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Abstract. This note concerns the problem of minimizing a certain family of non-
local energy functionals over measures on Rn, subject to a mass constraint, in a
strong attraction limit. In these problems, the total energy is an integral over pair
interactions of attractive-repulsive type. The interaction kernel is a sum of compet-
ing power law potentials with attractive powers α ∈ (0,∞) and repulsive powers
associated with Riesz potentials. The strong attraction limit α → ∞ is addressed
via Gamma-convergence, and minimizers of the limit are characterized in terms of
an isodiametric capacity problem. We also provide evidence for symmetry-breaking
in high dimensions.

1. Introduction and Statement of the Results

We consider mass-constrained variational problems of the form


Minimize Eα,λ(µ) :=
∫
Rn

∫
Rn
Kα,λ(x− y) dµ(x)dµ(y)

over P := {µ Borel measure on Rn : µ(Rn) = 1} ,
(1)

where the interaction kernel is given by

Kα,λ(x− y) := |x− y|α + |x− y|−λ with α ∈ (0,∞) and λ ∈ (0, n). (2)

These kernels are strongly repulsive at short range, with the repulsion controlled by
the exponent λ, and attractive at long range, with the attraction controlled by α, see
Fig. 1. Since the kernels are lower semicontinuous, locally integrable, and grow at
infinity, by the results of [15, 6], Problem (1) has a global minimizer.
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Figure 1. Shape of the interaction kernel Kα,λ(| · |) for α ∈ (0,∞) and λ ∈ (0, n).

Variational problems of the form (1) arise in connection with a class of models
for aggregation and self-assembly that have recently received much attention (see for
example, [2] and the references therein). In those models, a population density ρ
evolves according to the equation

ρt +∇ · (ρv) = 0 , v = −∇Kα,λ ∗ ρ ,

which is the gradient flow of the energy Eα,λ(µ) on absolutely continuous measures
µ = ρ dx in the 2-Wasserstein metric (cf. [5]). Energy minimizers represent stable
steady-states of the aggregation process.

Here, we study the minimization problem (1) in the strong attraction regime where
α → ∞. In this limit, finite energy alone restricts the support of a measure to have
diameter no larger than one.

In Fig. 2, we present a few particle simulations in dimension n = 2 which suggest
that as α increases, minimizers concentrate on the boundary of the ball of diameter
1 for some values of λ; but spread out (non-uniformly) over the ball for larger values
of λ. A broader range of behaviour is expected for other parameters and in higher
dimensions (see for example Fig. 3).

Our first result is that in the limit as α→∞, Problem (1) approaches the problem
of minimizing

E∞,λ(µ) :=


∫
Rn

∫
Rn
|x− y|−λ dµ(x)dµ(y) if diam(suppµ) ≤ 1

+∞ otherwise
(3)

over P . The limit is understood in the sense of Gamma-convergence.

Theorem 1 (Strong attraction limit). Let λ ∈ (0, n). Then Eα,λ Γ−→ E∞,λ as α → ∞
in the weak topology of measures.

The limiting problem admits a solution:

Theorem 2 (Existence). The functional E∞,λ has a global minimizer in P.

The proofs of Theorems 1 and 2 are presented in Section 3.

Remark. In the literature, the interaction kernel is sometimes normalized to

K̃α,λ(x− y) := 1
α
|x− y|α + 1

λ
|x− y|−λ , (4)



STRONG ATTRACTION LIMIT OF NONLOCAL INTERACTION ENERGIES 3

Figure 2. Particle simulations associated with minimizers of (1) in dimen-
sion n = 2. Each particle i = 1, . . . , N is tracked via the system of ODEs

dXi

dt
= − 1

N

N∑
j=1
∇Kα,λ(Xi −Xj)

until the configuration stabilizes. The interaction kernel is give by Eq. (2),
where the exponent of attraction ranges through α = 2, 20, 200 (from left to
right). Top row: Repulsive term replaced with the logarithmic term − log |x−
y| that corresponds to the Newton potential (λ = n− 2) in two dimensions.
Bottom row: Exponent of repulsion λ = 1, which lies in the super-Newtonian
regime.

which assumes its minimum when |x − y| = 1 (cf. [4]). This normalization can be
achieved by acting on P with a suitable dilation. For the normalized kernel, the
conclusions of Theorem 1 hold with 1

λ
E∞,λ as the limiting functional, and Theorem 2

applies without change.

We then consider the nature of minimizers for the limiting problem E∞,λ. This
turns out to be a rather subtle question; indeed, due to the diameter constraint, the
functional E∞,λ is non-convex on P . Our approach is to rephrase the limiting problem
as an isodiametric capacity problem. More precisely, for λ ∈ (0, n) and a set A ⊂ Rn,
we define the λ-capacity of A to be

Cλ(A) :=
(

inf
ν∈P

{
Iλ(ν)

∣∣∣ supp ν ⊂ A
})−1

, (5)

where

Iλ(ν) :=
∫
Rn

∫
Rn
|x− y|−λ dν(x)dν(y).
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In the special case where n = 3 and λ = 1, Cλ agrees (up to a multiplicative constant)
with the electrostatic capacity of A. It is straightforward (cf. Lemma 7) to show that

inf
ν∈P
E∞,λ(ν) =

(
sup
A⊂Rn

{
Cλ(A)

∣∣∣ diam(A) ≤ 1
})−1

,

with a direct relationship between the optimal measure ν on the left and optimal set A
on the right. This allows us to exploit tools from potential theory (cf. [10]) to partially
characterize the support of minimizers.

Theorem 3 (Properties of minimizers of the limit problem). Let n ≥ 3, λ ∈ (0, n),
and assume that µ minimizes E∞,λ on P. Then there exists a convex body W of
constant width 1 such that

suppµ ⊂ ∂W , λ ∈ (0, n− 2) (sub-Newtonian),
suppµ = ∂W , λ = n− 2 (Newtonian),
suppµ = W , λ ∈ (n− 2, n) (super-Newtonian).

The set W may depend on µ as well as λ. We do not know whether minimizers are
unique up to translation, and whether E∞,λ admits additional critical points, including
local minima. The proof of Theorem 3 is presented in Section 4.

The theorem extends to lower dimensions as follows. For n = 1, the entire range
λ ∈ (0, 1) is super-Newtonian, and the support of any minimizing measure is an
interval of length one. In dimension n = 2, the entire range λ ∈ (0, 2) is super-
Newtonian as well, and the support of any minimizing measure is a planar convex
set W of constant width 1. The role of the Newton potential |x − y|2−n is played by
the logarithmic kernel − log |x − y|; in this case, the support of a minimizer is the
boundary of a planar convex set of constant width 1.

In Section 5, we prove the following result pertaining to the asymmetry of minimizers
in high space dimensions. Precisely, we prove

Theorem 4 (Asymmetry of minimizers in high dimensions). For every λ > 0 there
exists N such that for all n ≥ N ,

sup
{
Cλ(A)

∣∣∣ A ⊂ Rn, diam(A) ≤ 1
}
> Cλ(B(n)

1/2) ,

where B(n)
1/2 = {x ∈ Rn : |x| ≤ 1

2}.

This demonstrates that for any fixed value of λ > 0, the ball ceases to be optimal
when n is sufficiently large. Thus, in this regime optimal measures are supported on
the boundary of sets that are not radially symmetric. As a result, minimizers of Eα,λ
in high dimensions must also be asymmetric when α is large.

The prospect of symmetry-breaking presents an interesting, largely open, question.
Even in low space dimensions, we suspect that when 0 < λ << n − 2 the maximal
capacity among bodies of given diameter may be achieved by non-symmetric sets, and
that the equilibrium measure may be supported on a proper subset of the boundary.
For example, in Fig. 3 we present the results of 3D particle simulations for λ = 0.01 and
respectively, α = 2, 20, 200. The simulations suggest that minimizers are asymmetric
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for large α. However, the number of particles is too small to draw conclusions about
the supports of minimizing measures.

Figure 3. Results of particle simulations in dimension n = 3. The
exponent of attraction ranges through α = 2, 20, 200 (from left to right).
The exponent of repulsion is λ = 0.01, which lies in the sub-Newtonian
regime.

2. Related work and further questions

2.1. Comparisons with Related Results. According to Theorem 3, every mini-
mizer µ of the functional E∞,λ is supported on a convex body Wµ of constant width
1, and the following relations, summarized in the table below, hold true.

Table 1. Characteristics of minimizers of E∞,λ in terms of a body Wµ of
constant width.

Repulsion Geometry
λ < n− 2 suppµ ⊂ ∂Wµ

λ = n− 2 suppµ = ∂Wµ

λ > n− 2 suppµ = Wµ

In particular, the Hausdorff dimension of µ satisfies

dim(suppµ)


≤ n− 1 , λ ∈ (0, n− 2) ,
= n− 1 , λ = n− 2 ,
= n , λ ∈ (n− 2, n) .

To offer some perspective, note that classical results of geometric measure theory imply
that dim(suppµ) ≥ λ for every Borel measure µ with E∞,λ(µ) < ∞ (see for example
Theorem 4.13 in [8]). For minimizers of energy functionals defined by attractive-
repulsive pair interaction kernels, a stronger lower bound was obtained in [1, Theorem
1]. Specifically, minimizers of Eα,λ in the sub-Newtonian regime λ ∈ (0, n− 2) satisfy

dim(suppµ) ≥ λ+ 2 . (6)
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When λ ∈ (n − 3, n − 2) this lower bound exceeds n − 1, and in particular exceeds
the dimension of the support of the corresponding minimizer of E∞,λ. The results
of [1] apply more generally to local minimizers, in an optimal transport topology, for
a larger class of attractive-repulsive functionals with integrable singularities at the
origin. In light of (6), which holds for all α > 0, the dimensional reduction of the
support for λ ≤ n− 2 (cf. Theorem 3 or Table 1) is only achieved in the limit. In this
limit, the dimension of minimizers are strictly smaller then those in the finite regime,
a consequence of the strength of the diameter constraint.

Through Theorem 1 and Lemma 7 (below), the question of what the minimizers of
the limiting functional look like is transformed into an isodiametric capacity problem:
For a given λ ∈ (0, n), which sets of diameter 1 have the largest λ-capacity? Although
for any given setW ⊂ Rn the equilibrium measure that realizes the capacity is unique,
there could be more than one capacity-maximizing set.

One candidate for a set that maximizes capacity among sets of diameter 1 is the ball
of radius 1

2 , which uniquely maximizes volume under the diameter restriction. For each
λ ∈ (n − 2, n), the equilibrium measure on the ball is a well-known positive, radially
symmetric density, and for λ ≤ n − 2 it is the uniform measure on the boundary
sphere [10, p. 163]. Note, however, that the ball minimizes capacity among sets
of given volume, indicating competition between size and shape in the isodiametric
problem.

There are a number of related results for the weak repulsion regime (corresponding
to λ < 0) which imply that the support of minimizers has dimension zero [1, Theorem
2] provided that the pair interaction kernel vanishes of higher order as |x − y| → 0.
In particular, the variance is maximized, among probability measures on Rn whose
support has diameter one, by the uniform measure on the vertices of the unit sim-
plex [12].

2.2. Restricting Problem (1) to Densities and Sets. In an interesting variant
of Problem (1), the minimization is restricted to absolutely continuous probability
measures µ = ρdx with density bounded by ρ ≤ m−1 for some m > 0.

Minimize E ′α,λ(ρ) :=
∫
Rn

∫
Rn
Kα,λ(x− y)ρ(x)ρ(y) dxdy

over Am :=
{
ρ ∈ L1(Rn)

∣∣∣ 0 ≤ ρ ≤ m−1 ,
∫
Rn
ρ dx = 1

}
.

(7)

The density constraint plays the role of an additional repulsive term in the energy. This
is relevant for biological aggregation problems, where the density of individuals cannot
exceed a certain critical value. By rescaling, Problem (7) is equivalent to minimizing
E ′α,λ(ρ) among measures of mass m, subject to the density constraint ρ ≤ 1. Unlike
Problem (1), the mass m does not scale out of the problem. It is known that for each
α > 0 and λ ∈ (0, n), the functional E ′α,λ has a minimizer on Am for any m > 0 (cf.
[7]).

Since the set of probability measures of density at most m−1 is a closed convex
subspace of P , Theorems 1 and 2 continue to hold.
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Corollary 5 (Strong attraction limit with density constraint). For λ ∈ (0, n) and
µ ∈ P, let E ′α,λ be as in Problem (7), and define E ′∞,λ(ρ) := E∞,λ(ρ dx) for ρ ∈ L1.
Then

(1) E ′α,λ
Γ−→ E ′∞,λ as α→∞ in the weak topology on L1.

(2) For each m ≤ |B 1
2
|, the functional E ′∞,λ attains a global minimum on Am.

The assumption on m guarantees that the energy of the uniform measure on B 1
2

remains bounded as α → ∞ (see the proof of Theorem 2). As m → 0, the measures
corresponding to a sequence of minimizers converge (up to translations, along suitable
subsequences, weakly in P) to minimizers of E∞,λ.

Problem 7 is of interest also when m is large. Under certain assumptions on λ and
α, E ′α,λ is minimized for m sufficiently large by the uniform probability density on a
set S of volume m ([4, 9, 13]). In the context of aggregation models, this indicates
the formation of a swarm. A minimizing set is the solution of the purely geometric,
non-local shape optimization problem

Minimize E ′′α,λ(S) := Eα,λ(νS)

over Sm :=
{
S ⊂ Rn

∣∣∣ |S| = m
}
,

(8)

where νS is the uniform probability measure on S. It turns out that the infimum in
Problem (8) agrees with Problem (7), but it is not always attained. If the density of a
minimizer of E ′α,λ on Am falls strictly between 0 and m−1 on all or part of its support,
then the shape optimization problem (8) has no solution [4, Theorem 4.4], indicating
a failure to fully aggregate. In this case, minimizing sequences for Problem (8) diverge
due to oscillations. When m is too small, typically ρ < m−1 everywhere (cf. [4, 9, 13]),
preventing even partial aggregation.

All known solutions of the shape optimization problem (8) are radially symmetric,
and in many cases they are large balls (cf. [4, 9, 13]). It may be possible to dis-
cover interesting examples of symmetry-breaking in the strong-attraction limit, using
Corollary 5 and the known relation between Problems (7) and (8).

We are not aware of any explicit characterization of the minimizers for E ′∞,λ on Am,
even in the Newtonian case. Suppose that W maximizes capacity among sets of given
diameter. Since the density constraint prevents minimizers to concentrate on a lower-
dimensional set, one may wonder whether a thin neighborhood of ∂W might appear
as a solution to Problem (8), and whether such a solution persists for sufficiently large
finite values of α? When W is not a ball, this could give rise to symmetry-breaking
in Problems (7) and (8).

3. Convergence

We begin by recalling a few definitions. Given a topological space X, let (Gn)n be
a sequence of functions on X. We say that (Gn) Gamma-converges to a function
G (Gn

Γ−→ G) if the following two conditions hold for every x ∈ X:
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• Lower bound inequality: for all sequences (xn)n ⊂ X such that xn → x ∈ X,

lim inf
n→∞

Gn(xn) ≥ G(x) ;

• Upper bound inequality: for all x ∈ X there exists a sequence (xn)n ⊂ X such
that xn → x and

lim sup
n→∞

Gn(xn) ≤ G(x) .

Gamma-convergence has many useful implications, the most important of which is that
if xn minimizes Gn over X, then every cluster point of the sequence (xn) minimizes G
over X (cf. [3]).

Given a sequence of measures (µn)n ⊂ P , we say (µn)n converge weakly to µ ∈ P
(µn ⇀ µ) if

lim
n→∞

∫
φ dµn =

∫
φ dµ

for every bounded continuous function φ on Rn. This induces the weak topology on P .

Proof of Theorem 1. Let µ ∈ P be given. In the case where diam(suppµ) > 1, choose
two points p, q ∈ suppµ with |p− q| > 1. By continuity of the distance function, there
exist open neighborhoods U, V of p and q such that dist(U, V ) > 1. For any sequence
of measures (µn) with µn ⇀ µ in P , we have

Eα,λ(µn) =
∫
Rn

∫
Rn
|x− y|α + |x− y|−λ dµn(x)dµn(y)

≥
(
dist(U, V )

)α
µn(U)µn(V ) .

Since lim inf µn(U) ≥ µ(U) > 0 and likewise for V , it follows that Eαn,λ(µn) → ∞
along every sequence (αn) with αn → ∞, verifying simultaneously the lower and
upper bound inequalities for this case.

Otherwise, diam(suppµ) ≤ 1. To see the lower bound inequality, let (µn) be a
sequence in P that converges weakly to µ, and let t > 0. For every α > 0,

Eα,λ(µn) ≥
∫
Rn

∫
Rn

min{|x− y|−λ, t} dµn(x)dµn(y) .

Since Rn × Rn is separable, the product measures µn × µn converge weakly to µ× µ,
and thus for any sequence (αn),

lim inf
n→∞

Eαn,λ(µn) ≥
∫
Rn

∫
Rn

min{|x− y|−λ, t} dµ(x)dµ(y) .

By monotone convergence, taking t→∞ yields the lower bound inequality.
The upper bound inequality is achieved by a sequence of properly chosen dilations

of µ. Given a sequence αn → ∞, set βn = e
1√
αn , and define a sequence of Borel

measures by
µn(A) = µ(βnA) , n ≥ 1 .
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Since βn → 1, clearly µn ⇀ µ. We estimate

Eαn,λ(µn) =
∫
Rn

∫
Rn
|x− y|αn + |x− y|−λ dµn(x)dµn(y)

=
∫
Rn

∫
Rn

( |x− y)|
βn

)α
+
( |x− y)|

βn

)−λ
dµ(x)dµ(y)

≤ e−
√
αn + e

λ√
αn E∞,λ(µ) .

We have used that |x − y| ≤ 1 on the support of µ to bound the first summand of
the integrand, and inserted the definition of the limiting functional into the second
summand. The desired inequality follows upon taking n→∞. �

The proof of Theorem 2 requires a compactness argument. To this end one often
resorts to an application of Lions’ concentration compactness principle for probability
measures (cf. [16, Section 4.3]) which asserts that every sequence (µn)n in P has a
subsequence (µnk)k satisfying one of the three following alternatives: (i) tightness up
to translation (ii) vanishing (mass sent to infinity) or (iii) dichotomy (splitting). A
standard technique it to show that (ii) and (iii) can not happen, yielding (i) which,
precisely, means: There exists a sequence (yk)k ⊂ Rn such that for all ε > 0 there
exists R > 0 with the property that µnk(BR(yk)) ≥ 1− ε for all k.

However, in our simpler case we may just as well directly prove tightness magentato
obtain compactness.

Lemma 6. Let Eα,λ be as in Eq. (1), let (αn) be a sequence with αn → ∞, and
fix λ ∈ (0, n). Then every sequence (µn) in P such that Eαn,λ(µn) is bounded has a
subsequence that converges weakly, up to translations, to some µ ∈ P.

Proof. Let (µn) be such that
sup
n∈N
Eαn,λ(µn) <∞ .

Fix an R > 1. We have the lower bounds

Eαn,λ(µn) ≥
∫∫
|x−y|≥R

Rαn dµn(x)dµn(y)

≥ Rαn

∫
Rn
µn
(
Rn \BR(y)

)
dµn(y)

≥ Rαn
(
1− sup

y∈Rn
µn(BR(y)

)
.

Since the left hand side is bounded by assumption while αn → ∞, it follows that
supy∈Rn µn(BR(y)) → 1. This establishes the first alternative of Lions’ concentration
compactness principle.

Choose a sequence (yn) ⊂ Rn such that
lim
n→∞

µn(B2(yn)) = 1 .

Given ε > 0, let N be so large that µn(B2(yn)) ≥ 1− ε for all n > N . Then choose R
so large that µn(BR(yn)) ≥ 1− ε for n = 1, . . . , N . Taking taking R ≥ 2 ensures that
µn(BR(yn)) ≥ µn(B2(yn)) ≥ 1− ε also for n > N .
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Let (µ̃n)n be the sequence of translates of µn defined by

µ̃n(A) = µn(yn + A) , n ≥ 1

for each Borel set A ⊂ Rn. Since (µ̃n) is tight. Prokhorov’s theorem yields a subse-
quence (µ̃nk)k that converges weakly in P . �

Proof of Theorem 2. Let (αn) be a nonnegative sequence with αn →∞, and let (µn)
be a sequence of measures such that each µn minimizes Eαn,λ. We will prove that
(Eαn,λ(µαn))n is bounded, and then apply Lemma 6.

Let ν be the uniform probability measure on the ball of radius 1
2 . Since µn minimizes

Eαn,λ for each n, we have

Eαn,λ(µn) ≤ Eαn,λ(ν)

=
∫
Rn

∫
Rn
|x− y|α + |x− y|−λ dν(x)dν(y)

≤ 1 +
∫
Rn

∫
Rn
|x− y|−λ dν(x)dν(y)

<∞ .

In the last two inequalities, we have used that the support of ν has diameter one, and
that the kernel is locally integrable.

By Lemma 6 there exists a subsequence µnk that converges weakly up to translation,
to some measure µ ∈ P . Since the functionals are translation invariant, we may assume
that the sequence of minimizers itself that has a subsequence converging weakly to µ.
By the properties of the Gamma-limit, µ is a global minimizer of E∞,λ. �

4. Characterization of Minimizers

We recall some classical results from potential theory. First, recall the λ-capacity of
a set A ⊂ Rn previously defined in (5) as the reciprocal of the minimum of the repulsive
energy Iλ over measures supported in A. If A is a compact set of positive Lebesgue
measure, the λ-capacity is finite by the local integrability of the Riesz-potential, and
the supremum is achieved by some measure µ ∈ P . Since Iλ is positive definite, the
minimizer is unique.

The next lemma relates the minimization problem for E∞,λ to an isodiametric ca-
pacity problem.

Lemma 7. Let n ≥ 1, λ ∈ (0, n). Then

inf
ν∈P
E∞,λ(ν) =

(
sup
A⊂Rn

{
Cλ(A)

∣∣∣ diam(A) ≤ 1
})−1

.

Furthermore, the infimum on the left hand side is attained for some measure µ with
diam(suppµ) = 1, and the supremum on the right hand side is attained for some
convex body W ⊂ Rn of constant width 1 containing the support of µ. Conversely, if
W maximizes λ-capacity among bodies of constant width, then the equilibrium measure
on W attains the minimum on the left hand side.
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Proof. We split the minimization problem for E∞,λ into two steps,

inf
ν∈P
E∞,λ(ν) = inf

A⊂Rn

{
inf
ν∈P

{
Iλ(ν)

∣∣∣ supp ν ⊂ A
} ∣∣∣∣ diam(A) ≤ 1

}
=
(

sup
A⊂Rn

{
Cλ(A)

∣∣∣ diam(A) = 1
})−1

.

By Theorem 2, the infimum on the left hand side is attained for some measure µ ∈ P .
Clearly, diam(suppµ) = 1, since otherwise µ could be rescaled to lower the value
of E∞,λ. Moreover, A = suppµ achieves the supremum on the right hand side, and
µ is the equilibrium measure for the capacity Cλ(A). Since the capacity increases
monotonically under inclusion, we may replace A by its convex hull. The last claim
follows since every closed convex set of diameter 1 is contained in a convex body W
of constant width 1 (cf. [14]). Since Cλ(W ) = Cλ(suppµ), if follows that µ is the
equilibrium measure also for W . �

We can now appeal to known properties of equilibrium measures in classical po-
tential theory. Given a probability measure µ on Rn and λ ∈ (0, n), we define the
corresponding potential by

φµλ(x) :=
∫
Rn
|x− y|−λ dµ(y) .

For any x ∈ Rn, the integral is well-defined and strictly positive, though possibly
infinite. The function has the following regularity property outside the support of µ.

Lemma 8. Let µ be a probability measure on Rn. On Rn \ suppµ, the potential φλµ is
smooth and 

strictly subharmonic λ ∈ (0, n− 2) ,
harmonic λ = n− 2 ,
strictly superharmonic λ ∈ (n− 2, n) .

Proof. By direct computation,

∆φµλ(x) = λ(λ+ 2− n)
∫
Rn
|x− y|−λ−2 dµ(y)

away from the support of µ. �

In the super-Newtonian regime, the equilibrium measure has the following property.

Lemma 9. [10, p.137] Let λ ≥ n − 2, and let W ⊂ Rn be a compact set of positive
capacity. If µ ∈ P minimize Iλ among probability measures supported on W , then

φµλ(x) = Iλ(µ) approximately everywhere on W
φµλ(x) ≤ Iλ(µ) throughout Rn

where approximately everywhere means everywhere except on a set of capacity zero.

We are ready for the proof of Theorem 3.
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Proof. Let µ be a minimizer of E∞,λ. By Lemma 7, µ is the equilibrium measure that
achieves the λ-capacity of some convex body W of constant width 1. When λ ≤ n−2,
classical results of potential theory (cf. [10, p.162]) ensure that suppµ ⊂ ∂W . This
proves the claim in the sub-Newtonian regime.

Let now λ ≥ n− 2, and p ∈ ∂W . Since W is a convex body, every neighborhood of
p intersects the interior ofW in a set of positive volume (and hence positive capacity).
Again by classical results of potential theory (cf. [10, p.164]), p lies in the support
of µ. Therefore ∂W ⊂ suppµ. Together with the result for λ ≤ n− 2, this completes
the proof in the Newtonian case.

For λ > n− 2 Lemma 8 yields that the potential φλµ is strictly subharmonic outside
the support of µ. By the strong maximum principle, φλµ is non-constant on every
non-empty open set U with µ(U) = 0. On the other hand, φλµ is constant on the
interior of W by Lemma 9. Therefore µ(U) > 0 for every non-empty open subset of
the interior of W , and we conclude that W ⊂ suppµ. This proves the claim in the
super-Newtonian regime. �

5. Capacity Estimates

We close with some simple capacity estimates which will prove Theorem 4.

Lemma 10. Let n ≥ 1, λ ∈ (0, n). Then

sup
A⊂Rn

{
Cλ(A)

∣∣∣ diam(A) = 1
}
< 1 .

Proof. By Lemma 7, there is a set A ⊂ Rn that maximizes the capacity Cλ among
sets of diameter 1. Let µ be the equilibrium measure on A that achieves the capacity.
We estimate

E∞,λ(µ)− 1 ≥
∫ (∫

B 1
2

(x)
(|x− y|−λ − 1) dµ(y)

)
dµ(x) > 0 ,

where the first inequality holds since the integrand is nonnegative for every pair of
points x, y ∈ A, and the second inequality uses that µ(B 1

2
(x)) > 0 for x in the support

of µ. By Lemma 7, Cλ(A) = (E∞,λ(µ))−1 < 1, as claimed. �

We next consider the capacity of balls in high dimensions.

Lemma 11. For every λ > 0

lim
n→∞

Cλ(B(n)
1/2) = 2−λ2 .

Proof. This follows by direct computation of Cλ(B(n)
1/2) (cf. [10, p.163]) and Stirling’s

approximation. �

Finally, we construct sets of larger capacity in high dimensions.

Lemma 12. For every λ > 0,

lim
n→∞

(
sup

{
Cλ(A)

∣∣∣ A ⊂ Rn, diam(A) ≤ 1
})

= 1 .
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Proof. Since Cλ(A) < 1 for all n by Lemma 10, it suffices to establish the corresponding
lower bound on the capacity.

We will construct a family of subsets (An)n of diameter 1 in the sphere of radius
1
2

√
2 in Rn that achieves this limit. For each n > λ+1, the spherical cap of diameter 1

in this sphere has positive λ-capacity. Let An be a set of maximal capacity among
such subsets, and let µn be the equilibrium measure on An that attains the capacity.

For m,n > λ+ 1, consider a convex combination

µ = (1− t)(µm ⊗ δ) + t(δ ⊗ µn)

on Rm+n, where δ denotes the unit mass at 0 in Rn and Rm, respectively, and t ∈ (0, 1)
will be chosen below. By definition, µ is supported on (Am×{0})∪ ({0}×An), which
lies in the sphere of radius 1

2

√
2 in Rm+n and has diameter 1. We estimate

E∞,λ(µm+n)− 1 ≤ E∞,λ(µ)− 1

=
∫ ∫

(|x− y|−λ − 1) dµ(x)dµ(y)

= (1− t)2(E∞,λ(µm)− 1) + t2(E∞,λ(µn)− 1) ;

the mixed terms vanish because |x−y| = 1 whenever x ∈ Am×{0} and y ∈ {0}×An.
Minimization over t yields

E∞,λ(µm+n)− 1 ≤ (E∞,λ(µm)− 1)(E∞,λ(µn)− 1)
E∞,λ(µm) + E∞,λ(µn)− 2 .

Since E∞,λ(µn) > 1 for all n by Lemma 10, we can pass to reciprocals and conclude
that (E∞,λ(µn)− 1)−1 is superadditive in n. By Fekete’s superadditivity lemma

lim
n→∞

1
n

(E∞,λ(µn)− 1)−1 = sup
n

1
n

(E∞,λ(µn)− 1)−1 > 0 .

It follows that lim
n→∞

Cλ(An) =
(

lim
n→∞

E∞,λ(µn)
)−1

= 1. �

The proof of Theorem 4 is an immediate corollary of Lemma 11 and Lemma 12
since 2−λ2 < 1 for every λ > 0. Note that the near-maximizers constructed in the
proof of Lemma 12 have dimension much below n, but this need not be true for actual
maximizers.
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