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On the statistical solution of the Riemann equation and its implications
for Burgers turbulence *
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The statistics of the multivalued solutions of the forced Riemann equatiphpu,=f, is
considered. An exact equation for the signed probability density function of these solutions and their
gradienté=u, is derived, and some properties of this equation are analyzed. It is shown in particular
that the tails of the signed probability density function generally decég| ad for large|£|. Further
considerations give bounds on the cumulative probability density function for the velocity gradient
of the solution of Burgers equation. @399 American Institute of Physics.
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In recent years, there has been a resurgence of interest Applying to (5) and(6) the same operation that leads(#)
the statistical behavior of solutions of the forced Burgersstarting from(1) and(3), we get the closed equation
equation~2

Up U= Ut @ Py=—UP,+£P+(£2P) 4 BoPyyt B1 Py W)
where the forcd is assumed to be a zero-mean, Gaussian,

statistically homogeneous, and white-in-time random proces

with covariance fh this paper we shall focus on the study(@f. Generally the

solution of this equation cannot be interpreted as a probabil-
(f(x,)f(y,s))=2B(x—Yy)8(t—s), (2 ity density function. The origin of this problem lies in the
multivalued nature of the solutions of the Riemann equation.
As we will show this will force us to reinterpret the solution
of (7) as asignedprobability density function, the precise
EtUé=— 24 vE Ty, (3  meaning of which will be given below. Further consider-
ations will allow us to obtain the true probability density
function associated with some branches of the multivalued
solution of(5). This will immediately give us bounds on the
cumulative probability density function of the gradient of the

where B(x) is smooth. Differentiation of1) results in an
equation for the velocity gradienf=u,,

Let P(u,é¢,x,t) be the joint probability density function af
and £. An exact equation foP may be derivedfor com-
pleteness we recall the derivation in the Appendix

P,=—UP+ &P+ (§2p)§+ BoPuutB1Py solutions of Burgers equation.
To begin with let us recall some well-known facts about
— (Ul U, E)P) = v({€xd U, E)P) ¢, (4 the forced Riemann equation. The solutior(®fand(6) can

whereBy=B(0), B;= —B”(0), and(-|u,£) denotes the ay- e obtained by the method of characteristics, i.e., considering

erage conditional om and . The explicit form of(u,,|u, &)
and(¢,,Ju,€) is not known, leaving4) unclosed. There have dxt qut
been several proposals on how to approximate these termsin —— —yt  —— —f(x! 1), (8)
the inviscid limit v—0, leading to contradictory predictions. dt dt

In this paper, we shall adopt a different approach. As-
sume we drop the viscous term(it) and(3). This operation,
not to be confused with taking the inviscid limit-0 in (1)
and (3) [see the remark aftefll) below], results in the

forced Riemann equation

for the initial condition x°=y, u®=uy(y) where ug(x)
=u(x,0) is the initial condition for5). Thenu(x,t)=u' for
that characteristic satisfying'=x and, of course&(x,t)
=u,(x,t). Note thatx', u' depend parametrically oy the
uituu,="f, (5)  actual value of which has to be determined to get the explicit
expression fomu(x,t). In general, the resulting set of equa-
tions will have more than one solution, i.e(x,t) will be
Etué=—E2+1,. (6) multivalued(a typical solution is represented in Fig. For
example, for the unforced casé=0), the solution of(8)
leads to the set

and the equation for the gradiegt=u,,
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u(x,1) o Using.the properties of the delta distribution this can be re-
u organized into

P(u,g,x,t)zEk (— 1) 15(u—u®(x,t))

X 8(£—uld(x,1)), (14)

where u®(x,t) is the k-th branch (ordered asu®=u®
=...) of the solution of(10).?® For example, for the situa-
tion depicted in Fig. 1, we have

FIG. 1. Schematic representation of the multivalued solution of the Rie- (1) )
mann equation obtained by the solution(a#). P(u,&,x,t)=d(u—u(x,t)) 8(£—uy(X,1))

a b X

— S(u—u@(x,t)) 8(¢—uP(x,1))

—_ —_ 3
which may be rewritten as the single equation +o(u—uP(x,0)s(E-ud(x), (19

(10) for asx=b.
For random initial data(14) must be averaged over the
in u. In this case, implicit differentiation ofL0) overu leads statistics ofug(x). In this caseP has to be interpreted as a

U= ug(Xx—ut),

to the following equation fok: signed probability density functioempirically, we can un-
derstand this object as follows. Consider a sampld oéal-
§=(1—¢&0)&o(x—ut), (11 jzations of the multivalued function(x,t). Fix x, t, v and{.

Assume there aren®(v,{,x,t) values in the set
{u(x,1),£&(x,t)} on the positive branchds.e., k in (14) is

a(_)dd] with u(x,t) less thanv and &(x,t) less than{, and

n-(v,{,x,t) on the negative branches. Then we have

where £5(X) = u,(x,0). The solution of Burgers equation in
the inviscid limit v—0 (which is single-valuedcan be ob-
tained from the solution of the corresponding Riemann equ
tion by introducing appropriate discontinuities. For example,
for the unforced case, for the situation depicted in Fig. 1 this  n*(y, ¢ x,t)—n~(u,&x,t)
operation amounts to jumping from the upper-most branch tdim N
the lower-most one at some valuexoin betweena andb in N—ee
such a way that the lobes at the right and at the left of such u ¢
a cut have the same arédaxwell’s rule). =J dU'J d&§'P(u’, &', x,t). (16)

From the above considerations it should be clear that a o o
full statistical description of the multivalued solutions of the For the forced case, we have a similar situation. First, if
forced Riemann equation is a complicated problem which ishe force and the initial data are deterministic, we can write
beyond the scope of the present paper. Indeed a complegdwn a similar formula aél4). For the random case, we can
statistical description would amount to introducing the prob-average this formula over the distribution of forces and ini-
ability that at pointx and timet, u(x,t) hasN branches, and tial data. This means that the solution @ can still be
the probability density function that(x,t) andu,(x,t) have interpreted as a signed probability density function, now as-
valueu andé on then-th branch conditional on the existence sociated with the multivalued solutions @) and(6). Notice
of N branches afx,t}. Let us, however, show now that the that within this interpretation the operation,
solution of (7) gives some statistical information a{x,t).

We first look at the unforced casBy=B;=0. Then(7) (b(u,8))= f dudéb(u,§)P, 17
can be solved by the method of characteristics. This yields
for the initial conditionP(u,&,x,0)=Pg(u,§,x),

still defines an average, even though it is not a statistical
average. Consequently we have

P(u,g,x,t)=(1—§t)‘3P0(u,l_igt,x—ut). (12)
f dgP,=— f déePy, (18)

It follows immediately from(12) that P~ — &3, as|&|— e,

assuming thaP is not concentrated on positive valueséof  since (a(u)),=(a,(u)¢) as a result of the constrairg

SinceP may become negative f@ 1/, it can no longer be =u,. This property can also be derived directly frdif.

interpreted as a true probability density function. To betterFrom (18), it follows that (7) also preserves normalization

understand the meaning &, consider first the case with [consistent with(16)] since

deterministic initial data Pg(u,&,x)=8(u—ug(x)) 6(&

—&0(x)). Then(12) reads explicitly %J dudgp:J dudé(—uP,+ £P)=0. (19

P(u,&,x,t)=(1—&t) 38(u—ug(x—ut))
The last equality is just-(u),+(£&)=0.
Coming back to the scaling properties, assume that

X . )
0 ~ & for | £|— . Balancing the terms at large valuestah

1_—a—§o(x—ut) . (13
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u(x,t) 1t

u=y :ta(b—x)w {:‘t

b x

FIG. 2. Local behavior of multivalued solution of the Riemann equation
near the local right-most positidn

g

-1/t 0

(7) gives a= 3. This means that, generally, the solutions ofFIG. 3. Schematic representation of the fl@¥). The three ranges defined
this equation behave @&~ ¢ 3. Moreover,(7) leads to the N (28 are shown with different gray levels.
following equation for(¢):

0=(&)+(ué)= lim £Q— lim £Q, (200 From (25) it follows that u, is bigger than some&=>1, or
fote fooe smaller than— ¢ when a(b—x) 2> ¢. Thus, for|&|—o,
where the first equality follows directly fron) and we the signed probability of such events is given asymptotically
defined the reduced density by

sgn-profyu,> &)~ +C[ & 72,

Q(g,x,t)zf duP(u,&,x,t). (21 (26)

sgn-profu, < — )~ —C|¢ 72,
Since, generally, Iirp_,tx§3Q¢0, Q (and henceP) must  whereC is some positive constant whose value is related to
have different signs at=—o and é&=+<. This can be the statistics ofx and the spatial distribution of overturning
confirmed explicitly upon assuming statistical homogeneity points. The signed probability density associated wWiB)
ThenP,=0 and an equation fa@ can be derived froni7),  behaves agt| 2 for é——o and as—|&| 3 for é— +.
_ 2 So far our results about the Riemann equation have no

Qi=EQ+(£°Q)¢+B1Qse @ Girect implications for Burgers turbulence. However, further
Even though the solutions of the Riemann equation canngnanipulations give bounds on the probability density func-
reach statistical steady stat@2) admits an integrable steady tions of the solutions of Burgers equation. For simplicity, we
solution. The reason is that there are many cancellations b&hall assume statistical homogeneity and congi@@rfor Q.
tween the contributions of the positive and the negativeMoreover, we focus again on the unforced case first, we
branches that eventually lead to a stationary value for theet temporarilyB,;=0 in (22)] and comment on the loss of
signed probability density functio®. The only integrable positivity of the solution of this equation from a mathemati-

solution of (22) with Q;=0 is cal point of view. Equation(22) is in a form that standard
maximum principle applies. This would imply th&t stays
_C 1 feAF de' e’ 23 non-negative if it is initially so. However, in the present case,
Q&)= EB B Jo- €'¢ ' @3 4ue to the unboundedness of the coefficient§2®), maxi-

' . _ mum principle is violated and negative values®treep in
where A =¢3/(3B,) andC is a numerical constant fixed by from infinity. Consider indeed the flow of characteristicstin
the normalization constrainf,déQ=1. From(23) it follows solution ofdé&/dt=—(&")?. This gives(see Fig. 3
that

£

cB2? §t=1+—§t- 27
Q&) ~——— as ¢, (24 L . .
3 Thus¢&'=0 if £&=0 (no crossing of the&-axis) and
i.e., Q has different signs for large positive and negative fe[—»,0], if ée[—14,0],
(this function is plotted in Fig. 4 of Ref. 21 £e[01k], if £c[0s], 28)

There is a simple geometrical explanation for the
|§|‘3-scaling. Letb be a local right-most position reached by e[l »], if ée[—,—1k].
the multivalued functioru(x,t) at timet (see Fig. 2 Ge-
nerically, the two branches ofi(x,t) may be expanded
aroundb as u(x,t)=v= a(b—x)¥? for some(random «.
Hence

The third range corresponds to the characteristics which start
from a negative, cross infinity at time= —1/¢, and end up

at a positiveé' at timet. These characteristics are the origin
of the multivaluedness of the solutions of the Riemann equa-
Uy(X,t)=F sa(b—x) Y2 (25 tion and of the creeping of negative valuesQ@f
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This scenario suggests the following procedure. Solveained in this way: thel® " is proportional to the probability
(22) with B;=0 by the method of characteristics but excludedensity function of some of the positive branches of the so-
those characteristics which cross infinity. DenoteQy(£,t) lution of the forced Riemann equation. In particular the
the solution obtained this way: it is given pyompare(12)]  bound (31) still applies now withQ8(¢,t) being the prob-
ability density function of the gradient of the solution of the

. (1—&t)~3Q, ) if é<1ft forced Burgers equatiofil). No explicit expression can be
Q7 (&Y= 1-¢t (299 given to Q" but Q" ~C|¢| 2 as é— —o. This scaling is
0 otherwise. suggested by the geometric argument involving the overturn-

ing points; it is confirmed upon taking moments(88) and
noting that for fdéQ™(&,t) to grow exponentially, as it
%hould in the forced case due to the multiplication of the
exclude all the negative ones. In particulaompare(16)], W%ﬁaﬁ%gfleira_qﬂjj{i%% (é tt)) >h gs_rtﬁug rroevlvati;sr(\évze)ll
nt(é&) also applies for the forced case during the evolution. Unfor-
N f_mdf Q7 (&), (30 tunately, no conclusion can be drawn for the statistically sta-
tionary solution of the forced Burgers equation sir@é
if there aren™(¢,t) values in the seté(x,t)} on the positive  does not converge to a steady state., the constart in the
branches withé(x,t) less than{ (n" is independent ok  large negatives-scaling,Q " ~C| & ~3, grows unbounded as
because of the statistical homogengitiote that by con- t—®).
structionQ™* is non-negative, but, of course, it is not normal-
ized to unity: due to the multiplication of the number of
branches N* (t)= Iimg_,mn+(§,t)> N, i.e., the effective This work was greatly influenced by the pioneering work
number of realizationsN™(t), is bigger than the size of of Bob Kraichnan. In particular, the presentation of the
original sampling setN. The interest ofQ™" is clear if one  present paper and the subsequent paper, Ref. 22, has been
recalls that the solution of Burgers equation is actually congreatly improved as a result of his constructive comments.
tained in the solution of the corresponding Riemann equatioif he work of E is supported by a Presidential Faculty Fellow-
(i.e., solved for the same initial conditipnThis means in  ship from the National Science Foundation. The work of
particular that if in a sample dfl solutions of the unforced Vanden Eijnden is supported by U.S. Department of Energy
Burgers equation there ang(¢,t) values in the sefé(x,t)}  Grant No. DE-FG02-86ER-53223.
with £(x,t) less thant, thenn®(¢,t)<n*({,t) wheren™ is
associated with the corresponding sample of solutions of thAPPENDIX: DERIVATION OF (4)
unforced Riemann equation. As a direct consequence we
have

It is not difficult to realize thatQ™ is proportional to the
probability density function of the posmve branches of the

lim

N— o
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In this appendix we recall the derivation @f). Let
O(N, X, 1) =@ MUK Tugle), (A1)

& &
f df'QB(E’,t)if dé'Qr(¢&'.1), (31)  Then,(®) is the characteristic function of the joint random

o o procesgu(x,t),&(x,t)}, whose probability distribution func-
where QB(&,t) denotes the probability density function of tion is given by
the gradient of the solution of Burgers E@.) with f=0 dnd
[i.e.,.the solutipn of3) with .fX=O]. Inserting(29) into_ (31 P(u,g,x,t):j el)\u+|,u§<®()\ X, 0). (A2)
provides us with an explicit bound on the cumulative prob- (27)?
ablllty.d|str|put|o.n of the grad|ents for the unforced Burgers.l.ime differentiation of(Al) gives
equation. It implies in particular that .

O=—i(\u+uné&)o

13
fﬁ d&'QP(¢',1)<Cé? as é——x, (32 = —iA(—UUy+ U+ f)O
for some(time-dependentconstantC. For monotonousQ® —ip(—ug— E+ vyt 10, (A3)
this givesQ®<2C|&| ™ as¢— — . where we usedl) and(3). Due to the white-in-time charac-

Similar bounds can be obtained for the forced case. Inter of the force, the terms involvingand f, can be averaged
deed, the solution of22) is the average o of Q solution immediately, yielding

of .
o _ B —i{(Mf+uf)0)=—2\?By(0)— 1?B1(0). (A4)
QtzfQ“L(fZQ)f_IBQé’ (33 For the convective terms i(A3), we use
wherep is a white-noise process independentaind with j((\uu,+ u(ué,+£2))0)
covariance( 8(t) B(s))=2B,5(t—s). This equation can be o
solved by the methods of characteristjcg., upon solving =—(UO,)+iu(£°0)
the equatiord¢'/dt=— (£')2+ B] and the same operation of _ i T 2
excluding those characteristics that cross infinity can be ap- (UO)+(£0) +1(£70)
plied. Denote byQ* the average o of the solution ob- =—i(0)n+i(0),—iu(®),,. (AB)



Phys. Fluids, Vol. 11, No. 8, August 1999 On the statistical solution of the Riemann equation . . . 2153

The dissipative terms have to be expressed as condition&a. M. Polyakov, “Turbulence without pressure,” Phys. Rev5E 6183
averages. Combining the above formulas and going back tg(1995. oud and M. fdard. “Velodity s forced
the fu, &' -representation giv ) J.-P. Bouchaud and M. Mard, “Velocity fluctuations in forced Burgers
{ 6} P 9 e@) turbulence,” Phys. Rev. B4, 5116(1996.
; ) 14y, Gurarie and A. Migdal, “Instantons in the Burgers equation,” Phys.
1J. D. Fournier and U. Frisch, “L'guation de Burgers derministe et Rev. E54, 4908(1996.
statistique,” J. Mec. Theor. AppR, 699 (1983. 15y, Yakhot and A. Chekhlov, “Algebraic tails of probability functions in
2S. F. Shandarin and Ya. B. Zeldovich, “The large-scale structure of the the random-force-driven Burgers turbulence,” Phys. Rev. L%tt.3118
universe: Turbulence, intermittency, structures in a self-graviting me- (199,
dium,” Rev. Mod. Phys61, 185(1989. ] ) 8. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebedev, “Intermit-
3S. N. Gurbatov, A. N. Malakhov, and A. I. SaicheNpnlinear Random tency of Burgers turbulence,” Phys. Rev. LeT8, 1452(1997.
W?VeiManthu;bUISn?e m'tN(lz’ndlspel\r/ISIvehMetdla: J)\gvgi/ es, Rays and Parrg  p Boldyrev, “Velocity-difference probability density functions for
icles (Manchester University Press, Manchester "
. Sity Fress, vian ; 399 Burgers turbulence,” Phys. Rev. B, 6907 (1997).
T. Gotoh and R. H. Kraichnan, “Statistics of decaying Burgers turbu- 8. E, K. Khanin, A. Mazel, and Ya. Sinai, “Probability distribution func-

lence,” Phys. Fluids A5, 445(1993. ; o
t for th d fi d B t Phys. Rev. 1904
5T. Gotoh, “Inertial range statistaics of Burgers turbulence,” Phys. Fluids (ngnor € random forced burgers equation ys. Rev. L&t

6, 3985(1994. 19 . . . )
6 " . . S. N. Gurbatov, S. I. Simdyankin, E. Aurell, U. Frisch, and GtH[¢On
M. Avellaneda, R. Ryan, and W. E, “PDFs for velocity and velocity the decay of Burgers turbulence,” J. Fluid Med#4, 339 (1997).

gradients in Burgers turbulence,” Phys. Fluiéis3067(1995. 20 . . . ; o
7 “ ot : : S. A. Boldyrev, “Burgers turbulence, intermittency, and nonuniversality,
M. Avellaned d W. E, “Statistical t f shock B

vellaneda an atistical properties of shocks in Burgers Phys. Plasmas, 1681 (1998

turbulence,” Commun. Math. Phy472 13 (1995. 21, - " .
8M. Avellaneda, “Statistical properties of shocks in burgers turbulence, II: - |- G0toh and R. H. Kraichnan, “Burgers turbulence with large-scale forc-
ing,” Phys. Fluids10, 2859(1998.

Tail probabilities for velocities, shock-strengths and rarefaction intervals,” ,,

Commun. Math. Physl69, 45 (1995. W. E and E. Var_1den Eijnden, “Asymptotic th‘eory for the probability
93.-P. Bouchaud, M. Keard, and G. Parisi, “Scaling and intermittency in __density functhns in Burgers turbulence,” submitted to Phys. Rev. Lett.

Burgers turbulence,” Phys. Rev. &, 3656(1995. Z«Formal solutions” us(x,t)=2,(—1)*"*u®(x,t) were already intro-
10A. Chekhlov and V. Yakhot, “Kolmogorov turbulence in a random-force- duced in Ref. 1. No conclusion was drawn about the statistics of the

driven Burgers equation” Phys. Rev. 3, R2739(1995. Riemann equation in Ref. 1, but it was already acknowledged that ap-

1A, Chekhlov and V. Yakhot, “Kolmogorov turbulence in a random-force-  proximations that do not account properly for shock creation may spuri-
driven Burgers equation: Anomalous scaling and probability density func- ously predict properties of Burgers solutions which are, in fact, only ob-
tions,” Phys. Rev. B52, 5681(1995. served on solutions of the Riemann equation.



