Exercise 1. Let f be absolutely continuous on $[a,b]$ Show that

$$T_a^b(f) = \int_a^b |f'(x)| \, dx$$

and

$$P_a^b(f) = \int_a^b [f']^+.$$

Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Answer:

In homework 4 exercise 5 we showed that

$$\int_a^b |f'(x)| \, dx \leq T_a^b(f)$$

for all functions f of bounded variation. Since absolutely continuous functions have bounded variation then it suffices to only show the other inequality. Let $\{x_i\}_{i=0}^n$ be a partition of of $[a,b]$. Then

$$\sum_{i=1}^n |f(x_i) - f(x_{i-1})| = \sum_{i=1}^n \left| \int_{x_{i-1}}^{x_i} f'(x) \, dx \right| \leq \sum_{i=1}^n \int_{x_{i-1}}^{x_i} |f'(x)| \, dx = \int_a^b |f'(x)| \, dx.$$

Taking supremum over all partitions of $[a,b]$ it follows that

$$T_a^b(f) \leq \int_a^b |f'(x)| \, dx.$$

Hence

$$T_a^b(f) = \int_a^b |f'(x)| \, dx.$$

For the second part, we similarly see that for any partition $\{x_i\}_{i=0}^n$ of $[a,b]$ we have

$$\sum_{i=1}^n [f(x_i) - f(x_{i-1})]^+ = \sum_{i=1}^n \left[\int_{x_{i-1}}^{x_i} f'(x) \, dx \right]^+ \leq \sum_{i=1}^n \int_{x_{i-1}}^{x_i} [f'(x)]^+ \, dx = \int_a^b [f'(x)]^+ \, dx.$$
Taking supremum over all partitions of \([a, b]\) it follows that

\[P^b_a(f) \leq \int_a^b [f']^+. \]

For the converse inequality note that \(f(x) = P^x_a(f) - N^x_a(f) + f(a) \), so \(f'(x) = P^x_a(f)' - N^x_a(f)' \) almost everywhere. Since \(P^x_a(f) \) and \(N^x_a(f) \) are nondecreasing functions then \(P^x_a(f)' \geq 0 \) and \(N^x_a(f)' \geq 0 \) almost everywhere. So \([f(x)]^+ = [P^x_a(f)' - N^x_a(f)']^+ \leq P^x_a(f)' \) almost everywhere. So we conclude that

\[\int_a^b [f']^+ \leq \int_a^b P^x_a(f)' \, dx \leq P^b_a(f) - P^a_a(f) = P^b_a(f), \]

which is the inequality that we wanted. Thus

\[\int_a^b [f']^+ = P^b_a(f). \]

Finally, since \(P^x_a(f) \) and \(T^x_a(f) \) are both integrals they are in particular absolutely continuous. Since

\[f(x) = P^x_a(f) - N^x_a(f) + f(a) = 2P^x_a(f) - P^x_a(f) - N^x_a(f) + f(a) = 2P^x_a(f) - T^x_a(f) + f(a) \]

then \(f \) is the difference of two monotone absolutely continuous functions.

Exercise 2. Show that if \(f \) is in AC on \([a, b]\) and if \(f \) is never zero there, then \(g = \frac{1}{f} \) is also in AC on \([a, b]\).

Answer:

Since \(f \) is a continuous function on the connected set \([a, b]\) and never zero, then either \(f(x) > 0 \) for all \(x \in [a, b] \) or \(f(x) < 0 \) for all \(x \in [a, b] \). Without loss of generality we can assume that \(f(x) > 0 \) for all \(x \in [a, b] \). Since \([a, b]\) is compact then \(f \) attains its minimum on \([a, b]\), so there exists \(c > 0 \) so that \(f(x) \geq c > 0 \) for all \(x \in [a, b] \). Fix \(\varepsilon > 0 \). Since \(f \) is absolutely continuous we find \(\delta > 0 \) so that

\[\sum_{i=1}^n |f(a_i) - f(b_i)| < c^2 \varepsilon \]
whenever \(\{(a_i, b_i)\}_{i=1}^n\) is a disjoint collection of intervals such that
\[
\sum_{i=1}^n |a_i - b_i| < \delta.
\]
This implies that
\[
\sum_{i=1}^n |g(a_i) - g(b_i)| = \sum_{i=1}^n \left| \frac{1}{f(a_i)} - \frac{1}{f(b_i)} \right| = \sum_{i=1}^n \left| \frac{f(b_i) - f(a_i)}{f(a_i)f(b_i)} \right|
\leq \frac{1}{c^2} \sum_{i=1}^n |f(a_i) - f(b_i)| < \frac{1}{c^2} \epsilon^2 = \epsilon
\]
whenever \(\{(a_i, b_i)\}_{i=1}^n\) is a disjoint collection of intervals such that
\[
\sum_{i=1}^n |a_i - b_i| < \delta.
\]
Hence \(g = \frac{1}{f}\) is absolutely continuous on \([a, b]\).

Exercise 3. Show that there is a strictly increasing singular function on \([0, 1]\). (Recall that a monotone function \(f\) on \([a, b]\) is called singular if \(f' = 0\) almost everywhere.)

Answer:
We follow the suggestions given by Royden.

Lemma 1. Let \(f\) be a monotone increasing function. Then \(f = g + h\) where \(g\) is absolutely continuous and \(h\) is singular, and both \(g\) and \(h\) are monotone increasing.

Proof:
Since \(f\) is monotone then \(f'\) exists almost everywhere and is measurable, and \(f' \geq 0\) since \(f\) is increasing. We define
\[
g(x) = \int_a^x f'(t) \, dt
\]
for all \(x\). Now \(g\) is absolutely continuous as an integral and \(g\) is monotone increasing since \(f' \geq 0\). We define \(h = f - g\). Now
\[h' = f' - g' = f' - f' = 0 \text{ almost everywhere so } h' \text{ is singular. To see that } h \text{ is monotone increasing, fix } x \leq y \text{ and observe that} \]
\[
h(y) - h(x) = f(y) - \int_a^y f'(t) \, dt - f(x) + \int_x^y f'(x) \, dx
\]
\[
= f(y) - f(x) - \int_x^y f'(t) \, dt.
\]
Since \(f \) is monotone then \(\int_x^y f'(t) \, dt \leq f(y) - f(x) \). So we conclude that \(h(x) \leq h(y) \). Finally, since \(f = g + h \) then we are done. \(\square \)

Lemma 2. Let \(f \) be a nondecreasing singular function on \([a,b]\). Then \(f \) has the following property (S): Given \(\varepsilon > 0, \delta > 0 \), there is a finite collection \(\{[y_k, x_k]\}_{k=1}^n \) of nonoverlapping intervals such that

\[
\sum_{k=1}^n |x_k - y_k| < \delta
\]

and

\[
\sum_{k=1}^n (f(x_k) - f(y_k)) > f(b) - f(a) - \varepsilon.
\]

Proof:
Fix \(\varepsilon > 0 \) and \(\delta > 0 \). Denote \(A = \{x \in [a,b] : f'(x) = 0\} \) and \(\kappa = \frac{\varepsilon}{b-a} \). Now if \(x \in A \) then

\[
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x) = 0,
\]
so there exists \(h_x > 0 \) so that for all \(0 < h < h_x \),

\[
\frac{f(x+h) - f(x)}{h} < \kappa,
\]
i.e. \(f(x+h) - f(x) < \kappa h \). Now the collection

\[
\mathcal{V} = \{[x, x+h] : x \in A, \, h < h_x \}
\]
is a Vitali cover of \(A \). Since \(m(A) < \infty \) then by Vitali covering theorem there is a finite disjoint collection \(\{[x_i, x_i + h_i]\}_{i=1}^n \subseteq \mathcal{V} \) so that

\[
m\left(A \setminus \bigcup_{i=1}^n [x_i, x_i + h_i]\right) < \delta.
\]
Denote $I_i = [x_i, x_i + h_i]$ for all i. Since $m([a, b]) = m(A)$ then
\[
b - a - \sum_{i \leq n} \ell(I_i) = b - a - m(\cup_{i \leq n} I_i) = m(A \setminus \cup_{i \leq n} I_i) < \delta,
\]
so $\sum_{i \leq n} \ell(I_i) > b - a - \delta$. Denote $I'_i \subseteq I_i$ the open interval obtained by taking the endpoints of I_i away. Now the complement of $\cup_{i \leq n} I'_i$ in $[a, b]$ is a finite collection of disjoint closed intervals, denoted by $\{J_i\}_{i=1}^k$, and additionally the possibility exists that the singleton endpoints $\{a, b\}$ are also in the complement in the case of $x_1 = a$ and $x_n + h_n = b$. In this case we treat $J_1 = \{a\}$ and $J_k = \{b\}$. We may assume that the intervals are listed in an increasing order, and we denote $J_i = [a_i, b_i]$ for all i. Note that each interval J_i is an interval of the form $[x_{i_n}, x_{i_n+1} + h_{i_n+1}]$ for some i_n unless we are dealing with the singleton endpoints, and $\sum_{i \leq k} \ell(J_i) < \delta$. Thus we have
\[
\sum_{i=1}^k (f(b_i) - f(a_i)) = f(b_k) - f(a_1) + \sum_{i=2}^n (f(a_i) - f(b_{i-1}))
\]
\[
= f(b) - f(a) - \sum_{i=2}^k (f(b_{i-1}) - f(a_i))
\]
\[
> f(b) - f(a) - \kappa \sum_{i=2}^k h_{i_n}
\]
\[
> f(b) - f(a) - \kappa (b - a)\]
\[
= f(b) - f(a) - \epsilon,
\]
which finishes the proof. \(\Box\)

Lemma 3. Let f be a nondecreasing function on $[a, b]$ with property (S) from Lemma 2. Then f is singular.

Proof:

From Lemma 1 it follows that $f = g + h$ where g is absolutely continuous and h is singular, and both g and h are nondecreasing. Fix $\epsilon > 0$. Since g is absolutely continuous then there exists $\delta > 0$ so that
\[
\sum_{i=1}^n (g(y_i) - g(x_i)) < \frac{\epsilon}{2}
\]
for any collection of disjoint intervals $\{[x_i, y_i]\}_{i=1}^n$ with
\[\sum_{i=1}^n |y_i - x_i| < \delta. \]

Now since f has property (S), for the fixed $\varepsilon > 0$ and $\delta > 0$ there is a finite collection $\{[a_i, b_i]\}_{i=1}^n$ of disjoint intervals such that
\[\sum_{i=1}^n |a_i - b_i| < \delta \]
and
\[\sum_{i=1}^n (f(b_i) - f(a_i)) > f(b) - f(a) - \frac{\varepsilon}{2}. \]

Since $g(x) = \int_a^x f'(t) \, dt$ for all x, then by denoting $b_0 = a$ and $a_{n+1} = b$, we have
\[
g(b) - g(a) = \sum_{i=0}^n (g(a_{i+1}) - g(b_i)) + \sum_{i=1}^n (g(b_i) - g(a_i))
\]
\[
< \sum_{i=0}^n \int_{b_i}^{a_{i+1}} f'(t) \, dt + \frac{\varepsilon}{2}
\]
\[
\leq \sum_{i=0}^n (f(a_{i+1}) - f(b_i)) + \frac{\varepsilon}{2}
\]
\[
= f(b) - f(a) - \sum_{i=1}^n (f(b_i) - f(a_i)) + \frac{\varepsilon}{2}
\]
\[
< f(b) - f(a) - \left(f(b) - f(a) - \frac{\varepsilon}{2}\right) + \frac{\varepsilon}{2} = \varepsilon.
\]

Since the choice of $\varepsilon > 0$ was arbitrary, it follows that $g(b) = g(a)$ for all x. Since $g(a) = 0$ then $g \equiv 0$. Thus $f = h$ and since h was singular then f is singular.

Lemma 4. Let $(f_n)_{n=1}^\infty$ sequence of nondecreasing singular functions on $[a, b]$ so that the function
\[f(x) = \sum_{n=1}^\infty f_n(x) \]
is everywhere finite. Show that \(f \) is also singular.

Answer:

Let \(\varepsilon > 0 \) and \(\delta > 0 \) be fixed. Since

\[
\sum_{n=1}^{\infty} (f_n(b) - f_n(a)) = f(b) - f(a) < \infty,
\]

then there exists \(N \in \mathbb{N} \) such that

\[
\sum_{n=N+1}^{\infty} (f_n(b) - f_n(a)) < \frac{\varepsilon}{2}.
\]

Denote \(g(x) = \sum_{k=1}^{N} f_n(x) \). Since each \(f_n \) is nondecreasing then \(g \) is nondecreasing, and since \(g'(x) = \sum_{k=1}^{N} f'_n(x) = 0 \) for almost every \(x \), then \(g \) is singular. By Lemma 2 the function \(g \) has the property \((S) \). So there exists a finite collection of disjoint intervals \(\{[a_i, b_i]\}_{i=1}^{m} \) so that

\[
\sum_{i=1}^{m} |b_i - a_i| < \delta
\]

and

\[
\sum_{i=1}^{m} (g(b_i) - g(a_i)) > g(b) - g(a) - \frac{\varepsilon}{2}.
\]

For this same collection of intervals we also have

\[
\sum_{i=1}^{m} (f(b_i) - f(a_i)) = \sum_{i=1}^{m} \left(\sum_{n=1}^{\infty} (f_n(b_i) - f_n(a_i)) \right)
\]

\[
\geq \sum_{i=1}^{m} \left(\sum_{n=1}^{N} (f_n(b_i) - f_n(a_i)) \right)
\]

\[
= \sum_{i=1}^{m} (g(b_i) - g(a_i)) > g(b) - g(a) - \frac{\varepsilon}{2}
\]

\[
= \sum_{n=1}^{N} (f_n(b) - f_n(a)) - \frac{\varepsilon}{2}
\]

\[
= f(b) - f(a) - \sum_{n=N+1}^{\infty} (f_n(b) - f_n(a)) - \frac{\varepsilon}{2}
\]

\[
> f(b) - f(a) - \frac{\varepsilon}{2} - \frac{\varepsilon}{2} = f(b) - f(a) - \varepsilon.
\]
So we conclude that f has the property (S). Since f is also non-decreasing then by Lemma 3 f is singular.

We now return to our exercise. Since \mathbb{Q} is countable then the set of all intervals with rational endpoints is countable. So we can enumerate this set, say by $\{[a_n, b_n] : n \in \mathbb{N}\}$, where $a_n, b_n \in \mathbb{Q} \cap [0, 1]$ and $a_n < b_n$. We then define $f_n : [0, 1] \to \mathbb{R}$ for each $n \in \mathbb{N}$ by setting

$$f_n(x) = 2^{-n}C\left(\frac{x-a_n}{b_n-a_n}\right),$$

where $C : \mathbb{R} \to \mathbb{R}$ is the Cantor function extended continuously to the whole real line by setting $C|_{(-\infty, 0]} \equiv 0$ and $C|_{[1, \infty)} \equiv 1$. Now note that $f_n(x) = 0$ for all $x \leq a_n$ and $f_n(x) = 2^{-n}$ for all $x \geq b_n$, $f_n'(x) = 0$ almost everywhere and f_n is nondecreasing. It follows that

$$f(x) := \sum_{n=1}^{\infty} f_n(x)$$

is everywhere finite and thus by Lemma 4 f is singular on $[0, 1]$. It also follows that f is nondecreasing because each f_n is. To see that it is strictly increasing assume that $x < y$. Since the rationals are dense in the reals there exists $q \in \mathbb{Q}$ so that $x < q < y$. So any f_n assigned to a rational interval with left endpoint at q gives $f_n(x) = 0$ and $f_n(y) > 0$. So it follows that $f(x) < f(y)$. Hence f is a strictly increasing singular function on $[0, 1]$.

Exercise 4. (a) Let F be AC on $[c, d]$ and let g be strictly increasing and AC on $[a, b]$ with $c \leq g \leq d$. Then $F \circ g$ is AC on $[a, b]$.

Answer:

Fix $\varepsilon > 0$. Since F is in AC there is $\kappa > 0$ so that

$$\sum_{i=1}^{n} |F(b_i) - F(a_i)| < \varepsilon$$

whenever $\{[a_i, b_i]\}_{i=1}^{n}$ is a disjoint collection of intervals with

$$\sum_{i=1}^{n} |b_i - a_i| < \kappa.$$
Now use $\kappa > 0$ in the definition of the absolute continuity of g to find $\delta > 0$ so that
\[
\sum_{i=1}^{n} |g(y_i) - g(x_i)| < \kappa
\]
whenever $\{[x_i, y_i]\}_{i=1}^{n}$ is a disjoint collection of intervals with
\[
\sum_{i=1}^{n} |y_i - x_i| < \delta.
\]
So fix a disjoint collection of intervals $\{[x_i, y_i]\}_{i=1}^{n}$ with
\[
\sum_{i=1}^{n} |y_i - x_i| < \delta.
\]
Then since g is increasing and continuous, the intervals $[x_i, y_i]$ map to intervals under g. More precisely, we have $g[x_i, y_i] = [g(x_i), g(y_i)]$ for all i and the intervals are disjoint as g is strictly increasing. By the absolute continuity of g we also have for the length of the intervals that
\[
\sum_{i=1}^{n} |g(y_i) - g(x_i)| < \kappa.
\]
So treating the disjoint collection of intervals $\{[g(x_i), g(y_i)]\}_{i=1}^{n}$ in the definition of the absolute continuity of F we have that
\[
\sum_{i=1}^{n} |F(g(y_i)) - F(g(x_i))| < \varepsilon.
\]
So we have shown that there is a $\delta > 0$ such that for any disjoint collection of intervals $\{[x_i, y_i]\}_{i=1}^{n}$ with
\[
\sum_{i=1}^{n} |y_i - x_i| < \delta.
\]
we have
\[
\sum_{i=1}^{n} |(F \circ g)(y_i) - (F \circ g)(x_i)| < \varepsilon.
\]
Hence $F \circ g$ is absolutely continuous.
(b) Let \(E = \{ x : g'(x) = 0 \} \). Then \(m(g(E)) = 0 \).

Answer:

Fix \(\varepsilon > 0 \). The proof follows a similar argument as we did in Lemma 2 of Exercise 3. Let \(\kappa = \frac{\varepsilon}{4(b-a)} \). There now exists \(\delta > 0 \) so that \(\int_A |g'| < \frac{\varepsilon}{2} \) whenever \(A \subseteq [a,b] \) with \(m(A) < \delta \). Fix \(x \in E \). Since

\[
\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = 0,
\]

there exists \(h_x > 0 \) so that for all \(0 < h < h_x \) we have

\[
\frac{g(x+h) - g(x)}{h} < \kappa.
\]

In other words \(g(x+h) - g(x) < \kappa h \) for all \(0 < h < h_x \). We then define

\[V = \{ [x, x+h] : x \in E, \ 0 < h < h_x \}, \]

which is a Vitali cover of the set \(E \). Since \(m(E) < \infty \), by Vitali covering theorem we find a finite disjoint subcollection of \(V \), denoted by \(\{ [x_i, x_i + h_i] \}_{i=1}^n \), so that

\[
m\left(E \setminus \bigcup_{i=1}^n [x_i, x_i + h_i] \right) < \frac{\delta}{2}.
\]

Denote \(U = \bigcup_{i=1}^n [x_i, x_i + h_i] \), and choose an open set \(O \supseteq E \setminus U \) with \(m(O \setminus (E \setminus U)) < \frac{\delta}{2} \). Now

\[
m(O) - m(E \setminus U) = m(O \setminus (E \setminus U)) < \frac{\delta}{2},
\]

so

\[
m(O) < \frac{\delta}{2} + m(E \setminus U) < \frac{\delta}{2} + \frac{\delta}{2} = \delta.
\]

We then write \(O \) as a countable disjoint union \(O = \bigcup_{k=1}^\infty I_k \) of open intervals \(I_k \), so

\[
m(g(E \setminus U)) \leq m(g(O)) \leq \sum_{k=1}^\infty m(g(I_k)) = \sum_{k=1}^\infty m(\min_{x \in I_k} g(x), \max_{x \in I_k} g(x))
\]

\[
= \sum_{k=1}^\infty (\max_{x \in I_k} g(x) - \min_{x \in I_k} g(x)) \leq \sum_{k=1}^\infty \int_{I_k} |g'| = \int_O |g'| < \frac{\varepsilon}{2},
\]

10
since \(m(O) < \delta \). Above we also used the fact that since \(g \) is continuous on the compact intervals \(I_k \) then the maximums and minimums exist. On the other hand, if \(t \in [x_i, x_i + h_i] \) then \(0 < t - x_i < h_i \), so \(|g(t) - g(x_i)| < \kappa h_i \). Thus
\[
g[x_i, x_i + h_i] \subseteq B(g(x_i), \kappa h_i),
\]
which implies that
\[
m(g[x_i, x_i + h_i]) \leq m(B(g(x_i), \kappa h_i)) \leq 2\kappa h_i.
\]
We then observe that
\[
m(g(E \cap U)) \leq m(g(U)) \leq \sum_{i=1}^{n} m(g[x_i, x_i + h_i]) \leq \sum_{i=1}^{n} 2\kappa h_i
\]
\[
\leq 2\kappa(b-a) = \frac{\varepsilon}{4(b-a)}(b-a) = \frac{\varepsilon}{2}.
\]
So finally,
\[
m(g(E)) \leq m(g(E \setminus U)) + m(g(E \cap U)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}.
\]
Since the choice of \(\varepsilon > 0 \) was arbitrary, then \(m(g(E)) = 0 \).

Exercise 5. Let \(g \) be an absolutely continuous monotone function on \([0, 1]\) and \(E \) a set of measure zero. Then \(g(E) \) has measure zero.

Answer:
Fix \(\varepsilon > 0 \). Since \(g \) is absolutely continuous there exists \(\delta > 0 \) so that
\[
\sum_{i=1}^{n} |g(b_i) - g(a_i)| < \varepsilon
\]
whenever \(\{[a_i, b_i]\}_{i=1}^{n} \) is a disjoint collection of intervals with
\[
\sum_{i=1}^{n} |b_i - a_i| < \delta.
\]
Take an open set \(O \supseteq E \) so that \(m(O) < \delta \). Such a set exists since \(m(E) = 0 \). We then write \(O \) as a countable disjoint union \(O = \bigcup_{k=1}^{\infty} I_k \) of open intervals \(I_k = (a_k, b_k) \). Let \(m \in \mathbb{N} \) be fixed. Then
\[
\sum_{k=1}^{m} |b_k - a_k| = \sum_{k=1}^{m} \ell(I_k) \leq \sum_{k=1}^{\infty} \ell(I_k) = m \left(\bigcup_{k=1}^{\infty} I_k \right) = m(O) < \delta.
\]
Since g is monotone and continuous then $g(I_k)$ is the interval $[g(a_k), g(b_k)]$ or $[g(b_k), g(a_k)]$, so by absolute continuity of g we have
\[
\sum_{k=1}^{m} m(g(I_k)) = \sum_{k=1}^{m} |g(b_k) - g(a_k)| < \varepsilon.
\]
Since this applies for all $m \in \mathbb{N}$ then
\[
\sum_{k=1}^{\infty} \ell(g(I_k)) < \varepsilon.
\]
In particular, it follows that
\[
m(g(E)) \leq m(g(O)) \leq \sum_{k=1}^{\infty} m(g(I_k)) < \varepsilon.
\]
Since this holds for all $\varepsilon > 0$, then $m(g(E)) = 0$.

Exercise 6. Let g be a monotone increasing absolutely continuous function on $[a, b]$ with $g(a) = c$ and $g(b) = d$.

(a) Show that for any open set $O \subseteq [c, d]$, $m(O) = \int_{g^{-1}(O)} g'(x) \, dx$.

Answer:
We first write the open set O as a countable disjoint union $O = \bigcup_{k=1}^{\infty} I_k$ of open intervals $I_k = (a_k, b_k)$. Since g is continuous then $g^{-1}(a_k, b_k)$ is an open subset of $[a, b]$ for all k, and since g is monotone increasing then $g^{-1}(a_k, b_k)$ is an interval $J_k = (x_k, y_k)$ with $g(x_k) = a_k$ and $g(y_k) = b_k$. Moreover the intervals J_k are disjoint since I_k are and the preimages of disjoint sets are disjoint. Now $g^{-1}(O)$ is the countable disjoint union $g^{-1}(O) = \bigcup_{k=1}^{\infty} J_k$, so
\[
\int_{g^{-1}(O)} g' = \sum_{k=1}^{\infty} \int_{J_k} g' = \sum_{k=1}^{\infty} (g(y_k) - g(x_k)) = \sum_{k=1}^{\infty} (b_k - a_k)
\]
\[
= \sum_{k=1}^{\infty} m(I_k) = m(O),
\]
as required.
(b) Let $H = \{ x : g'(x) \neq 0 \}$. If E is a subset of $[c, d]$ with $m(E) = 0$, then $F = g^{-1}(E) \cap H$ has measure zero.

Answer:
Let E be a subset of $[c, d]$ with $m(E) = 0$, and denote $F = g^{-1}(E) \cap H$. Assume towards contradiction that $m(F) > 0$. Since g is increasing then $g' \geq 0$ almost everywhere, so $g'(x) > 0$ for all $x \in F$ and thus $\int_F g' > 0$. Fix an open set $O \supseteq E$. Since $F = (g^{-1}(E) \cap H) \subseteq g^{-1}(O)$, then by part (a) we have

$$m(O) = \int_{g^{-1}(O)} g' \geq \int_F g' .$$

This lower bound holds uniformly for all open sets $O \supseteq E$, so by taking infimum we get $m(E) \geq \int_F g' > 0$. This is a contradiction with the assumption $m(E) = 0$, so we conclude that $m(F) = 0$.

(c) If E is a measurable subset of $[c, d]$, then $F = g^{-1}(E) \cap H$ is measurable and

$$m(E) = \int_F g' = \int_a^b \chi_E(g(x))g'(x) \, dx .$$

Answer:
Since E is measurable then by homework 1 exercise 1 we can write $E = A \cup N$, where A is a F_σ-set and N has measure zero, and $A \cap N = \emptyset$. Then

$$F = g^{-1}(E) \cap H = g^{-1}(A \cup N) \cap H = (g^{-1}(A) \cup g^{-1}(N)) \cap H = (g^{-1}(A) \cap H) \cup (g^{-1}(N) \cap H) .$$

Now $H = (g')^{-1}(\mathbb{R} \setminus \{0\})$ is measurable since g' is, and thus $g^{-1}(A) \cap H$ is measurable as A was a Borel set. Also, by part (b) the set $g^{-1}(N) \cap H$ has measure zero and is thus measurable. Hence F is measurable. Note then that

$$\int_F g' = \int_{g^{-1}(E)} g' = \int_a^b \chi_{g^{-1}(E)}g' = \int_a^b \chi_E(g)g' ,$$

since $\chi_{g^{-1}(E)} = \chi_E(g)$. So we have to show that $m(E)$ equals the above value. We will prove it in several steps.
(i) We first assume that E is an open set. By part (a) we have

$$m(E) = \int_{g^{-1}(E)} g' = \int_a^b \chi_{g^{-1}(E)} g' = \int_a^b \chi_E g'. $$

So the statement is true if E is open.

(ii) Assume then that E is a G_δ set. So there exists a nested sequence of open sets $\{O_n\}_{n=1}^\infty$ so that $O_{n+1} \subseteq O_n$ for all n and $E = \bigcap_{n=1}^\infty O_n$. Now \(\lim_{n \to \infty} \chi_{O_n} = \chi_E\) pointwise and by dominated convergence theorem and part (i) we have

$$m(E) = \lim_{n \to \infty} m(O_n) = \lim_{n \to \infty} \int_a^b \chi_{O_n} g' = \int_a^b \lim_{n \to \infty} \chi_{O_n} g' = \int_a^b \chi_E g', $$

so the statement holds for all G_δ sets.

(iii) Assume then that E is any measurable set. Then by exercise 1 of problem set 1 we can find a G_δ-set G and a set N with $m(N) = 0$ so that $E \cup N = G$ and $E \cap N = \emptyset$. Thus by part (ii) we have

$$m(E) = m(E \cup N) = m(G) = \int_a^b \chi_G g' = \int_{g^{-1}(G) \cap H} g'$$

$$= \int_{g^{-1}(E \cup N) \cap H} g' = \int_{g^{-1}(E) \cap H} g' + \int_{g^{-1}(N) \cap H} g'$$

$$= \int_{g^{-1}(E) \cap H} g' = \int_a^b \chi_E g'. $$

So the statement is true for all measurable E.

(d) If f is a non-negative measurable function on $[c, d]$, then $(f \circ g)g'$ is measurable on $[a, b]$ and

$$\int_c^d f(x) \, dx = \int_a^b f(g(x))g'(x) \, dx.$$

Answer:
Since g is a monotone increasing absolutely continuous function and f is measurable then $(f \circ g)$ is measurable. Since g' is measurable then so is $(f \circ g)g'$. We prove the statement in several steps by using the standard approximation argument.

(i) Assume first that $f = \chi_E$ is a characteristic function of some measurable set $E \subseteq [c, d]$. Then by part (c) we have

$$\int_c^d f(x) \, dx = \int_c^d \chi_E = m(E) = \int_a^b \chi_E(g(x))g'(x) \, dx$$
$$= \int_a^b f(g(x))g'(x) \, dx,$$

so the statement is true for all characteristic functions.

(ii) Assume then that f is a simple function $f = \sum_{k=1}^n a_k \chi_{E_k}$ for some constants a_k and measurable sets $E_k \subseteq [c, d]$. Then by part (i) and linearity of the integral we have

$$\int_c^d f(x) \, dx = \int_c^d \sum_{k=1}^n a_k \chi_{E_k} = \sum_{k=1}^n a_k \int_c^d \chi_{E_k}$$
$$= \sum_{k=1}^n a_k \int_a^b \chi_{E_k}(g(x))g'(x) \, dx$$
$$= \int_a^b \sum_{k=1}^n a_k \chi_{E_k}(g(x))g'(x) \, dx$$
$$= \int_a^b f(g(x))g'(x) \, dx,$$

so the statement holds for all simple functions.

(iii) Let f then be any non-negative measurable function, and take a nondecreasing sequence $(\varphi)^\infty_{n=1}$ of simple functions so that $\varphi_n \leq f$ for all n and $\varphi_n \rightharpoonup f$ pointwise. We use monotone
convergence theorem and part (ii) to conclude that

\[
\int_c^d f(x) \, dx = \int_c^d \lim_{n \to \infty} \varphi_n(x) \, dx = \lim_{n \to \infty} \int_c^d \varphi_n(x) \, dx \\
= \lim_{n \to \infty} \int_c^d \varphi_n(g(x))g'(x) \, dx = \int_c^d \lim_{n \to \infty} \varphi_n(g(x))g'(x) \, dx \\
= \int_a^b f(g(x))g'(x) \, dx.
\]

So this proves the statement.