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On the statistical solution of the Riemann equation and its implications
for Burgers turbulence *
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The statistics of the multivalued solutions of the forced Riemann equation,ut1uux5 f , is
considered. An exact equation for the signed probability density function of these solutions and their
gradientj5ux is derived, and some properties of this equation are analyzed. It is shown in particular
that the tails of the signed probability density function generally decay asuju23 for largeuju. Further
considerations give bounds on the cumulative probability density function for the velocity gradient
of the solution of Burgers equation. ©1999 American Institute of Physics.
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In recent years, there has been a resurgence of intere
the statistical behavior of solutions of the forced Burg
equation1–22

ut1uux5nuxx1 f , ~1!

where the forcef is assumed to be a zero-mean, Gauss
statistically homogeneous, and white-in-time random proc
with covariance

^ f ~x,t ! f ~y,s!&52B~x2y!d~ t2s!, ~2!

where B(x) is smooth. Differentiation of~1! results in an
equation for the velocity gradient,j5ux ,

j t1ujx52j21njxx1 f x . ~3!

Let P(u,j,x,t) be the joint probability density function ofu
and j. An exact equation forP may be derived~for com-
pleteness we recall the derivation in the Appendix!,

Pt52uPx1jP1~j2P!j1B0Puu1B1Pjj

2n~^uxxuu,j&P!u2n~^jxxuu,j&P!j , ~4!

whereB05B(0), B152B9(0), and^•uu,j& denotes the av-
erage conditional onu andj. The explicit form of^uxxuu,j&
and^jxxuu,j& is not known, leaving~4! unclosed. There have
been several proposals on how to approximate these term
the inviscid limitn˜0, leading to contradictory predictions

In this paper, we shall adopt a different approach. A
sume we drop the viscous term in~1! and~3!. This operation,
not to be confused with taking the inviscid limitn˜0 in ~1!
and ~3! @see the remark after~11! below#, results in the
forced Riemann equation

ut1uux5 f , ~5!

and the equation for the gradient,j5ux ,

j t1ujx52j21 f x . ~6!

*Dedicated with admiration to Bob Kraichnan on the occasion of his s
entieth birthday.
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Applying to ~5! and ~6! the same operation that leads to~4!
starting from~1! and ~3!, we get the closed equation

Pt52uPx1jP1~j2P!j1B0Puu1B1Pjj . ~7!

In this paper we shall focus on the study of~7!. Generally the
solution of this equation cannot be interpreted as a proba
ity density function. The origin of this problem lies in th
multivalued nature of the solutions of the Riemann equati
As we will show this will force us to reinterpret the solutio
of ~7! as asignedprobability density function, the precis
meaning of which will be given below. Further conside
ations will allow us to obtain the true probability densi
function associated with some branches of the multivalu
solution of~5!. This will immediately give us bounds on th
cumulative probability density function of the gradient of th
solutions of Burgers equation.

To begin with let us recall some well-known facts abo
the forced Riemann equation. The solution of~5! and~6! can
be obtained by the method of characteristics, i.e., conside

dxt

dt
5ut,

dut

dt
5 f ~xt,t !, ~8!

for the initial condition x05y, u05u0(y) where u0(x)
5u(x,0) is the initial condition for~5!. Thenu(x,t)5ut for
that characteristic satisfyingxt5x and, of course,j(x,t)
5ux(x,t). Note thatxt, ut depend parametrically ony, the
actual value of which has to be determined to get the exp
expression foru(x,t). In general, the resulting set of equ
tions will have more than one solution, i.e.,u(x,t) will be
multivalued~a typical solution is represented in Fig. 1!. For
example, for the unforced case (f 50), the solution of~8!
leads to the set

x5y1u0~y!t, u5u0~y!, ~9!

-

9 © 1999 American Institute of Physics



n

u
le
hi
h

uc

t
e

pl
b

e
e

ld

te

re-

-

e
a

, if
rite
n
ni-

as-

ical

n

t

ie

2150 Phys. Fluids, Vol. 11, No. 8, August 1999 W. E and E. V. Eijnden
which may be rewritten as the single equation

u5u0~x2ut!, ~10!

in u. In this case, implicit differentiation of~10! overu leads
to the following equation forj:

j5~12jt !j0~x2ut!, ~11!

wherej0(x)5ux(x,0). The solution of Burgers equation i
the inviscid limit n˜0 ~which is single-valued! can be ob-
tained from the solution of the corresponding Riemann eq
tion by introducing appropriate discontinuities. For examp
for the unforced case, for the situation depicted in Fig. 1 t
operation amounts to jumping from the upper-most branc
the lower-most one at some value ofx in betweena andb in
such a way that the lobes at the right and at the left of s
a cut have the same area~Maxwell’s rule!.

From the above considerations it should be clear tha
full statistical description of the multivalued solutions of th
forced Riemann equation is a complicated problem which
beyond the scope of the present paper. Indeed a com
statistical description would amount to introducing the pro
ability that at pointx and timet, u(x,t) hasN branches, and
the probability density function thatu(x,t) andux(x,t) have
valueu andj on then-th branch conditional on the existenc
of N branches at$x,t%. Let us, however, show now that th
solution of ~7! gives some statistical information onu(x,t).

We first look at the unforced case,B05B150. Then~7!
can be solved by the method of characteristics. This yie
for the initial conditionP(u,j,x,0)5P0(u,j,x),

P~u,j,x,t !5~12jt !23P0S u,
j

12jt
,x2utD . ~12!

It follows immediately from~12! that P;2j23, asuju˜`,
assuming thatP0 is not concentrated on positive values ofj.
SinceP may become negative forj.1/t, it can no longer be
interpreted as a true probability density function. To bet
understand the meaning ofP, consider first the case with
deterministic initial data P0(u,j,x)5d(u2u0(x))d(j
2j0(x)). Then~12! reads explicitly

P~u,j,x,t !5~12jt !23d~u2u0~x2ut!!

3dS j

12jt
2j0~x2ut! D . ~13!

FIG. 1. Schematic representation of the multivalued solution of the R
mann equation obtained by the solution of~10!.
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Using the properties of the delta distribution this can be
organized into

P~u,j,x,t !5(
k

~21!k11d~u2u(k)~x,t !!

3d~j2ux
(k)~x,t !!, ~14!

where u(k)(x,t) is the k-th branch ~ordered asu(1)>u(2)

>•••) of the solution of~10!.23 For example, for the situa
tion depicted in Fig. 1, we have

P~u,j,x,t !5d~u2u(1)~x,t !!d~j2ux
(1)~x,t !!

2d~u2u(2)~x,t !!d~j2ux
(2)~x,t !!

1d~u2u(3)~x,t !!d~j2ux
(3)~x,t !!, ~15!

for a<x<b.
For random initial data,~14! must be averaged over th

statistics ofu0(x). In this caseP has to be interpreted as
signed probability density function. Empirically, we can un-
derstand this object as follows. Consider a sample ofN real-
izations of the multivalued functionu(x,t). Fix x, t, v andz.
Assume there are n1(v,z,x,t) values in the set
$u(x,t),j(x,t)% on the positive branches@i.e., k in ~14! is
odd# with u(x,t) less thanv and j(x,t) less thanz, and
n2(v,z,x,t) on the negative branches. Then we have

lim
N˜`

n1~u,j,x,t !2n2~u,j,x,t !

N

5E
2`

u

du8E
2`

j

dj8P~u8,j8,x,t !. ~16!

For the forced case, we have a similar situation. First
the force and the initial data are deterministic, we can w
down a similar formula as~14!. For the random case, we ca
average this formula over the distribution of forces and i
tial data. This means that the solution of~7! can still be
interpreted as a signed probability density function, now
sociated with the multivalued solutions of~5! and~6!. Notice
that within this interpretation the operation,

^b~u,j!&5E dudjb~u,j!P, ~17!

still defines an average, even though it is not a statist
average. Consequently we have

E djPx52E djjPu , ~18!

since ^a(u)&x5^au(u)j& as a result of the constraintj
5ux . This property can also be derived directly from~7!.
From ~18!, it follows that ~7! also preserves normalizatio
@consistent with~16!# since

d

dtE dudjP5E dudj~2uPx1jP!50. ~19!

The last equality is just2^u&x1^j&50.
Coming back to the scaling properties, assume thaP

;j2a for uju˜`. Balancing the terms at large values ofj in

-
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~7! givesa53. This means that, generally, the solutions
this equation behave asP;j23. Moreover,~7! leads to the
following equation for̂ j&:

05^j& t1^uj&x5 lim
j˜1`

j3Q2 lim
j˜2`

j3Q, ~20!

where the first equality follows directly from~6! and we
defined the reduced density

Q~j,x,t !5E duP~u,j,x,t !. ~21!

Since, generally, limj˜6`j3QÞ0, Q ~and henceP) must
have different signs atj52` and j51`. This can be
confirmed explicitly upon assuming statistical homogene
ThenPx50 and an equation forQ can be derived from~7!,

Qt5jQ1~j2Q!j1B1Qjj . ~22!

Even though the solutions of the Riemann equation can
reach statistical steady state,~22! admits an integrable stead
solution. The reason is that there are many cancellations
tween the contributions of the positive and the negat
branches that eventually lead to a stationary value for
signed probability density functionQ. The only integrable
solution of ~22! with Qt50 is

Q~j!5
C

B1
1/3S 12

je2L

B1
E

2`

j

dj8j8eL8D , ~23!

whereL5j3/(3B1) andC is a numerical constant fixed b
the normalization constraint,*djQ51. From~23! it follows
that

Q~j!;2
CB1

2/3

j3
as uju˜`, ~24!

i.e., Q has different signs for large positive and negativej
~this function is plotted in Fig. 4 of Ref. 21!.

There is a simple geometrical explanation for t
uju23-scaling. Letb be a local right-most position reached b
the multivalued functionu(x,t) at time t ~see Fig. 2!. Ge-
nerically, the two branches ofu(x,t) may be expanded
aroundb as u(x,t)5v6a(b2x)1/2 for some ~random! a.
Hence

ux~x,t !57 1
2a~b2x!21/2. ~25!

FIG. 2. Local behavior of multivalued solution of the Riemann equat
near the local right-most positionb.
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From ~25! it follows that ux is bigger than somej@1, or
smaller than2j when a(b2x)21/2.j. Thus, for uju˜`,
the signed probability of such events is given asymptotica
by

sgn-prob~ux.j!;1Cuju22,
~26!

sgn-prob~ux,2j!;2Cuju22,

whereC is some positive constant whose value is related
the statistics ofa and the spatial distribution of overturnin
points. The signed probability density associated with~26!
behaves asuju23 for j˜2` and as2uju23 for j˜1`.

So far our results about the Riemann equation have
direct implications for Burgers turbulence. However, furth
manipulations give bounds on the probability density fun
tions of the solutions of Burgers equation. For simplicity, w
shall assume statistical homogeneity and consider~22! for Q.
Moreover, we focus again on the unforced case first@i.e., we
set temporarilyB150 in ~22!# and comment on the loss o
positivity of the solution of this equation from a mathema
cal point of view. Equation~22! is in a form that standard
maximum principle applies. This would imply thatQ stays
non-negative if it is initially so. However, in the present cas
due to the unboundedness of the coefficients in~22!, maxi-
mum principle is violated and negative values ofQ creep in
from infinity. Consider indeed the flow of characteristics inj
solution ofdj t/dt52(j t)2. This gives~see Fig. 3!

j t5
j

11jt
. ~27!

Thusj t50 if j50 ~no crossing of thej-axis! and

j tP@2`,0#, if jP@21/t,0#,

j tP@0,1/t#, if jP@0,̀ #, ~28!

j tP@1/t,`#, if jP@2`,21/t#.

The third range corresponds to the characteristics which s
from a negativej, cross infinity at timet521/j, and end up
at a positivej t at time t. These characteristics are the orig
of the multivaluedness of the solutions of the Riemann eq
tion and of the creeping of negative values ofQ.

FIG. 3. Schematic representation of the flow~27!. The three ranges define
in ~28! are shown with different gray levels.
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This scenario suggests the following procedure. So
~22! with B150 by the method of characteristics but exclu
those characteristics which cross infinity. Denote byQ1(j,t)
the solution obtained this way: it is given by@compare~12!#

Q1~j,t !5H ~12jt !23Q0S j

12jt D if j,1/t,

0 otherwise.

~29!

It is not difficult to realize thatQ1 is proportional to the
probability density function of the positive branches of t
solution of the Riemann equation since, by construction,
exclude all the negative ones. In particular@compare~16!#,

lim
N˜`

n1~j,t !

N
5E

2`

j

dj8Q1~j8,t !, ~30!

if there aren1(z,t) values in the set$j(x,t)% on the positive
branches withj(x,t) less thanz (n1 is independent ofx
because of the statistical homogeneity!. Note that by con-
structionQ1 is non-negative, but, of course, it is not norma
ized to unity: due to the multiplication of the number
branches N1(t)5 limj˜`n1(j,t)>N, i.e., the effective
number of realizations,N1(t), is bigger than the size o
original sampling set,N. The interest ofQ1 is clear if one
recalls that the solution of Burgers equation is actually c
tained in the solution of the corresponding Riemann equa
~i.e., solved for the same initial condition!. This means in
particular that if in a sample ofN solutions of the unforced
Burgers equation there arenB(z,t) values in the set$j(x,t)%
with j(x,t) less thanz, thennB(z,t)<n1(z,t) wheren1 is
associated with the corresponding sample of solutions of
unforced Riemann equation. As a direct consequence
have

E
2`

j

dj8QB~j8,t !<E
2`

j

dj8Q1~j8,t !, ~31!

where QB(j,t) denotes the probability density function o
the gradient of the solution of Burgers Eq.~1! with f 50
@i.e., the solution of~3! with f x50]. Inserting~29! into ~31!
provides us with an explicit bound on the cumulative pro
ability distribution of the gradients for the unforced Burge
equation. It implies in particular that

E
2`

j

dj8QB~j8,t !<Cj22 as j˜2`, ~32!

for some~time-dependent! constantC. For monotonousQB

this givesQB<2Cuju23 asj˜2`.
Similar bounds can be obtained for the forced case.

deed, the solution of~22! is the average onb of Q̃ solution
of

Q̃t5jQ̃1~j2Q̃!j2bQ̃j , ~33!

whereb is a white-noise process independent ofx and with
covariancê b(t)b(s)&52B1d(t2s). This equation can be
solved by the methods of characteristics@i.e., upon solving
the equationdj t/dt52(j t)21b] and the same operation o
excluding those characteristics that cross infinity can be
plied. Denote byQ1 the average onb of the solution ob-
e

e

-
n

e
e

-

-

p-

tained in this way: thenQ1 is proportional to the probability
density function of some of the positive branches of the
lution of the forced Riemann equation. In particular t
bound ~31! still applies now withQB(j,t) being the prob-
ability density function of the gradient of the solution of th
forced Burgers equation~1!. No explicit expression can be
given to Q1 but Q1;Cuju23 as j˜2`. This scaling is
suggested by the geometric argument involving the overtu
ing points; it is confirmed upon taking moments of~33! and
noting that for *djQ1(j,t) to grow exponentially, as it
should in the forced case due to the multiplication of t
number of branches,*djjQ1(j,t) has to grow as well,
which implies2 limj˜2`j3Q1(j,t).0. Thus relation~32!
also applies for the forced case during the evolution. Unf
tunately, no conclusion can be drawn for the statistically s
tionary solution of the forced Burgers equation sinceQ1

does not converge to a steady state~i.e., the constantC in the
large negativej-scaling,Q1;Cuju23, grows unbounded as
t˜`).
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APPENDIX: DERIVATION OF „4…

In this appendix we recall the derivation of~4!. Let

Q~l,m,x,t !5e2 ilu(x,t)2 imj(x,t). ~A1!

Then,^Q& is the characteristic function of the joint rando
process$u(x,t),j(x,t)%, whose probability distribution func-
tion is given by

P~u,j,x,t !5E dldj

~2p!2
eilu1 imj^Q~l,m,x,t !&. ~A2!

Time differentiation of~A1! gives

Q t52 i ~lut1mj t!Q

52 il~2uux1nuxx1 f !Q

2 im~2ujx2j21njxx1 f x!Q, ~A3!

where we used~1! and~3!. Due to the white-in-time charac
ter of the force, the terms involvingf and f x can be averaged
immediately, yielding

2 i ^~l f 1m f x!Q&52l2B0^Q&2m2B1^Q&. ~A4!

For the convective terms in~A3!, we use

i ^~luux1m~ujx1j2!!Q&

52^uQx&1 im^j2Q&

52^uQ&x1^jQ&1 im^j2Q&

52 i ^Q&xl1 i ^Q&m2 im^Q&mm . ~A5!
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The dissipative terms have to be expressed as conditi
averages. Combining the above formulas and going bac
the $u,j%-representation gives~4!.
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