For each T and i ≤ T , we define a map Ψi that replaces the i-th
increment of a spine with a stretch of trivial increments X∅.

Definition 4.3. For every i ≤ T , we will define the map Ψi : Īx,T → Īx,T . Suppose I ∈ Īx,T , consists of
a T -admissible truncated interface Itr with source point index τsp, an increment sequence (Xτsp+j)j≤T−τsp ,
and remainder X>T ∈ Xrem. Then Ψi(I) will have the same truncated interface Itr, and its spine will have
increment sequence (X ′τsp+j)j≤T−τsp and X ′>T constructed as follows. If Xi = X∅ or if τsp + i > T , then let
(X ′j)j≤T = (Xj)j≤T and X ′>T = X>T ; otherwise, construct the increment sequence of Ψi(I) by taking the
increment sequence (Xj)τsp≤j≤T and

(1) Mark the index τsp + i, as well as every index j > τsp + i having the property that

m(Xj) ≥ m(Xτsp+i)e
1
2 c̄(j−τsp−i) .

Also mark the remainder if it has m(X>T ) ≥ m(Xτsp+i)e
1
2 c̄(T+1−τsp−i).

(2) Label the sequence of marked indices j0 = τsp + i, and j0 < j1 < . . . < jκ, where, if the remainder is
marked, jκ is > T .

(3) For each marked index jk, replace Xjk in the increment sequence (Xj)j by a stretch of ht(Xjk)
consecutive trivial increments (X∅, . . . , X∅), to obtain (X ′j)j .

We refer the reader to Figure 9 for a visualization of the map Ψi.
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Ψi

E∅;J
0

E∅;J
1

Xj0

Xj1

G

θ(0)F0

θ(1)F1F1

F0

G

Figure 9. The increment map Ψi sends the stretch of increments on the left to the stretch
on the right. The increment Xj0 = Xτsp+i is replaced by a stretch of five trivial increments;
the increment Xj1 = Xτsp+i+2 is also replaced by trivial increments as m(Xj1) ≥ m(Xj0)ec̄.

4.2. Strategy of the map Ψi. Let us briefly describe the strategy behind the construction of the map
above. Our goal is to show an exponential tail on the excess area of the (τsp + i)’th increment conditionally
either on having at least T increments—Proposition 4.1—or on having height at least h and T increments—
Proposition 4.7. Towards this, we wish to construct a map Ψi having that

(1) For every I ∈ Īx,T ∩ {ht(Px) ≥ h}, the interface Ψi(I) ∈ Īx,T ∩ {ht(Px) ≥ h}
(2) µn(Īx,T ∩ {m(Xτsp+i) > r}) ≤ e−(β−C)rµn(Ψi(Īx,T )) via the steps (1)–(3) of (1)–(3) in §1.3 as well

as the analogue of this inequality, with both events also intersected with {ht(Px) ≥ h}.
Towards this, our map replaces the (τsp + i)’th increment by a sequence of ht(Xτsp+i) trivial increments,

yielding an energy gain that is comparable to m(Xτsp+i). N.b. replacing it by just one trivial increment
would not ensure that the resulting pillar also attains the same height as the original pillar.

Unlike changes in the standard wall representation, changes in the increment sequence subsequently induce
a horizontal shift of all increments above the (τsp + i)’th one. These horizontally shifted increments Xj can
then interact with increments below Xτsp+i via the term g(f, I; f ′,Ψi(I)) of (2.3). By (2.3), this quantity
decays exponentially in the distance to Xτsp+i, so that if the excess area m(Xj) is larger than e−d(Xj ,Xτsp+i),
we cannot compare the contribution of the perturbative g term to the energy gain of the map. For this
reason, we additionally delete all increments whose excess areas are greater than some exponential factor
times their distance to Xτsp+i. Iterating this procedure up the spine yields the map Ψi.

The following remark summarizes the properties of the map Ψi that we will use in its analysis.

Remark 4.4. By construction, the excess area of the spine of Ψi(I) is at most the excess area of the spine
of I, the map Ψi(I) keeps the height of Sx, and thus also Px, fixed, and the map Ψi only increases the
number of increments of the spine. Therefore, for every I ∈ Īx,T , we have Ψi(I) ∈ Īx,T . Moreover, notice
that the truncated interfaces of I and Ψi(I), and their first τsp + i− 1 increments, agree.

4.3. Analysis of the map Ψi. We will bound the effect of the map on the energy in Proposition 4.5, and
its multiplicity in Lemma 4.6. Combining these will imply Lemma 4.1, the main result in this section.

Proposition 4.5. There exists C > 0 such that for every β > β0 and every i ≤ T , if I ∈ Īx,T ,∣∣∣ log
µn(I)

µn(Ψi(I))
+ βm(I; Ψi(I))

∣∣∣ ≤ Cm(I; Ψi(I)) .

Proof. For ease of notation, fix any such i and let J = Ψi(I). Suppose that I has T -admissible truncation
Itr with increment sequence (Xτsp+i)i≤T−τsp and remainder X>T . If J = I, the inequality trivially holds,
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so let us assume that I is such that m(Xτsp+i) > 0. By Theorem 2.21, we can express

µn(I)

µn(J )
= exp

(
− βm(I;J ) +

∑
f∈I

g(f, I)−
∑
f ′∈J

g(f ′,J )
)
.

Let {jk}k≤κ be as in Definition 4.3. To allow us to consider the increments and remainder in a uniform
manner, let jκ := T + 1 if jκ is “> T”, so that Xjκ refers to X>T if jκ = T + 1. We have

m(I; Ψi(I)) ≥ 1

3

∑
k≤κ

m(Xjk) ,

since every nontrivial increment with height bigger than 1 must have at least six faces at each height between
bht(vj)c and dht(vj+1)e, whereas the stretch of trivial increments would have four faces at those heights.
Now let us split the set of faces in I into the following sets (refer to Figure 9):

• For each k ≤ κ, let Ek be the set of faces F(Xjk) in I.
• For each k ≤ κ, let Fk be the (possibly empty if jk+1 = jk + 1 or if jk = T + 1) set of all faces

between vjk+1 and vjk+1
(not-inclusive), with Fκ defined as the set of all faces above vjκ+1.

• Let G be the set of all remaining faces in I
Also, for notation, let E∅k ⊂ Ek be the bounding faces of vjk and vjk+1

in I (so |E∅k| = 8) and if jκ = T + 1,

then E∅κ will only be the four bounding faces of vjκ in I. Let E∅;Jk be the corresponding faces in J , i.e., the

faces of the ht(Xjk) consecutive trivial increments, so that |E∅;Jk | = 4 ht(Xjk) (if jκ = T + 1, also include
the top-most bounding face of the spine in J ).

By definition, the faces in G are shared between I and J , the faces
⋃
k Ek \ E∅k are precisely those that

are removed by the map Ψi, and the faces in Fk can be translated to correspond in a one-to-one fashion to

the faces in J \ (G ∪
⋃
k E∅;Jk ). Namely, if for every k ≤ κ, we set θ(k) to be the shift map by the vector

−
∑

0≤`≤k

ρ(vj`+1)− ρ(vj`)

then every face f ∈ Fk, is identified with the face θ(k)f in J , and for k < κ, each stretch θ(k)Fk is delimited

from below by the upper-bounding face of θ(k)E∅k ⊂ E∅;Jk and from above by the lower-bounding face of

θ(k+1)E∅k+1. By construction, we have

I = G ∪
⋃
k≤κ

Ek ∪ Fk , and J = G ∪
⋃
k≤κ

E∅;Jk ∪ θ(k)Fk .

We can therefore split up the sum∣∣∣∑
f∈I

g(f, I)−
∑
f ′∈J

g(f ′,J )
∣∣∣ ≤∑

k

∑
f∈Ek

|g(f, I)|+
∑
k

∑
f∈E∅;Jk

|g(f,J )|

+
∑
k

∑
f∈Fk

∣∣g(f, I)− g(θ(k)f,J )
∣∣+

∑
f∈G

|g(f, I)− g(f,J )| . (4.1)

We bound these sums one at a time. By (2.2), along with |F(Xjk)| ≤ 5m(Xjk) (by Remark 3.9 and
m(Xjk) > 0), the first and second sums in (4.1) are bounded above as∑

k

∑
f∈Ek

|g(f, I)|+
∑
k

∑
f∈E∅;Jk

|g(f,J )| ≤ 2K̄
∑
k

|F(Xjk)| ≤ 10K̄m(I;J ) .

Let us now turn to the third term of (4.1), which we can bound as follows: first of all, notice that for any
face f ∈ Fk in increment F(Xj) for jk < j < jk+1, the radius r(f, I; θ(k)f,J ) is attained either by some
face in a spine (belonging to precisely one of I or J ), in which case its value is at least (j − jk)∧ (jk+1− j),
or by some face in G (the faces in G are the same in both I and J , but will be at different relative locations
to f vs. θ(k)f). Let us take any k ≤ κ, fix a jk < j < jk+1 (j > jκ if k = κ and jκ 6= T + 1) and a face
f ∈ F(Xj) ⊂ Fk, and expand∣∣g(f, I)− g(θ(k)f,J )

∣∣ ≤ K̄ exp[−c̄r(f, I; θ(k)f,J )]

≤ K̄ exp[−c̄(j − jk)] + K̄ exp[−c̄(jk+1 − j)] + K̄ exp[−c̄d({f, θ(k)f},G)] .
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Notice that since both I and J are in Īx,T , their spines are contained in C2r0T (vτsp). As a consequence,
d(f,G) is attained by a face in CR0T (vτsp), and is at least j − τsp − i ≥ j − jk (n.b. there are j − τsp − i
cut-points separating G and f), and the same holds for d(θ(k)f,G); therefore, the above becomes

|g(f, I)− g(θ(k)f,J )| ≤ 2K̄ exp
[
− c̄(j − jk)

]
+ K̄ exp

[
− c̄(jk+1 − j)

]
. (4.2)

Now summing the first term in the right-hand side in (4.2) over all k and f ∈ Fk,

K̄
∑
k≤κ

∑
jk<j<jk+1

|F(Xj)|e−c̄(j−jk) ≤ K̄
∑
k≤κ

∑
jk<j<jk+1

[
8 + m(Xjk)

]
e

1
2 c̄(j−jk)e−c̄(j−jk) ,

using that |F(Xj)| = 8 + m(Xj) for jk < j < jk+1, and the facts that the reduction map was not applied at
index j and was applied at jk, so that

m(Xj) ≤ m(Xτsp+i)e
1
2 c̄(j−τsp−i) ≤ m(Xjk)e

1
2 c̄(j−jk) .

Then, by integrability of exponential tails, we see that the right-hand side above is in turn bounded by
C̄
∑
k≤κm(Xjk) = C̄m(I;J ) for some universal C̄. The second term in (4.2) can similarly be bounded as

K̄
∑
k<κ

∑
jk<j<jk+1

m(Xj)e
−c̄(jk+1−j) ≤ K̄

∑
k<κ

∑
jk<j<jk+1

m(Xj) ≤ C̄
∑
k<κ

m(Xjk+1
) .

for some constant C̄, where we used that∑
jk<j<jk+1

m(Xj) ≤
∑

jk<j<jk+1

m(Xτsp−i)e
1
2 c̄(j−τsp−i) ≤ C̄m(Xτsp−i)e

1
2 c̄(jk+1−τsp−i) ≤ C̄m(Xjk+1

) .

Again, by integrability of exponential tails, we see that for some other C̄ > 0, the contribution of this term
is bounded by C̄

∑
k<κm(Xjk) ≤ C̄m(I;J ). It remains to bound the fourth sum in (4.1): for faces f ∈ G,

the radius r(f, I; f,J ) must be attained by a face in I ⊕ J , so that∑
f∈G

|g(f, I)− g(f,J )| ≤
∑

f∈G∩CR0T
(vτsp )

∑
g∈I⊕J

K̄e−c̄d(f,g) +
∑

f∈G,f /∈CR0T
(vτsp )

∑
g∈I⊕J

K̄e−c̄d(f,g) .

Since I ⊕ J ⊂ C2r0T (vτsp), integrating the exponential tail, the second sum above is at most O(T 2e−c̄r0T ).
On the other hand, by definition of the spine and the fact that it is tame,∑
f∈G∩CR0T

(vτsp )

∑
g∈(Xj)j≥j0∪(X′j)j≥j0

e−c̄d(f,g) ≤ 2
∑
j≥j0

|F(Xj)|e−c̄(j−τsp−i)

≤ 8C̄ + 2
∑
k≤κ

m(Xjk) + 2
∑

j≥j0:j /∈{jk}k≤κ

m(Xτsp+i)e
− 1

2 c̄(j−τsp−i) ,

which we again find to be bounded by C̄m(I;J ) for some other universal constant C̄. Plugging all the above
bounds into (4.1), we see that for some universal C (independent of β), we have∣∣∣∑

f∈I

g(f, I)−
∑
f ′∈J

g(f ′,J )
∣∣∣ ≤ Cm(I;J ) . �

We now bound the multiplicity of the map Ψi for a fixed excess area m(I; Ψi(I)).

Lemma 4.6. For every i ≤ T and every J ∈ Ψi(Īx,T ), there exists an s > 0 such that for every K,

|{I ∈ Ψ−1
i (J ) : m(I;J ) = K}| ≤ sK .

Proof. Fix any i and J ∈ Ψi(Īx,T ). For a fixed spine Sx(J ) it suffices to bound the number of spines Sx(I)
for which the map Ψi sends Sx(I) to Sx(J ) with m(Sx(I);Sx(J )) = K (as the map Ψi fixes all faces of the
interface in Itr). We first observe a few basic facts.

By definition of Ψi, any spine Sx(I) that gets mapped to Sx(J ) by Ψi is such that their increment
sequences (Xj)j<i coincide, and therefore the spines agree up to the i-th increment of Sx(J ), which will
satisfy X ′τsp+i = X∅. In particular, for a given J , the interface I is uniquely identified by the collection
of increments (Xjk)k≤κ and the indices of those increments {jk}k≤κ, since the rest of its spine is given by
increments which are the same in both I and J . Therefore, starting from vτsp+i for the interface J (which
coincides with the same cell for I), we can build a set of faces that uniquely identify the interface I by taking
the union of all the increments (Xj) between Xj0 = Xτsp+i and the final Xjκ (inclusive).



30 REZA GHEISSARI AND EYAL LUBETZKY

The union of these increments, viewed as a subset of the spine Sx, clearly forms a ∗-connected set of
faces in F(Z3) that are ∗-adjacent to the upper-bounding face of the marked cell vi. We claim that this
subset of Sx has cardinality bounded above by CK for some universal C. This follows from the fact that
the cardinality of the face set of an increment is at most 4m(Xj) so long as Xj 6= X∅, so that the total
cardinality of the face set of

⋃
j0≤j≤jκ F(Xj) is at most four times∑

k≤κ

m(Xjk) +
∑
k<κ

∑
jk<j<jk+1

[1 + m(Xj)] ≤ m(I;J ) +
∑

j /∈{jk},j0<j<jκ

2m(Xi)e
1
2 c̄(j−τsp−i)

≤ m(I;J ) + 2C̄
∑
k≤κ

m(Xjk) ,

which is, in turn, bounded above by Cm(I;J ) for some large enough, universal C. Since this rooted face-set
uniquely identifies I ∈ Ψ−1

i (J ), the result then follows immediately from Observation 2.27. �

Proof of Proposition 4.1. Since m(I; Ψi(I)) ≥ 1
3m(Xτsp+i), it will suffice for us to show the upper

bound on µn(m(I; Ψi(I)) ≥ r | Itr, Īx,T ). Fix a T -admissible truncation Itr and an i ≤ T , and express
µn(m(I; Ψi(I)) ≥ r, Itr, Īx,T ) as∑

I∈Īx,T∩Itr,m(I;Ψi(I))≥r

µn(I) =
∑
k≥r

∑
J∈Ψi(Īx,T∩Itr)

∑
I∈Ψ−1

i (J ):m(I;J )=k

µn(I)

µn(Ψi(I))
µn(J )

≤
∑

J∈Ψi(Īx,T∩Itr)

µn(J )
∑
k≥r

ske−(β−C)k ,

where we used the shorthand Īx,T ∩ Itr to denote the set of interfaces in Īx,T with that truncation, and the
inequality followed from Proposition 4.5 and Lemma 4.6. Since Ψi(Īx,T ∩ Itr) ⊂ Īx,T ∩ Itr, by integrability

of exponential tails, the sum over k ≥ r is at most Ce−(β−C)r for some universal constant C, leaving

µn(m(I; Ψi(I)) ≥ r, Itr, Īx,T ) ≤ Cµn(Īx,T , Itr) exp
[
− (β − C)r

]
,

for some universal constant C. Dividing both sides by µn(Itr, Īx,T ) yields the first estimate. The matching
estimate conditional also on (Xτsp+j)j<i follows by repeating the argument, additionally restricting our sum
to interfaces with that increment sequence, as the map Ψi fixes all increments before the (τsp + i)-th one. �

4.4. Exponential tail conditionally on ht(Px) ≥ h. In the proofs of the existence of a limiting large
deviation rate and the law of large numbers for the maximum of the interface, it will be important to work
with the monotone event {ht(Px) ≥ h} rather than Ix,T . The fact that the map Ψi keeps the height of a
spine fixed allows us to also deduce the analogous exponential tails conditional on {ht(Px) ≥ h}. In fact, if
one were only interested in estimates conditional on Īx,T (as are relevant to the shape theorem and central
limit theorem), the map Ψi could be simplified to replace each increment in (Xjk)k by X∅, keeping the
number of increments fixed, but shrinking the height.

Proposition 4.7. There exists C > 0 such that for every β > β0, every T ≤ h, every half-integer h1 ≤ h,
and every T -admissible truncation Itr having ht(vτsp) ≤ h1, we have

µn
(
|F(Sx ∩ Lh1

)| ≥ 4 + r | ht(Px) ≥ h, Itr, Īx,T
)
≤ exp[−βr/C] .

Similarly, for every i ≤ T , and every T -admissible truncation Itr with τsp < i, and sequence (Xj)j<i,

µn(m(Xi) ≥ r | (Xj)j<i, Itr,ht(Px) ≥ h, Īx,T ) ≤ exp[−βr/C] . (4.3)

This latter estimate also implies the analogue of Corollary 4.2, also conditioned on {ht(Px) ≥ h} for h ≥ T .

Proof. The proof of (4.3) goes similarly to the proof of Proposition 4.1. Namely, if we restrict the proof
therein to interfaces additionally having ht(Px) ≥ h, and notice that for all such interfaces, their image under
Ψi is also a subset of {ht(Px) ≥ h}. With this observation, the natural modifications yield the desired.

The proof of the first inequality in Proposition 4.7 is more subtle as the increment intersecting Lh1 is
random. For each interface I having |F(Sx ∩ Lh1

)| ≥ 4 + r, let τ1(I) denote its increment index such that
Xτsp+τ1 intersects Lh1

non-trivially. Then let Ψh1
denote the map that for each I having |F(Sx∩Lh1

)| ≥ 4+r,
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is defined by Ψh1(I) = Ψτ1(I)(I). Fix a T -admissible truncation Itr and express µn(|F(Sx) ∩ Lh1)| ≥
4 + r, ht(Px) ≥ h, Itr, Īx,T ) as∑

I∈Īx,T∩ht(Px)≥h∩Itr
|F(Sx∩Lh1

)|≥4+r

µn(I) =
∑
k≥r

∑
J∈Ψh1

(Īx,T∩Itr∩ht(Px)≥h)

µn(J )
∑
τ1

∑
I∈Ψ−1

τ1
(J )

Xτsp+τ1∩Lh1
6=∅

m(I;J )=k

µn(I)

µn(Ψτ1(I))

At this point, we notice that for each J , and k ≥ r, there are at most k possible choices of τ1 such that
{I : I ∈ Ψ−1

τ1 (J ),m(I;J ) = k} is non-empty. This is because, if Xτsp+τ1 ∩ Lh1
6= ∅ it must be that

h1 − vτsp+τ1 ≤ k (the excess area of the map is at least ht(vτsp+τ1+1)− ht(vτsp+τ1)). Reading off from J , the
increment index intersecting Lh1−k−1, one of the next k increment indices must be τ1. Combining this with
Propositions 4.5 and Lemma 4.6, we see that this is at most∑

J∈Ψh1
(Īx,T∩Itr∩ht(Px)≥h)

µn(J )
∑
k≥r

kske−(β−C)k ≤ Cµn(Īx,T ∩ Itr ∩ ht(Px) ≥ h)e−(β−C)r .

since Ψh1
(Īx,T ∩ Itr ∩ {ht(Px) ≥ h}) ⊂ (Īx,T ∩ Itr ∩ {ht(Px) ≥ h}). Dividing both sides out by µn(Īx,T ∩

Itr ∩ ht(Px) ≥ h) then yields the desired. �

5. Exponential tails on the base of a pillar

In Section 4, we showed that the increments of the spine each have exponential tails on their excess areas.
Here, we show that the groups of walls that constitute the interface apart from the spine, but are “near” the
spine have excess area at most order O(log T ). As a consequence, we see that |vτsp − x| is at most O(log T )
with high probability; this difference, and the base more generally, will be negligible as far as any T → ∞
limit theorems are concerned.

As before, take T to be large and take x to be a point in the “bulk” of L0∩Λn,n,∞, e.g., d(x, ∂Λn) ≥ 100T .

Proposition 5.1. There exists K, c > 0 such that for every β > β0, we have for every r ≥ K log T ,

µn(ht(vτsp) ≥ r | Īx,T ) ≤ exp[−cβr] , (5.1)

µn(diam(ρ(Bx)) ≥ r | Īx,T ) ≤ exp[−cβr] . (5.2)

where the diameter diam(ρ(Bx)) := maxx,y∈ρ(Bx) |x− y|. Finally, we can also deduce that for r ≥ K log T ,

µn

( ∑
i≤τsp

m(Xi) ≥ r | Īx,T
)
≤ exp[−cβr] . (5.3)

Remark 5.2. In particular, (5.1) implies that for every r ≥ K log T , with probability 1 − e−cβr, we have
τsp ≤ r; the bound (5.2) immediately implies the analogous bound on |ρ(vτsp)− x|.

Remark 5.3. Since we prove that the projection of the spine attains an order
√
T distance from x, there

should be groups of walls of I \Px onto which Px projects, that attain an excess area c log T ; thus the order
of the bounds on ht(vτsp) and diam(ρ(Bx)) is correct. On the other hand, we expect that ht(v1) is order
one, and already the increments starting from X1 have exponential tails; the difficulty in proving this is in
controlling the interactions of X1, . . . ,Xτsp with nearby groups of walls which attain a higher height.

5.1. The base reduction map ΦB. We first define a map that eliminates at least one group of walls of
excess area larger than K log T in Cvτsp ,x,T , and in doing so, allows one to lower the height of the source
point for the spine. The map also shifts vτsp in the xy-plane, to lie above x if |ρ(vτsp)− x| ≥ K log T .

In order to study the impact of this map on µ, it will help to formulate the base Bx in terms of the
definitions outlined in Section 2.2. In view of this, for any interface I ∈ Ix,T , recall from Definition 3.11 that
it has a truncated interface Itr. We can define the groups of walls corresponding to Itr via Lemma 2.12.
Fix some K sufficiently large with respect to all other constants that are independent of β. We refer to
Figure 10 for a visualization of the map ΦB.

Definition 5.4. Let ΦB : Īx,T → Ix,T generate an interface ΦB(I) from I as follows. Suppose Itr has
standard wall representation (Wz)z∈L0

, base Bx and source point vτsp , and further suppose that its spine Sx
has increment collection (Xi)τsp≤i≤T and remainder X>T . If ht(vτsp) ≤ K log T and diam(ρ(Bx)) ≤ K log T ,
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ΦB

Figure 10. The base reduction map ΦB sends the interface I (left) to ΦB(I) (right) by
eliminating the nested sequence of walls Wvτsp

(pink, left), along with the vertical column
which attains the height vτsp (orange, left), replacing it by a straight vertical column above
x (pink, right) and shifting the spine Sx (blue, left) to lie above that column.

then the map is set to be trivial, ΦB(I) = I. Otherwise, if ht(vτsp) > K log T and/or diam(ρ(B)) > K log T ,
then construct J = ΦB(I), by

(1) Mark in the standard wall representation (Wz)z∈L0
the groups of walls Fvτsp , as well as F[x] =⋃

f∈[x] Wf , where [x] = {x} ∪
⋃
f∈L0:f∼x{f}.

(2) If there exists some h < ht(vτsp) such that the interface with standard wall representation Wvτsp
∪W[x]

intersects Lh in exactly one plus cell, take the largest such height h† and let y† be an index in
L0∩Cvτsp ,x,T of a wall that attains height h† and is not included in W[x]∪Wvτsp

, and then mark Fy† .
(If h < ht(vτsp), such a wall must exist by the definition of the source point vτsp .)

(3) Remove all the marked walls, i.e., Fvτsp ∪ F[x] ∪ Fy† from the standard wall representation of Itr.
(4) Let I ′ be the interface with the resulting standard wall representation, let h− 1 be the height of a

highest wall indexed by I ′ ∩ Cvτsp ,x,T and let h? := h ∨ (ht(vτsp) + 1
2 ).

(5) To that new interface, add the new standard wall consisting of the vertical bounding faces of a
column of height ht(h?) above x: i.e., the cells x+(0, 0, `− 1

2 ) : ` = 1, . . . , h?. The resulting interface
has a T -source point, which we will denote vτsp(J ) .

(6) Shift the spine Sx by the vector x+ (0, 0, h?− 1
2 )− vτsp ; i.e., the increment sequence of the new spine

Sx(J ) sourced at vτsp(J ) will be h? − 1
2 − ht(vτsp(J )) trivial increments, followed by the increment

sequence of Sx.

5.2. Strategy of the map ΦB. As in §4.2, to obtain exponential tail bounds conditionally on Px having
T increments and/or attaining height h, we require that ΦB send Īx,T ∩{ht(Px) ≥ h} to Ix,T ∩{ht(P) ≥ h}.

Ideally, the map would replace the base Bx with a single column of height ht(vτsp) above x, and have an
energy gain proportional to diam(ρ(Bx)) and ht(vτsp). Since the spine of I starts at vτsp and not above x,
we must additionally shift the spine to lie above x, so that together with the added column, it forms the
new pillar PJx . We summarize the role the different steps above play in constructing such a map.

(1) Step (1) above marks the nested sequence of walls supporting vτsp , and therefore attaining ht(vτsp),
for deletion. It additionally marks the nested sequence of walls of x, to clear out space for the spine
to be shifted horizontally and reattached above x.

(2) If we only performed this first step of deletions, and then added back a column of height ht(vτsp) above
x, the map would have an excess area proportional to diam(Bx) but not necessarily to ht(vτsp). In
particular, if the groups of walls Fvτsp were mostly composed of trivial increments, so that its excess
area is not much more than 4 ht(vτsp), the energy gain would not be proportional to ht(vτsp).
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In order to obtain an energy gain proportional to ht(vτsp), we note that by definition of vτsp , every
height below ht(vτsp) must have been intersected by at least two plus sites in σ(I) ∩ (L0 ∩ Cvτsp ,x,T ).
Therefore, if Fvτsp ∪ F[x] did not contain excess energy larger than, say, 6 ht(vτsp), there must exist
another group of walls indexed by L0 ∩ Cvτsp ,x,T whose excess energy is also comparable to ht(vτsp).
Step 2 finds one such groups of walls and additionally marks it for deletion.

(3) The remaining steps (3)–(6) then shift the spine to lie above x, and reconnect the shifted spine to x
via a column of h? plus sites. The reason ht(vτsp) is possibly increased to height h?, is the following:
even though the map ΦB only deletes walls of Itr, it could be that the deletion of such a wall
increases the height of some W nested in a wall of F[x] ∪ Fρ(vτsp ∪ Fy† . The effect of this would be
that placing the spine at x+ (0, 0,ht(vτsp)) could take the spine very close to the vertical shift of W ,
and their interactions could be large: in order to maintain the separation between the spine and the
new truncated interface, we therefore place the spine at the higher height h.

5.3. Properties of the map ΦB. With the above remarks in place, we now establish, formally, the fact
that ΦB is well-defined, and show that it has an energy gain that is comparable to each of the quantities we
prove exponential tails on, in (5.1)–(5.3).

Lemma 5.5. The map ΦB : Īx,T → Ix,T is well-defined, keeps the height of Px fixed, and,

m(I; ΦB(I)) = m(F[x] ∪ Fvτsp ∪ Fy†)− 4h? ≥ 2
(
(h? − 1) ∨ diam(ρ(Bx))

)
∨ 1

3

∑
i≤τsp

m(Xi) ,

as long as the map ΦB was nontrivial (ΦB(I) 6= I).

Proof. For the fact that ΦB is well-defined, we observe that by definition of the source-point, for every height
h < h(vτsp), the set of walls indexed by faces in Cvτsp ,x,T intersect that height in at least two plus sites; by
Definition 2.14, any face f ∈ Itr is also attained by the interface corresponding to the nested sequence of
walls Wρ(f). Thus, the sequence(s) described by steps (1)–(2) of Definition 5.4 exist. At step (5), since all
walls projecting onto [x] have been removed, the standard wall being added by the vertical column of plus
sites above x, maintains the admissibility of the remaining standard wall collection.

Since I ∈ Īx,T , and CR0T (x) ⊂ Cvτsp(I),x,T , the resulting T -source point vτsp(J ) has height at most h?;

moreover, when we shift the spine of I in (6), the resulting spine will be confined to CR0T (x) = Cvτsp(J ),x,T ;

finally, the new pillar Px(ΦB(I)) has first h?−1 ≥ τsp−1 increments that are trivial, followed by T − τsp +1
increments from Sx, so it has at least T increments total. Thus, the map yields a valid interface ΦB(I) ∈ Ix,T .

The lower bounds on the excess area follow from the following considerations. Since the marked sequences
of walls in items (1)–(2) of Definition 5.4 intersected each height below ht(vτsp) in at least two sites, we
removed an excess of 6(ht(vτsp)) − 1

2 ) vertical faces from I, and added back at most 4(ht(vτsp) + 1
2 ) faces

in step (5); the excess area m(I; ΦB(I)) is at least the difference between these. If h? = ht(vτsp) + 1
2 , then

this implies m(I; ΦB(I)) ≥ 2(h? − 1), as desired. Now suppose otherwise that h? = h > ht(vτsp) + 1
2 . This

could only have happened if there had been a wall nested inside one of F[x] ∪ Fvτsp ∪ Fy† that was shifted

vertically upward by at least h− 1
2 −ht(vτsp) upon deletion of F[x] ∪Fvτsp ∪Fy† (the maximum height of that

wall must have been below ht(vτsp) in I). For such a vertical shift to be possible, its nesting sequence of
walls must have had height at least (h− ht(vτsp)− 1

2 ) and therefore excess area at least 9(h− ht(vτsp)− 1
2 )

faces (with the extreme case being a 3 × 3 column with the nested wall in its center). On the other hand,
4(h− ht(vτsp)− 1

2 ) faces were added, so m(I; ΦB(I)) ≥ 2(h? − 1) still holds.
Let us turn to the bound w.r.t. diam(B). In order for vτsp to be in the pillar of x, there must be a

wall in Itr containing both x and ρ(vτsp) in its interior, which will be marked and removed in item (1) of
Definition 5.4; in fact the maximal nested wall containing both vτsp and x bounding the entirety of the base
is marked by item (1), resulting in an excess area of at least 2 diam(ρ(Bx)) ≥ 2|ρ(vτsp)− x|.

Lastly, the fact that m(I; ΦB(I)) ≥ 1
3

∑
i≤τsp m(Xi) follows from the facts that all the increments

(X1, . . . ,Xτsp) are part of the same wall, which contains vτsp in its interior, so it is removed, and replaced
by a straight vertical column of the same height. �

5.4. Estimating the effect of ΦB. We bound the change in probability under application of the map ΦB.
For ease of notation, locally in these sections we will simply denote this map by Φ = ΦB.
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Proposition 5.6. There exists C > 0 such that the following holds for all β > β0. For every I ∈ Īx,T with
spine increment sequence (Xi)τsp≤i≤T and remainder X>T ,∣∣∣ log

µn(I)

µn(Φ(I))
+ βm

(
I; Φ(I)

)∣∣∣ ≤ C[m(I; Φ(I)) + |F(X>T )|e−c̄(T+1−τsp) +
∑

τsp≤i≤T

|F(Xi)|e−c̄(i−τsp)
]
.

Proof. Suppose that I ∈ Īx,T with truncation Itr, increment sequence (Xi)i≤T and remainder X>T and
suppose that one of ht(vτsp) or diam(ρ(Bx)) are at least K log T , as otherwise the inequality is trivially
satisfied. Set J = Φ(I) for ease of notation; by Theorem 2.21,

µn(I)

µn(J )
= exp

(
− βm(I;J ) +

∑
f∈I

g(f, I)−
∑
f ′∈J

g(f ′,J )
)
.

We wish to bound the absolute difference between the sums above by the right-hand side of Proposition 5.6.
We will decompose I and J into different subsets of faces, in order to pair up faces of I with faces of J
that locally do not feel the effect of ΦB. Let

F = F[x] ∪ Fvτsp ∪ Fy† = (Fxs)s ∪ (Fρ(vτsp )s)s ∪ (Fy†s )s ,

be the nested sequences of groups of walls marked in steps (1)–(2) that were eliminated in step (3) of
Definition 5.4 (indexed by [x], y†, vτsp ∈ L0 ∩ Cvτsp ,x,T ). Sets E,F,G ⊂ I ∪ J will consist of all those faces
that were removed from I or added to J :

• Let E be the set of all faces in the groups of walls F; these were removed in step (3) of ΦB.
• Let F be the set of f in J such that ρ(f) ∈ ρ(F(E)), added in place of a removed face in ρ(F) to

“fill in” the interface.
• Let G be the set of all other faces added to form J , namely the single wall consisting of the bounding

faces of a vertical column above x added in step (5) of ΦB.

Also, for any f ∈ Itr\E, we set f̃ to be the vertical translation of f as governed by the interface corresponding
to the remaining walls after E have been removed: see Observation 2.13. Finally, for every f ∈ Sx = Sx(I),
let θvτsp ,xf be its translation by x+ (0, 0, h? − 1

2 )− vτsp . This decomposition allows us to expand,∣∣∣∣∑
f∈I

g(f, I)−
∑
f ′∈J

g(f ′,J )

∣∣∣∣ ≤∑
f∈E

|g(f, I)|+
∑
f∈F

|g(f,J )|+
∑
f∈G

|g(f,J )|

+
∑

f∈Sx(I)

∣∣∣g(f, I)− g(θvτsp ,xf,J )
∣∣∣+

∑
f∈Itr\E

∣∣∣g(f, I)− g(f̃ ,J )
∣∣∣ . (5.4)

Let us begin with the first three terms, for which crude bounds suffice. By (2.2) and Lemma 5.5, there is a
universal constant C > 0 such that they are at most

K̄
(
|E|+ |F|+ |G|

)
≤ K̄

(
2m(F[x] ∪ Fvτsp ∪ Fy†) + m(F[x] ∪ Fvτsp ∪ Fy†) + 4h?

)
≤ Cm(I;J ) .

Now, let us turn to the fourth term in (5.4), which encodes the contributions from the spine. Since the
entire spine Sx(I) is translated by the same vector x+ (0, 0, h? − 1

2 )− vτsp , for every f ∈ Sx(I), the radius

r(f, I; θvτsp ,xf,J ) is attained either by a face at height at most ht(vτsp) − 1
2 in I or at most h? − 1 in J ,

or by a face outside of Cvτsp ,x,T . However, since the increment sequence (Xi)τsp≤i≤T , X>T is tame, and the
height of the pillar is fixed by the map ΦB, it must in fact be attained by a face in Cvτsp ,x,T ⊃ Cvτsp(J ),x,T of

height at most ht(vτsp)− 1
2 in I or h? − 1 in J . The contribution from the fourth term in (5.4) is at most∑

τsp≤i≤T+1

∑
f∈F(Xi)

K̄ exp[−c̄r(f, I; θvτsp ,xf,J )] ≤
∑

τsp≤i≤T+1

∑
f∈F(Xi)

K̄e−c̄(ht(f)−ht(vτsp )− 1
2 )

≤
∑

τsp≤i≤T+1

K̄|F(Xi)|e−c̄(i−τsp) ,

where we again used subscript “T + 1” to indicate > T here. (Notice that the radius r(f, I; θvτsp ,xf,J )

is attained by a face whose height is at most ht(h?) and if h? 6= ht(vτsp) + 1
2 , then θvτsp ,x shifts the spine

vertically accordingly, so that ht(θvτsp ,xf)− h? = ht(θvτsp ,xf)− ht(vτsp)− 1
2 .)

It remains to control the contribution from the interactions of the truncated pillar Itr with the application
of the map ΦB. The key idea here is that either they interact through the spine, in which case the contribution
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is bounded as the above term, or they interact through the groups of walls in Itr, in which case they are
controlled as in the proof of Lemma 2.25. To this end, let J̄tr be the image of the truncated interface under
steps (1)–(3) of ΦB, prior to the addition of the faces in G. Then, we can bound the difference∑

f∈Itr,f /∈E

∣∣∣g(f, I)− g(f̃ ,J )
∣∣∣ ≤ ∑

f∈Itr,f /∈E

K̄ exp
[
− c̄r(f, I; f̃ ,J )

]
by noticing that the distance r(f, I; f̃ ,J ) is either attained by a face in Sx, a face in θvτsp ,xSx, a face in the

set G, or is equal to r(f, Itr; f̃ , J̄ tr). This lets us bound∑
f∈Itr\E

K̄e−c̄r(f,I;f̃ ,J ) ≤
∑

f∈Itr\E

∑
g∈Sx

K̄[e−c̄d(f,g) + e−c̄d(f̃ ,θvτsp ,xg)] +
∑

f∈Itr\E

∑
g∈G

K̄[e−c̄d(f,g) + e−c̄d(f̃ ,g)]

+
∑

f∈Itr\E

K̄e−c̄r(f,Itr;f̃ ,J̄tr) . (5.5)

As argued for f ∈ Sx, the first term in the right-hand side of (5.5) can be bounded from above by

2K̄
[ ∑
τsp≤i≤T

∑
g∈F(Xi)

∑
f : d(f,g)≥i−τsp

e−c̄d(f,g)+
∑

g∈F(X>T )

∑
f : d(f,g)>T+1−τsp

e−c̄d(f,g)
]

≤ 2C̄
[
|F(X>T )|e−c̄(T+1−τsp) +

∑
τsp≤i≤T

|F(Xi)|e−c̄(i−τsp)
]
,

for some universal C̄, where we used that Sx is tame and the definition of the source point. The second term
in (5.5) is trivially bounded above by∑

f∈Itr\E

∑
g∈G

K̄[e−c̄d(f,g) + e−c̄d(f̃ ,g)] ≤ 2
∑
g∈G

∑
f∈F(Z3)

K̄e−c̄d(g,f) ≤ 2K̄C̄|G| .

By Lemma 5.5, we have that |G| = 4h? ≤ 2m(I;J ). Finally, we bound the last term of (5.5) as in the proof

of Lemma 2.25 and 3.3: by construction, for every f, f̃ pair, the distance r(f, Itr; f̃ , J̄ tr) is attained by the
distance to a wall face, and therefore, moving to the distance between projections,∑

f∈Itr\E

K̄ max
u∈ρ(F)

exp[−c̄d(ρ(f), u)] ≤
∑

u′∈ρ(F)c

K̄Nρ(u) max
u∈ρ(F)

exp[−c̄d(u, u′)]

≤
∑

u′∈ρ(F)c

∑
u∈ρ(F)

K̄(|u− u′|2 + 1) exp[−c̄|u− u′|] .

By integrability of exponential tails, this is at most C̄|F(ρ(F))|+ C̄|E(ρ(F))| ≤ 2C̄m(I;J ) for some universal
constant C. Combining all the above estimates concludes the proof. �

5.5. Bounding the multiplicity of ΦB. Here, we bound the multiplicity of the map ΦB. This is where
we use the fact that the nested sequences of groups of walls we eliminated had excess area at least K log T .

Proposition 5.7. There exists s independent of β such that for every T , every J ∈ ΦB(Īx,T ) and every k,∣∣{I ∈ Φ−1
B (J ) : m(I;J ) = k}

∣∣ ≤ sk .
Proof. If k ≤ K log T , the map ΦB must be the identity map and we must have k = 0, so the bound is
trivially satisfied; therefore, suppose k ≥ K log T . In order to bound the multiplicity of the map, we will
uniquely identify any pre-image I with several collections of admissible groups of walls, indicating the nested
sequence(s) of walls that are marked in steps (1)–(2) of Definition 5.4, along with their groups of walls. The
requirement of k ≥ K log T will allow us to pick the centers of the nested sequence of walls from step (1),
amongst the faces in L0 that were in the cylinder Cvτsp ,x,T .

Claim 5.8. Given J ∈ ΦB(Īx,T ), one can uniquely identify I ∈ Φ−1
B (J ) from

(1) the site vτsp ,
(2) the groups of nested walls F1 = F[x], F

2 = Fvτsp ,

(3) a groups of nested walls F3 which is either empty if F1 ∪ F2 intersect every height below h(vτsp) in
more than one cell, or Fy† for some y† ∈ Cvτsp ,x,T .
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Proof of Claim 5.8. To prove the claim, we reconstruct I given this collection. First, in order to read-off
h?, we need to read h by removing the pillar Px(J ) from J and finding the height of a highest wall in
Cvτsp ,x,T . With h? in hand, take the interface J , and remove the set of faces G from it by eliminating

the column wall above x up to height h?. This leaves a truncated interface J̄tr along with a spine S. By
construction, this spine is exactly the spine Sx of I up to the translation vτsp−x−(0, 0, h?− 1

2 ). The truncated

interface J̄tr has a standard wall representation, to which we can add all standard walls in F1 ∪ F2 ∪ F3.
The resulting collection of standard walls is admissible and can then be mapped back to an interface by
Lemma 2.12, which is exactly the truncated interface Itr. Appending the spine Sx at vτsp yields I. �

With the claim in hand, we begin by enumerating the number of choices we have for vτsp ; since m(I;J ) ≥
2 ht(vτsp) and 2|ρ(vτsp)− x| by Lemma 5.5, there are at most k3 possible choices of vτsp .

We now wish to bound the number of possible pairs of (a) collections of groups of nested walls F[x] and

Fvτsp , and (b) collections of groups of walls corresponding to the nested walls Fy† , indexed by some face y† in
L0∩Cvτsp ,x,T . Take the at most three sequences of nested walls identified by steps (1)–(2) in Definition 5.4 of
I, denote them by (W a

i )i with groups of walls Fa = (F aj )j for a ∈ {1, 2, 3} (so that W a
i is nested in W a

i+1).
One can generate a ∗-connected set of faces out of each such sequence as follows:

(1) Assign to each point in u ∈ ρ(
⋃
j F

a
j ) the set Ru of faces in L0 a distance at most

√
Nρ(u) from u,

(2) For every wall W a
i nested in W a

i+1, assign to it the set Rai+1 of minimal collection of faces in L0

connecting W a
i to W a

i+1. In the case of F[x] (resp., Fvτsp , or Fy†) include also the faces of [x] resp.,

(ρ(vτsp) and y†) and connect them via a shortest path of faces Ra1 to W a
1 .

The union of the groups of walls Fa, along with the face sets
⋃
u∈ρ(Fa)Ru and

⋃
iR

a
i is a ∗-connected set of

faces by the definition of groups of walls, and by construction. Moreover, given this union, one can recover
the set Fa because any face f ∈ L0 in this union is in Fa if and only if another face in the union projects
onto it (otherwise it couldn’t be a wall face). The cardinality of this union of faces is bounded above by∑

a∈{1,2,3}

[
|Fa|+

∑
u∈ρ(Fa)

|Rau|+
∑
i

|Rai |
]
.

By Remark 2.20, |Fa| ≤ 2m(Fa) for each i, a. By construction, and the nesting of walls,
∑
i |Rai | ≤∑

im(W a
i ) ≤ m(Fa). Finally, by definition of groups of walls,∑

i

∑
u∈ρ(Fai )

|Rau| ≤
∑
i

∑
u∈ρ(Fai )

Nρ(u) ≤ 2m(Fa) .

Because m(Fa) ≤ 2m(I;J ), we see that for each a ∈ {1, 2, 3}, the union described above is a connected
collection of at most 12m(I;J ) faces rooted at some specific face (x or ρ(vτsp) in the cases a = 1, 2).
Therefore, the number of possible such collections of groups of walls of nested walls associated to I ∈
Φ−1(J ) : m(I;J ) = k is bounded as follows: pick an origin y† ∈ L0 ∩ Cvτsp ,x,T , pick 0 ≤ k1, k2, k3 ≤ k and

then finally, to each of [x], vτsp , y
†, associate a connected group of faces of size at mo st ka. The number of

choices of origin y† is at most the size of L0 ∩ Cvτsp ,x,T , which is at most (R0T + k)2. The number of total

such choices is then easily seen to be at most (R0T + k)2k3sk, which is at most exponential in k as long as
k ≥ K log T for some large K to make the O(T 2) term negligible. �

Proof of Proposition 5.1. By Lemma 5.5, the event that I has ht(vτsp) ≥ r implies that m(I; ΦB(I)) ≥ r,
and similarly, the event that diam(Bx) ≥ r implies that m(I; ΦB(I)) ≥ r. As such, let us fix an r ≥ K log T ;
for ease of notation, let us denote, for the rest of this section,

Γr =
{
I ∈ Īx,T : |F(X>T )|e−c̄(T+1−τsp) +

∑
τsp≤i≤T

|F(Xi)|e−c̄(i−τsp) < r
}

Then we can write

µn
(
m(I; Φ(I)) ≥ r | Īx,T

)
≤ µn

(
m(I; Φ(I)) ≥ r,Γcr | Īx,T

)
+ µn

(
m(I; Φ(I)) ≥ r,Γr | Īx,T

)
.
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By Corollary 4.2, the first quantity on the right-hand side is at most C exp(−βr/C) for some universal C.
The latter quantity can be bounded as follows by Propositions 5.6–5.7:∑

I∈Īx,T∩Γr
m(I;Φ(I))≥r

µn(I) =
∑

J∈Φ(Īx,T∩Γr)

∑
k≥r

∑
I∈Φ−1(J )

m(I;Φ(I))=k

µn(I)

µn(Φ(I))
µn(J )

≤
∑

J∈Φ(Īx,T∩Γr)

µn(J )
∑
k≥r

sk exp
[
− (β − C)k

]
.

for some other universal constant C (where we absorbed the contribution from the increments to the right-
hand side of Proposition 5.6, which was at most an extra r, into the C). By integrability of exponential
tails, and the fact that µn(Φ(Īx,T ∩ Γr)) ≤ µn(Ix,T ) ≤ 2µn(Īx,T ) by Lemma 3.15, we have

µn
(
m(I; Φ(I)) ≥ r | Īx,T

)
≤ 2e−(β−C)rµn(Īx,T ) .

Dividing both sides by µn(Īx,T ) concludes the proof. �

As we did in Proposition 4.7, since the map ΦB keeps the height of the pillar Px fixed, we can also prove
the estimates of Proposition 5.1.

Proposition 5.9. There exists K, c > 0 such that for every β > β0, we have for every r ≥ K log h,
every T ∈ Jh2 , hK,

µn(ht(vτsp) ≥ r | ht(Px) ≥ r, Īx,T ) ≤ exp(−cβr) ,
µn(diam(ρ(Bx)) ≥ r | ht(Px) ≥ r, Īx,T ) ≤ exp(−cβr) .

Proof. The proof is again analogous to the proof of Proposition 4.7 and we therefore do not include all the
details. For any h and any T ≤ h, we can expand as above,

µn
(
m(I; Φ(I)) ≥ r | ht(Px) ≥ h, Īx,T

)
≤ µn

(
m(I; Φ(I)) ≥ r,Γcr | ht(Px) ≥ h, Īx,T

)
+ µn

(
m(I; Φ(I)) ≥ r,Γr | ht(Px) ≥ h, Īx,T

)
.

The same estimate on the first term on the right-hand side holds from the conditional estimate (4.3) of
Proposition 4.7, and the analogue of Corollary 4.2 under the measure that also conditions on {ht(Px) ≥ h},
by taking a supremum over all truncated interfaces Itr, and noting that the exponential tails on spine
increments are uniform in Itr. The second term on the right-hand side, we also bound as in the proof of
Proposition 5.6, summing only over interfaces that also have the property that {ht(Px) ≥ h}, and using that
µn(Φ(Īx,T )) ≤ µn(ht(Px) ≥ h, Ix,T ) ≤ 2µn(ht(Px) ≥ h, Īx,T ) as long as T ≥ h

2 by (3.3) of Remark 3.16.
Following the rest of the proof with these modifications yields the desired estimates. �

6. Large deviation rate and law of large numbers for the maximum

In this section, we use the results of Sections 3–5, to prove Theorem 1. We begin, in Section 6.1,
with a rough equivalence between pillars and groups of walls, and recall early decorrelation estimates of
Dobrushin [23] for groups of walls in the bulk of Λn. In Section 6.2, we show the existence of the limiting
large deviation rate for the event {ht(Px) ≥ h} and relate it to an infinite-volume large deviation rate under
the measure µ∓Z3 . The key estimate there will be the following:

Proposition 6.1. The limit αβ given by (1.2) exists and moreover, there exists β0 such that for all β > β0,
for every sequence h = hn such that 1� h� n and every x = xn ∈ L0 ∩ Λnh such that d(xn, ∂Λn)� hn,

lim
n→∞

− 1

hn
logµn

(
ht(Pxn) ≥ hn

)
= αβ . (6.1)

As a consequence, the quantity αβ ∈ [4β − C, 4β + e−4β ] for a universal constant C.

In Section 6.3, we use the decorrelation estimates for pillars and the existence of this large deviation rate to
show that the maximum height of an interface satisfies a law of large numbers.
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6.1. Decorrelation estimates for groups of walls and pillars. In this section, we use the decomposition
of pillars into a base and a spine, and in particular, the exponential tail on the size of the base proved in
Section 5, to show that the structure of a pillar is, with high probability, captured by the groups of walls
indexed by faces within a o(T ) neighborhood of x. We use this to translate decorrelation estimates for groups
of walls into decorrelation estimates for pillars.

The following is then an immediate corollary of Eq. (2.4).

Proposition 6.2. With µn-probability 1−O(e−cβr), the nested sequence of walls Wx is indexed by faces a
distance at most r from x, (and therefore so are all walls nested in a wall of Wx).

With these equivalences in mind, we recall some decorrelation estimates for groups of walls proved by
Dobrushin in [23, 27]. The first of these says that the dependence of the law of a group of walls Fx on the
containing box size n decays exponentially fast in the distance between x and ∂Λn. When combined with
Proposition 6.2, this will imply that the law of the pillar above a face in L0 (approximately) does not depend
on the side-length n or on the position of x, as long as x is sufficiently far from ∂Λn.

Proposition 6.3 ([27], [23, Lemma 5], as well as [12, Prop. 2.3]). There is a C > 0 such that for every
β > β0, every n ≤ m, for a sequence of x = xn ∈ L0 ∩ Λn,∥∥µn((Fy)y:|y−x|≤r ∈ ·

)
− µm

(
(Fy)y:|y−x|≤r ∈ ·

)∥∥
tv
≤ C exp

(
− (d(x, ∂Λn)− r)/C

)
.

In particular, sending m to ∞, and using tightness of (Fy)y, this estimate holds if we replace µm by µ∓Z3 .

Corollary 6.4. There is a C > 0 such that for every β > β0, every n,m and two sequences x = xn and
y = ym such that d(x, ∂Λn) ∧ d(y, ∂Λm) ≥ r,

‖µn
(
Px ∈ ·

)
− µm

(
Py ∈ ·

)
‖tv ≤ C exp[−r/C] .

Proof. For any interface, with a standard wall representation (Fy)y∈L0
, we can set I(R),x which is the

interface having only groups of walls indexed by y : |y−x| < R and let P(R)
x be the pillar of x in the interface

I(R),x. By Observation 2.17 and Proposition 6.2, with probability 1−O(e−cβR), the pillars Px and P(R)
x are

equal. Take an N large which we will send to infinity, and expand the difference

‖µn(Px ∈ ·)− µm(Py ∈ ·)‖tv ≤ ‖µn(Px ∈ ·)− µN (Px ∈ ·)‖tv + ‖µN (Px ∈ ·)− µN (Py ∈ ·)‖tv
+ ‖µm(Py ∈ ·)− µN (Py ∈ ·)‖tv .

The first term above is bounded as follows: there exists C > 0 such that for all β > β0,∥∥µn((Fy)y:|y−x|≤r ∈ ·
)
− µN

(
(Fy)y:|y−x|≤r ∈ ·

)∥∥
tv

+ µn
(
Px 6= P(r)

x

)
+ µN

(
Px 6= P(r)

x

)
≤ Ce−(d(x,∂Λn)−r)/C + e−βr/C ,

as if Px is contained in the ball of radius r around x, then the pillar Px is a marginal of the collection of
groups of walls (Fy)y:|y−x|≤r. The third term is bounded analogously. In order to bound the second term,

‖µN (Px ∈ ·)− µN (Py ∈ ·)‖tv ≤ ‖µN (P(R)
x ∈ ·)− µN (P(R)

y ∈ ·)‖tv + 2e−Rβ/C .

Taking N → ∞, the first term on the right-hand side here vanishes as the infinite-volume measure µ∓Z3 is
invariant under translations in the xy-directions [23]. Sending N → ∞ first, then R → ∞, and replacing r
by say 2r, we obtain the desired inequality. �

We also mention a result of Dobrushin showing that groups of walls decorrelate exponentially fast in their
distance. That they decorrelate exponentially fast conditionally on the other groups of walls of the interface
follows relatively straightforwardly from the cluster expansion and definition of groups of walls—however,
a powerful bound of Dobrushin from [23, 26] allows one to translate conditional decorrelation estimates for
random fields to unconditional ones. This estimate, together with the equivalence of groups of walls and
pillars, greatly simplifies the second moment estimate in Section 6.3.

Proposition 6.5 ([23], see also [12, Proposition 2.1]). There is a C > 0 such that for every β > β0, every
n and two sequences x = xn and y = yn,∥∥µn ((Fs)|s−x|<r ∈ ·, (Ft)|t−y|<r ∈ ·

)
− µn

(
(Fs)|s−x|<r ∈ ·

)
µn
(
(Ft)|t−y|<r ∈ ·

)∥∥
tv
≤ Ce−(|x−y|−2r)/C .
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Corollary 6.6. There is a C > 0 such that for every β > β0, every n and every two sequences x = xn and
y = yn such that d(x, y) ≥ r, we have

‖µn(Px ∈ ·,Py ∈ ·)− µn(Px ∈ ·)µn(Py ∈ ·)‖tv ≤ C exp[−r/C] .

Proof. Fix an r, recall the definition of P(r)
x and P(r)

y , and use the shorthand (Fs) and (Ft) for (Fs)|s−x|<r
and (Ft)|t−y|<r. Then,

‖µn(Px ∈ ·,Py ∈ ·)− µn(Px ∈ ·)µn(Py ∈ ·)‖tv ≤ ‖µn(Px ∈ ·,Py ∈ ·)− µn(P(r)
x ∈ ·,P(r)

y ∈ ·)‖tv
+ ‖µn((Fs) ∈ ·, (Ft) ∈ ·)− µn((Fs) ∈ ·)µn((Ft) ∈ ·)‖tv
+ ‖µn(P(r)

x ∈ ·)µn(P(r)
y ∈ ·)− µn(Px ∈ ·)µn(Py ∈ ·)‖tv

where the second term is as it is because P(r)
x is a marginal of (Fs) and P(r)

y is a marginal of (Ft). The
second term above, then, is exactly the quantity bounded by Proposition 6.5. The first and third terms are
bounded by exp(−r/C) by Observation 2.17 and Proposition 6.2, yielding the desired. �

6.2. Limiting large deviation rate. In this section, we use an approximate sub-additivity argument to
demonstrate the existence of a limiting large deviation rate for the probability that ht(Px) exceeds h as
h → ∞. We will first show how Proposition 6.1 follows from the existence of the limit in (1.2); we then
prove the existence of the limit in (1.2) leveraging the fact that connection events are increasing, to use the
monotonicity and FKG property of the Ising model.

Let us begin by proving Proposition 6.1 given the existence of the limit in (1.2). Without loss, we will
change from sequences indexed by n to sequences indexed by h, so that nh is any sequence having nh � h

and xh is such that d(xh, ∂Λnh)� h. Recall that x
+←→
A
y denotes that there is a ∗-connected path of + sites

in C(A) between x and y. Let us denote by Ah the event, measurable with respect to the configuration on
C(Z2 × J0, hK), defined by

Ah = Axh =

{
σ : x+ (0, 0, 1

2 )
+←−−−−→

Z2×J0,hK
Lh− 1

2

}
.

We will show that the limit in (6.1) is equal to the following limit

lim
h→∞

− 1

h
logµnh

(
Axhh

)
, (6.2)

which we will show exists and equals the infinite-volume limit αβ defined in (1.2).

Proof of Proposition 6.1, given existence of (1.2). For every n large, every x ∈ L0∩Λn, we claim that
we have the comparability of events: there exists εβ vanishing as β →∞ such that

(1− εβ)µn(Axh) ≤ µn(ht(Px) ≥ h) ≤ (1 + εβ)µn(Axh) . (6.3)

(This indicates that the connectivity event Axh serves as a good proxy for the relevant event {ht(Px) ≥ h}:
refer to Figure 5 for examples of configurations in {ht(Px) ≥ h}c ∩Axh (left) and {ht(Px) ≥ h} ∩ (Axh)c.)

Letting Ah = Axh, on the one hand, by Definitions 2.16–2.18, we have

Ah ∩ {ht(Px) ≥ 0} ⊂ {ht(Px) ≥ h} ;

since Fx = ∅ implies ht(Px) ≥ 0, by (2.4), µn(ht(Px) ≥ 0) ≥ 1 − εβ , and the FKG inequality implies the
left-hand side of (6.3). On the other hand, given {ht(Px) ≥ h}, the event (Axh)c implies that there is a
(nearest-neighbor) connected component of minuses separating x+ (0, 0, 1

2 ) from the inner boundary of the

pillar, and in particular, from height h, in the slab C(Z2 × J0, hK). If ht(Px) ≥ h ≥ 1, this is in the plus
phase of the Ising model with interface I, and thus the probability of such a half-bubble of minuses is at
most the probability that x + (0, 0, 1

2 ) is not ∗-connected by plus sites to ∞ in C(Z2 × J0,∞K) under µ+
Z3 ;

this probability is in turn at most εβ by a classical Peierls argument. Thus, we can express

µn(ht(Px) ≥ h) = µn(ht(Px) ≥ h,Axh) + µn(ht(Px) ≥ h, (Axh)c)

≤ µn(Axh) + εβµn(ht(Px) ≥ h) ,

from which the right-hand side of (6.3) follows. It remains to show that the limit (6.2) is given by αβ .
By Corollary 6.4 and the fact that the distance from xh to the boundary grows faster than h, if we

show (6.1) for one such sequence of xh, it implies it for every such sequence (the error e−cd(xh,∂Λnh ) vanishes
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after taking a logarithm, dividing by h and sending h→∞). Now take a fixed x, say ( 1
2 ,

1
2 , 0) and any two

sequences nh and mh such that nh
h and mh

h go to infinity. By (6.3), and Corollary 6.4, the following limits
are equal (if they exist),

lim
h→∞

− 1

h
logµnh(Ah) = lim

h→∞
− 1

h
logµmh(Ah) ,

and since this holds for every sequence mh � h, both are equal to the limit in (1.2). Finally, since the
upper and lower bounds of Proposition 2.29 on µn(ht(Px) ≥ h) hold for all sufficiently large h and are both
independent of n, it is clear that for every β > β0, we have αβ ∈ [4β − C, 4β + e−4β ]. �

Both (1.2) and Proposition 6.1 would follow if we show for a fixed x, say ( 1
2 ,

1
2 , 0), and some sequence

nh � h, that the limit (6.2) exists, and call it αβ . To see the existence of (6.2), we rely on the fact that
Ah is an increasing event; we would like to leverage the monotonicity and FKG property of the Ising model
to show sub/super multiplicativity of µnh(Ah). The problem with this is that on the one hand, the event
of reaching a height h1 gives positive information towards the event of going from height h1 to h2, while on
the other hand, the Ising measure µ∓nh near height h1 is much more negative than it is near height 0. We

overcome this by a careful revealing procedure, that exposes the plus connected component of x + (0, 0, 1
2 )

and controls the amount of positive information obtained by this revealing via the estimates of Sections 4–5.

Proposition 6.7. For every β > β0, for every h1 large, and h2 ∈ J 1
2h1, 2h1K if x is such that

d(x,∂Λnh )

h →∞,
then

logµnh1+h2
(Ah1+h2

) ≤ logµnh1
(Ah1

) + log µnh2
(Ah2

) +O(log2 [h1 + h2]) .

Let us first conclude the proof of (1.2) and in turn, Proposition 6.1, by applying an approximate version
of Fekete’s sub-additivity lemma.

Proof of (1.2) in Theorem 1. By an approximate version of Fekete’s Lemma ([22, Theorem 23], also,
see [46, Theorem 1.9.2]), since

∫
t−2(log t)2dt <∞, Proposition 6.7 implies that

lim
h→∞

1

h
µnh(Ah) = αβ

for some αβ ∈ [−∞,∞], and by the above proof of Proposition 6.1, this αβ is also the same limit as
in (6.1). As argued above, this implies that αβ ∈ [4β −C, 4β + e−4β ] for some universal constant C given in
Proposition 2.29, so αβ/β → 4 as β →∞. �

We now turn to proving the approximate sub-additivity of the sequence (logµnh(Ah))h.

Proof of Proposition 6.7. Recall that we may fix x = ( 1
2 ,

1
2 , 0) and set Ah = Axh. We will also be interested

in the vertical shift of Ah, defined by

θh1Ah2 = θh1A
x
h2

=

{
σ : x+ (0, 0, h1 + 1

2 )
+←−−−−−−−−→

Z2×Jh1,h1+h2K
L
h1+h2−

1
2

}
.

By translation, it is evident that µ∓n (θh1
Ah2

) = µ∓,−h1
n (Ah2

), where (∓,−m) boundary conditions are those
that are plus on ∂Λ∩L<−m and minus on ∂Λ∩L>m. For every n, by monotonicity in boundary conditions,

µ∓,−h1
n (Ah2) ≤ µn(Ah2) .

Finally, denote by P the ∗-connected plus component of x + (0, 0, 1
2 ) in J−nh1+h2

, nh1+h2
K2 × J0, h1K, and

notice, crucially, that on the event that ht(Px) ≥ 0, this plus component satisfies P ⊂ σ(Px).
Our goal is to say that conditionally on a connected plus component P reaching height h1, the probability

of reaching a further height h1 + h2 is at most µ∓,−h1
n (Ah2

) ≤ µn(Ah2
). This does not hold true, as the fact

that P reached height h1 contains positive information. We define a set Γx,h1 of plus components P which,
due to our structural results on tall pillars, has positive probability on the event Ah1+h2 , such that for every
P ∈ Γx,h1

, the positive information obtained from revealing P is not too large.
More precisely, let Γx,h1

be the event that P satisfies (for C,K to be chosen sufficiently large later)

(1) its intersection with Lh1− 1
2

is at most a single cell,

(2) its bounding face-set has size at most Ch1,
(3) its intersection with L 1

2
has diameter at most K log h1.

(Notice that Γx,h1
is a decreasing event.) The proposition will follow from the following two claims.
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Claim 6.8. For every β > β0, there exist choices of C,K above, such that for every h1 and h2 ∈ J 1
2h1, 2h1K

sufficiently large, as long as limh→∞
nh
h =∞, we have

µnh1+h2
(Ah1+h2

,Γx,h1
) ≤ eCβ(K log h1)2

µnh1
(Ah1

)µnh2
(Ah2

) .

Claim 6.9. For every β > β0, there exists a constant c > 0 and choices of C,K above, such that for every
h1 and h2 ∈ J 1

2h1, 2h1K sufficiently large, as long as limh→∞
nh
h =∞, we have

µnh1+h2
(Ah1+h2

,Γx,h1
) ≥ cµnh1+h2

(Ah1+h2
) .

Clearly, combining Claims 6.8–6.9 and taking logarithms on both sides concludes the proof. For ease of
notation, set h = h1 + h2.

Proof of Claim 6.8: Since h1 and h2 are comparable, and nh is such that it diverges faster than h, by
Corollary 6.4 and the equivalence (6.3), as argued before, incurring errors that are decaying faster than any
exponential in h, we can switch from µnh to µnh1

and µnh2
; thus it will suffice for us to show the inequality

µnh(Ah,Γx,h1
) ≤ eCβ(K log h1)2

µnh(Ah1
)µnh(Ah2

) .

We begin by using the domain Markov property, the containment Ah1
⊃ Ah, and the measurability of

Ah1
∩ Γx,h1

, and in particular P, with respect to σJ−nh,nhK2×J0,h1K to express

µnh(Ah,Γx,h1
) = µnh(Ah1

,Γx,h1
)EP

[
µnh

(
Ah |P) | Ah1

∩ Γx,h1

]
≤ µnh(Ah1)EP

[
µnh

(
θh1A

Y
h2
|P) | Ah1 ∩ Γx,h1

]
, (6.4)

where Y ∈ L0 is the projection of the singleton dictated by item (1) of Γx,h1
when Ah1

∩ Γx,h1
occurs. The

expectations are with respect to the law of P under µnh .

We need to bound the latter term on the right-hand side of (6.4) by the quantity eCβ(K log h1)2

µnh(θh1
Ah2

)
to obtain the claim. We investigate this latter term as follows: notice that since Ah1

∩ Γx,h1
are measurable

with respect to the plus ∗-connected component P, we can condition on P ∈ Ah1
∩ Γx,h1

by starting from
the site at x+ (0, 0, 1

2 ) and only revealing its ∗-connected plus-component in Λnh,nh,h1 ∩ L>0.

This revealing process exposes P, along with minus vertices along its entire boundary (sites in C(Z3 \P)
that are ∗-adjacent to P) inside Λnh,nh,h1

∩ L>0. Let σ(P) ⊂ Λnh,nh,h1
∩ L>0 be the set of sites “interior

to” P, so that if the revealing procedure revealed a finite (nearest-neighbor) connected component of minus
spins, corresponding to a minus bubble in Λnh,nh,h1 ∩ L>0, set them to plus and continue revealing their
interior; in this manner, σ(P) are the sites which we know to be in the plus phase given P.

Let P∓ boundary conditions on Λnh,nh,∞ \ σ(P) be the ∓ boundary conditions that additionally have
plus spins in all of σ(P), and minus spins along the boundary of σ(P) in Λnh,nh,h1

∩ L>0. By domain
Markov, these boundary conditions are equivalent to those that have the same minus spins, but only set
σ(P) ∩ L 1

2
and Y + (0, 0, h1 − 1

2 ) to plus. Then by monotonicity and the FKG inequality, we have that

EP [µnh(θh1
AYh2
|P) | Ah1

∩ Γx,h1
] ≤ EP

[
µP∓

nh
(θh1

AYh2
) | Ah1

∩ Γx,h1

]
. (6.5)

But then, we are able to express for any such P in Ah1
∩ Γx,h1

,

µP∓

nh
(θh1

AYh2
) ≤ µP+

nh
(θh1

AYh2
) ≤ eCβ(|σ(P)∩L 1

2
|+1)

µnh(θh1
AYh2

)

where P+ boundary conditions are ∓ boundary conditions that additionally have plus spins in σ(P) ∩ L 1
2

and Y + (0, 0, h1 − 1
2 ); here, the first inequality was by monotonicity, and the second inequality holds for

some universal constant C, by application of the finite energy property of the Ising model to set all spins at
height 1

2 in σ(P) and the spin at Y + (0, 0, h1 − 1
2 ) to be plus. As noted earlier, for every Y ∈ L0,

µnh(θh1
AYh2

) ≤ µnh(AYh2
) .

Since P ∈ Γx,h1 , the distance |Y − x| ≤ Ch1; then deterministically d(Y, ∂Λnh) is proportional to
d(x, ∂Λnh) so that by the coupling of Corollary 6.4 and the comparison (6.3), up to an additive error of
exp[−cd(Y, ∂Λnh)], which goes to zero faster than any exponential decay in h, we can replace µnh(AYh2

) by
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µnh(Axh2
) = µnh(Ah2). Plugging this into (6.4), and using the inequality (6.5), we see that

µnh(Ah,Γx,h1
) ≤ µnh(Ah1

) · µnh(Ah2
) · EP

[
e
Cβ(|σ(P)∩L 1

2
|+1) | Ah1

∩ Γx,h1

]
≤ µnh(Ah1

)µnh(Ah2
) sup

P∈Ah1
∩Γx,h1

exp
[
Cβ(|σ(P) ∩ L 1

2
|+ 1)

]
.

By definition of Γx,h1 , any plus component P in Γx,h1 has diam(P ∩ L 1
2
) ≤ K log h1 for some sufficiently

large (but independent of other parameters) K, so that |σ(P) ∩ L 1
2
| ≤ (K log h1)2, concluding the proof.

Proof of Claim 6.9: We wish to lower bound the probability µnh(Γx,h1
| Ah). We will use the equiva-

lence (6.3) to translate the conditioning on Ah to conditioning on {ht(Px) ≥ h}. Let us express,

µnh(Γx,h1 ,ht(Px) ≥ h) = µnh(Γx,h1 , Ah,ht(Px) ≥ h) + µnh(Γx,h1 , A
c
h,ht(Px) ≥ h)

≤ µnh(Γx,h1 , Ah) + µnh(Γx,h1 ,ht(Px) ≥ h)µnh(Ach | Γx,h1 ,ht(Px) ≥ h)

≤ µnh(Γx,h1
, Ah) + µnh(Γx,h1

,ht(Px) ≥ h)
µnh(Ach,ht(Px) ≥ h)

µnh(ht(Px) ≥ h,Γx,h1
)
.

Assume for the moment that we also have that for every δ > 0 there is h large enough such that for the
appropriate choice of sufficiently large C and K,

µnh
(
Γx,h1

| ht(Px) ≥ h
)
≥ 1− δ . (6.6)

Then, using also that µnh(Ach | ht(Px) ≥ h) ≤ 1/2 for β large enough (as mentioned above, this is at most
εβ by the classical Peierls argument), we would obtain

µnh(Γx,h1
, Ah) ≥ [1− 1

2(1−δ) ]µnh(Γx,h1
,ht(Px) ≥ h) ≥ (1− δ)[1− 1

2(1−δ) ]µnh(ht(Px) ≥ h)

≥ 1
2 (1− δ − 1

2 )µnh(Ah)

by (6.3). Therefore, it suffices for us to show (6.6). For the choice of T = 1
2h, we can express,

µnh(Γcx,h1
| ht(Px) ≥ h) ≤ µnh(Icx,T | ht(Px) ≥ h) + µnh(Īcx,T | Ix,T ,ht(Px) ≥ h)

+ µnh(Γcx,h1
| Īx,T ,ht(Px) ≥ h) .

The first term on the right-hand side is o(1) as h→∞ as long as β is sufficiently large by Lemma 3.3. The
second term is bounded from above by O(e−cβh) for some universal c > 0 by Remark 3.16. For the third
term, we can union bound by the conditional probabilities of violating each of the three events constituting
Γx,h1 ; moreover, it suffices to bound the corresponding probabilities for Px since σ(Px) ⊃P.

The conditional probability of violating item (2) of the definition of Γx,h1
is simply the probability of

the base having surface area at least (C − 2R0)h1, since we are conditioning on the spine being tame; by

Proposition 5.9 and the fact that h1 and h are comparable, this is O(exp(−cβh1/3
1 )) as long as C sufficiently

large. The conditional probability of item (3) of Γx,h1 is bounded by the conditional probability of the base
having diameter at least K log h which is also o(1) in h as long as K is large enough, by Proposition 5.9.
Finally, the conditional probability of item (1) is bounded by the probability of the base having height at
least h1, which is again o(1) since h is comparable to h1, or the increment intersecting height h1 in the spine
being non-trivial, which is at most δ/2 for β > β0 by Proposition 4.1.

Combining these estimates, one obtains the desired for β > β0 once h is large enough. �

6.3. Law of large numbers for the maximum. In this section we use Proposition 6.1 to obtain a law
of large numbers for the maximum of the 3D interface on Λn,n,∞. The proof follows from a simple second
moment method; the fact that the correlations between large deviations of the pillar above x and y decays
exponentially in |x − y|, follows from the equivalence between groups of walls and pillars, and the decay of
correlations between groups of walls shown in Section 6.1.

Proof of (1.1) in Theorem 1. Fix αβ to be that given by (6.1) of Theorem 6.1, equal to (1.2). We need
to show that for every ε > 0,

lim
n→∞

µn

( 1

log n
max
x∈L0

ht(Px) ≤ 2

αβ
+ ε
)

= 1 , and lim
n→∞

µn

( 1

log n
max
x∈L0

ht(Px) ≥ 2

αβ
− ε
)

= 1 .
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Upper bound: To see an upper bound on the maximum of the interface, we use a union bound as follows:
for any two sequences an and Kn going to ∞ as n→∞, we can write

µn
(

max
x∈L0

ht(Px) ≥ Kn

)
≤

∑
x: d(x,∂Λn)≤anKn

µn(ht(Px) ≥ Kn) +
∑

x: d(x,∂Λn)≥anKn

µn(ht(Px) ≥ Kn) .

For all of the first summands, we use the estimate of Theorem 2.26, that for every x ∈ L0 ∩ Λn (including
those close to the boundary ∂Λn), the first sum is bounded above by∑

d(x,∂Λn)≤anKn

µn(ht(Px) ≥ Kn) ≤ 4annKn exp(−(4β − C)Kn) ,

for some universal constant C. For the second summands, since x is such that d(x,Λn)
Kn

≥ an which goes to

infinity as n→∞, the conditions of (6.1) of Proposition 6.1 are met, so as long as anKn � n,∑
x: d(x,∂Λn)≥anKn

µn(ht(Px) ≥ Kn) ≤ (n− anKn)2 exp(−αβKn + Tn) ,

for some sequence Tn = o(Kn). Taking

Kn =
2

αβ
log n+ κn ,

for some sequence κn = o(Kn) to be chosen subsequently in terms of Tn, we see that

µn

(
max
x∈L0

ht(Px) ≥ Kn

)
≤ Cann log ne

− 2(4β−C)
αβ

logn
+ n2e−2 logn−αβκn+Tn .

Since αβ − 4β ∈ [−C, e−4β ], as long as β is sufficiently large, we have that 2(4β−C)
αβ

> 1, in which case the

first term is o(1) so long as, say, an < n
4β−C
αβ
− 1

2 . At the same time, if we take κn proportional to Tn such
that κn

Tn
> 1

αβ
uniformly in n, the latter term is also o(1). Since Tn = o(Kn), also κn = o(Kn), so that

Kn ≤ ( 2
αβ

+ ε) log n for every ε > 0 for large enough n.

Lower bound: In order to obtain the matching lower bound, we use an easy second moment argument.
Fix any small ε > 0 and take

Kn =
( 2

αβ
− ε
)

log n .

Now, begin by defining the subset of faces in L0 ∩ Λn,

L0 =
{

(x1, x2, 0) ∈ L0 : x1 = 1
2 + ibK3

nc, x2 = 1
2 + jbK3

nc where (i, j) ∈ J1− n
2K3

n
, n

2K3
n
− 1K2

}
.

Then, we can define the random variable,

Z = ZKn =
∑
x∈L0

1{Ex} , where Ex = {ht(Px) ≥ Kn} .

First of all, notice that for the above choice of Kn, we have that for n sufficiently large,

E[Z] ≥
( n

K3
n

)2

e−αβKn−Tn ≥
( n

K3
n

)2

e−2 logn+εαβ logn−Tn ≥ nδ ,

for some δ > 0 (small depending on ε), since Tn = o(Kn) = o(log n).
We now wish to do a second moment estimate for Z and use the fact that the events therein are weakly

correlated (exponentially decaying in their distance), to show that for Kn as above with any ε > 0,

P(Z > 0]) ≥ (E[Z])2

E[(Z)2]
≥ 1− o(1) . (6.7)

Expanding out E[Z2] = E[Z] +
∑
x 6=y∈L̄0

µn(Ex, Ey), by Corollary 6.6, we have

|µn(Ex)µn(Ey)− µn(Ex, Ey)| ≤ ‖µn(Px ∈ ·)µn(Py ∈ ·)− µn(Px ∈ ·,Py ∈ ·)‖tv ≤ e−cK
2
n ,
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which is smaller than any polynomially decaying function of n by the choice of Kn and the fact that
|x− y| ≥ 1

4K
3
n. Therefore, we can bound∑

x,y∈L̄0:x 6=y

µn(Ex, Ey) ≤
∑

x,y∈L̄0,x 6=y

[µn(Ex)µn(Ey) + e−cK
2
n ] ≤ (E[Z])2 +O(n2e−cK

2
n) .

Plugging this bound in, we see that as n→∞,

(E[Z])2

E[Z2]
≥ (E[Z])2

E[Z] + (E[Z])2 + o(1)
→ 1 ,

as long as E[Z] is diverging, which as noted earlier, is indeed the case for our choice of Kn. �

7. Finer properties of the increment sequence of the spine

In this section, we begin to analyze the shape of the pillars of the interface that attain the maximum of
Section 6.3. We show that for tall pillars consisting of T increments, their spine can be decomposed into an
asymptotically (as you get further from the base or tip) stationary sequence of weakly mixing increments.
In particular, the increment sequence, viewed from the (T/2)-th increment converges weakly to a stationary
bi-infinite sequence of increments, with polynomially decaying bounds on its mixing rate.

Since this section (and most of the remainder of the paper) is concerned with the properties of pillars
under the event Īx,T , let us henceforth take any sequence n = nT and x = xT satisfying nT � T and
d(xT , ∂ΛnT )� T and denote the Ising measure on ΛnT conditional on ĪxT ,T by

πT (·) := µn(· | Īx,T ) .

In §7.1, we prove a spatial mixing estimate for the increment sequence (X1, ..,XT ):

Proposition 7.1. For every γ, there exist β0,K, and C such that for every β > β0 and K log T ≤ j < k ≤ T ,

sup
Ej⊂Xj−K log T ,Ek⊂XT−k

∣∣πT ((XK log T , . . . ,Xj) ∈ Ej , (Xk, . . . ,XT ) ∈ Ek)

− πT ((XK log T , . . . ,Xj) ∈ Ej)πT ((Xk, . . . ,XT ) ∈ Ek)
∣∣ ≤ C|k − j|−γ .

In §7.2, we prove that the increment sequence is asymptotically stationary away from the base and the tip.

Proposition 7.2. For every γ, there exist β0,K, and C such that for every β > β0, every K log T ≤ j ≤ T
and K log T ′ ≤ j′ ≤ T ′, and every s ≤ (T − j) ∧ (T ′ − j′),

sup
E∈Xs

|πT ((Xj , . . . ,Xj+s) ∈ E)− πT ′((Xj′ , . . . ,Xj′+s) ∈ E)|

≤ C
[
(j −K log T ) ∧ (j′ −K log T ′)

]−γ ∨ [(T − j − s) ∧ (T ′ − j′ − s)
]−γ

.

In §7.3 we combine Propositions 7.1–7.2, to define a limiting distribution on increment sequences.

Corollary 7.3. For every γ large, let β > β0 where β0 is the one given by Propositions 7.1–7.2 for that γ.
There exists a stationary distribution ν = νβ on XZ so that, if aT has (aT ∨ (T − aT ))/log T →∞ as T →∞,
then the law of (. . . ,XaT−1,XaT ,XaT+1, . . .) under πT converges weakly to ν((. . . ,X−1,X0,X1, . . .) ∈ ·).
In particular, the distribution ν satisfies

(1) There exists c > 0 (independent of β) such that ν(m(X0) ≥ r) ≤ exp[−cβr] for every r.
(2) There exists C = Cβ such that ‖ν(X0 ∈ ·,Xk ∈ ·)− ν(X0 ∈ ·)ν(Xk ∈ ·)‖tv ≤ Ck−γ for every k.

The key step in the proofs of Propositions 7.1–7.2 is the use of what we call “two-to-two” maps, which
are bijections on the set of pairs of interfaces Īx,T × Īx,T , in contrast to all the maps we have applied up
to this point. The reason for this is that any “one-to-one” map Φ that changes an increment Xi sustains a
multiplicative cost of e±Cm(Xi) in the ratio µn(I)/µn(Φ(I)), which would overwhelm the upper bounds we
wish to attain. “Two-to-two” maps give us a mechanism of avoiding any such costs, and ensuring all faces
in the pair (I, I ′) are identified with faces in Φ(I, I ′) with which they have congruent local neighborhoods.
We explain this in more detail in Sections 7.1.1–7.2.1.
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2L τL

X′
k

Xk

X′
j

Xj
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Φmix = Φ2
1 × Φ1

2

Figure 11. The map Φmix = Φ2
1 × Φ1

2 acting on a pair of increment sequences in Γ∅,L

7.1. Proof of Proposition 7.1: mixing properties of the increment sequence. We wish to show
that the correlations between the j-th and k-th increments decay polynomially fast in their distance, with
the exponent of the polynomial increasing with β.

Fix any γ and let K be such that if cB is the constant from Proposition 5.1, cBβK > γ. Next, fix
K log T < j < k < T , and let L = d 4γ

c̄ log |k − j|e; due to our freedom to take C as desired, we may assume

without loss that |k − j| is sufficiently large. Fix any Ej ∈ Xj−K log T , Ek ∈ XT−k, and, in order to simplify
notation, let us denote the tuples Zj = (XK log T , . . . ,Xj) and Zk = (Xk, . . . ,XT ), with fixed instantiations
Zj = (XK log T , . . . , Xj) and Zk = (Xk, . . . , XT ).

Let Ajk denote the set of all T -admissible truncated interfaces, increment sequences (Xi)i∈Jj+1,k−1K, and
remainder increment X>T . For any triplet (A,Zj , Zk) where A = Ajk ∈ Ajk, we write πT (Zj , Zk, A) to de-
note the probability that the random interface under πT has Zj = Zj ,Zk = Zk and has Itr, (Xi)i∈Jj+1,k−1K
and X>T agreeing with Ajk.

We begin by expressing the left-hand side in the proposition as∑
Zj∈Ej ,Zk∈Ek

Z′j∈X
j−K log T ,Z′k∈X

T−k

[ ∑
A,A′∈Ajk

π(Zj , Zk, A)πT (Z ′j , Z
′
k, A

′)−
∑

Ã,Ã′∈Ajk

πT (Zj , Z
′
k, Ã)πT (Z ′j , Zk, Ã

′)
]

Define a set of nice interfaces ΓL for which we have good decorrelation between Zj and Zk. First, let
Γ∅,L = Γ∅,L(j, k) be the set of pairs of increment sequences XT × XT for which there is a stretch of 2L
consecutive indices between j and k on which both A and A′ have trivial increments. That is,

Γ∅,L = {((Xi)i≤T , (X
′
i)i≤T ) : ∃τL ∈ Jj, kK, (XτL−L, . . . , XτL+L) = (X ′τL−L, . . . , X

′
τL+L) = (X∅, . . . , X∅)}.

Abusing notation, under the event Γ∅,L, let τL be the smallest index greater than j such that the stretch of
length 2L centered at τ satisfies the condition of Γ∅,L. We can now define a map Φmix on pairs of increment
sequences, that swaps the increment stretches above τL: see Figure 11 for a visualization.

Definition 7.4. For each j, k, let Φmix = Φmix(j, k) : (XT × Xrem)2 → (XT × Xrem)2 be given as follows.

For any pair of increment sequences (X(1), X(2)) = ((X
(1)
i )i≤T , X

(1)
>T , (X

(2)
i )i≤T , X

(2)
>T ) let Φmix(X(1), X(2)) =

(Φ2
1(X(1), X(2)),Φ1

2(X(1), X(2))) be the pair of increment sequences attained as follows: if (X(1), X(2)) /∈
Γ∅,L, let Φmix(X(1), X(2)) = (X(1), X(2)); otherwise

(1) Find the first run of 2L consecutive indices between j and k on which both X(1) and X(2) are trivial
increments, and call the middle index of this run τL ∈ Jj, kK.

(2) Let Φ2
1(X(1), X(2)) have increment sequence given by

Φ2
1(X(1), X(2)) = (X

(1)
1 , . . . , X

(1)
j , . . . , X(1)

τL , X
(2)
τL+1, . . . , X

(2)
k , . . . , X

(2)
>T ) .
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(3) Let Φ1
2(X(1), X(2)) have increment sequence given by

Φ1
2(X(1), X(2)) = (X

(2)
1 , . . . , X

(2)
j , . . . , X(2)

τL , X
(1)
τL+1, . . . , X

(1)
k , . . . , X

(1)
>T ) .

Abusing notation, we define Φmix on Īx,T × Īx,T that uses the same truncations of the pair (I, I ′) and applies
the map Φ to their respective pairs of increment sequences in their pillars Px and P ′x. If the two interfaces
are both tame and also satisfy τsp ∨ τsp′ ≤ K log T , the resulting pair of interfaces would be in Ix,T × Ix,T .

7.1.1. Strategy of the map Φmix. We briefly motivate the construction of the map Φmix. We first describe
the complications that would arise if we used a map that sent one interface to another interface, instead of
acting on pairs of interfaces. In order to prove a mixing property on the increment sequence, one would want
to construct a map which maps an interface with an increment Xj and an increment Xk, to an interface
with some other increment X ′j and the same Xk, say having m(Xj) = m(X ′j). If the weight distortion of

such a map is o(|k − j|−c) for some c > 0, we will have shown that that conditioning on the presence of the
increment Xj vs. X ′j does not influence the conditional probability of Xk. Unlike the maps in Sections 4–5

there is no energy gain in such a map; however, the replacement of Xj by X ′j inevitably costs an eC(|Xj |∨|X′j |)

in the weight ratio, coming from the uniform bound on g (2.2).
In order to obtain ratios of weights that are o(1) in |k − j|, we use a second interface, whose increment

sequence has X ′j and X ′k, and we demonstrate that the sequence is mixing by showing that the probabilities
of a pair of interfaces having increment pairs {(Xj , Xk), (X ′j , X

′
k)} is close to the probability of the pair

having {(Xj , X
′
k), (X ′j , Xk)}. Then, in the control of the g term, we could identify faces from Xj , Xk with

one another and X ′j , X
′
k with one another across the pairs of interfaces. However, a naive application of

this kind of map would lead to a 1± εβ weight distortion, rather than one that is 1 + o(1) in |k − j|. More
precisely, every increment would feel the change in the g term in terms of its distance to the increment where
we spliced the interface to perform the swap—in particular, the increments near the splicing location, if they
disagree between the pair of interfaces, will contribute a constant, but not o(1) to the weight distortion.

To improve this to something decaying polynomially in |k − j|, the map Φmix relies on the existence of
a sequence of consecutive increments of logarithmic length in |k − j|, that are trivial in both interfaces. In
that case, after the splicing, for every face in either of the interfaces, the radius of congruence is bounded
by half the length of the consecutive sequence of interfaces, and by (2.3), the weight distortion is at most
polynomially decaying in |k − j| for large enough β, as desired. Refer to Figure 11 for a visualization.

7.1.2. Analysis of the map Φmix. We now use the map Φmix to define a good set of pairs of increment
sequences, refining the set Γ∅,L, on which we will have good control on the ratio of probabilities under
Φmix. Let ΓL be the set of (I, I ′) ∈ Īx,T × Īx,T such that its pair of increment sequences are in Γ∅,L, and
additionally having

(1) Their source point indices τsp, τsp
′ are both less than K log T ; denote this event Γτsp .

(2) The pair of interfaces (I, I ′) are such that Φmix(I, I ′) are both tame; denote this event Γ̄.
(3) Their increment sequences (Xi) and (X ′i) satisfy

|F(X>T )|e−c̄(T+1−τL+L) +
∑
i

|F(XτL+i)|e−c̄(L+i) ≤ e−c̄L/2 .

and analogously for (X ′i); denote this event Γi>τL .

We will separately consider the cases where (A,Zj , Zk) × (A′, Z ′j , Z
′
k) and (Ã, Z ′j , Zk) × (Ã′, Z ′k, Zj) are

in ΓL and the cases when they aren’t: without loss of generality, let us consider the former pairs (the latter
estimate would hold after swapping Z ′j with Zj). The contribution from pairs of interfaces where one is not
in ΓL are bounded above by the sum of∑

Zj∈Ej ,Zk∈Ek,Z′j ,Z
′
k,A,A

′:

(A,Zj ,Zk),(A′,Z′j ,Z
′
k)∈ΓcL

πT (Zj , Zk, A)πT (Z ′j , Z
′
k, A

′) ≤ π⊗2
T (ΓcL) .

Lemma 7.5. For the choices of γ,K,L above, for β > β0, we have π⊗2
T (ΓcL) ≤ |k − j|−γ .

Proof of Lemma 7.5. By a union bound, we can express

π⊗2
T (ΓcL) ≤ 2πT (Γcτsp) + π⊗2

T (Γ̄c | Γτsp) + π⊗2
T (Γc∅,L | Γτsp) + π⊗2

T (Γi>τL | Γ∅,L,Γτsp) .
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By Proposition 5.1 and the fact that τsp ≤ ht(vτsp) + 1
2 , we have that πT (Γcτsp) ≤ e−cBβK log T ≤ T−γ . In

order for Φmix(I, I ′) to not be tame, one of mT (Sx) or mT (S ′x) must be at least r0/2; by Lemma 3.15 and
the fact that r0/2 > 8T , then, π⊗2

T (Γ̄ | Γτsp) is at most 2e−cβT for some c > 0. We now turn to the latter
two terms above. By Proposition 4.1, in particular the conditional version of it, given any Itr (in particular
any τsp) the sequence (1{Xi = X∅})i≥τsp (which includes the increments between indices j and k by Γτsp)
stochastically dominates a sequence of independent Ber(1 − εβ) coin tosses, for some εβ going to zero as

β → ∞. As a consequence, π⊗2
T (Γc∅,L) is at most the probability that a set of |k − j| i.i.d. Ber((1 − εβ)2)

coin flips has no sequence of 2L consecutive ones. Thus, for large enough β, (depending on γ, c̄)

π⊗2
T (Γc∅,L | Γτsp) ≤ (1− (1− εβ)4L)|k−j|/(2L) ≤ exp

[
−(1− εβ)4L|k − j|/(2L)

]
≤ exp

[
−|k − j|3/4

]
.

By Corollary 4.2, conditional on the entire increment sequence up to τL+L (which contains the information
of τsp,Γτsp ,Γ∅,L the concentration estimate on the excess areas of subsequent increments holds (uniformly in
the choice of τL). Combining these, one sees the bound (where the conditioning on Γ∅,L(τL) is to say that
Γ∅,L happens for that specific τL),

π⊗2
T (Γi>τL | Γ∅,L,Γτsp)

≤ 2 sup
Itr∈Γτsp ,τL

πT

(
|F(X>T )|e−c̄(T+1−τL+L) +

∑
i

|F(XτL+i)|e−c̄(L+i) ≥ e−c̄L/2 | Itr,Γ∅,L(τL)
)
,

which is at most 2 exp(−cβc̄L/2); therefore, π⊗2
T (ΓcL) ≤ exp[−|k − j|3/4] + 2 exp[−cβc̄L/2].

Our choice of L was precisely such that as long as βc > 1, the latter quantity is at most |k− j|−2γ , which
dominates the first term. �

On the other hand, when both pairs of triplets ((A,Zj , Zk), (A′, Z ′j , Z
′
k)) and ((Ã, Z ′j , Zk), (Ã′, Z ′k, Zj))

are in ΓL, we are left to control∑
Zj∈Ej ,Zk∈Ek
Z′j ,Z

′
k,A,A

′

(A,Zj ,Zk),(A′,Z′j ,Z
′
k)∈ΓL

πT (Zk, Zj , A)πT (Z ′k, Z
′
j , A

′)−
∑

Zj∈Ej ,Zk∈Ek
Z′j ,Z

′
k,Ã,Ã

′

(Ã,Zj ,Z
′
k),(Ã′,Z′j ,Zk)∈ΓL

π(Zk, Z
′
j , Ã

′)π(Z ′k, Zj , Ã) .

Now that we have restricted to tame interfaces, with well-behaved increment sequences, we can naturally
view Φmix as a map on (Īx,T × Īx,T ) ∩ ΓL. This restriction yields the following correspondence.

Claim 7.6. The restriction of Φmix to (Īx,T × Īx,T ) ∩ ΓL is a bijection from (Īx,T × Īx,T ) ∩ ΓL to itself.

Proof of Claim 7.6. Since Φmix = Φ−1
mix, it suffices to show that for every pair (I, I ′) ∈ (Īx,T × Īx,T ) ∩ ΓL,

we have Φmix(I, I ′) ∈ (Īx,T × Īx,T ) ∩ ΓL. Indeed, as mentioned, the fact that (I, I ′) ∈ Γτsp ensures that
Φmix(I, I ′) ∈ Ix,T ∩ Ix,T ; the fact that (I, I ′) ∈ Γ̄, by definition, guarantees that Φmix(I, I ′) are both tame.
Finally, the fact that Φmix(I, I ′) remains in ΓL holds for the following reasons: (1) holds as the source points
are unchanged by the map; (2) holds as Φmix = Φ−1

mix; (3) holds for Φmix(I, I ′) since the pair of increment
sequences above τL in Φmix(I, I ′) are exactly the pair of increment sequences above τL of (I, I ′). �

With the claim in hand, notice that Φmix preserves the τL at which Γ∅,L is attained and, we have

Φmix

(
(Zj , Zk, A), (Z ′j , Z

′
k, A

′)
)

=
((
Zj , Z

′
k,Φ

2
1(A,A′)

)
,
(
Z ′j , Zk,Φ

1
2(A,A′)

))
in the sense that the Zk and Z ′k get swapped by application of the map in the manner desired, as does
everything else in the spine above index τ . Using this bijection, we rewrite the difference above as∑

Zj∈Ej ,Zk∈Ek
Z′j ,Z

′
k,A,A

′

(A,Zj ,Zk),(A′,Z′j ,Z
′
k)∈ΓL

πT (Zj , Zk, A)π(Z ′j , Z
′
k, A

′)− πT (Zj , Z
′
k,Φ

2
1(A,A′))πT (Z ′j , Zk,Φ

1
2(A,A′)) .
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Now fix Zj ∈ Ej , Zk ∈ Ek, Z ′k, Z
′
j and (A,A′) such that the above triplets are in ΓL; for ease of notation,

let Ã = Φ2
1(A,A′) and Ã′ = Φ1

2(A,A′). Consider the quantity

|πT (Zk, Zj , A)πT (Z ′k, Z
′
j , A

′)− πT (Zj , Z
′
k, Ã)πT (Z ′j , Zk, Ã

′)|

= πT (Zj , Z
′
k, Ã)πT (Z ′j , Zk, Ã

′)

∣∣∣∣µn(Zj , Zk, A)µn(Z ′j , Z
′
k, A

′)

µn(Zj , Z ′k, Ã)µn(Z ′j , Zk, Ã
′)
− 1

∣∣∣∣ ; (7.1)

since each of the triplets are in Īx,T , expressing e.g., πT (Zj , Zk, A) =
µn(Zj ,Zk,A)

µn(Īx,T )
, the contributions from

µn(Īx,T ) cancel out. Let us now focus on the difference in the absolute value in (7.1), and in particular the
ratio of the probabilities of the two pairs of interfaces. This formulation allows us to apply the machinery of
Theorem 2.21 to the pair of interfaces: for ease of notation, let us denote the interface given by (Zj , Zk, A)

by Ijk, and denote Ijk′ = (Zj , Z
′
k, Ã), Ij′k = (Z ′j , Zk, Ã

′) and Ij′k′ = (Z ′j , Z
′
k, A

′) analogously. Express

µn(Zj , Zk, A)µn(Z ′j , Z
′
k, A

′)

µn(Zj , Z ′k, Ã)µn(Z ′j , Zk, Ã
′)

=
eβ(|Ijk|+|Ij

′k′ |)

eβ(|Ijk′ |+|Ij′k|)
· e

∑
f∈Ij′k′ g(f,Ij

′k′ )+
∑
f∈Ijk g(f,Ijk)

e
∑
f∈Ij′k g(f,Ij′k)+

∑
f∈Ijk′ g(f,Ijk′ )

= exp

[ ∑
f∈Ijk

g(f, Ijk) +
∑

f∈Ij′k′
g(f, Ij

′k′)−
∑

f∈Ijk′
g(f, Ijk

′
)−

∑
f∈Ij′k

g(f, Ij
′k)

]
.

We now turn to bounding the absolute value of the exponent. Recall that τL denotes the first index of the
increment run of 2L trivial increments in both (A,A′) (and consequently also (Ã, Ã′) for the same τL).

Lemma 7.7. There is a universal C̄ such that for any pair (Ijk, Ij′k′) ∈ (Īx,T × Īx,T ) ∩ ΓL, we have∣∣∣ ∑
f∈Ijk

g(f, Ijk) +
∑

f∈Ij′k′
g(f, Ij

′k′)−
∑

f∈Ijk′
g(f, Ijk

′
)−

∑
f∈Ij′k

g(f, Ij
′k)
∣∣∣ ≤ C̄ exp

[
− c̄L/2

]
.

Let us first conclude the proof of Proposition 7.1 given Lemma 7.7. By our choice L, the right-hand side
above is at most C̄|k − j|−2γ , from which we would deduce that∣∣∣µn(Zj , Zk, A)µn(Z ′j , Z

′
k, A

′)

µn(Zj , Z ′k, Ã)µn(Z ′j , Zk, Ã
′)
− 1
∣∣∣ ≤ 2C̄|k − j|−2γ .

Since this upper bound is independent of Zj , Zk, Z
′
j , Z

′
k, A,A

′, when we sum (7.1), it factors out, and the

sum of the probabilities over some subset of interfaces in Īx,T is of course at most one. Combining this with
the contribution from terms not in ΓL yields an additional |k − j|−γ , implying the desired estimate.

Proof of Lemma 7.7. It will be important to use the structure of the map Φmix to choose the right pairing
of summands in the different sums on the left-hand side above. To that end, let us define the following
subsets of faces of the interfaces we consider: let Itr and I ′tr be the respective truncations of A and A′. Let

F jk− =
{
f ∈ Itr ∪

⋃
i≤τLF(Xi)

}
, and F jk+ =

{
f ∈

⋃
i>τL
F(Xi) ∪ F(X>T )

}
.

be the sets of all faces “below” XτL , and all faces “above” XτL respectively. In this manner, Ijk = F jk− ∪F
jk
+ ,

and we can define F j
′k′

± , F j
′k
± , F jk

′

± analogously (where whether or not j is primed indicates whether Itr or
I ′tr is used in F−). By definition, we have the equalities

F jk− = F jk
′

− , and F j
′k′

− = F j
′k
− .

Let θA,A′ be the shift map by the vector −vτL+1 + v′τL+1 (where vτL+1 is that cut-point in (Zj , A) and v′τL+1

is that in (Z ′j , A
′)) and let θA′,A be the shift by −v′τL+1 + vτL+1. Then observe that

θA′,AF
j′k′

+ = F jk
′

+ , and θA,A′F
jk
+ = F j

′k
+ .



MAXIMUM AND SHAPE OF INTERFACES IN 3D ISING CRYSTALS 49

Using this decomposition of the faces in the four interfaces, we can express∣∣∣ ∑
f∈Ij′k′

g(f, Ij
′k′) +

∑
f∈Ijk

g(f, Ijk)−
∑

f∈Ij′k
g(f, Ij

′k)−
∑

f∈Ijk′
g(f, Ijk

′
)
∣∣∣

≤
∑
f∈F jk+

|g(f, Ijk)− g(θA,A′f, Ij
′k)|+

∑
f∈F j

′k′
+

|g(θA′,Af, Ij
′k′)− g(f, Ijk

′
)|

+
∑
f∈F jk−

|g(f, Ijk)− g(f, Ijk
′
)|+

∑
f∈F j

′k′
−

|g(f, Ij
′k′)− g(f, Ij

′k)| . (7.2)

We begin by bounding the contributions of faces above XτL , i.e., the first line of (7.2); we write the
bound for one of the sums as the other will evidently be analogous:∑

f∈F jk+

∣∣g(f, Ijk)− g(θA,A′f, Ij
′k)
∣∣ ≤ ∑

f∈F jk+

K̄e−c̄r(f,Ijk;θA,A′f,I
j′k) .

By tameness of all of Ijk, Ijk′ , Ij′k, and Ij′k′ , the radius r is either attained by a face below vτsp , in which
case for a face f ∈ F(XτL + i), the radius is at least τL − τsp + i ≥ L+ i or, it is attained in the differences
between the spines (Xτsp , . . . , XτL) and (X ′τsp , . . . , X

′
τL)—but since all the increments between τL−L and τL

are trivial both in Ijk and Ij′k, this distance would be at least L+ i. The above is at most K̄ times∑
i≥1

∑
f∈F(XτL+i)

e−c̄(L+i) +
∑

f∈F(X>T )

e−c̄(T+1−τL+L) ≤
∑
i≥1

|F(XτL+i)|e−c̄(L+i) + |F(X>T )|e−c̄(T+1−τL+L) ,

and the fact that the interfaces are both in ΓL ⊂ Γi>τL implies this is at most K̄e−c̄L/2. The sum over

f ∈ F j
′k′

+ in the first line of (7.2) is handled identically. Next, we consider the contributions from the

increments below τL as well as in the truncated interface, say the faces in F jk− (the sum over f ∈ F j
′k′

− is

again identical). Notice that for these faces, the radius r is attained by a face in F jk+ ⊕ F
jk′

+ with increment
index at least τL + L, so that∑

f∈F jk−

|g(f, Ijk)− g(f, Ijk
′
)| ≤

∑
i≤L

4K̄e−c̄(L+i) +
∑

τsp≤i≤τL−L

∑
f∈Xi

∑
g∈F jk+ ∪F

jk′
+

K̄e−c̄d(f,g)

+
∑
f∈Itr

∑
g∈F jk+ ∪F

jk′
+

K̄e−c̄d(f,g) .

By tameness, the distance between any face in Itr to a face g ∈ F jk+ ∪ F
jk′

+ that is in the (τL + i′)-th
increment, is at least, τL + i′ − τsp ≥ i′ + L, so that∑

f∈F jk−

|g(f, Ijk)− g(f, Ijk
′
)| ≤ 4C̄e−c̄L +

∑
i′≥1

∑
g∈XτL+i′∪X′τL+i′

∑
f∈F(Z3)

ht(f)≤ht(vτL )

K̄e−c̄d(g,f)

≤ 4C̄e−c̄l +
∑
i′≥1

|F(Xτ+i′)| ∨ |F(X ′τ+i′)|C̄e−c̄(l+i
′) .

which is at most 5C̄e−c̄L/2 by our assumption that the interfaces are in ΓL. Combining all of these in to (7.2)
and using our choice of L yields Lemma 7.7. This completes the proof of Proposition 7.1.

7.2. Proof of Proposition 7.2: spine increments are asymptotically stationary. In this section,
we prove Proposition 7.2, showing that spine increments are asymptotically stationary in the sense that
changing the conditioning from T to T ′ and the location of an increment stretch from j = jT to j′ = j′T ′
does not change the law much as long as j and j′ are in the bulks of their respective spines. Up to the choice
of the two-to-two map, which is tailored to proving stationarity estimates here, much of the proof will match
that of the mixing and we therefore omit some repeated details.

Fix any γ, and let K be such that if cB is the constant from Proposition 5.1, cBβK > 2γ. Next fix j, j′

and s satisfying the required conditions, and let

L = d 4γ
c̄ logDe , where D = (j −K log T ) ∧ (j′ −K log T ′) ∧ (T ′ − (j′ + s)) ∧ (T − (j + s)) .
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Φstat = Φ121 × Φ212

Xj

j − τ−L

j + τ+
L j′ − τ−Lj′ − τ−L

j′ + τ+
L

Xj′

Figure 12. The map Φstat = Φ121 × Φ212 acting on a pair of increment sequences in Γ∅,L.

Due to our freedom to take C as desired, we may assume without loss that D is sufficiently large. Let
us denote the tuples Zj = (Xj , . . . ,Xj+s) and Zj′ = (Xj′ , . . . ,Xj′+s), with fixed instantiations Zj and
Zj′ in Xs. Let AT denote the set of all T -admissible truncated interfaces along with increment sequences
(Xi)i/∈Jj,j+sK and remainder increment X>T . Begin by expressing the left-hand side in Proposition 7.2 as∣∣∣∣ ∑
Zj∈E

∑
AT∈AT

π(Zj , AT )
∑

Z̃j′∈Xs,AT ′∈AT ′

πT ′(Z̃j′ , AT ′)−
∑

ÃT∈AT ,Z̃j∈Xs
πT ′(Z̃j , ÃT )

∑
Z′j∈E

∑
ÃT ′∈AT ′

πT (Zj′ , ÃT ′)

∣∣∣∣
We follow the same strategy of the proof of Proposition 7.1. Namely, define the events Γ−L and Γ+

L as the

following subsets of pairs of increment sequences (XT × Xrem)× (XT
′ × Xrem),

Γ−∅,L = {((Xi)i≤T , (X
′
i)i≤T ′) : ∃τ−L ∈ JL,D − LK s.t. Xj−τ−L +i = X ′

j′−τ−L +i
= X∅ for all i = −L, . . . , L} ,

Γ+
∅,L = {((Xi)i≤T , (X

′
i)i≤T ′) : ∃τ+

L ∈ JL+ s,D − LK s.t. Xj+τ+
L+i = X ′

j′+τ+
L+i

= X∅ for all i = −L, . . . , L} .

We can now define a map Φ that takes a pair of interfaces and swaps the increment stretch between j − τ−L
and j + τ+

L in I with the stretch between j′ − τ−L and j′ + τ+
L in I ′: refer to Figure 12 for a visualization.

Definition 7.8. For any j, j′, let Φstat = Φstat(j, j′) : (XT × Xrem)2 → (XT
′ × Xrem)2 be given as follows.

For any pair of increment sequences (X(1), X(2)) = ((X
(1)
i )i, X

(1)
>T , (X

(2)
i )i, X

(2)
>T ′ , let

Φstat(X(1), X(2)) = (Φ121(X(1), X(2)),Φ212(X(1), X(2)))

be attained as follows. If (X(1), X(2)) /∈ Γ−∅,L ∩ Γ+
∅,L, let Φstat(X(1), X(2)) = (X(1), X(2)); otherwise

(1) Find the smallest indices τ−L and τ+
L for which the events Γ−∅,L and Γ+

∅,L are satisfied.

(2) Let Φ121(X(1), X(2)) is the pair of increment sequences given by

Φ121(X(1), X(2)) =
(
X

(1)
1 , . . . , X

(1)

j−τ−L
, X

(2)

j′−τ−L +1
, . . . , X

(2)
j′ , . . . , X

(2)

j′+τ+
L

, X
(1)

j+τ+
L+1

, . . . , X
(1)
T , X

(1)
>T

)
.

(3) Let Φ212(X(1), X(2)) is the pair of increment sequences given by

Φ212(X(1), X(2)) = (X
(2)
1 , . . . , X

(2)

j′−τ−L
, Xj−τ−L +1, . . . , X

(1)
j , . . . , X

(1)

j+τ+
L

, X
(2)

j′+τ+
L+1

, . . . , X
(2)
T ′ , X

(2)
>T ′

)
.

Abusing notation, we can define Φstat on Īx,T × Īx,T that uses the same truncations of the pair (I, I ′)
but applies the map Φstat to their increment sequences in the pillars (Px,P ′x). If the two interfaces are both
tame and additionally satisfy τsp ≤ K log T and τsp

′ ≤ K log T ′, the resulting pair would be in Ix,T × Ix,T .
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7.2.1. Strategy of the map Φstat. Similarly to the mixing map, if one were to take a naive approach of
constructing a map that sends a single interface to a single interface, a possible choice would be a map that
e.g., inserts an increment X0 at the bottom of the increment sequence, shifting the remainder of the increment
sequence and showing that the weights of interfaces with Xi = X are close to those with Xi+1 = X. (Notice
that any map we construct must increase the number of increments as we wish to show not only that the
law is close to stationary in shifts for fixed T , but that it remains stationary as T → ∞.) Similar to the
explanation in Section 7.1.1, however, the addition of an increment means that, the best one could hope for
is a ratio of weights that is 1± εβ , rather than 1 + oT (1).

Instead, we use the two-to-two map which shifts an increment Xj in a spine of T increments, to a position
j′ in a spine of T ′ increments. As with Φmix, we use that j, j′ are far from 1, T ∧ T ′ to find paired stretches
of trivial increments equal distances above and below Xj and X ′j . We then splice in the middle of these
trivial increment sequences, and use them to decorrelate Xj , X

′
j from the rest of their respective interfaces,

showing that the relative weight of the pair of interfaces is almost unchanged by the map Φstat. Refer to
Figure 12 for a visualization of this map.

7.2.2. Analysis of the map Φstat. We now define, analogously to the proof of mixing, a good set of pairs of
increment sequences, denoted ΓL on which we can control the ratio of probabilities under the map Φ. Let
ΓL be the set of (I, I ′) ∈ Īx,T × Īx,T such that its pair of increment sequences are in Γ−∅,L ∩ Γ+

∅,L, and have

(1) Their source point indices satisfy τsp ≤ K log T and τsp
′ ≤ K log T ′; denote this event Γτsp .

(2) The pair of interfaces (I, I ′) are such that Φstat(I, I ′) are both tame; denote this event Γ̄.
(3) The increment sequence (Xi) satisfies the events (denoted Γi>τ−L

and Γi>τ+
L

)

|F(X>T )|e−c̄(T+1−j+τ−L +L) +
∑
i≥1

(|F(Xj−τ−L +i)|)e
−c̄(L+i) ≤ e−c̄L/2 , as well as (7.3)

|F(X>T )|e−c̄(T+1−j−τ+
L+L) +

∑
i≥1

(|F(Xj+τ+
L+i)|e

−c̄(L+i) ≤ e−c̄l/2 . (7.4)

and (X ′i) satisfies the analogous events with respect to T ′(denoted Γ′
i>τ−L

and Γ′
i>τ+

L

).

As in the proof of Proposition 7.1, we can bound the contribution from pairs of interfaces not in ΓL by

π⊗2
T (ΓcL) ≤ 2πT (Γcτsp) + π⊗2

T (Γ̄c | Γτsp) + π⊗2
T

(
(Γ−∅,L)c | Γτsp

)
+ π⊗2

T

(
(Γ+

∅,L)c | Γτsp
)

+ πT (Γc
i>τ−L

| Γ∅,L,Γτsp)

+ πT (Γc
i>τ+

L

| Γ∅,L,Γτsp) + πT ((Γ′
i>τ−L

)c | Γ∅,L,Γτsp) + πT ((Γ′
i>τ+

L

)c | Γ∅,L,Γτsp) .

The bounds on the first two terms above are identical to those in the proof of Lemma 7.5, so that their
contribution is at most T−2γ . The bounds on the third and fourth terms are as in the proof of Lemma 7.5,
noticing that on Γτsp , the sequence of indicator functions (1{Xj−i=X∅}1{X ′

j′−i=X∅})i≤D stochastically dom-

inate i.i.d. Ber((1 − εβ)2) random variables; therefore, their contribution is at most exp[−D3/4] once β is
sufficiently large (independently of j, j′). The sixth and eight terms above are also bounded as in Lemma 7.5
by 2D−2γ using the conditional version of Corollary 4.2.

A crucial difference arises in the bounds on the fifth and seventh terms, since knowledge of τ−L gives

information regarding the increment sequence above index τ−L +L (namely that there is no possible smaller

choice of τ−L ), so Corollary 4.2 does not immediately bound πT (Γc
i>τ−L

| Γ∅,L,Γτsp). Instead, we union bound

over the D possible choices of τ−L and sustaining this union bound, see that

πT (Γc
i>τ−L

| Γ∅,L,Γτsp) ≤ De−cβc̄L/2 ≤ D−2γ+1

as long as βc > 1, and likewise for πT ((Γ′
i>τ−L

)c | Γ∅,L,Γτsp). Combining all these estimates yields the desired

bound of π⊗2
T ≤ CD−γ for β sufficiently large (depending on γ and c̄).

Now that we’ve restricted to nice pairs of increment sequences, we can naturally view Φstat as a map on
(Īx,T × Īx,T ′) ∩ ΓL: as in Claim 7.6, we arrive at the following claim.

Claim 7.9. The restriction of Φstat to (Īx,T × Īx,T ′) ∩ ΓL is a bijection from (Īx,T × Īx,T ′) ∩ ΓL to itself.
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We are therefore left to bound∑
Zj∈E

∑
Z̃j′ ,AT ,AT ′

∣∣∣πT (Zj , AT )πT (Z̃j′ , AT ′)− πT
(
Φ121((Zj , AT ), (Z̃j′ , AT ′))

)
πT
(
Φ212((Zj , AT ), (Z̃j′ , AT ′))

)∣∣∣ .
In order to bound the summands above, as before, let us focus on the ratio of the probabilities under
application of Φstat, and use the machinery of Theorem 2.21.

We will use the short-hand IZA = (Zj , AT ) for the interface in Īx,T with Zj = Zj and AT elsewhere, and

IZ′A′ = (Z̃j′ , AT ′) for the interface in Īx,T ′ that has Zj′ = Z̃j′ and AT ′ elsewhere. Moreover, let

IZA
′

= Φ212(IZA, IZ
′A′) , and IZ

′A = Φ121(IZA, IZ
′A′) .

(In particular, A′ (resp., A) are interfaces of T ′ (resp., T ) increments and the Z or Z ′ in the superscript
indicates whether the increments in indices j′ − τ−L , . . . , j′ + τ+

L (resp., j − τ−L , . . . , j + τ+
L ) are those coming

from j − τ−L , .., j + τ+
L in (Z,A) or j′ − τ−L , . . . , j′ + τ+

L .) Then, for any such interfaces in (Īx,T × Īx,T ′)∩ΓL,

πT (IZA)πT (IZ′A′)
πT (IZA′)πT (IZ′A)

=
µn(IZA)µn(IZ′A′)
µn(IZA′)µn(IZ′A)

= exp
( ∑
f∈IZA

g(f, IZA) +
∑

f∈IZ′A′
g(f, IZ

′A′)−
∑

f̃∈IZ′A
g(f, IZ

′A) +
∑

f∈IZA′
g(f, IZA

′
)
)
.

Proposition 7.2 then follows from the following lemma, just as in the proof of Proposition 7.1.

Lemma 7.10. There is a universal constant C̄ such that for any pair (I, I ′) ∈ Γl, we have∣∣∣ ∑
f∈IZA

g(f, IZA) +
∑

f∈IZ′A′
g(f, IZ

′A′)−
∑

f∈IZ′A
g(f, IZ

′A)−
∑

f∈IZA′
g(f, IZA

′
)
∣∣∣ ≤ C̄ exp

(
− c̄L/2

)
.

We wish to bound the absolute value of the quantity in the exponential by pairing various subsets of
the different interfaces together in a manner that they look locally alike. We denote by FZAint the face set
of the increments in IZA between index j − τ−L and j + τ+

L and denote the two connected components of

IZA \FZAint by FZA− and FZA+ respectively. Likewise define the Fint, F− and F+ for IZ′A′ , IZA′ , IZ′A, where

if the superscript is A′, the interior will have indices j′ − τ−L and j′ + τ+
L (instead of j − τ−L and j + τ+

L ).

Notice that FZA− = FZ
′A
− and FZ

′A′

− = FZA
′

− . We can then define the shift maps θ
(1)
A,A′ which is the shift

by the vector −vj−τ−L +1 +−v′
j′−τ−L +1

(where vj−τ−L +1 is the cut-point in IZA and v′
j′−τ−L +1

is the cut-point

in IZ′A′ and θ
(2)
A,A′ which is the shift by the vector −vj+τ+

L
+ v′

j′+τ+
L

. With these definitions, we see that

θ
(1)
A,A′F

ZA
int = FZA

′

int , θ
(1)
A′,AF

Z′A′

int = FZ
′A

int , and

θ
(2)
A,A′θ

(1)
A′AF

ZA
+ = FZ

′A
+ , θ

(2)
A′,Aθ

(1)
A′AF

Z′A′

+ = FZA
′

+ .

With this decomposition, we see that∣∣∣ ∑
f∈IZA

g(f, IZA) +
∑

f∈IZ′A′
g(f, IZ

′A′)−
∑

f∈IZ′A
g(f, IZ

′A)−
∑

f∈IZA′
g(f, IZA

′
)
∣∣∣

≤
∑

f∈FZA+

∣∣∣g(f, IZA)− g(θ
(2)
A,A′θ

(1)
A′,Af, I

Z′A)
∣∣∣+

∑
f∈FZ′A′+

∣∣∣g(f, IZ
′A′)− g(θ

(2)
A′,Aθ

(1)
A,A′f, I

ZA′)
∣∣∣

+
∑

f∈FZAint

∣∣∣g(f, IZA)− g(θ
(1)
A,A′f, I

ZA′)
∣∣∣+

∑
f∈FZ′A′int

∣∣∣g(f, IZ
′A′)− g(θ

(1)
A′,Af, I

ZA′)
∣∣∣

+
∑

f∈FZA−

∣∣∣g(f, IZA)− g(f, IZ
′A)
∣∣∣+

∑
f∈FZ′A′−

∣∣∣g(f, IZ
′A′)− g(f, IZA

′
)
∣∣∣ . (7.5)

The first two terms are bounded above by O(e−c̄L/2) analogously to the contribution of faces in F jk+ in (7.2);

by construction for a face in the (j+ τ+
L + i)-th increment, the radius r(f, IZA; θ

(2)
A,A′θ

(1)
A′,Af, IZ

′A) is at least

L + i; the first L such increments have exactly four faces, and their contribution is thus at most 4C̄e−c̄L,
while the contributions of increments above j + τ+

L + L is bounded by K̄e−c̄L/2 by (7.4).
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The last two terms in (7.5) are bounded in the same manner as the term F jk− in (7.2); for these faces, the

radius of congruence is attained by some face in FZAint ∪ θ
(1)
A,A′F

ZA
int ∪ FZA+ + θ

(2)
A,A′θ

(1)
A′,AF

ZA
+ . Then the set of

faces can be split into those faces that are between increment j − τ−L and j − τ−L − L, whose contribution is

easily seen to be at most 4C̄e−c̄L, and those that are below increment j − τ−L −L along with the truncation
Itr. The contribution of these latter faces is bounded as in the bound of (7.2), by additionally summing
over the possible faces that attain the radius of convergence, and using integrability of exponential tails to
reduce this to a multiple of the quantities (7.3)–(7.4).

It remains to bound the contribution of the middle two terms, say that of faces in FZAint . These terms can

be bounded by decomposing into the event that the radius of congruence is attained by a face in FZA− ∪FZ′A′−

and the event that it is attained by a face in FZA+ ∪ θ(2)
A′,Aθ

(1)
A,A′F

Z′A′

+ . In the former case, these terms are

treated analogously to the first two terms, and therefore their contribution is at most C̄e−c̄L/2 by (7.3). In
the latter case, they are treated analogously to the last two terms, swapping the summation into one over

faces in FZA+ ∪ θ(2)
A′,Aθ

(1)
A,A′F

Z′A′

+ , and the contribution is at most O(e−c̄L/2), by (7.4). �

7.3. Proof of Corollary 7.3: existence of a limiting measure. We first claim that for each k, the
subsequence of measures (

πT ((XT
2 −k

. . . ,XT
2
, . . .XT

2 +k) ∈ ·)
)
T

is a Cauchy sequence in the total-variation metric: indeed for every T ′ ≥ T , we have by Proposition 7.2 that

‖πT ((XT
2 −k

. . . ,XT
2
, . . .XT

2 +k) ∈ ·)− πT ′((XT ′
2 −k

. . . ,XT ′
2
, . . .XT ′

2 +k) ∈ ·)‖tv ≤ C
(
T
2 − k

)−γ
.

By completeness of the space of probability measures on X2k with respect to the total-variation distance, this
implies that for each k, there exists a limiting measure νk on X2k such that the marginals above converge
to νk. If the family (νk) is viewed as marginals on X−k, . . . ,X0, . . . ,Xk of a limiting law ν on XZ, the
Kolmogorov consistency criterion is trivially satisfied as these finite-dimensional distributions are arising as
limits of marginals of a single consistent distribution (the law of X1, . . . ,XT under πT viewed about XT

2
).

To see that any other sequence aT satisfying (aT ∨ T − aT )� log T has the same limit, take any such aT
(without loss of generality aT ≤ T/2) as well as any k, and bound

‖πT ((XaT−k, . . . ,XaT , . . . ,XaT+k) ∈ ·)− ν((X−k, . . . ,X0, . . . ,Xk) ∈ ·)‖tv
≤‖πT ((XT

2 −k
, . . . ,XT

2
, . . . ,XT

2 +k) ∈ ·)− ν((X−k, . . . ,X0, . . . ,Xk) ∈ ·)‖tv
+ ‖πT ((XaT−k, . . . ,XaT , . . . ,XaT+k) ∈ ·)− πT ((XT

2 −k
, . . . ,XT

2
, . . . ,XT

2 +k) ∈ ·)‖tv .

The first term on the right-hand side above is o(1) as T →∞ by the convergence of πT to ν in total-variation.
The second term on the right-hand side above is at most C(aT −K log T )−γ for K satisfying cBβK > 2γ for
some γ > 2 by Proposition 7.2; this is also o(1) as T →∞. The two consequences of this follow immediately
from the definition of weak convergence and Proposition 4.1 and Proposition 7.1. �

8. Mean and variance of observables of the increment sequence

In this section, we prove estimates for the mean and variance of running sums of increment observables
f : X → R (these appear in e.g., Theorem 2). In Section 8.1 we prove that any function f with rotational
or reflective symmetries, has mean zero under ν. In Section 8.2, we prove that non-constant functions will
have a variance that diverges linearly in T variance in the central limit theorem. These will, in particular,
imply the choices of the mean and covariances in items (1)–(2) of Corollary 3.

8.1. Anti-symmetric observables have mean zero. In this section, we prove that for any observable f
that is anti-symmetric in reflections or rotations in the xy-plane, its mean under ν is zero as long as β is
sufficiently large. In particular, its central limit theorem, holds without any recentering. The proof follows
by applying a reflection map above an atypically long stretch of trivial increments, and seeing that this map
essentially leaves the probability distribution over the increment sequence invariant.

We say a map ϕ : X→ X is a reflection map if it is a reflection about one of the two planes with normal
vector e1 or e2 going through the point ( 1

2 ,
1
2 ,

1
2 ). We say it is a rotation map if it is a πn

4 rotation about the

e3 axis through ( 1
2 ,

1
2 ,

1
2 ). (Notice that the trivial increment X∅ is fixed by any of these maps.) The same ϕ

can naturally also be viewed as a map on remainder increments. (Note that ϕ(X∅) = X∅.)
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Proposition 8.1. There exists β0 > 0 such that the following holds for every β > β0. If f : X→ R satisfies
|f(X)| ≤M and f(X) = −f(ϕ(X)) for all X ∈ X, for some M ∈ R and reflection or rotation map ϕ, then

(1) Eν [f(X0)] = 0 ;
(2) if g : X→ R has |g(X)| ≤M and g(ϕ(X)) = g(X) for every X, then

Eν
[∑
i∈Z

f(X0)g(Xi)
]

=
∑
i∈Z

Covν(f(X0), g(Xi)) = 0 .

The proof of Proposition 8.1 relies crucially on bounding the effect of a map that reflects or rotates the
pillar above some stretch of O(log T ) consecutive trivial increments. To that end, let ϕ be a reflection or
rotation map and define the map Φϕ : Īx,T → Īx,T as follows.

Definition 8.2. For a given L, we can denote τL = τL(I) as the smallest index greater than τsp + L such
that all of XτL−L, . . . , XτL = X∅. Then, for an interface I, let Φϕ agree with I on its truncation and its

increments up to the (τL− L
2 )-th increment, then apply the map ϕ to all increments with index ranging from

τL − L
2 to T , as well as the remainder increment. Notice that this is the same as applying the map ϕ to the

entire subset of the pillar above the (τL − L
2 )-th increment, by correspondingly reflecting/rotating it about

the e3 axis going through vτL−L2 +1. (If τL does not exist, then let Φϕ be the identity.)

Claim 8.3. For every reflection or rotation map ϕ : X → X, every I ∈ Īx,T , and every γ > 1, there exists
some β0 > 0 such that, for all β > β0,∣∣∣ πT (I)

πT (Φϕ(I))
− 1
∣∣∣ ≤ O(T−γ+1) .

Proof. Fix any γ and let L = d 2γ
c̄ log T e. By Theorem 2.21 and Definition 8.2, for I ∈ Īx,T ,

πT (I)

πT (Φϕ(I))
=

µn(I)

µn(Φϕ(I))
= exp

(∑
f∈I

g(f, I)−
∑

f ′∈Φϕ(I)

g(f ′,Φϕ(I))
)
.

For every interface I, let us split its faces up as I− denoting the union of Itr and the increment sequence
up to XτL−L2

, and I+ denoting the union of the increments above XτL−L2
along with the remainder X>T .

Moreover, for a face f ∈ Sx, let ϕ(f) be the image of that face f under the reflection/rotation map ϕ, viewed
as a face in Φϕ(I). Then,∣∣∣∑

f∈I

g(f, I)−
∑

f ′∈Φϕ(I)

g(f ′,Φϕ(I))
∣∣∣ ≤ ∑

f∈I−
|g(f, I)− g(f,Φϕ(I))|+

∑
f∈I+

|g(f, I)− g(ϕ(f),Φϕ(I))| .

It is clear that if f ∈ Xi for i > τL − L
2 , the radius r(f, I;ϕ(f),Φϕ(I)) is attained by a face a distance

at least i − (τL − L), because the spine is tamed. We used crucially that in Theorem 2.21, the radius of
congruence is congruence up to rotation and reflection in the xy-plane, and the increments between τL − L
and τL are fixed by such reflection and rotations. Consequently,∑

f∈I+

e−c̄r(f,I;ϕ(f),Φϕ(I)) ≤ 4C̄e−c̄L/2 +
∑
i≥1

K̄|F(XτL+i)|e−c̄(L+i)

which is at most O(T−γ+1) by the tameness of I and the choice of L.
At the same time, for each f ∈ I−, the radius r(f, I; f,Φϕ(I)) is attained by a face in I+ ∪ Φϕ(I+), so

that proceeding as usual with these terms, their contribution is bounded by K̄ times∑
f∈I−

e−c̄r(f,I;f,Φϕ(I)) ≤
∑
i≤L/2

4e−c̄(i+
L
2 ) +

∑
g∈I+∪Φϕ(I+)

[ ∑
f∈Itr

e−c̄d(f,g) +
∑

τsp≤i≤τL−L

∑
f∈F(Xi)

e−c̄d(f,g)
]

≤ 4C̄e−c̄L/2 +
∑
i′≥1

∑
g∈F(XτL+i′ )∪F(Φϕ(XτL+i′ ))

∑
f∈F(Z3): d(f,g)≥L+i′

e−c̄d(g,f)

≤ 4C̄e−c̄L/2 +
∑
i′≥1

2|F(XτL+i′)|C̄e−c̄(L+i′) .

which is at most O(T−γ+1) since I is tame. Putting these together implies that for every tame interface I
(otherwise πT (I) = 0), the log of the ratio of probabilities is O(T−γ+1) as desired. �
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Proof of Proposition 8.1. By Corollary 7.3, and boundedness of f ,

EπT
[∑
i≤T

f(Xi)
]

= O(log T ) + T (1− o(1))Eν [f(Xi)] .

Consequently, if we prove that the left-hand side is o(T ), it will imply that Eν [f(X0)] = 0. We can split up

EπT
[∑
i≤T

f(Xi)
]

= EπT
[ τL∑
i=1

f(Xi) +

T∑
i=τL+1

f(Xi)
]
,

for τL as in Definition 8.2, and begin by bounding the first of these sums. Recall that by Corollary 4.2, the
sequence (1{Xi=X∅})i≥τsp stochastically dominates a sequence of i.i.d. Ber(1−εβ) for some εβ > 0 satisfying
εβ → 0 as β →∞. Using this, we can estimate

EπT
[ ∑
i≤τL

∣∣f(Xi)
∣∣] ≤MTπT (τL ≥ T 1/4) + EπT

[ ∑
i≤T 1/4

|f(Xi)|
]
.

In order for τL ≥ T 1/4, either τsp ≥ K log T = O(T−γ) (for K large enough), which by Proposition 5.1 has
probability e−cβK log T , or there is no stretch of L consecutive X∅ increments in the first T 1/4 − K log T
spine increments; as argued in the proof of Lemma 7.5, for large enough β (depending on γ, c̄) this latter
probability is at most exp[−T 3/16]. The second term above is at most MT 1/4 by the bound on f .

Let us now turn to |EπT [
∑
i=τL+1,...,T f(Xi)]| ≤ supτL EπT [

∑
i=τL+1,...,T f(Xi) | τL]. For each instantia-

tion of τL, we can expand,

EπT
[ ∑
i=τL+1,...,T

f(Xi) | τL
]
≤MTEπT

[∣∣∣ πT (I)

πT (Φϕ(I))
− 1
∣∣∣ | τL] .

By Claim 8.3 the quantity in the expectation is O(T−γ+1) for every tame interface, and therefore also in
expectation under EπT [· | τL] for every τL. All in all, we have

EπT
[∑
i≤T

f(Xi)
]

= O(T 1/4) +O(T−γ+1) +O(T−γ+2) ,

which is o(T ) as long as γ > 1 implying item (1).
Let us now turn to the proof of item (2). The proof is analogous and we therefore do not include all

details. Suppose by way of contradiction that Eν [
∑
i f(X0)g(Xi)] 6= 0. We claim that it suffices, in order

to obtain a contradiction, to show that for sufficiently large K, the following is o(T ):

EπT
[∑
i≤T

∑
j≤T

f(Xi)g(Xj)
]

= EπT
[ ∑
i,j∈J1,T 1/4K∪JT−T 1/4,T K

|f(Xi)||g(Xj)|
]

+ EπT
[ ∑
i,j∈JT 1/4,T−T 1/4K: d(i,j)≥K log T

f(Xi)g(Xj)
]

+
∑

i∈JT 1/4,T−T 1/4K

EπT
[ ∑
j: d(i,j)≤K log T

f(Xi)g(Xj)
]
. (8.1)

To see that this is sufficient, notice that the first term of (8.1) is at most 16M2K2 log2 T . Arguing as in
item (1) above, by Claim 8.3, EπT [f(Xi)] = O(T−γ) if i ≥ T 1/4. Using Proposition 7.1, for each i, j at least
T 1/4 away from 1 and T , with d(i, j) ≥ K log T , if K is sufficiently large we have

EπT
[
f(Xi)g(Xi)

]
≤ EπT [f(Xi)]EπT [g(Xj)] +M2‖πT (Xi ∈ ·,Xj ∈ ·)− πT (Xi ∈ ·)πT (Xj ∈ ·)‖tv ,

which is at most MT−γ + M2T−γ for γ > 2, so that the second term in (8.1) is o(1). Finally, by Proposi-
tion 7.2, specifically Corollary 7.3, together with Proposition 7.1, we deduce that

EπT
[∑
i≤T

∑
j≤T

f(Xi)g(Xj)
]

= O(log2 T ) +O(T−γ+2) + T (1− o(1))Eν
[∑
j∈Z

f(X0)g(Xj)
]
.
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Thus, if we showed that the left-hand side of (8.1) is o(T ), we would deduce that Eν [
∑
j∈Z f(X0)g(Xj)] = 0.

Proceeding as in item (1), it suffices to show that the following is o(T ) as T →∞:

EπT
[ ∑
i,j≥T 1/4

f(Xi)g(Xj)
]

= M2T 2πT (τL ≥ T 1/4) + sup
τL≤T 1/4

EπT
[ ∑
τL+1≤i,j≤T

f(Xi)g(Xj) | τL
]
.

As before, the first term is O(exp[−T 3/16]) for large enough β (depending on γ, c̄). The second term is
bounded by

M2T 2 sup
τL≤T 1/4

EπT
[∣∣∣ πT (I)

πT (Φϕ(I))
−
∣∣∣ ∣∣ τL] ≤ O(M2T 2T−γ+1) ,

for some γ > 2 as long as β is large enough, which is in turn o(T ) in T . �

8.2. Linearity of variances. In this section, we prove that the running sum of T increment observables f ,
for every f that is non-constant on the set of possible increments X, will have a variance of order T . This
will in particular imply such a scaling for the variance of the total surface area of a pillar, the excess area of
a pillar, and its xyz-displacements, conditional on having T increments.

Proposition 8.4. There exists β0 such that for every β > β0 the following holds. If f : X→ R is bounded,
|f(X)| ≤M for all X ∈ X, and moreover, there exist distinct XA, XB ∈ X such that f(XA) 6= f(XB), then∑

j∈Z
Covν

(
f(X0), f(Xj)

)
= σ2

f > 0 .

Proof. It will suffice for us to prove that the following variance simply diverges as a function of t:

Varν

(∑
i∈J−t,tKf(Xi)

)
→∞ as t→∞ .

Indeed, this will follow from the next well-known claim; we include its short proof for completeness.

Claim 8.5. Let (Zk)k∈Z be stationary with
∑
k∈Z |Cov(Z0, Zk)| <∞, and let Vt = Var(

∑t
k=−t Zk). Then

∃ lim
t→∞

Vt
2t

=: σ2 ≥ 0 and σ2 =
∑
k∈Z

Cov(Z0, Zk) .

Furthermore, if
∑
k∈Z |k||Cov(Z0, Zk)| <∞ then σ = 0 iff supt Vt <∞.

Proof. Let Sn =
∑n
k=1 Zk, so Var(Sn) =

∑n
t=1 Ct for Ct = Var(Zt)+2

∑t−1
k=1 Cov(Zk, Zt). By the stationarity,

Ct =
∑
|k|≤t−1 Cov(Z0, Zk), and since limt→∞ Ct exists (by the absolute convergence hypothesis for this sum),

Césaro’s lemma shows this limit is equal to limn→∞
1
n Var(Sn) = σ2 ≥ 0. For the last statement, if σ = 0

then Ct = −
∑
|k|≥t Cov(Z0, Zk), whence |Var(Sn)| = |

∑n
t=1 Ct| ≤

∑∞
t=1 |Ct| ≤

∑
k∈Z |k||Cov(Z0, Zk)|. �

In fact, it suffices for us to show that the following diverges as T →∞:

VarπT

(∑
i≤T

f(Xi)
)

=
∑

i,j: d(i,j)>K log T

CovπT
(
f(Xi), f(Xj)

)
+

∑
i,j: d(i,j)≤K log T

CovπT
(
f(Xi), f(Xj)

)
.

This is because by Proposition 7.1, the first sum on the right-hand side is O(T−γ+1) for γ > 1 as long as β
is large enough, and by Corollary 7.3, the second sum is (1 + o(1)) Varν(

∑
i∈J−T2 ,

T
2 K f(Xi)).

The strategy to show this will be to find long stretches of trivial increments, which serve to decorre-
late increments, and inject variance coming from either an XA or XB increment, into their centers. These
injections will behave essentially independently, and therefore, will add some amount of variance propor-
tional to the number of long stretches of trivial increments found. Fix L = d 5

c̄ log T e. For any interface

I ∈ Īx,T , mark the first T 3/4 indices jk in increasing order, that satisfy jk ≥ τsp and have jk ≥ τsp,
Xjk−L, . . . ,Xjk−1,Xjk+1, . . . ,Xjk+L = X∅ along with Xj ∈ {XA, XB}. Let G = G(L) be the σ-algebra
generated by the truncated interface Itr, the sequence (jk)k≤T 3/4 and all increments (Xi)i/∈{jk}. By the law
of total variance, we can express

VarπT

(∑
i∈J1,T Kf(Xi)

)
≥ EπT

[
VarπT

(∑
i∈J1,T Kf(Xi)

∣∣ G)] .



MAXIMUM AND SHAPE OF INTERFACES IN 3D ISING CRYSTALS 57

However, conditionally on G, the only contributions to the variance come from the increments Xjk , so that
this quantity is the same as

EπT
[

VarπT

( ∑
k≤T 3/4

f(Xjk)
∣∣ (Xjk+`)`∈J−L,LK\{0} = X∅, (Xjk) ∈ {XA, XB}, (Xj)d(j,

⋃
k{jk})>L, Itr

)]
.

Now fix any set of indices (jk)k≤T 3/4 which identify the trivial increments surrounding them, as well as the
fact that Xjk is either XA or XB , and also fix all the other increments (Xj)d(j,

⋃
k{jk})>L. We will show that

for most such choices, the sum
∑
k f(Xjk) has a variance that diverges in T .

Let us define a good set ΓL in G on which we can prove the variance above is at least T 3/4, say, as follows:
an element of G, given by Itr, {jk}k, (Xj)d(j,

⋃
k jk)>L is in ΓL if there are indeed T 3/4 many {jk} and for

every assignment of XA, XB to {jk}k, the resulting interface is tame. We will prove that πT (ΓL) ≥ 1− o(1),
and then that for any element of ΓL, the variance of

∑
k≤T 3/4 f(Xjk) goes to infinity with T .

Claim 8.6. For every i ≤ T , every Itr with τsp ≤ i, and every sequence of increments (Xj)j<i, for any
fixed increment X? ∈ X, we have

µn(Xi = X? | Itr, (Xj)j<i, Īx,T ) ≥ exp
[
− (β + C)m(X?)

]
.

The same estimate holds if we condition, e.g., on the increments above Xi as long as the first L are trivial:
in particular, for every k ≤ T 3/4 and X? ∈ {XA, XB},

inf
G∈ΓL

πT (Xjk = X? | G) ≥ exp
[
− (β + C)m(X?)

]
.

Proof of Claim 8.6. In the interest of brevity we do not include a full proof. The first bound can be shown
via a similar (simplified) version to the proof of Proposition 4.1, with the following modifications. Define a
map Ψ? : Īx,T → Īx,T which replaces the i-th increment of a pillar by X?; one can readily see that for every
I with T -admissible truncation Itr with τsp < i and increment sequence (Xi)i≤T , we have∣∣∣ log

πT (I)

πT (I?)
+ βm(Xi;X?)

∣∣∣ ≤ K̄(|F(Xi)|+ |F(X?)|) +
∑
j>i

C̄K̄|F(Xj)|e−c̄(j−i) .

We can bound the latter term on the right-hand side above by Corollary 4.2, and we can bound the multi-
plicity of the map for interfaces with m(I; Φ?I) = k by sk via Observation 2.27. Together these would imply
the desired estimate, as the bound of Corollary 4.2 holds uniformly over all increment sequences below the
i-th one, and the map Ψ? leaves those increments fixed.

The second part (where we may condition also on the increments sequence above i whilst in ΓL) is similar:
for an interface in ΓL, as the first L increments above Xjk are trivial and the increment sequence is tame,∑

j>i

|F(Xj)|e−c̄(j−i) ≤ 4C̄ + C̄Te−c̄L ,

and this is O(1) by our choice of L. Therefore, applying the map Ψ? for the jk-th increment, we see that
the probabilities of having XA, XB at marked indices {jk} are comparable. �

First, by Proposition 5.1, with high probability the truncated interface Itr is such that τsp ≤ T 1/4, so
let us work only with truncated interfaces that satisfy that bound. By Proposition 4.1 and Claim 8.6, for
any stretch of 2L + 1 increments, the probability of the first and last L being trivial increments, and the
middle element being in {XA, XB} is at least e−(β+C)m(XA)(1− εβ)2L for some εβ going to zero as β →∞.

There are T−T 1/4

2L+1 stretches for which this lower bound holds independently of the others; as before, a simple

calculation yields that for β sufficiently large, the probability of having T 3/4 such increment stretches of L
trivial increments, an element of {XA, XB} then another L trivial increments, is 1− o(1). Now, let us lower
bound the following quantity by something diverging as T →∞:

inf
G∈ΓL

VarπT

( ∑
k≤T 3/4

f(Xjk) | G
)

= inf
G∈ΓL

∑
k,k′≤T 3/4

CovπT

(
f(Xjk), f(Xjk′ )

∣∣ G) .
By the second item in Claim 8.6, for every G ∈ ΓL, the contribution of the diagonals, satisfies∑

k≤T 3/4

VarπT (f(Xjk) | G) ≥ cf,βT 3/4 ,
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for some cf,β > 0, as f takes on different values on XA and XB , and both have strictly positive prob-
ability under πT (· | G). On the other hand, we claim that the contribution from any off-diagonal term,
CovπT (f(Xjk), f(Xjk′ ) | G) is at most C̄Te−c̄L/2 for every pair k, k′. This can be shown via a straightfor-

ward modification of the map Φmix of Proposition 7.1; namely, the map would use jk + L
2 as the index above

which it swaps the increment sequences. Following this through would imply that

‖πT (Xjk ∈ ·,Xjk′ ∈ ·)− πT (Xjk ∈ ·)πT (Xjk′ ∈ ·)‖tv ≤ C̄Te
−c̄L/2 ,

thus CovπT (f(Xjk), f(Xjk′ )) ≤ C̄M
2Te−c̄L/2 which is o(T−2) by our choice of L. Therefore, we see that

VarπT

( ∑
i∈J1,T K

f(Xi)
)
≥ inf
G∈ΓL

VarπT

( ∑
k≤T 3/4

f(Xjk) | G
)

+ o(1) ≥ cf,βT 3/4 + o(1) ,

which diverges as T →∞, yielding the desired. �

9. Central limit theorem for observables of the increment sequence

In the section we prove the following proposition, which, combined with Remark 9.3 yields the CLT from
Theorem 2 as well as the expressions for the mean and variance of the limiting distribution in terms of the
measure ν on bi-infinite sequences of increments that was derived in §7, Corollary 7.3.

Proposition 9.1. There exist β0, κ0 > 0 such that the following holds. For every β > β0, every non-constant
function of the increments f : X→ R such that

f(X) ≤ exp(κ0|F(X)|) for all X ∈ X , (9.1)

every sequence 1� Tn � n, and every xn ∈ J−n+∆n, n−∆nK2×{0} for ∆n � Tn, the increment sequence
{Xi} of Pxn under πT , the Ising measure conditioned on Īxn,Tn , satisfies

1√
Tn

Tn∑
t=1

(f(Xt)− λ) =⇒ N (0,σ2
f ) as n→∞ ,

where

λ = Eν [f(X0)] , σ2
f =

∞∑
j=−∞

Covν(f(X0), f(Xj)) > 0

for the measure ν on bi-infinite sequences of increments (Xi)
∞
−∞ given by Corollary 7.3.

Modulo this result, the CLT readily extends to f : X→ Rd for any d:

Corollary 9.2. In the setting of Proposition 9.1, if f : X→ Rd for some fixed d ≥ 2, where f = (f1, . . . , fd)
is such that each fi is non-constant and satisfies (9.1), then under πT

1√
Tn

Tn∑
t=1

(f(Xt)− (λ1, . . . , λd)) =⇒ N (0,Σ) ,

where λi = Eν [fi(X0)] and Σij = Σji =
∑∞
k=−∞Covν(fi(X0), fj(Xk)) for 1 ≤ i, j ≤ d.

Proof of Corollary 9.2. First note that the fact that the matrix Σ is symmetric follows form the station-
arity of the sequence (Xi) under ν. From the expression for σ2 given by Proposition 9.1, we see that for
every linear combination f =

∑
i aifi for a ∈ Rd of functions centered w.r.t. Eν and satisfying (9.1), one has∑T

i=1 f(Xi)/
√
T =⇒ N (0, atΣa) as n→∞. The proof is concluded via the Cramér–Wold device. �

Remark 9.3. Both Proposition 9.1 and Corollary 9.2 hold identically under the measure µn(· | Ix,T ) (as

opposed to πT = µn(· | Īx,T )). To see this, let Sn = 1√
Tn

∑Tn
t=1(f(Xt)− λ); for every Borel set B ⊂ R,

µn(Sn ∈ B | Ix,T ) ≤ µn(Sn ∈ B, Īx,T )

µn(Ix,T )
+ µn(Īcx,T | Ix,T ) = πT (Sn ∈ B)µn(Īx,T | Ix,T ) + µn(Īcx,T | Ix,T ) ,

which is at most πT (Sn ∈ B)+O(exp(−(β−C)r0T )) by Lemma 3.15. Hence, lim supn→∞ µn(Sn ∈ B | Ix,T ) is
at most limn→∞ πT (Sn ∈ B) = P(N (0,σ2

f ) ∈ B), so (by Portmanteau) Sn =⇒ N (0,σ2
f ) under µn(· | Ix,T ).
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9.1. Strategy of proof of the CLT. We prove Proposition 9.1 by adapting a useful Stein’s method type
argument by Bolthausen [4] for treating stationary, mixing sequences of random variables. Our setting has
several complications compared to [4]:

(1) Our sequence of random variables, rather than being infinite and stationary, is a triangular array,
where the individual laws πT change due to the conditioning on {ht(Px) ≥ T}.

(2) Our α-mixing estimates are invalid for base increments, and instead hold (see Proposition 7.1) only
beyond a prefix of K log T increments.

(3) The increments are not stationary, and only become asymptotically stationary (see Proposition 7.2)
away from the base and from the tip.

The asymptotic stationarity obstacle was handled by slight modifications of Bolthausen’s argument in [31];
our proof follows a similar route, yet becomes somewhat simpler thanks to the nature of our α-mixing
estimates and control over higher moments of functions of the increment sequence.

9.2. Proof of Proposition 9.1. The first step in establishing the CLT is a standard truncation argument,
using our control on α-mixing and on moments of the increment sequence. Take b > 0 to be a large enough
constant, in particular larger than the constant K as given by Proposition 7.1 w.r.t. γ = 20. Our first step is
to truncate the prefix and suffix of the increment sequence, as well as individual increment contributions. In
what follows, recall λ = Eν [f(X0)], and let σ2

f =
∑∞
j=−∞ Covν(f(X0), f(Xj)) for any function f : X→ R.

Claim 9.4. In the setting of Proposition 9.1, let

` = dT 1/5e and fM (X) := f(X)1{|f(X)|≤M} .

If 1√
T

∑T−`
j=` (fM (Xj)−EπT [fM (Xj)]) =⇒ N (0,σ2

fM
) for every M then 1√

T

∑T
j=1(f(Xj)−λ) =⇒ N (0,σ2

f ).

Proof. Let us first look at the effect of omitting the `0-prefix and `0-suffix of the summation over

Yj = f(Xj)− EπT f(Xj) ,

where

`0 := db log T e
for some large b > 0, taken to be at least K from Proposition 7.1 for a choice of γ = 20. Following this step,
we will be able to truncate the Yj ’s, and thereafter omit the `-prefix and `-suffix of the sum.

Proposition 5.1 (specifically, the exponential tail in (5.3)) implies that, for a sufficiently small κ, we have

EπT
[
eκ

∑
i<τsp

|F(Xi)|
]
≤ T 1/3 .

For the spine increments, Proposition 4.1 (together with Lemma 3.15 on the tameness of the spine) shows
that, conditioned on {Xτsp+j : j < i}, the variable m(Xτsp+i) is dominated by an exponential variable

with parameter c0β (for c0 > 0 from that proposition). In particular,
∑`0
i=τsp

m(Xi) +
∑
i>T−`0 m(Xi) is

stochastically dominated by a gamma-distributed random variable with parameters (2`0, c0β), which again
satisfies

EπT
[
eκ
(∑`0

i=τsp
|F(Xi)|+

∑
i>T−`0

|F(Xi)|
)]
≤ T 1/3

(e.g., take κ = (1− e−1/(8b))(c0β)−1). Overall, the hypothesis (9.1) implies, for a small enough κ0, that

1√
T

∑
j≤`0

(
|f(Xj)|+ |f(XT+1−j)|

)
L1

−−→ 0 under πT , (9.2)

so 1√
T

∑
j≤`0(Yj + YT+1−j)→ 0 in probability, and hence does not affect the limiting law of 1√

T

∑
j Yj .

Again recalling Proposition 5.1, each variable Yj is a function of a spine increment except with probability
exp(−c log T ) = O(T−5) for a large enough choice of b. Consequently, as per the exponential tail on spine
increments established by Proposition 4.1 and the hypothesis |f(X)| ≤ exp[κ0|F(X)|] for all X ∈ X,

πT (|Yj | ≥ a) ≤ a−c0βκ0 +O(T−5) . (9.3)

Moreover, on the event that the index j is not a spine index, m(Xj) has an exponential tail beyond K log T
by (5.3). Combining these two implies that Yj has uniformly bounded moments of k-th order for small
enough κ0(k). Namely, on the event j > τsp, Proposition 4.1 implies that its k-th moment is finite as long as
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κ < κ0(k); the event j ≤ τsp, has probability O(T−5), and in that case, we can bound E[|Yj |k] ≤ O(eκK log T ),
so that an application of Cauchy–Schwarz implies that for each k, there exists κ0(k) such that for κ < κ0,

max
j

EπT [|Yj |k] < C(κ, β, k) .

For random variables Z1, Z2, let σ(Zi) be the σ-algebra generated by Zi and define the α-mixing coefficient

α(Z1, Z2) := max
A1∈σ(Z1),A2∈σ(Z2)

|P(Z1 ∈ A1, Z2 ∈ A2)− P(Z1 ∈ A1)P(Z2 ∈ A2)| .

Write Yj = Y ′j + Y ′′j where Y ′′j = Yj1{|Yj |>M}; noting that EπT (Y ′′j )3 ≤ (EπT Y 4
j )3/4P(|Yj | > M)1/4 by

Hölder’s inequality, and that every two random variables Z1, Z2 satisfy

Cov(Z1, Z2) ≤ 2
(
α(Z1, Z2)E[Z3

1 ]E[Z3
2 ]
)1/3

(9.4)

(see, e.g., [45, §1] for this inequality, originally by Davydov [21] with a larger constant pre-factor), one has

EπT
(

1√
T

T−`0∑
j=`0

(Y ′′j − EπT Y ′′j )

)2

≤ C

T
max
j≥`0

EπT [(Y ′′j )3]
2
3

∑
j,k≥`0

α(Xj ,Xk)1/3

≤ C ′max
j≥`0

√
P(|Yj | > M) ,

using α(Xj ,Xk) ≤ C|k − j|−γ for k > j ≥ `0 and γ = 20 by the above application of Proposition 7.1. As
the expression on the right can be made arbitrarily small as a function of M , uniformly over n (it is at most

CM−c0κ0/2 + o(1) by (9.3)), we see that showing 1√
T

∑T−`0
j=`0

(Y ′j − EπT Y ′j ) =⇒ N (0,σ2
fM

) as n → ∞ for

every fixed M , as well as σ2
fM
→ σ2

f , will imply that 1√
T

∑T
j=1(Yj − EπT Yj) =⇒ N (0,σ2

f ).

To verify that σ2
fM
→ σ2

f as M →∞, recall from Corollary 7.3 that ν(m(X0) ≥ r) ≤ exp(−c0βr), so for
some C, c > 0 we get

Eν |f(X0)− fM (X0)|3 ≤
√

Eν [f(X0)6] ν(|f(X0)| ≥M) ≤ CM−c

using Corollary 7.3 and (9.1) to uniformly bound Eν [f(X0)6] and the ν-probability of |f(X0) ≥M |. Writing

σ2
fM = σ2

f +

∞∑
k=−∞

Cov (fM (X0)− f(X0), f(Xk)) +

∞∑
k=−∞

Cov (fM (X0), fM (Xk)− f(Xk)) ,

we can infer from the fact α(X0,Xk) ≤ Ck−γ under ν, and another application of (9.4), that

∞∑
k=−∞

|Cov (fM (X0)− f(X0), f(Xk))| ≤ C ′M−c
′∑
k

k−γ ≤ C ′′M−c
′
,

and the same holds for
∑

Cov(fM (X0), fM (Xk)− f(Xk)) in the same manner, implying σ2
fM
→ σ2

f .

Thus far we established that it suffices to show 1√
T

∑T−`0
j=`0

Y ′j =⇒ N (0,σ2
fM

) for every M > 0. Note

that

1

T
EπT

[( ∑̀
j=`0

(
Y ′j + Y ′T+1−j

))2]
≤ (2`)2

T
max

`0≤j,k≤T−`0
|EπT [Y ′jY

′
k]| = O

(
T−3/5

)
since |Y ′j | ≤M for all j. Hence, we may indeed replace `0 by ` when considering

∑
Y ′j , as the contributions

to the limiting law by the `-prefix and `-suffix in 1√
T

∑T−`0
j=`0

Y ′j are negligible.

Finally, we wish to replace centering term EπT f(Xj) by λ = Eνf(X0) for each j = 1, . . . , T . Recall
from (9.2) that 1√

T

∑
j≤`0

(
EπT |f(Xj)|+EπT |f(XT+1−j)|

)
→ 0. For each j ≥ `0, we have EπT |f(Xj)| ≤ C,

as we had established above (following (9.3)). Therefore, we can neglect the `-prefix and `-suffix of the

sequence of expectations, as 1√
T

∑
j≤`
(
EπT |f(Xj)|+ EπT |f(XT+1−j)|

)
= O(`/

√
T ) = o(1). For each of the

remaining indices ` ≤ j ≤ T − `, by Proposition 7.2 (as used in the proof of Corollary 7.3), we have that
‖πT (Xj ∈ ·) − ν(Xj ∈ ·)‖tv ≤ C`−γ . Hence, looking at the truncated function f`, we have |EπT f`(Xj) −
Eνf`(Xj)| = O(`1−γ) = O(T−2) (so the sum of these over all j is o(1)), whereas EπT |(f − f`)(Xj)| and
Eν |(f − f`)(Xj)| are each O(`−cβκ0) = o(1/T ) by Cauchy–Schwarz, the O(1) bounds on the means of f(Xj)
under πT and ν, and the exponential tails of m(Xj) together with (9.1) and (5.3). �
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Through the remainder of the proof, let M > 0 and Yj = fM (Xj) − EπT fM (Xj) (so that |Yj | ≤ M)

for each j = `, . . . , T − `, with the goal of showing that 1√
T

∑T−`
j=` Yj =⇒ N (0,σ2

fM
). We further assume

w.l.o.g. that fM is non-constant (as this holds for all M > M0 for some M0 = M0(f) > 0), whence

σ2
fM =

∞∑
j=−∞

Covν(fM (X0), fM (Xj)) = lim
t→∞

1

2t
Varν

( t∑
j=−t

fM (Xj)

)
> 0 ,

by Proposition 8.4, applied to the bounded non-constant function fM . Defining

ST :=

T−∑̀
j=`

EπT
[
Yj

T−∑̀
k=`

1{|k−j|≤`}Yk

]
,

recall from Propositions 7.1–7.2 and Corollary 7.3 that
∑
|j|≤` Covν(fM (X0), fM (Xj)) = σ2

fM
+ o(1) and

T−∑̀
k=`

|CovπT (fM (Xj), fM (Xk))|1{|k−j|>`} = O(T`−γ) = o(1) ,

T−∑̀
k=`

|CovπT (fM (Xj), fM (Xk))− Covν(fM (X0), fM (Xk))|1{|k−j|≤`} = O(`1−γ) = o(1)

for all 2` ≤ j ≤ T − 2` (whereas both terms are O(1) for ` ≤ j ≤ 2` and T − 2` ≤ j ≤ T − `), we get

ST = (1 + o(1)) VarπT

( T−∑̀
k=`

Yj

)
as well as ST = (1 + o(1))σ2

fMT .

The following simple argument of Bolthausen [4] gives a convenient approach for establishing CLTs for
mixing random fields, even in the situation where (unlike the original setting of [4]) the sequence of increments
is only asymptotically stationary. At the heart of the argument is the following observation:

Lemma 9.5 ([4, Lemma 2]). If (Zn) is a sequence of real-valued random variables with supn EZ2
n <∞ and

lim
n→∞

E
[
(iλ− Zn)eiλZn

]
= 0 for every λ ∈ R , (9.5)

then Zn converges weakly to the standard Gaussian N (0, 1).

(Indeed, tightness is implied by the uniform bound on the EZ2
n, and verifying that every subsequential

limit point is standard Gaussian can be derived from (9.5), as a variable Z having the law of such a limit point
has E[f ′(Z)−Zf(Z)] = 0 for every f ∈ C1(R), hence must be standard Gaussian by Stein’s characterization.)
Define the random variables ZT and for r ∈ J`, T − `K, Zr,T by

ZT =
1√
ST

T−∑̀
j=`

Yj , and Zr,T =
1√
ST

T−∑̀
j=`

1{|j−r|≤`}Yj ,

We aim to verify (9.5) for the random variables (ZT ) via the following useful decomposition of the term
(iλ− Zn)eiλZn given in [4]: for every λ ∈ R,

(iλ− ZT )eiλZT = Ξ1 − Ξ2 − Ξ3 ,

for

Ξ1 = iλeiλZT
(

1− 1√
ST

T−∑̀
r=`

YrZr,T

)
, (9.6)

Ξ2 =
1√
ST

eiλZT
T−∑̀
r=`

Yr

(
1− e−iλZr,T − iλZr,T

)
, (9.7)

Ξ3 =
1√
ST

T−∑̀
r=`

Yre
iλ(ZT−Zr,T ) , (9.8)

(where the equality used only that ZT = 1√
ST

∑T−`
j=` Yj , irrespective of the definitions of Zr,T and `). Thus,

it will suffice to show that EπT [Ξi]→ 0 as n→∞ for each i = 1, 2, 3 in order to verify (9.5) for (ZT ).
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For the first of these terms, recall that by the definition of ST and Zr,T one has that

EπT
[

1√
ST

T−∑̀
r=`

YrZr,T

]
=

1

ST

T−∑̀
r=`

EπT
[
Yr

T−∑̀
j=`

1{|j−r|≤`}Yj

]
= 1 ,

whence

EπT |Ξ1|2 = λ2 VarπT

(
1√
ST

T−∑̀
r=`

YrZr,T

)
=

λ2

S2
T

VarπT

( T−∑̀
r=`

Yr
∑

j∈J`,T−`K
|j−r|≤`

Yj

)

≤ λ2

S2
T

∑
r,r′∈J`,T−`K

∑
j,j′∈J`,T−`K

|j−r|≤`|,|j′−r′|≤`

|CovπT (YjYr, Yj′Yr′)| .

Splitting the sum over r, r′ according to |r − r′|, we see that if |r′ − r| ≥ 3` then each of the O(T 2`2)
summands satisfies ∣∣CovπT (YjYr, Yj′Yr′)

∣∣ ≤M4c`−γ = O(T−3)

for some c > 0, by Proposition 7.1; on the other hand, there are O(T`3) summands r, r′, j, j′ with |r−r′| ≤ 3`,
each of which is uniformly bounded by M4. Altogether, recalling that ST = (1 + o(1))σ2

fM
T , we deduce

EπT |Ξ1|2 = O(`3/T ) = O
(
T−2/5

)
.

For the second term, observe that

|Ξ2| ≤M
1√
ST

T−∑̀
r=`

∣∣1− e−iλZr,T − iλZr,T ∣∣ ≤Mλ2 1√
ST

T−∑̀
r=`

|Zr,T |2 ,

where the last inequality was obtained by Taylor expanding 1− cos(λZr,T ) and sin(λZr,T )− λZr,T (the real
and imaginary parts of of each summand, respectively). Since |Zr,T | ≤ (2` + 1)M/

√
ST by its definition

(and the truncation bound on the Yj ’s), it follows that

|Ξ2| = O

(
T`2

S
3/2
T

)
= O

(
T−1/10

)
.

Finally, when treating Ξ3, we can use Proposition 7.1 to decompose EπT
[
Yre

iλ(ZT−Zr,T )
]

as follows:∣∣∣∣EπT [Yreiλ(ZT−Zr,T )
] ∣∣∣∣ =

∣∣∣∣EπT [Yr r−∏̀
j=`

eiλS
−1/2
T Yj

T−∏̀
j=r+`

eiλS
−1/2
T Yj

]∣∣∣∣
≤
∣∣∣∣EπT [Yr r−∏̀

j=`

eiλS
−1/2
T Yj

]
EπT

[ T−∏̀
j=r+`

eiλS
−1/2
T Yj

]∣∣∣∣+Mc`−γ ,

(using that the variables in the two expectations in the last line are at most M and 1 in absolute value,

respectively). Since |Eπt [
∏
j e
iλS

−1/2
T Yj ]| ≤ 1, we can apply Proposition 7.1 again to obtain that the last

expression is, in turn, at most∣∣∣∣EπT [Yr r−∏̀
j=`

eiλS
−1/2
T Yj

]∣∣∣∣+Mc`−γ ≤
(∣∣∣∣EπT [Yr]EπT

[ r−∏̀
j=`

eiλS
−1/2
T Yj

]∣∣∣∣+Mc`−γ
)

+Mc`−γ = 2Mc`−γ ,

using the fact that EπT Yr = 0. This concludes the proof. �

9.3. Proof of Corollary 3. We wish to apply Theorem 2 with specific choices of observables, that contain
the information about the distribution of the tip and volume and surface area of the pillar. We begin with
item (1), regarding the distribution of the tip, (Y1, Y2, Y3). Define observables fi : X→ R for i = 1, 2, 3, by

fi(X) = (v+(X)− v−(X)) · ei,
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where v+(X) is the midpoint of the highest cell of a rooted increment X ∈ X, and v−(X) is the midpoint of
its lowest cell, i.e., ( 1

2 ,
1
2 ,

1
2 ). Then, we can express, for (Y1, Y2, Y3) the tip of Px,∣∣∣Yi − xi√

T
− 1√

T

T∑
j=1

fi(Xj)
∣∣∣ ≤ 1√

T

(
diam(Bx) + ht(vτsp) +

1

2
+ |F(X>T )|

)
.

By Proposition 5.1, both EπT [diam(Bx)2] and E[ht(vτsp)
2] are O(log2 T ), and by Lemma 3.12, E[|F(X>T )|2]

is O(1). Hence, the right-hand side goes to 0 in probability as T → ∞, and a CLT for 1√
T

∑T
j=1 fi(Xj)

yields the same CLT for Yi−xi√
T

. Since |fi(X)| ≤ m(X) for every X ∈ X, by Corollary 9.2,

(Y1, Y2, Y3)− (x1, x2, 0)− (λ1, λ2, λ3)T√
T

=⇒ N
(
0,Σ

)
,

where λi = Eν [fi(X0)] and Σi,j =
∑
k∈Z Cov(fi(X0)fj(Xk)).

The observables f1, f2 are anti-symmetric with respect to reflections about the plane with outward normal
e1, e2, so by item (1) Proposition 8.1, they have Eν [fi(X0)] = λi = 0 (though fi are not bounded, this follows
by truncating fi, and using Corollary 7.3 to deduce that the truncated means converge to the true means).
The heights f3 are at least one, and thus λ3 ≥ 1. Since fi are invariant under reflection about the plane
with outward normal ej (for j 6= i, j ∈ {1, 2}), by item (2) of Proposition 8.1, the off-diagonals of Σ
are 0 (again truncating the observables and noticing that the truncated covariances converge to the true
covariances). By Proposition 8.2 and the observation that fi are non-constant on X, the diagonals of Σ are
positive, say σ2

fi
> 0. It remains to verify that σ2

f1
= σ2

f2
. Note that for every τsp ≤ j, k ≤ T the observable

g(Xj ,Xk) = f1(Xj)f1(Xk) − f2(Xj)f2(Xk) is anti-symmetric in application of the map that rotates the
increments above some τL by π

2 , as long as j > τL. Analogously to Proposition 8.1, we would then see that

Eν [g(Xj ,Xk)] = 0 for every T
1
4 ≤ j < k ≤ T as long as |k − j| ≤ T

1
4 . By linearity and the decay estimate

of item (2) of Corollary 7.3, we see that Eν [
∑
j∈Z f1(X0)f1(Xj)] = Eν [

∑
j∈Z f2(X0)f2(Xj)].

Item (2) follows in a similar fashion. Let fV (X) = |C(X)| − 1 and fA(X) = |F(X)| − 4. We can bound∣∣∣|C(Px)| −
∑
i≤T

fV (Xi)
∣∣∣ ≤ (diam(Bx))2(ht(vτsp) + 1

2 ) + |F(X>T )|3 , and∣∣∣|F(Px)| −
∑
i≤T

fA(Xi)
∣∣∣ ≤ 4(diam(Bx))2(ht(vτsp) + 1

2 ) + |F(X>T )| .

Thus, as before, by Proposition 5.1 and Lemma 3.12, a CLT for 1√
T

∑
i fV (Xi) implies the same CLT for

1√
T
|C(Px)| and a CLT for 1√

T

∑
i fA(Xi) implies the same CLT for 1√

T
|F(Px)|. Since both fV (X) and

fA(X) are positive, are at most 4 + m(X)2, and are non-constant, they satisfy central limit theorems with
positive means and variances, implying the same for the volume and surface area of Px.
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