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The fact that some species of cicadas appear every 7, 13, or 17 years and that these periods are prime numbers

has been regarded as a coincidence. We found a simple evolutionary predator-prey model that yields prime-
periodic preys having cycles predominantly around the observed values. An evolutionary game on a spatial
array leads to travelling waves reminiscent of those observed in excitable systems. The model marks an en-
counter of two seemingly unrelated disciplines: biology and number theory. A restriction to the latter, provides
an evolutionary generator of arbitrarily large prime numbers. q 2001 John Wiley & Sons, Inc.

1. INTRODUCTION

T he appearance of three species of the genus Magici-

cada synchronously every 13 or 17 years and asyn-

chronously every 7 years [1,2] has not been convinc-

ingly explained. These cicadas spend most of their lives be-

low the ground, emerging and dying within a few weeks.

The present work is based on the hypothesis that the cycle

length is a prime number in order to optimally escape

predators. For example, a prey with a 12-year cycle will

meet—every time it appears—properly synchronized preda-

tors appearing every 1, 2, 3, 4, 6 or 12 years, whereas a

mutant with a 13-year period has the advantage of being

subject to fewer predators. According to R. MacArthur [1],

this idea may be the only application of number theory in

mathematical biology; a drawback, however, is that there is

as yet no evidence for relevant periodic predators of cicadas.

Nevertheless, Lloyd and Dybas [3] pointed out that the

predator hypothesis can be maintained by assuming para-

sitoids that attack eggs or adults, which may have become

extinct. Models of periodical cicadas presented so far [4,5]

show that synchronized periodical behavior is possible for

periods longer than 10 years. An alternative mechanism to

the predator hypothesis is given (without model calcula-

tions) by Yoshimura [6,7]; he argues that prime numbers are

selected because these cycles are the least likely to co-

emerge and hybridize, so that they prevent genetic break-

down by breeding synchrony. This mechanism has been

compared [8] with that proposed by Cox and Carlton [9],

which also involves advantage of prime cycles due to less

frequent hybridization.

The purpose of the present work is twofold: (i) we want

to underline that in spite of missing biological data support-

ing the predator hypothesis, a simple, purely temporal

model does lead to locking into prime-periodic prey cycles,

whereas a spatiotemporal model leads to a maximum prob-

ability of such cycles; (ii) one can use these biological ideas
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for a nonbiological, purely number-theoretical goal, namely

to construct an evolutionary algorithm yielding prime num-

bers of any size. In addition, one can consider the present

work from the viewpoint of an evolutionary game [10] in-

cluding spatial dimensions; such a viewpoint sets a link to

phenomena reported for spatial versions of the Prisoner’s

dilemma [11–13], the hawk-dove game [14], and prebiotic

evolution [15].

2. SIMULATION OF TEMPORAL PROCESSES
We now set up a model considering first a predator of pe-

riod X interacting with a prey of period Y. We assign a mo-

mentary fitness fy(t) of the prey in a year t as follows: it is

zero if it is not present, it is 11 if both predator and prey are

present, and it is +1 if the prey is present but the predator is

not. Note that we punish prey that appears and meets a

predator (fy(t) = 11), compared with the case of nonemer-

gence of the prey (fy(t) = 0); we do this because emergence

uses up metabolic resources, because of metamorphosis,

mating, and death; these resources are lost if the prey is

eaten up by a predator, whereas they are preserved if the

prey stays as larvae below the ground. The momentary

predator fitness fx(t) is defined analogously as for the prey,

but with opposite signs. The fitness Fx, resp. Fy, is defined by

the sum over the fx(t), resp. fy(t), t = 0, . . . ,XY, divided by the

number of predator, resp. prey, generations. (Note that this

yields an average valid for t→`, because the process is pe-

riodic with period XY). We divided by the number of gen-

erations because we found that no such division favors

short generation times, instead of properly timed genera-

tions (prime cycle lengths). This is important if one consid-

ers that each generation uses considerable metabolic en-

ergy, as mentioned above, and these expenses should be

minimized in the long run. Assuming that prey larvae can

survive for a long time below the ground, our model favors

seldom emergences, as long as the prey is safe when it ap-

pears. A similar reasoning applies to the predator, e.g., fungi

attacking eggs of prey; such a predator can survive for a long

time as spores, and our model favors seldom appearances,

as long as they get nourishment when they appear. Never-

theless, this model does not cause the cycles to become

longer and longer, because prey cycles eventually get locked

into a prime number, as we will show below, bringing evo-

lution to a stop.

We compare now a prey mutating to a cycle Y8 with the

resident prey (cycle length Y ) at constant X. Analogously, we

compare mutant cycles X8 with resident cycles X at constant

Y. (Note that we do not restrict cycle length changes to 51.)

A mutant prey (resp. predator) substitutes the resident if

and only if Fy8 > Fy, resp. Fx8 > Fx. Thus, in the case of fitness
equality, the resident and not the mutant is selected. Here
and in the rest of this work, we assume that all interacting
populations are synchronized, thus being all present at t = 0.

Now we proceed to analyze the model described in the
previous paragraph. Let lcm(X,Y ): least common multiple,
gcd(X,Y ): greatest common divisor of X and Y. In XY years,
the predator appears Y times, both predator and prey ap-
pear XY/lcm(X,Y ) times; thus, predator without prey ap-
pears Y 1 XY/lcm(X,Y ) times. Considering that gcd(X,Y ) ?

lcm(X,Y ) = XY, we thus obtain the predator fitness Fx(X,Y ) =
2gcd(X,Y )/Y 1 1. Analogously, one obtains the prey fitness
Fy(X,Y ) = 1 1 2gcd(X,Y )/X.

We will now show the following: if we allow random
mutations—which can be of any size, as long as they lead to
mutants within the ranges 2 # X # L/2, L/2 + 2 # Y #

L—then a sequence of such mutations will finally lock the
prey into a stable prime period Y. We call H the domain
defined by these allowed ranges of X and Y. The definition of
H on the X 1 Y plane is given in Figure 1.

To be more precise, we will show that if Y is not a prime,
then there exists a sequence of mutations that will change
Y, and if Y is prime, then no mutation will change it. Let us
first assume that Y = YN is not a prime; Fx(X,YN) has the
maximum value 2gcd(XM,YN)/YN 1 1 at the predator period
XM = gd(YN) (gd: greatest divisor). Note that 1 < XM < L/2 +
1 → (XM,YN) e H. A sequence of random mutations keeping
Y = YN constant will eventually lead to XM. However, (XM,YN)
is abandoned if mutations lead to (XM,YN 5 1). In fact,
gcd(XM,YN) = XM, implying that Fy(XM,YN) = 11; gcd(XM,YN

5 1) cannot be equal to XM (the reason is: (YN 5 1)/XM =
YN/XM 5 1/XM, the first term being an integer, but the sec-
ond not, so that XM is not a divisor of YN 5 1) and gcd(XM,YN

Definition of the domain H within which mutations of X (predator
cycle length; abscissa) and Y (prey cycle length; ordinate) are
allowed.

FIGURE 1
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5 1) can certainly not be larger than XM; thus gcd(XM,YN 5

1) < XM; this implies that Fy(XMYN 5 1) > 11 = Fy(XMYN). So
far, we have shown that there exists a sequence of muta-
tions such that a prey with a nonprime cycle Y = YN is
extinguished. Assume now that Y = YP is a prime; any X = XR

such that (XR,YP) e H satisfies the condition 1 # XR # YP 1

1 and is thus relatively prime to YP; therefore gcd(XR,YP) = 1,
so that starting from (XR,YP) e H, there exist no predator
mutants that are fitter than a resident. On the other hand,
gcd(XR,Y8) $ 1, where Y8 is a prey mutant, as compared to
gcd(XR,YP) = 1, so that Fy(XR,Y8) # Fy(XR,YP), i.e., no prey
mutant is fitter than a resident. In conclusion, if H contains
a prime prey cycle length, any initial random choice of (X,Y )
e H will lead and lock to a prime Y after a sufficiently large
number of mutations. This locking into primes is illustrated
in Figure 2. Figure 2a is intended to illustrate a biological
process, so we chose a low value of L (L = 22) and obtained
locking at Y = 17. In contrast, Figure 2b is intended to dem-
onstrate a case of number-theoretical relevance, so we
chose L = 2.2 2 109 and obtained locking of Y into the Euler
prime E.

At this point we would like to comment on our restric-
tion to the domain H. We imposed this restriction because
the points (jYP,YP), where YP is prime and j = 1, 2, 3, . . . , are

unstable with respect to prey mutations. This can be shown

easily: gcd(jYP,YP) = YP, whereas gcd(jYP,YP 1 k) with k = 1,

2, 3, . . . cannot be larger than YP 1 k; thus Fy(jYP,YP) <

Fy(jYP,YP 1 k). This means that convergence to a prey with

period YP is not possible if mutations to the points (jYP,YP)

are permitted. In order to discard these points, one could

restrict the system to points above the diagonal X = Y. This,

however, is not plausible if we want the model to be appli-

cable to biological systems; in fact, this would mean that the

limits for prey cycle lengths depend on predator cycles

lengths, and vice versa. Such dependences are avoided by re-

stricting mutations to the rectangle H. In addition, H ful-

fills the requirement that it contains XM = gd(YN) (see above).

Note that, as a purely number-theoretical game, i.e.,

without biological considerations, one may loosen the re-

striction to the domain H and allow any mutations that lead

to (X,Y ) pairs above the main diagonal X = Y. The restriction

then would read 2 # X < Y.

3. SPATIO-TEMPORAL SIMULATIONS
We will now modify the model so that prime numbers are

selected by competition between neighboring residents in a

spatially extended system, instead of competition between

mutants and residents. In this spatio-temporal model there

are no random mutations; instead we start the process with

cycles X and Y that are randomly distributed in space. Fig-

ure 3 shows results obtained with a cellular automaton (CA)

evolving from such a random configurations in a two-

dimensional habitat with cyclic boundary conditions. The

CA is updated after a time Dt, which is equal to the lcm of all

X and Y at time t in the CA. At time t + Dt, the predator and

the prey of each cell are replaced by the fittest among the

neighbors. The neighbourhood is defined by the cell itself,

and the eight cells around it. We call Ci (i = 1, . . . , 9) the 9

neighbors of C. The momentary fitness Fx(t) of a predator in

the time step t is computed here as follows: fx(t) = 0 if the

predator does not appear in Ci in that time step; if the

predator appears in Ci and the number v of cells in the 3 2

3 neighbourhood of Ci ocuppied by prey is not zero (1 # v

# 9), then fx(t) = v ; fx(t) = 1p if the predator appears in Ci

and v = 0. p is a natural number describing a “punishment”

for a predator that appears but finds no prey at all. The

momentary fitness fy(t) of the prey is computed analo-

gously, but with opposite signs. The fitness Fx, resp. Fy, of a

predator, resp. prey, in Ci are given by the sum of the fx(t),

resp. fy(t), over all t, t ranging from 1 to the product of all 9

cycle lengths interacting in the neighborhood of Ci ; this

sum is then divided by the number of generations of the

predator, resp. the prey. In order to update X and Y for a cell

C, we perform the evaluation just described in all 9 neigh-
boring cells Ci. We then replace X, resp. Y, in C by the value
of X, resp. Y, of the cell Ci that yielded the largest fitness Fx,
resp. Fy.

Evolution to the prey perod Y = 17 (a) and to Y = E = 2147483647
(b; prime number discovered by Euler) through mutation-
selection sequences (abscissa: number of time steps t ; left ordi-
nate: prey period Y; right ordinate: predator period X).

FIGURE 2
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The CA just described yields a large diversity of coexist-
ing attractors, depending solely on the choice of the initial,
randomly distributed cycle lengths. As in the “Prisoner’s
Dilemma” CA [11], the fate of each cell depends here on 25
neighbors; in fact, the fitness of each cell is evaluated by the
encounters among the inhabitants of this cell and of its 8
neighbors, but after each time step the inhabitants of a cell
are replaced by those having the largest fitness, considering
the fitness of that cell and that of each of its 8 neighbors.
This contrasts with Conway’s “Game of Life” [16], where
only 9 cells specify a cell’s fate. After a sufficient number of
CA updatings, we obtain homogeneity, traveling waves (in-
cluding “gliders” as those shown in Figure 3a), spiral waves
(Figure 3b) and periodical, complicately pulsating areas,
such as those surrounding the spiral in Figure 3b. Because
all solutions display periodicity (traveling waves do so be-
cause of the cyclic boundary conditions), the existence of an
attractor is numerically well defined. We found a predomi-
nant appearance of prime-periodic preys, either in the
waves or in the background. In the examples given in Figure
3 it is the Euler prime E that appears (black) in the back-
ground of the figure. Our particular choice of initial, ran-
domly distributed Y—which is given in the caption—aimed
toward the locking into the large prime E. A larger interval of
initial Y values causes locking into other primes. As in the
work of Hassel et al. [17], the emergent patchiness allows, as
in nature, the persistence of otherwise unstable popula-
tions, coexisting in space.

The traveling waves can be better understood by consid-
ering a CA with only one spatial dimension. We call the

cycles in the background XB, YB and those in the wave XW,

YW. This is graphically explained in Figure 4. A one-

dimensional wave is composed of five zones defined on the

cells denoted by i = 1, 2, . . . ,n, . . . n + m, . . . , where m > 2

is the width of the wave: (i) XB, YB at i = 1, 2, . . . ,n; (ii) XB, YW

at i = n + 1; (iii) XW, YW at i = n + 2, . . . ,n + m; (iv) XW, YB at

i = n + m + 1; (v) XB, YB at i = n + m + 2, . . . . Note that the

predator wave (i = n + 2, . . . , n + m + 1) is displaced one cell

to the right relatively to the prey wave (i = n + 1, . . . , n + m);

this determines the moving direction to the right, as we will

explain now. Considering that predator-prey interactions

occur here only with the two immediate neighbors of each

cell, the predator at i = n + m + 1 (resp. at i = n + 1) can feed

on two types of prey and thus has a larger fitness than the

predator at i = n + m + 2 (resp. at i = n + 2), which can only

feed on one type of prey; therefore, the predator wave will

move one cell to the right in the next time step. The prey at

i = n + m + 1 (resp. the prey at i = n + 1) can be eaten by two

types of predators and thus has a lower fitness than the prey

at i = n + m (resp. at i = n), which can only be eaten by one

type of predator; therefore, also the prey wave will move one
cell to the right. In two dimensions the mechanism is more
complicated (especially for gliders moving diagonally, as in
Figure 3a), but they can be understood by the same type of
reasoning steps. It is remarkable that one-dimensional
waves and spiral waves here show a behavior similar to
waves in excitable media, such as chemical reactions, heart
muscle, and epidemics (see e.g., Refs. 18–22 and references
therein). This functions as follows: the spatial domain,
which is in the excited state, becomes refractory; the do-
main in the refractory state becomes excitable; the domain
in the excitable state becomes excited; and then the cycle
starts again. Also in the spirals found here, there are three
spatial domains characterized by cycle pairs (X1,Y1), (X2,Y2),
and (X3,Y3) that undergo a similar cycle: by virtue of our
fitness criterion, the first replaces the second, the second
replaces the third, and the third replaces the first; this se-
quential replacements cause the revolving of the wave.
(Note that grey levels only display Y in Figure 3). Spiral

Spatiotemporal dynamics of the cellular automaton starting from
a random distribution and evolving to gliders (a) and to a periodic
attractor consisting of a rotating spiral surrounded by pulsating
smaller domains (b). At t = 0, one predator (with cycle X) and one
prey (with cycle Y ) are placed in each cell by random choice
within √E < X < E − 2, E − 8 < Y < E + 8, where E is the Euler-prime
(see Figure 2b). Number of cells: 64 × 64. Only Y is shown here.
Different grey shadings correspond to different Y, black corre-
sponding to Y = E.

FIGURE 3

Spatial distribution of cycle lengths for a one-dimensional travel-
ing wave (XW, YW) and for the backround (XB, YB). i, cell index.
The wave moves to the right.

FIGURE 4
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waves are also obtained in host-parasitoid dynamics [17]
and in prebiotic evolutionary automata [15].

We investigate now the capability of our CA to produce
prime numbers. For this, we determine the probabilities
P(Y ) that different prime Y values appear in the attractors of
the CA. Figure 5 shows results of such analyses. One clearly
sees there a much more frequent appearance of prime prey
cycles (dark symbols), especially with periods around 17,
compared with nonprime prey cycles (grey symbols, all be-
ing very close to the abscissa). This result is robust to drastic
variations of the model, these variations being displayed by
the symbol shapes in Figure 5 (squares, triangles, and stars)
and by Figure 6. Note that in the spatiotemporal model
leading to Figures 5 and 6, we only restrict populations by
upper bounds (2 # X,Y # U; U = 50 in the case of Figures 5,
6b, and 6c; U = 100 in the case of Figure 6a).

We investigated the influence of the upper bound U and
of the grid size of the CA for p = 5 (ranges: 25 # U # 200; grid
size between 10 2 10 and 30 2 30). We found that none of
these parameters change the peak-like shape of P(Y ) vs. Y.
Moreover, the value of Y for which P(Y ) is maximum is a
prime number, independently of U and the grid size. In
Figure 6 we show examples for the influence of these pa-
rameters. Note that the maximum is attained at Y = 17 in
Figure 6a and at Y = 13 in Figure 6b. In contrast to these

results, a 5 2 5 grid has more than one maximum: local
maximum again at Y = 17 and a global maximum at Y = 29,
the latter being a prime cycle length that has not been ob-
served for cicadas; note that for this small grid, nonprimes
(Y = 25 and Y = 49) are selected with higher probabilities
than for larger grids. Moreover, we found that such non-
prime selection becomes increasingly more pronounced as
the grid is further reduced. Thus, a 10 2 10 grid (as in
Figures 5 and 6a) or a 20 x 20 grid (as in Figure 6b) are larger
than the smallest square grid for which our results are valid.

4. DISCUSSION
Qualitatively, the peak shapes illustrated in Figure 5 and 6
are explained as follows. Prey with sufficiently small Y are
exposed to predators having periods jY # U, j = 1, 2, 3, . . . ;

Probabilities P(Y) that prey periods Y are selected after the cellular
automaton has converged to an attractor. At t = 0, cycle lengths
are randomly chosen within 2 # X, Y # 50 and randomly dis-
tributed among 10 × 10 cells. 10,000 different initial spatial con-
figurations are evaluated. Symbols corresponding to prime, resp.
nonprime, Y values are shown in black, resp., gray. Squares:
p = 5, i.e., predators emerging but getting no prey lose the aver-
age of what they would gain (between 1 and 9) if they found prey
in the neighborhood; analogously: prey emerging but meeting no
predators gain the average of what they would lose (between 1
and 9) if predators emerge in the neighborhood. Triangles: p = 0,
i.e., predators emerging but finding no prey are undisturbed,
whereas prey emerging but meeting no predators are not re-
warded. Stars: modified model, so that fx(t) = +1 if the predator
emerges and finds prey, independently of the number v of prey-
populated neighboring cells (satiation effect) and fy(t) = −1 if
emerging prey meets predators, no matter how many.

FIGURE 5

Results from the same model as that corresponding to the
squares in Figure 5 (10 × 10 cells, U = 50), but with different grid
sizes and upper bounds of cycles. (a) 10 × 10 cells, U = 100; (b)
20 × 20 cells, U = 50; (c) 5 × 5 cells, U = 50.

FIGURE 6
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the number of such predators decreases on increasing Y,
roughly explaining the left branch of the P(Y ) peak. Note in
this context that we showed above that the pairs (jYP, YP),
where YP is prime, are unstable. By virtue of this, the prey
with Y = 17 is subject to the predators with X = 17 and with
X = 34; however, the number of (initially equally probable)
favorable predators is sufficiently large to allow for a maxi-
mum of P(Y ) at Y = 17 in Figures 5 and 6a. In order to
explain qualitatively the right branch of the peak, let us
compare a large prime Y (say Y = 47 in Figure 6b) with a
medium prime (say Y = 13). As the CA proceeds in time, the
prey with Y = 47 will favor the survival of one predator in its
spatial neighborhood, namely that having X = 47, because
only this predator can feed well on this prey; however, this
predator will meet the prey in each prey generation and will
thus strongly decimate the prey; if this prey appears, then Fy

≈ 1v. The prey with the smaller Y = 13 will favor three types
of predators in its spatial neighborhood, namely those with
X = 13, 26, and 39. If we make the simplification that that
these three are equally distributed, i.e., each has an average
number v/3 in the prey’s neighborhood and if we consider
that X = 26 only hits the prey every second prey generation
and X = 39 only every third prey generation, then the fitness
of the prey (which is evaluated per prey generation) is Fy ≈
1v(1 + 1/2 + 1/3)/3 = 1v(11/18). Thus, the prey with Y = 13
is fitter than that with Y = 47, exemplifying the decrease of
P(Y ) at large Y (right side of the peak). We leave it as an open
task to formalize these explanations of the peaks, which are
based so far only on estimates and on empirical observa-
tions in the course of our CA simulations.

Our results, both from the purely temporal and from the
spatiotemporal model, suggest that there are generic prop-
erties of this type of dynamics that favor prime numbers.
Although there are traditional methods for prime number
detection (see e.g., Ref. 23) that are faster than the methods
presented here, it is remarkable that the generation of prime
numbers can be performed using a biological model.
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