Large deviation principles for singular Riesz-type diffusive flows
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Abstract

We combine hydrodynamic and modulated energy techniques to study the large deviations
of systems of particles with pairwise singular repulsive interactions and additive noise. In par-
ticular, we consider periodic Riesz interactions indexed by parameter s € [0,d — 2) for d = 3 on
the torus. When s = 0, that is, when the interaction potential is logarithmic, we establish a full
LDP for the empirical trajectories of the particles given sufficiently strong convergence of the
initial conditions. When s € (0,d — 2), we give an LDP upper bound and partial lower bounds.
Additionally, we show a local LDP holds in a stronger distance.

1. Introduction

1.1 The Problem

We are interested in the large deviations as N — o0 of the systems of interacting particles given by

t_
dz; =

Vg(z! — xé)dt + V20dw!,
I<G<N:j#i ie{l,---,N}. (1.1)
afle—o = a7,

2|~

Above, {w;}Y | are N independent standard Brownian motions in the d-dimensional torus' T¢,
o > 0 is the temperature of the system, and g is a periodic sub-Coulombic Riesz potential. Indexed
by s € [0, d), the periodic Riesz potentials are the unique zero average solutions to

4(d=8)/2D((d—s)/2) w2
d—s s S€ (07 d)a
(—A) 2 g=rcqs(do — 1), Cdys := {F(d/2)(471:)(d%22)
2

(1.2)
s =0.

The choice of the scaling constants are made so g behaves like —log |x| or |z|™® near the origin
when s = 0 or s € (0,d) respectively [HSSS17]. We restrict our attention to the sub-Coulombic
potentials: the sub-family corresponding to s € [0,d — 2) when d > 3. As g is singular, the well-
posedness of the stochastic differential equation (1.1) is not immediate, but holds as long as the
initial conditions are pairwise distinct.

The aggregate behaviour of (1.1) is described by the associated empirical measure and empirical
trajectory
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For fixed ¢ the empirical measure uf; is a random element of the space of probability measures
P(T?) metrized by the Wasserstein-2 distance. For a fixed time horizon T > 0, the empirical
trajectory is naturally viewed as a random element of C([0,T], P(T%)).

The main result of this paper gives large deviation estimates on the empirical trajectories
(un)n=1 at speed N given strong convergence of the initial conditions. We show that for all
s € [0,d — 2) there exists a function I : C([0,T], P(T%)) — [0, 0] with compact sublevel sets and a
dense subset &7 < C([0,T], P(T%)) so that for all Borel B < C([0,T], P(T%))

1 1
_ Me}é}fw (g < liminf = log P(uy € B) < li]rvnjllop v lo8Pun € B) < - ;re% I().
B° and B respectively denote the interior and closure of B in C([0,T], P(T%)). In particular,

{I < w0} c & when s =0, thus (un)nv>1 satisfy an LDP with good rate function I.
When p € o and I(p) < o0

1 (" .
I = 45 | 10wt = ot = div (Vg x w2
4o 0 ’
where | - ||-1,, is a norm on distributions that depends on p. This is the same as the rate function

in the case where g is regular [DG87].

1.2 Background

The system (1.1) corresponds to dissipative dynamics with respect to the energy

1
Hy(zy) =35 2, 8@i—x), zyi=(21,...,2n) € (T)V,
1<i#j<N

If Vg is replaced with MVg in the definition of (1.1) where M is an antisymmetric matrix, then the
system instead corresponds to conservative dynamics. For reasons explained later, we only consider
the dissipative setting.

Systems of the form (1.1) arise in many pure and applied settings where particles or individuals
interact pairwise with each other. They describe the dynamics of gases [V1a68], the eigenvalues of
random matrices [Dys62, AGZ09], vortices in viscous fluids [Hel67, Osa85], the collective motion
of animals or bacteria [Per07, FJ17], and scaling limits for neural networks [MMN18, RVE22].

There has been significant recent interest in studying the concentration of the empirical measures
as N — oo. If uf; converge in a suitable topology, the system is said to satisfy a mean-field limit.
In particular, one expects that if F‘(z)v — f19, then pl; converges to the deterministic solution of the
McKean—Vlasov equation

Orpe — o Ap — div (uVg * pu) =0, ple=0 = po- (1.3)

This can be justified by a formal argument using It6 calculus.

Mean-field limits for systems with regular interactions are well understood [McK67, Dob79,
Szn91]. One classical approach involves coupling solutions of (1.1) with different values of N to
show that p%; is Cauchy in a suitable metric [McK67]. There has been some recent success in
using this strategy to show mean-field convergence of Riesz interacting systems in one dimension
[GLBM22], but the proof does not generalize to larger dimensions.

Mean-field limits were first proved for deterministic sub-Coulomb Riesz interactions in the
Wasserstein-co topology [Hau09, CCH14]. Later, in [JW18], quantitative mean-field limits were
shown for singular kernels of so called W 1% type using relative entropy techniques.
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In [Duel6, Ser20], mean-field limits were shown for the deterministic system of ODEs given
by (1.1) with o = 0 and Coulomb or super-Coulomb (s € (d — 2,d)) interaction when the limiting
equation satisfies some regularity conditions. These works introduced the modulated energy, defined
for a particle configuration z, € (T%)Y and a probability measure p € L*(T%) by

Pyay) = || g(m—y)d(féém—u)@w,y), A= {@y) e (™) iz=y). (14)
(T9)2\a =

This acts as a pseudo-distance between the empirical measure py = % Zf\; 10g; and p. If x5 are
a sequence of point configurations so that limy_,q Fn(2y, 1) = 0, then the associated empirical
measures py converge to u weakly. The proofs of the mean-field limits in [Duel6, Ser20] proceed via
a Gronwall argument applied to Fy (z'y, u*) when 2y is the solution to the ODE system and 4! is a
solution to the limiting equation (1.3). The crucial point of the proof is the following commutator
estimate which allows the modulated energy to control a term in its time derivative

< Cy(Fylay, i) + Cluli=N"P),

(1.5)
where Cy is a constant depending on the derivatives of a vector field ¢, and C, 8 > 0. This inequality
is also crucial for the techniques used in this paper. The conditions on the limiting equation were
further relaxed in [Ros22b, Ros22a]. In [NRS22], the modulated-energy method was used to show
the mean-field convergence of systems interacting via sub-Coulomb potentials.

Returning to the non-deterministic setting (o > 0), in the works [BJW19a, BJW19b, BJW20],
the authors introduced the modulated free energy which combines the modulated energy with rel-
ative entropy. Using an exact cancellation which occurs between terms, they demonstrated the
mean-field convergence of systems of the form (1.1) with a wide class of singular interactions, in-
cluding logarithmic attraction. In [RS23], global-in-time quantitative mean-field convergence was
shown for sub-Coulombic interactions in R? using the modulated energy method. Most recently,
in [dCRS23], by combining the modulated free energy with relaxation rates of the limiting equa-
tion to equilibrium, the authors showed global-in-time mean-field convergence for periodic Riesz
interactions when s € [d — 2, d) on the torus.

The large deviations of the empirical paths of the system (1.1) have also been studied extensively
when g is regular. In the early work [DG87], the empirical paths of weakly interacting diffusions
were shown to satisfy an LDP in C([0, 7], P(R%)). In [BAB90], this was improved to LDPs on the
level of the entire process, where one instead considers the process level empirical measure

‘ JJ(W)Q\AW(&?) () - Valz — ) d(}v il 5y — u) @)

N

1

v > Sailieory € P(C([0,T],TY),
=1

which is a random measure on paths. The proof techniques in [DG87, BAB90] rely on the Cameron-
Martin-Girsanov theorem to view the law of interacting diffusions as a measure transform of the
laws of non-interacting processes. Using ideas from stochastic optimal control theory, in [BDF12],
LDPs were shown for diffusions with regular drift and diffusion coefficients which depend on the
current empirical distribution of the particles. In [FKO06, Section 13.3], a strategy to prove LDPs
for interacting diffusions using Hamilton-Jacobi theory was introduced.

As opposed to measure transform methods, LDPs have also been shown for regular interactions
using the contraction principle [CDFM20]. This uses the construction of a continuous map from the
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process level empirical measure of the noise to the process level empirical measure of the process,
and can also handle non-martingale noise.

Much of the study of LDPs for interacting diffusions with singular interactions has been in
the context of random matrix theory. Dyson Brownian motion is a solution to (1.1) on R with
logarithmic repulsion and N dependent temperature o = (3N)~! for some inverse temperature f3.
A large deviation upper bound at speed N? and inverse temperature 8 = 1 was shown in [DGO1].
Furthermore, a partial lower bound was given. This was expanded to a complete lower bound for
B =1or 2 in [GZ02, GZ04]. Recently, in [GH21], LDPs were shown for Dyson Bessel processes,
and the range of 8 for which the LDP holds for Dyson Brownian motion was extended to 8 > 1.
In all of these papers the fact that the space is one dimensional is central to the proof techniques.

There are few results for more general singular interactions. The measure transformation tech-
nique used for regular interactions in [BAB90] has been successfully extended to interactions which
are less singular than logarithmic potentials [HHMT20]. In [Fon04], using the ideas from [DGO1]
together with a uniqueness result for perturbed Mckean-Vlasov solutions, an LDP upper bound
and a partial lower bound were shown in one dimension with s = 0. Recently, an LDP for (1.1)
with conservative dynamics was shown on the two dimensional torus with s = 0 [CG22]. Up to
now, no LDP-type results for Riesz interactions in dimensions greater than 2 or s > 0 have been
shown.

1.3 Spaces and energy functions

Before introducing the main results, we define some of the relevant spaces, norms, and energies.

1.8.1. Wasserstein-2 distance and absolutely continuous curves. We endow P(T?) with the
Wasserstein-2 distance

A = sw [[o=yP dr(a.y),
well(p,v)

where |2 — g/ is the canonical distance on T¢ and II(y, v) is the set of all couplings of  and v. As
the torus is compact, the Wasserstein-2 distance induces the same topology as weak convergence.
ACT := AC([0,T], P(T%)) then denotes the space of absolutely continuous curves from [0, 7] to
P(T¢) [AGS08]. Notably, u € ACT if and only if there exists a vector field v € L2([0, T, L?(ut)) so
that p is a weak solution to
O+ div (vp) = 0.

We then say that dyul = —div (vtu?). Given a probability measure u, the function

7121 = sup ){2<T,<z>>— Ld\WﬁIQdu}, TeC* (T,

$eCo (T

defines a norm on the subspace of distributions {T' € C*(T¢)" : |T|-1, < oo}. This notation is
justified by the fact that |7'(|-1, < oo, then T" = div (vu) for some v in the closure of {V¢ : ¢ €
C*(T9)} with respect to the L?(x) norm and

12 0 = i () = [ ol d
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1.3.2. Fractional Sobolev spaces and energy functions. For a € R, we define the semi-norm
Baay = 2 KT
keZ4:k+#0

on distributions. This is a norm on the space of zero mean distributions with finite semi-norm,
which we denote H§(T%). More generally, | V| denotes the operator (—A)Y? with Fourier multiplier
27 |k|.

For s € [0,d), of particular relevance is the H 3 (T?) semi-norm. By taking the Fourier trans-

form it holds that
— dM du 1.6
H T ) ( ) (Td ( )

(Td)2

For convenience we set

¢T .= c([o,T], H 7 (']Td))

If s € [0,d — 2), then since (—A)g is a constant multiple of the Riesz kernel corresponding to
parameter s + 2, it also holds that

.

- H (—A)g(z — ) du(z) du(y) = Cd,s”:U'Hi-IH

Given p € C([0,T], P(T9)) we define the energy
t

Q" (n) := sup {g(ut) + 2af

t
()G dr+ [ v (17T w0 dr}. w.7)
te[0,77 0 0

It is not clear the last term in the supremum is well defined, but if £(u) < o0, then pVg * u can be
made sense of as a distribution (see Proposition 2.2). If div (u!Vg * u') is not well-defined for any
t € [0,T], we let QT (u) = +o0. This is similar to the function introduced in [CG22], and will play
a similar role in the proof of the LDP.

1.4 Main results

Our main theorem states that if the initial conditions of (1.1) converge strongly to some regular
probability measure p, then an LDP upper bound and a partial lower bound hold.

Theorem 1.1. Let d > 3 and s € [0,d — 2). Suppose (un)n=1 are the empirical paths associated
to solutions to (1.1) with initial conditions satisfying

lim Fi (2, po) = 0 (1.8)
N—o0

for some pg € P(T?) A L*®(T?). Then I : C([0,T], P(T%)) — [0,0] defined by

1o ( §o ot — oAt — div (utVeg = )2, . dt v (QT (1) — 5(#0))) pe ACT 10 = po

+00 o0.w.

I(p) ==

is a good rate function with the following properties.
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1. For all closed T' = C([0,T], P(T%))

1
limsup — logP(uny € I') < —inf I(u). (1.9)
N-—00 N pel’

2. For all open O < C([0,T], P(T%))

1
oo 1 S ‘
lim inf - log P(uy € O) ot 1 (1), (1.10)
where -
o = {ueC([O,T],P(Td)) :f H|V|%+S;dutH3 6d dt<oo}.
0 L3d—s—T (Td)

In particular, when s =0, {I(n) < 00} < o, thus (unN)N=1 satisfy a large deviation principle.

Remark 1.2. When p € &7 n ACT it holds that

T
Q" (1) — E(mo) < fo [0 — o Ap' — div (' Vg = p")[2 e dt,
thus
1 T t t . t t\ 12
I(w) = - | o' —odu' —div (u' Vg = w2y e dt.
g Jo 7

As a consequence, since {I < o0} < &/ when s = 0, the LDP holds with the good rate function

F) = {410 Sg [t — o Apt — div (' Vg * /ﬂ)H%L“t dt pe ACT, QT (u) < o, and pu® = pg
+00 0.W.

The upper and lower bounds in Theorem 1.1 also hold with I replaced with I for s > 0, but I
is not clearly lower semi-continuous. In particular, there could exist a sequence of measures px
converging to u so that Q7 (1) = co but

T
s [ oo, ~ oA — div (Vg « ) 2t < .
k—oo  JO

It is for this reason we’ve included Q7 (1) in our definition of I.

As a secondary theorem, we show that local large deviation principle estimates hold for the
distance given by the modulated energy.

Theorem 1.3. Under the conditions of Theorem 1.1, if u e L*([0,T], L*(T%)), then
. . 1 t t . . 1 t t
lim liminf —logP( sup Fn(z},p') <e | =limlimsup —logP| sup Fn(ziy,p') <e
e=0 N—oo te[0,T] =0 Noow N te[0,T]

= - (I(M)l(#q)ew +00- 1(H71)¢%T)-

Remark 1.4. Theorem 1.3 is not a consequence of Theorem 1.1 since the convergence of uy — pin
C([0,T],P(T)) does not imply that supyeo,r] Fiv(zly, #*) — 0. In particular, the equality involving
the liminf is stronger than the LDP lower bound.

eq:LDP-upper-bour
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1.5 Overview of proof

It is natural to attempt to adapt the proof of large deviation principles for process level empirical
measures given in [BAB90]. Letting Py and Wy respectively denote the law of the process level
empirical measure of 5 and the noise (wy, -+ ,wy), one can use the Girsanov theorem to compute

the Radon-Nikodym derivative
dP

dW N
for some function F. If F' was continuous with respect to the weak topology on P(C([0,T], T4)),
then since Wy satisfy a LDP by Sanov’s theorem, we could conclude an LDP holds by Laplace’s
method [DZ10, Theorem 4.3.1].

The problem is that as g is singular, the resulting function F' is not continuous. In particular,
it has a problematic term of the form

T
J f\Vg « | dy dt,
0

(1) = exp(NF'(n)),

which is difficult to analyze.
For this reason we will instead use hydrodynamic techniques as first introduced in [KOV89].
The main advantage of this strategy is that we only have to show continuity of the function

T T
p= | ot veetantin =g | [[(96@) - Vo' @) - Vele - p i @ant ) de (111)

for a fixed smooth function ¢. Although it is still challenging to show this function has the desired
behaviour, tools have already been developed in the study of mean-field limits for Riesz flows which
will be helpful.

Hydrodynamic techniques are also the basis of the previous LDP results for s = 0 [DG01, GZ02,
Fon04, GZ04, GH21, CG22]. In these papers, as the potential is only taken to be logarithmic, (1.11)
is much easier to define and analyze.

To explain the exact technical difficulties which arise, below we sketch a proof for an LDP upper
bound when g is smooth using the hydrodynamic argument. We then explain how this argument
needs to be modified when g is singular, and summarize the proof of our lower bounds. Similar to
as in [CG22|, we will introduce an auxiliary functional which is vital to the proof. Throughout we
ignore the role of the initial conditions as they only add some small technical difficulties.

1.5.1. Upper bound for smooth potentials. For the purpose of this subsection g is assumed to be
smooth and even.

The starting point to show an LDP upper bound for the empirical trajectories pn is noting that
their evolution is described by a differential equation. For p e C([0,T], P(T%)), ¢ € C*([0,T] x T?)
and 0 < s <t <T let

¢
L, ) == (', ") — (u®, %) — f W, 0007) + o Ap™ + div (u"Vg = pu7), ¢7) dr.
Then L*'(u,$) = 0 for all s,t and ¢ if and only if u is a weak solution to the McKean-Vlasov

equation (1.3).
By applying It6’s formula to {u},, ¢”) we find that

V20 Nt
L, ¢) = 22 | v (a7 - du, (1.12)
" N i=1L

eq:slope-term
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where we’ve written

1 N T T 1 T T T T T : T T T

NZ;V(ﬁ (z7) - Nl Z]:V AVg(UCi _xj) = | Vo - (Vg * uy) duyy = —(div (uy Vg * ), 7).
1= <IN j#1

The point is that uy is almost a weak solution to the limiting equation (1.3) except for the random
term

N
M= @ Z Jt Vo (x]) - dwy.

)

M is a bounded continuous martingale with respect to the filtration generated by the noise for
fixed s, and has quadratic variation

t 20 ! T2 T
arty = 2| [ 19eTP dujy dr.
N Js
This implies that exp(NM! — N72<M t%) is also a martingale, so has expectation 1. Setting

1
55,6 1= L(0) — o | [ 190 au ar
then since N
S, 6) = M! = (MY,

Chebyshev’s inequality gives us the bound

1
—logP(un € B < — inf  S*(un, o),
7 log (1w € Be(p)) o (un, )

for any p e C([0,T],P(T%)) and any s, and smooth ¢. Since g is smooth, it is easy to show that
if pp — p in C([0,T], P(T?)), then

t t
hIIl J <d1V (,U/;;Vg * /.,L;), ¢T> dT = J <d1V (MTVg * ILLT), ¢T> dT (113) eq:overview-slope-c:

k—0o0

As a consequence, if g — p, then limg . S (ug, @) = S (1, ). This implies that

1
lim 1 ~logP B.(y)) < — limliminf inf S°!
lim lim sup - log (v € Be(p) < — lim lim in ot 5%, ¢)

< =S¥, 0).

After optimizing over s,t and ¢ this gives us the bound

1
lim lim sup N log P(pun € Be(p)) < —sup S**(p, ¢),

e=0 N b8,
thus supy ;, S**(u, ¢) is a candidate for our rate function. The law of uy can be shown to be
exponentially tight (see [DG87]), thus this local upper bound implies a complete LDP upper bound.

Using that L**(u, ) is a linear function in ¢ while SEHVQZ)T\Qd,uT dr is quadratic, it is not
difficult to show using the Riesz representation theorem that if

sup S* (i, ¢) < 0,
¢7S’t



then there must exist some b in the closure of {V¢ : ¢ € C*([0,T] x T¢)} under the
L?([0,T], L?(11")) norm so that for all smooth ¢

t
o) = | Vo v du ar.
This says that p is a weak solution to
Oppp — o Ap — div (Vg = p)p) = —div (bp), (1.14)

and also implies that

S 1 T T T
sup §°1(,0) = o | [ 107 e .
b,8,t 0 Jo

The fact p solves (1.14) and both b and Vg # p are in L([0,T], L?(u!)) imply that p € ACT, and
we can further write

1 (T 2 1 (" 2
pp L f\bﬂ dp™ dr = e L lOtp” — oAp” —div (u"Vg * u")|Z4 - dT.

Using the convention that the right-hand side below is infinite if 1 ¢ ACT, in total we’ve found that
for any closed I' = C([0, T], P(T9))

1 1 (7T
limsup — logP(uy € T') < — inf — [Op” — o Ap™ —div (" Vg * NT)H2—1 - dT,
N-—oo N pel’ 4o 0 s
which is the correct LDP upper bound [DG87].
There are several places where the above proof sketch needs to be modified when g is a Riesz
potential:

e The distribution uVg * u is not defined for arbitrary probability measures, so S*!(u, ¢) does
not make sense for all measure trajectories.

e When S**(u, ¢) is well defined, its continuity with respect to the C([0,T], P(T%)) topology
is nonobvious.

1.5.2. Energy bounds. By using an energy equality the SDEs (1.1) almost solve, we will reduce
the class of measure trajectories for which we need to establish a local LDP upper bound by using
hydrodynamic techniques. This is vital as the admissible class has enough regularity for us to define
S (1, b).-

If p is a smooth solution to (1.3), then by taking the time derivative of &(u!) it is easy to
compute that for all ¢

t

E(u’) = E(u') + 20[

t
(—A)E(WT)dr + 2J J\Vg « u|? du” dr.
0 0

As z is almost a solution to (1.3) we expect something similar. Formally taking the It6 derivative
of Hy (), we find

t

Hy(z) + M' = Hy(zly) + QUJ

(—A)Hy (z})) dr +2 f Dy () dr,
0 0
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where

N 2
1 1 1

(-A)Hy(zy) = 2 Z (—A)g(z; — x5), Dy(zy) = ~ Z ~ 2 Vg(z; —zj)| ,

1<iZj<N =11 1Ny
and N

2v/20 b1
t._ T T T
M" = ~ Zfo <N Z | 'Vg(xi —:z:j)> ~dwy .
i=1 1<j<N;j#1
Using that M" is a martingale with quadratic variation (M?) = 52 Sé Dy (z%) dr, it should hold
that
P(Qh(zy) > L) < i (- ivteho),

where

t

QY (zx) == sup {HN<x§V>+2a f (—A)Hy(zh) dr + fo DN<x;v>dr}, 2y € C([0.T], (THV).

t[0,T] 0

As g is singular, to make this argument rigorous we need to truncate g and use stopping times.
In fact, we show the strong (and weak) existence and uniqueness of solutions to (1.1) as a conse-
quence of the bounds on Q% (z ). The truncation argument proceeds similarly to as the arguments
in [AGZ09, Lemma 4.33] or [RS23]. For the argument to proceed, it is important that both s < d—2
so that (—A)g is bounded below, and that the dynamics are dissipative as otherwise the Dy (z)
term disappears.

The control of Q% (z,) allows us to show that

: 1 T 1
h}\}“ffop i logIP’(QN(zN) > L) <~ (L - 5(#0)), (1.15)
and in particular that
lim lim sup e log P(pn € Be(p)) < _L (QT(,u) — 8(u0)>. (1.16)
e—=0 N N 40

As a consequence, to show the LDP upper bound we only have to use the hydrodynamic argument
for measure trajectories such that Q7 (u) < oo. We can also use the bounds on the probabil-
ity that Q% is large to show that the empirical trajectories of (1.1) are exponentially tight in
C([0,T], P(T)).

The proof of existence of (1.1), the bounds on Q% (2 ), and the exponential tightness of uy
can be found in Section 3.

1.5.8. Definition of S**(u, ¢). To define S*(u, $) when QT (1) < oo we only need to define vVg v

distributionally when & (v) < 0.
If e C®(T9), then for any smooth vector field ¢ it holds that

[ o verndn =3 [[0@) - o) Ve~ putnty
-3 H (6(x) = 0(v)) - Vel = y)(n = V(@) (1 = D (y) + j 6(x) - Vel —y)uy).

10
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The second term in the second equality is well-defined for any measure. To define the first term
when £(u) < 00, we use the following commutator estimate, which holds for any smooth mean zero

functions f, g and Lipschitz vector field ¢ :
Sds < ) [ ey ] e

(1. 17) eq:overview-commu

. s—d
This allows us to extend the bilinear form on left hand side of (1.17) to H,? (T%), and thus gives
us a way to define uVg = u distributionally. It also gives us the quantitative bound

(uVg s p—vVg v, )| < Colu— vl s (HMH2

| U ) V(@ —y)f(z)g(y)dzdy

d + HVH2 s—d + 1)1/2. (118) eq:overview-commu
H ™2

Accordingly, we can define S*!(u, ¢) whenever £(u7) is uniformly bounded in time. The proof of
the above bounds are given at the beginning of Section 2.

1.5.4. Continuity of S5(u, ¢). We still need to show that if uy is a sequence of empirical trajecto-
ries which converge to u in C ([0, T], P(T%)), then S!(ux, ¢) converges to S*(u, ¢). Due to (1.15)
we actually only have to show that

: ! 1 y T T 1 ! : T T T
]\:/l'gnooL N Z V(Z) (CUl ) . (N Z Vg(:l: — X )) dr = — J; <le (,LL Vg * U ), ¢ >d7', (119) eq:overview-grad-cc
=1 1<j<N;j#i

when py — p and Q% (zy) are uniformly bounded.
As a heuristic, first we’ll sketch a proof that for fixed smooth ¢ the function

t
o= J <MTVg * ILLT, ¢T> dT (120) eq:overview-regular
S

is continuous on the sublevel sets of Q7. Suppose Q7 (1) < o and yy, are a sequence of measure
trajectories so that Q7 () are uniformly bounded over k and sy — g in C([0,T], P(T%)). The
bound (1.17) and Hoélder’s inequality imply that

J<M Vg — ' Vg pu, ¢ )dr

st (P e + W72 e + D)V dr

t
< C¢J g, = 17,
S

1/2
<c ( up [ s+ sup 7 d+1> fuz—mn.sd ar
¢ r[0,7] HZ ref0,1] s H2

1/2
< Coas <QT(Nk) +Q () + 1) f |k — MHHSEd dr.
S
Thus to show the continuity of (1.20) it suffices to show that
' 2
li T __ T . dr = 0.
Yo [ k= dr

This then follows by interpolating between the convergence of yy, to p in C([0,T], P(T%)), and the
uniform bounds on

T 2 T 2
T T
| IR g ar and [

11



where we note that % <1+ %l.

To adapt this proof when py are empirical trajectories and Q%(g ~) < L we use the modulated
energy. In particular, we show an analogous bound to (1.17), namely that for any z, € (T¢)" and
pe P(TY) A L*(T?)

N
w2 (5 X Velwi-w) - e o)
i—1 1<j<Nij#i

_a\ 12 ) 1/2
< C¢) (FN(&N, /J/) + CH/,LHL@N ) (HN(EN) + ”/JLHH¥ + C) (121) eq:overview-renorm

where C,5 > 0 depend on d and s. This follows by a renormalization argument as pioneered
in [Ser20], and is similar to the commutator estimate (1.5).

The rest of the proof proceeds similarly to the proof of the continuity of (1.20), but now we
interpolate between the weak convergence of py to g and the uniform bounds on

T
fo (—A)Hy () dt

to show that
T

lim | Fn(zhy,p')dt =0
N—-w )
when p € L®([0,T], L*(T%)). When p is a more general measure trajectory, we adapt the argument
by mollifying 1 appropriately.
The complete proof of the continuity of S%*(u,¢) on sublevel sets of @7 and the conver-
gence (1.19) along with the necessary preliminary bounds are in Section 2.

1.5.5. Completing the upper bound. Using (1.16) and (1.19) we can adapt the argument sketch in
Subsection 1.5.1 to find that

i i sup - Tog Py € B(0)) <~ (310 5% 0) v 1o (Q7 ) — Eu) ).

e=0 N b5t

We can use the same argument as in the smooth case to show that if both Q7 (1) and
SUDg s 1 S%t(u, ¢) are finite, then y must be a weak solution to (4.2). To prove the equality

1 (T :
sup 5% (u, ¢) = — J |owpt — o Apt — div (' Vg = ') |2, ut At
5.t 4o Jo |

we still need that p e ACT. Tt is here we use the last term in the definition of QT (1) since if

T
[, taiv Ve R e <
then there must exist some E € L2([0,T], L?(u!)) so that div (u!Vg# ut) = div (E'u?) distribution-
ally for almost every t.

The complete arguments are all given in Section 4, where the lower semi-continuity of the rate
function is also proved.

12



1.5.6. Proof of lower bound. We use the same general strategy for proving lower large deviation
bounds as used in the previous papers on LDPs for Riesz flows. This proceeds in three steps:

1. First we show that if u is a weak solution to
Orpp — o Ap — div (Vg = p) = —div (bu)
and p and b are sufficiently regular, then the empirical trajectories corresponding to the SDE

de! = —% > Vg(a!l - ab)dt + bt (x)dt + v/ 20dw},
1<j<N:j#i ie{l,---,N} (1.22) eqspE+D
ile=0 = 27,

almost surely converge to p. This says that (1.22) satisfy a pathwise mean-field limit.

2. We use this to show that if u satisfies the regularity conditions of the mean-field limit, then
forall e >0

hmlnfﬁlogIP’(,u,N € B( f J\|blt 1% dpt dt.

This uses that (1.22) is equal in law to solutions of (1.1) under the tilting

;gl:: ( Zfbt dw—ZJ bt (2 |dt>

by the Girsanov theorem.

3. Finally, if p € o/ and I(u) < oo, we show that there exists a sequence of measures uj with
drifts by satisfying the regularity conditions for the mean-field limit so that

limsupf f\b 1% dpt dt < I(w),

k—o0
and pg — p in C([0,T], P(T?)). This allows us to conclude that
e 1
lim inf - log P € Be(w) = —1(1).
With this rough plan, our proof does diverge from the previous papers in several ways.

1.5.7. Mean-field limit. We use a modulated energy argument to show a quantitative mean-
field limit as opposed to a soft argument which uses the uniqueness of solutions to (4.2). If
pe L*([0,T], L*(T%)) is a solution to (4.2) with drift satisfying

||2 dt < oo,

Td)

T 112 d—s
[ 19y + 11915

and z are the solutions to (4.2), then we prove that if limy_,o Fy (2%, u°) = 0, then

lim sup Fy(zh,pu') =0
N—0 40,1

almost surely. It is here where we use the strong convergence of the initial conditions.

13



The proof of the mean-field limit is very similar to that of the main result in [RS23]. The
argument follows by applying It6’s formula to F N(ﬁ\,, pt), and then using the commutator esti-
mate (1.5), Gronwall’s inequality, and Doob’s martingale inequality. The restriction that s < d —2
again arises to make sense of an It6 correction term of the form

f JJ y) d(uy — 1) (x,y) dr.

We need to be careful when applying 1t6’s formula to Fy (z’, u*) and use a truncation and stopping
time argument similar to as in the proof of the existence of (1.1). The argument is given in Section 5.

1.5.8. Lower LDP bounds for reqular trajectories. As it is useful for Theorem 1.1, we actually show
that

lim inf = log]P’< sup Fy(zly,p') < 5) > _ L fT J b'|? dpt dt.

Nox N o] 40 Jo

Since the modulated energy controls weak convergence this also implies the LDP lower bound for
balls in C([0,T], P(T%)). The proof of this is given in Section 6.

1.5.9. Approxzimating sequences. We use space mollifications to approximate measure trajectories
pu € o with I(u) < o0. Letting u. = ®° % u, where ®' is the fundamental solution of the heat
equation, it is immediate that p. € L*([0,T], L*(T%)) and p. — p in C([0,T], P(T%)). Since u
solves (4.2) for some drift b, it is easy to verify that u. is a weak solution to

Otpe — 0Ape — div (Vg # pe) = —div (b-pue)

for the drift

(bu)e , (nVg* p)e
He He
It is here where we use that our domain is the torus as it implies that p. is uniformly bounded
below. This allows us to show that u. and b, satisfy the conditions of the mean-field limit.
To show that p. are well behaved with respect to the rate function, we want to show

T T
limsupf be§\2 dut dt < f f]bth/f dt < I(p).
£—00 0 0

Lemma 8.1.10 in [AGS08] implies that
< 1ij|bT|2d q
= 40' 0 H i

L ([,

thus we only need to show that
dul dr = 0.

limf J‘ Vg*u — Vg« ul
e—0

Our class &7 is exactly the 1argest class where we know this holds. When s = 0, by interpolating
between Hfg(']I‘d)) and H'~ (']I‘d) we can show that {QT (u) < 0} < &7, but the numerology does
not work when s > 0.

The construction of the approximating sequences and the proof of the lower bound for pu € &

b, = — Vg #* le.

are also in Section 6.
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1.5.10. Proof of Theorem 1.3. The upper inequality in Theorem 1.3 is an immediate consequence
of the upper bound of Theorem 1.1, and is given as a proposition in Section 4. The lower bound
is essentially a consequence of the fact that the lower LDP bounds around regular trajectories are
shown with respect to the modulated energy. The full proof is at the very end of Section 6.

1.6 Notation

We will use the following notation and conventions throughout the rest of the paper.
e D(T9) denotes the space of test functions C®(T9).

e For a set of parameters O, A <o B means that there exists a constant Cg > 0 depending on
these parameters so that A < CgB. We say A ~g B if A <o B and B <S¢ A.

e Throughout we allow the constant § in N~# to change line to line as is common with the
multiplicative constant C. (3 is always allowed to depend on d and s.

e For two vector valued function f and g we abuse notation by letting
frge) = | 1= w)- 9w

e Given a distribution T', T, denotes T" * ®¢ where ® is the heat kernel satisfying

0 — e A = 0,
q)’t=0 = (50.

e Unless ambiguous, we drop the domain T in spaces and norms.
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1.8 Layout of paper

Let us briefly comment on the organization of the rest of the article.

In Section 2 we show that Vg u has a well-behaved distributional definition. We then prove a
number of inequalities involving the modulated free energy before completing the proof of (1.19). In
Section 3 we show that the SDE (1.1) is well-posed, prove the exponential bounds on the probability
Q% (zp) is large, and argue that uy are exponentially tight. In Section 4 the results of the previous
two sections are used to prove the upper bound of Theorem 1.1 and one half of the statement of
Theorem 1.3. The goodness of the rate function is also proved in this section. In Section 5 the
systems (1.22) are shown to satisfy a mean-field limit when the drift and limiting solution are
sufficiently regular. In Section 6 the result of the previous section is used to prove the lower bound
of Theorem 1.1 and complete the proof of Theorem 1.3.
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»dulated-energy-etc

subseq:com-first

mmutator-estimate

2. Modulated energy, renormalization, and functional inequalities

The primary goals of this section are to:
1. Define uVg = u when £(u) < 0.

2. Show that if 2 are a sequence of trajectories so that uy — p and Q% (zy) is uniformly
bounded, then for any ¢ € C*([0,T] x T¢)

T 1 N 1 T
im [+ Y ve - Ve(st o) ) dt = - [ Ve «ut o
N—0 0 N; NlS%N J 0

VES

The first point is shown in Subsection 2.1. In Subsection 2.2 the modulated energy Fn(zy, 1)
is shown to be asymptotically equivalent to the SEd—Sobolev distance between a regularization of
the empirical measure of x5 and p. This is used in Subsection 2.3 to prove the commutator-like
inequality (1.21). Finally, in Subsection 2.4, using the propositions from the previous subsections,

the second point is proved.

2.1 The commutator estimate

As discussed in the overview of the proof, to define uVg * p first we will show that we can extend
[[ @@ = ot - V8w - )7 @1g(w) ey

. s—d
to arbitrary f,g € H,? . For notational convenience, for a vector field ¢ we set

Ky(r —y) = (¢(z) — é(y)) - Vg(z — y).

The following proposition is analogous to Proposition 3.1 in [NRS22] in the periodic setting.
As we only consider potentials which are exact solutions to (1.2), we give a simpler proof which
essentially follows by repeated integration by parts.

Proposition 2.1. For any f,g e D(T%) with zero mean and Lipschitz vector field ¢

d—s—2 2

‘ || et 1@y <o (\v¢|m+n|V|dzs¢|L y >|qu55@ ol joa- (2)

Consequently, the integral in the left-hand side of (2.1) extends to a bounded bilinear form on
. s—d
Hy? (T%) satisfying the bound (2.1).
Proof. By approximation we may assume that ¢ is smooth. We then set
F=gxfand G=g=yg,

so that

|1

where ¢4 depends on d and s. Using that g solves (1.2) we can then write

= Cd,s fHHigi and HGHHQ?(TCI) = cd’S”gHHS‘}h

. d—s
H™ 2 (T4)

J Ky (2, y) f(2)g(y)dedy = cas fqﬁ- (VF(-A)2° G + VG(—-A) T F).

16
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Letting % = « it thus suffices for us to prove that for all 0 < a < %

F and G that

and any smooth zero mean

| ¢ (P-216+ VG2)F) Saa (V6] 20 Lom1 + 196 ) Flza |Gl (22)

2(a

We will prove this inductively in the integer part of a, namely m € N so that a = m + 8 for some
0<p<l.
We will frequently use the Caffarelli-Silvestre extension on the torus [RS16]. For 0 < 8 < 1 let

~

k=1 when 8 <1 and £k = 0 when 8 = 1. Then for all H € D there exists an extension H on
T¢ x R¥ so that N
(—A)P Hopay oy = —div . (|y|' "> V. H).

Above z = (x,y) € T? x R* and dra denotes the restriction to T¢ viewed as a subspace of T? x R¥.
For convenience we will set v :=1— 2.

The base case m=0: Abusing notation so that ¢ denotes both ¢(x) and ¢(x,y) = (¢(z),0), by
integrating by parts we find that

J ¢ (VF(-A)’G + VG(-A)PF)
Td

. J o - (VoFdiv.(ly'v.C) + v.Cdiv . (jy[ V. F)

Td xRk
- J Vo : (vzﬁ OV.G+V.CQV.E —1,V.F- vzé) "
Td xRk
Applying Cauchy-Schwarz thus gives that
N 1/2 N 1/2
[ (vrearervoarn)| sawol ([ wreur) ([ w.amr)
Td Td xRk Td xRk
= IVl | Fl gl Gl gre-

This is exactly (2.2).

Induction step: Suppose that the bound (2.2) holds for m. Then integrating by parts we find
that

f ¢ (VF(—A)m+1+5G + VG(—A)m+1+ﬁF)
Td

I
=

l
5

&; (aiF(—A)m“*ﬁG + aiG(—A)"””BF)
d

V(gitiF) - V(=A)" PG + V(;0,G) - V(=A)" P F

Il
gt
S5

.
Il

¢ V(9 F)(=L)"P8;G + ¢ - V(9;G) - (~A)" o, F

[l
1=
5

<.
Il

d
+ Z J:Ed &jgbiaiF(—A)m*ﬁ&jG + (9]¢ZGZG(—A)m+58]F

i,j=1

17
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We can bound the first term in the last line above using the inductive hypothesis and then the
Sobolev inequality to find that

¢ V(95 F)(=A)"P0;G + ¢ - V(9,G)(~A)" o, F
Td

Saa (VI P61 aq Lot + 1960 ) 10,F sl 25G s

2(m+B)—2

ae (V19991 aa Lot + [Vl ) Il s |G e

L2(m+1+B)—2

To bound the remaining terms we integrate by parts again to find that
f 0,60, F 0, (—A)" G — J V™ (0,600, F) - (—A)PVMO,G
Td Td

- [ V@ - v.vE6)

R AT R A
Td xRk
Then by applying Cauchy-Schwarz we find that
IR AR R A e
Rd+k
— 1/2 . 1/2
<([, wvr@@areur) ([, w56k
Td xRk Td xRk

= [V™(0j0i0F)| 15 V™ 0;Gl 76
Sd.a [V™(050i0F) s |Gl gmrve-

The fractional Leibniz rule [Gral4, Theorem 7.6.1]% then implies that

V™ (9005 F) s Saa [V 70 10 F] _2a 4 [Vl | Fl gmiris,

2d
L2mFi+A—2 L d=2(m+5)

and Sobolev’s inequality gives that

10:F | gt Sdo 1F ] msass-

Together these imply that

[ dsair oAy 26| saa (IS1™560_au -, + 1V61 )Pl mereallGlimeres

L2(m+14+8)—2

A symmetric argument gives the bound

L2(m+1+B)—2

1006 (-850 a0 (919901 _se 4 190110 ) I LjersalGl s

and we have completed the induction. O

2The estimates are stated for R?, but they carry over to mean zero functions on T? as well.
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Since probability measures are not zero mean, we need to modify Proposition 2.1 accordingly
to define

J Kg(z,y)dp(z)du(y),
(T4)2

for all p so that £(p) < co.

reommutatorbreak - Corollary 2.2. Let p,v € P(T?) n D(T?) and ¢ be a Lipschitz vector field. Then

-

(’]I‘d) + HVH2¥ (’I[‘d)) : s (23) eq:commutatoruu2

([ ot = 50| S Cali = (1 1

*2* (19)

where Cy = [|V@| o + \HV| 7 QZ)H 24 . Consequently,

f Ky(z,y) du(x)du(y)

can be extended to an operator on {p € P(T?) : E(n) < w0} which satisfies the bound

f Ky(z,y)dp(x)du(y) <Hu\|2 +1>1/2 (2.4)
X X s— . . eq:commutatoruu
(Td)2 o\ Y y i 2d b '

<ds C¢HMHHS;1
Proof. To show (2.3) we use that g is zero mean to write

f K, (z,y)d ®)(z,y)
f K (2, 4)d(i — v)(@)d( + v)(»)

=f Kd%WﬂM—W@WW+V—2MH+2£[K($wﬂu—wmﬂy

(Td4)2
- [[ Ketwvyita =@+ v =20 +2 [[ (Vg opiu ).
(Td)?
Proposition 2.1 with the triangle inequality imply that
) ) 1/2
K¢(.7), y)d(/l - V) (l‘)d(/l/ +v— 2) (y) <dS C¢H/,L — VH (HILL“ s—d T ”V” ) . (25) align:commutatorcc

(T)?

Using Fourier multipliers we can bound the last term by

(Vg = o)d(p —v)

< 6% Vel age i = vl ey < 101 atasy s — V] o

In fact “¢“H5—(d—2) < |IV@| L since s < d — 2, which completes the inequality. O

(T4)
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Throughout the rest of the paper we will also use uVg * 1 to denote the distribution

1

<Wg*u,¢>=2f Ky (z,y)du(r)du(y)

(T)?

when &£(u) < co. We note that if u is sufficiently regular (for example in L®(T¢)), then the distri-
butional definition of Vg * u agrees with the pointwise definition.

The inequality (2.3) also allows us to show that S'(u, ¢) as defined in the introduction is a
continuous function on the sublevel sets of Q7 and that Q7 is lower semi-continuous.

prop:Aubin-Lions Proposition 2.3. Suppose that jy, € C([0,T], P(T%) and e C([0,T], P(T?)) are such that

QT (ux) is uniformly bounded,

Then
h’grl lnf QT(/J/k) > QT('U/)7 (26) eq:Q"T-lsc
—00
and for any smooth vector field ¢
T T
kllm J <,Ui].vg * 'LLZ/., ¢t> dt - J <,U/tvg * Mt, ¢t> dt (27) eq:grad-convergence
—% Jo 0

Proof. Since pf — pt' for all t and g(z — y) and (—A)g(xz — y) are lower semi-continuous functions
on (T%)?,
liminf £(ut) = E(ub),
k—o0
and

lim inf(—A)E () = (—A)E(u").

k—o0

Fatou’s lemma then implies that

lim inf f (—A)E () dr > f N

k—o0 0 0
thus . .
h]ﬁn lnfg(ﬂl];) + 2Uj (*A)g(ﬂz) dT > E(Mt) + QUJ (*A)g(/‘LT) dT (28) eq:one-half-lsc
—®© 0 0
If

t t
timint | [div (Vg )2 1 dr > | Jdiv (Vg s 00 P dr
—o Jo ’ 0 ’

we have shown that indeed QT is lower semi-continuous. As we will need (2.7) to establish this, we
move on to the proof of the functional convergence.

The bound (2.8) implies that the right-hand side of (2.7) is well defined. To show (2.7) we first
use (2.3) to bound

1
2

T T
t t t t .t t t t2 t)2
® (1], — CYTAR dt| < — s— <1+ e + e ) dt.
UO (i NVgs pp—pNg#p', ¢7) ‘ d,s,¢f0 P Nl | ST o VL s
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Hoélder’s inequality then implies that

T 1
I 714 N 74 )th
k= gty (1 2 ey

<T1/2(J pb — ut)? dt> 1+ sup |pt]? + sup [pt)?
o 11~ st ( o ot o o it (Td)>
/ T 1/2
$ Tl 2L J t )2 o dt
([ k=

where L comes from the uniform bounds on Q7 (uz). It thus suffices to show that

hm f — K H2 s—d d dt = 0 (29) eq:L"2-H-convergen

to conclude that (2.7) holds.
We will interpolate between the convergence of uy to p in C([0,T7], P(T9)) and the bounds
given by QT (u). Let o > d— so that Ho compactly embeds into Co Then for any two measures

,u,yePandqbeHg
| ot = v) < Polley o) < Call o)

where we’ve used that the Wasserstein-2 distance controls the Wasserstein-1 distance. As a conse-
quence, |1 — v|j-o < Cad(p,v), thus the convergence of i to p in C([0,T], P(T?)) implies that
(ur — 1) converges to 0 in C([0,T], Hy ®(T%)).

We can interpolate between H~ and H'""Z" to find that for all § there exists a constant
Cs [CF88] so that

lil ozt < Coll e + 61 .

This implies that
T t t)2 T t t)2 T t2 t)2
[ k= e o |6 [+ D1

T
S Co | Ik~ 'y de 4 7L,
0

where L is again some constant depending on the uniform bound on Q7 (u). Taking k — oo and
then 0 — 0 implies that (2.9) holds.

We can now complete the proof of the lower semi-continuity of Q7. We note that if |71, < 0,
then for all ¢ € D

KT, )l < T -1,ulVElL2()
Thus, for any ¢ € C°([0,t] x T%) the Cauchy-Schwarz inequality implies that

¢ ¢ 12 , pt 1/2
[0 nrvorsar < ( [ 1 ig =i ear) ([ [1vePanar)

Taking k — oo and using the convergence of uy to pu and (2.7), this implies that

¢ ¢ 1/2 , ot 1/2
| <MVg*m,v¢T>dT<h,g;gf<Ldivng*uDszT) ( | fwﬁdwr) .
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cor:S-continuity

1:modulated-energy

We can then use the Riesz representation theorem to find that there exists some

2 2/ r
Ec{Vé:oe (0, x T} ([0,8,L2(u7))

so that for all ¢ € C([0,t], T9)

t t
J div (p"divu’),¢" ydr = J jE Vo' du dr,
0 0
and
t t
J J|ET\2 du” dr < lim ian |div (up Ve * uf)|%, 7 AT
0 k= Jo Tk
This immediately implies that for almost every 7
div (u"Vg#* u”) = div (E™u")
2(,T
in distribution and E7 € {V¢ : ¢ € D}L (u ). We conclude using the equivalence
v (Vg 5 )P 1 = [ 1E7 di”

and integrating over 7.

Corollary 2.4. For all € C*([0,T] x T?) and 0 < s <t <T
t t
55(11,6) 1= ()~ 6% [ (. 07+ o i (7T 67 dr—ar | [ 1V P

is a continuous function on sublevel sets of Q.

Proof. This is an immediate consequence of Proposition 2.3 since all other terms of S*!(u, ¢) are
immediately continuous in the C([0, 7], P(T%)) topology besides

t
J (div (u"Vg* u"), ¢")dr.

2.2 Modulated energy inequalities.

To adapt the proof of Proposition 2.3 for empirical trajectories we need an analogous bound to (2.3)
between
1Y 1
UNVEg* pn, @) = — Y o) (= D, Velwi— ;)
N N
1=1 1<j<N3i#]
for a point configuration z, and {(uVg * u, ) for some measure pu with £(u) < c0. We thus need

an analogous distance between py and p to the 5" norm. This is exactly the role the modulated
energy

Fr(zy, 1) = ” g(x—y)d(lgémi—u>®2(x7y),



nollification-bounds

plays. In particular, we’ll show that there exists C, 5 > 0 depending on d and s so that

N 2
_ 1 . _
Fy(zy, ) + Clulze N7 ~as NZ&&?) —nf e NS (2.10)
i=1 H 7
for any configuration z € (T%)" and p e L*(T¢) where
N I 11
r; := min Zlgng;i—mjLN La (2.11)

J#i

and (5;77) is a “smearing” of d, onto the sphere of radius 1 centered at z. By comparing quanti-
ties involving the empirical measure and the smeared measure directly, we will then be able to
recover analogous bounds to Corollary 2.2. This equivalence will also be important for adapting
the interpolation argument in Proposition 2.3 for empirical trajectories.

To prove this equivalence, we need some more properties of the periodic Riesz kernels. Letting

gE(CL') = |x|_s]-s>0 — log |1:|]-s:0a
it is shown in [HSSS17] that for all s € [0,d) g is smooth away from 0 and
g(@) —ge(w) € C*(B(0, 7). (2.12)

This implies that

1
IV®g| <as Pa + |log |x||1s=k=0 for all k> 0 and z € T4\{0}. (2.13)

As lim, 0 gp(z) = o0, it also implies that there exists a constant ry < i so that

%gE(x) <g@) <2gp(z)  in B(O,ry). (2.14)

When s < d — 2, since (—A)g is also a periodic Riesz potential (now corresponding to parameter
s + 2) we can use (2.12) to further restrict rg so that

Ag <0  in B(0,r). (2.15)
(n)

This allows us to control the difference between g and g * 6" .

Proposition 2.5. Let 55{0 denote the uniform probability measure on the sphere 0B(0,m) and

8i(0) = | ele =) a5 w)
Then for all 0 < aw < n and z € B(0,rg — n)\{0}

gn(7) < ga(2), (2.16)

where we let gg = g. Additionally, for all |z| > 217 > 2a =0

772

8a () — gy (7)] Sas W (2.17)
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nergy-monotonicity

or:criticalbounding

Proof. The inequality (2.16) is immediately implied by the subharmonicity of g (2.15) and the

identity
d

% 0B(z,r)
where H?~1 is the d—1 Hausdorff measure. The inequality (2.17) is implied by (2.13) and (2.18). [

_ Cd
fdHT = < f Afdy, 2.18
rd=1 B(z,r) ( )

Remark 2.6. If ¢ is a radially symmetric mollifier supported in B(0, ) and ¢, (z) = n‘dap(%), by
using spherical coordinates it is easy to verify that identical estimates as in Proposition 2.5 hold
for ¢, * g in place of g,. We could thus alternatively take

d5§3’7) = oy(y — x)dy
and all the proofs follow almost identically.

Now that we have some understanding of how mollifying g affects its behaviour, we will restate
Proposition 2.1 in [NRS22] in the context of the torus. This shows that the modulated energy is
“monotone under mollification.” That is, modulo some error terms which vanish as N — oo

LS )
72575?2 —
i

This is important for establishing one of the directions in the assymptotic equivalence (2.10).

2

N
1
Ceed Sd,s FN(@Na/‘) + N2 Z gm(o)-
H 2 i=1

Proposition 2.7. There exists a constant C depending only on d and s such that for every choice
of zy € (TYN pairwise distinct, p e P(TY) A LP(T?), and 0 <m; < 2,

N 2
1 1l 1 ,
N (s —m(a—a) + O G A
1<i#j<N i=1 H 2z
|zi—a;|< g
1 C N ds | 4
- 2
< En(zy, 1) + 575 i;gm 0) + Il ; (n§ % + i’ (|log |nil]) 1s—0 + 17 (2.19)
Proof. The proof follows essentially verbatim as in [NRS22] using (2.16), (2.17), and (1.6). O

Remark 2.8. Applying (2.19) with n; = N ~a immediately implies that
~ N0 ulre Sas Fn(zy, ) (2.20)
for some 3 > 0. This shows that the modulated energy is asymptotically positive.

The first term on the left-hand side of the inequality above allows us to control the diagonal
interactions

1 X
N2 2 g (0).
i=1

by the modulated energy. This gives us one direction of the equivalence (2.10).

Corollary 2.9. There exist constants C,3 > 0 depending on d and s so that for all z, € (TN
and p € P(T4) n L*(T9)

N
1 & )
'N Dot — Sas Fn(zy, 1) + Clple NP, (2.21)
=1

2
. s—d
H 2
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Proof. Proposition 2.7 with ; = r; gives the inequality

2
oa Sds EN(Zy, 1) + 575 Z g, (0) + ClulzoN"7,
H 2

where we’ve used that r; < N _5. To conclude all we need to show is that
1 _
m Z r; (0) $d’s FN(@N, 'LL) + CHILLHLOON 'B (222) eq:diagonalbound
i=1

Abusing notation so that gg is a function on R as well as T¢, (2.14) and the definition of r;
imply that if r; < N=a A 2 and x;; is the closest other point to z; in z, then

gr:(0) <as ge(ri) < ge(w: — ;) < gz — zj,).

On the other hand, by a scaling argument, (2.14) implies that gy-1/a(z) <ds gE(N_%) for all
x € T We thus find that

1 —
WZgri( Sd,s N2 Zg xji)_ngl/d(wi_xji)_‘_N g
j= 1=1

1 _
Sds N2 Z (g(wi —zj) — g, (vi —x5)) + N A,
1<i#j<N
|z —aj| <2

The first term in the last line above is bounded using Proposition 2.7 again, but this time with
n; = N~1/4 which gives that

1 _
N2 D (gl@i — ) — g (@i — 25)) Sas Fn(zy, 1) + Clplr-N"7, (2.23)
1<i#j<N
| —a; | <52

where we’ve used that ||| > 1 since u is a probability measure and |T?¢| = 1. The statement is
thus proved.
O

rem:weakeontrol - Remark 2.10. Corollary 2.9 shows that the modulated energy controls weak convergence. For
any Lipschitz ¢, zy € (T9)Y and pu € P(T%) n L®(T9)

o Sy ) = [oa(h S0 ) [ oa(h S Sh0)

i=1
<[l oe | i 800 — g o+ NG e
— ‘ HT
B 1/2
Sas (IVl o + 161 150 0 ) (FNuN,m + cmum-ﬂ) ,

where the first inequality follows by duality and the second follows by (2.9). In particular, if
limpy oo Fn (2, i) = 0, then limpy_o piy = o in P(TY).
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To prove the other direction of the asymptotic equivalence (2.10), we need a mild generalization
of Proposition 2.7.

prop:monotonicity PI‘OpOSition 2.11. Lettlng
8n.alz jj (x—y—2) d(s(n)( )dé(()a)<z)7
Td)z

there exists a constant C depending only on d and s such that for every choice of xy € (TN
pairwise distinct, € P(TY) A L(T%), and 0 < a; <m; < 2

N 2
1 Rt )
ﬁ Z (gai,aj (xl - xj) — 8ni,a; (wl - 56])) +C ! N Z 53(571-71) —H| s—d

1<i#j<N - %z

i —;|<F
1 ’ 1 & C J

T Y ate) — + = >80 (0) + =z D] (0 + (| log [mil ) Ls=o + 7).
N - - N= N :
=1 H =1 =1

(224) eq:monotonicity
Proof. This follows exactly as Proposition 2.1 in [NRS22] except the difference between
1Y ®2 1 X ®2
J[ s na( 2o —n) @w [ st -na(g N6 ) ey
i=1 =1
Td)Q (']I'd)Z
is taken as opposed to
1 N ®2 ®2
jj g(:n—y)d(N;(Sm— ) (x,y) and JJ T—y < 25"1 —u) (x,y).
(T)*\A " (T4)?
O

Similar to how we used Proposition 2.7 to show the modulated energy controls ﬁ sz\i 18r,(0),
we will use Proposition 2.11 to show that

LS )
Ot

controls the micro-scale interactions between the particles in a configuration ;.

. s—d
H 2

proprmicroscales Corollary 2.12. There exist constants C, 3 > 0 depending on d and s such that for all z, € (TN
pairwise distinct, € P(T?) n LP(T?) and ¢ < C~1

1 1 & (rs) 2 7% 4+ 15-¢|loge| s
N2 Z g(mz - :L‘]) $d7s N Z 53;1-2 - M . sfd( . + N + H/.L”L@E . (225) eq:smeareddiagboun
1<i#j<N i=1 H 2 (T4)
|lzi—;|<e
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Proof. First, we note that if |z; — z;| < 7, then
i (Ti — ) Zas 8E(|Ti — w5 +1i +15) Zas gr(|T: — 24)).
This means there exists some constant ¢ so that
8ror, (@i — 25) = ¢ gp (| — 2j)).

For arbitrary n < % we have that g, ,(z; — ;) <as ge(n). In particular, by setting 7 to be a large
constant times £ (when s > 0) or a large root of ¢ (when s = 0) we can make it so that for all

|z — x| <€
1 ~1
8rm(Ti — x5) < TgE(ﬁ) < 5
as long as ¢ is sufficiently small. We thus find that for all |z; — z;| < ¢

ge(lzi — ;)

Cfl

i (Ti — ) — Gy (T — x5) = ng(m —zj|) Zas glxi — ;).

Using Proposition 2.11 with the n given above we have

1 1
N2 > g(wi — ;) <553 D g (@i - 3)) — grglw — x))

1<i#j<N 1<i#j<N
|lzi—zj|<e |zi ;<
N 2
1 _ g,(0) _
<|F o - B e (% o Do + 7).

Since 7 is either a large multiple or large root of € we have

g,(0) _
S+ Ll (1 + ' (1og [nl)1s=0 + 7*) Sas

for some § depending on d and s. This completes the claim.

7%+ |loge|
N

+ |l oo (paye”

We now prove the opposite inequality as in Proposition 2.9 holds.

lated-cnergy-bound Proposition 2.13. There exists a constant 3 > 0 depending on d and s such that for any zp €
(THN and p e P(T?) n L*(T?)

N 2
1 , _
Fn(zn, 1) Sds NZ@(JZ) pl o A+ e N
i=1 H 2 (T4)
Proof. We begin by expanding
N
1 ®2
H g(:r—y)d(ﬁ Zl% u) (z,y)
(T9)2\A ’
N N
1 ®2 2
_ . 1 ) _ 2 oy .
IEE Dy 2o ) ) = X | (6o ) gl ) )
1 | W dls. 4 st LSy o
+ N2 Z (g($ — ;) — g, (7 — xz)) ( x; T Ox; ) () — N2 Z gri,n‘( )
1<i#j<N i=1
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namely

Fn(zy,p) < Ug(:c —y) d(% i o4 — u)®2(x, y) — % i f (g(x —x) — g, (x — x;)) dp(x)

1 5
+t 2 )y f (8(x — 25) — g, (& — 1)) (8, +057) (). (2.26)
1<i#j<N
We note that
‘ J(g(iﬂ — ;) — &, (z — z;))dp(x)
<[ lew-m) gl —adu) 4 [ gl )~ glo —0)du)
B(xi72ri) B(zi,2ri)c
1
< o g(z)dz + r? J ———dx
s Il <JB(0,2”) (=) B(0,2r;)¢ |z[s+2 )
Sas oo (75 + (] log nl)1so + 1), (2.27)

. _1
thus since r; < N~ 4, we can bound

92 N
3 2 [ e =) e 20) du(o)] Sas Il NP,
i=1

To bound the last term on the right-hand side of (2.26) we split near and far pairs of points

1 .
m Z J(g(w - $1) — 8 (.CI} - xl)) d(dz] + 5§:|;J))(.Z‘)
1<i#j<N
1 y
= ﬁ Z J(g(‘r - xz) — 8r; (IL’ — xz)) d(éx] + 59(0]]))(1I)
1<iAj<N
|:1,’i—£l2j|<5
1 y
TN 2, J(g(m_%‘) — g — ) d(8s, + 657 ().
1<i#j<N
|£L’i—3}j‘26

If e < %, then (2.16) implies that

1 ) 1

D M [ R O L AR [ P SR8
1<i#j<N 1<i#j<N
|zi—zj]<e |zi—zj]<e

When combined with (2.25) we thus find that for sufficiently small &

1 )
o 2 () - g - s, + 6@
1<i#j<N
\xil—az]ﬂsa
N 2 _

1 _ 7% + 15-¢|loge|

Sas | 00 —n| L+ + [l zooe”.
N; r 157 N

28
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If € > 2r;, (2.17) implies that

N 2
1 ri 1 r;
ﬁ Z f xr — ‘TZ grz( Z))d((sx] + (Si‘]]))(x) $d7s N Z 55+2 . (229) eq:farbounds

1<i#j<N i=1
|zi—z 5>

Thus choosing € > 2N ~i such that the e dependent terms on the right-hand sides of (2.28) and
1
(2.29) decay like N— for some 8 > 0 completes the proof (for example ¢ = N~ a2). O]

2.3 Renormalized commutator estimates.

subseq:commutator

Now that we have shown that F(xy,u) is a good analogue to the %3 norm between pn and p
we will “renormalize” the commutator bounds (2.1) and (2.31). Throughout the rest of this section

we’ll let
Z 5(#‘1

for some configuration z; with associated minimal distance vector r. The general idea of the proofs
are to write
pn = p = (un = png) + (B — 1)

. s—d
Then (pun — pn7) should be small since r; are small, while (ux— p) is in Hy* , so we can use the

estimates from Subsection 2.3.
The following proposition is the renormalized analogue to (2.2).

mmutator-cstimate  Proposition 2.14. There exists a constant C,3 > 0 such that for any zn € (TN and p €
P(T?) ~ L®(T9) and Lipschitz vector field ¢

Koy (z,y)d(uS? — 1) (z,y)
(Td)2\A

1
< ) -8)?2 2
Sas Co(Fayos) + Cliale N ) (0 + HnGa) + 1l )

(NI

where Cy = |V o + H|V|dgs

Proof. First we add and subtract by smeared point masses to break the left-hand side of (2.38)
into two terms

1 . |
|| ®onae—sen - 5] Ko+ o 6, - o))
165 <N () o

f Ky (2, y)d(uis — 1) (2, y).
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Using Corollary 2.2 and then Corollary 2.9 we have the bounds

[ ot i o)
(T4)2

Sas Colny =l sga (len . oo

2 1/2
s 1
ul? s + 1)

1

Sas Co(Fn(ax ) + ClulzeN~7)"

[N

() + 10 e

sgd and FN(QN,l) = HN(&N)

+ C) (2.30) eq:renorm-commutze

where we’ve used that HMNf”H% = |pny— 1HH

Next we split

1 . r
5 Y[ R+ 6, -6 )
1<i,j<N(Td)2\A
1 N
e H Ko, 9)d(0s, +007) @ (6, — 657 )(w,)
1<7,;é]<N
Ly (r)
- T 5 K i ®2 . 2 1 align:commutators
N2 23 | K002 0 (231) F

To bound the second term on the right-hand side of (2.31) we note that (2.13) implies that if
|x — y| < rg then
Ky (2,9)| <a

(x - y) (232) eq:commutator-deri
thus

S [V r-gr, (0).

| Kol )6y
(Td)Q

Together with (2.22) applied with reference measures p and 1 this implies that

N
r; 1
'Nz 0 VD0, S 77 180

1 12,1 N 1/2
= (]\[2 Z gl’i (0)> <]\[2 Z gri (0)) (233) eq:renorm-commute
i=1 i=1
Sas (En(ay, 1) + Clpl = N"P) 2 (Hy(zy) + OV
(2.34)

To bound the other part of (2.31) we split over near and far pairs
N

1 ) r;
= 2 K o(,1)d(0z, +01) ® (8, — 357) ()
L<i#j <N pia A
1 . .
< X Ky (2, 9)d(0r, +000) @ (02, — 047 (. )
I A
1 y
+ |52 > f Ky (2, 9)d(8s, + 6) @ (84, — 857) (2, ).
oS MHAA
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The near pairs can be bounded using (2.32) and (2.16) to find that

S Y
N2
1<i#j<N
|zi—zj]<e

. . 1
K¢ (.'I:, y)d((sxz + 6‘,(217')) ® (533] - 6;]]))(‘%’ y) g m Z g(f,UfL - :1:]) (235) eq:commutatornear
1<i#j<N
|lzi—zj|<e

(THAA

If ¢ is sufficiently small, then (2.25) applied with reference measures p and 1 implies that

1 2 75 + 1g-0|loge| 5\ /2
RV OE (I = P, s+ 250255 e
<t#J<
|zi—j|<e

S 4+ 14-0]1 1/2
e75 4+ 15| 0g£|+1) '

2
e ¥ N

Corollary 2.9 in turn implies that

7% + 159/ loge| ) 1/2

1 J—
2 Y g a) Sas (Fxlay,n) + Ol gV +2%) + =15
1<i#j<N

|z;—zj|<e

e S+ 1._ollogel\1/2
s 0| 0og |) . (236) eq:renorm-commut:

X (HN(QN)+1+ N

For the far pairs, using symmetry we find that

Z f Ky (z,y)d(0s, +(5(”))®(5 —5;(021))(m,y)

1<i#j<N
‘x —;(:J |>5 ’]Td)Z\A

= 5] el - Koo @5 )
LS
The bounds (2.13) also imply that
VKo (2,9)| < [Vl pe|z —y|~EHY,

thus we find that

N
1 r 1 .
W Z Kﬁb(x? y)d(dfﬁl + 6;5,‘?)) ® ((SZ] - 5(2]]))('1‘7 y) S N Z I’1HV¢HL006 (S+1)7 (237) eq:renorm-commute
LD RN -

by the mean value theorem. Choosing an appropriate € > 0 (again ¢ = N @ works), using that
r; < N~ and combining (2.30), (2.33), (2.36), and (2.37) concludes the desired bound. O

The standard renormalized commutator estimate for the torus follows very similarly. Although
it is not useful for the LDP upper bound, it is for the proof of the mean-field limit in Section 5.

mmutator-estimate  Proposition 2.15. There exists constants C, 3 > 0 such that for any zy € (TY)N and p e P(T4) N
L®(T9) and Lipschitz vector field ¢

f Ky (2, y)d(uy — 1)z, )
(T4)2\A

d—s
where Cy = |Vo|ro + [||V] 2

$d7s O¢ <FN (&N, ,LL) + CHHHLOO Nﬁ> 3 (238) eq:old-commutator-
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q:grad-convergence

p:grad-convergence

Proof. The proof follows exactly as the proof of Proposition 4.1 in [NRS22| with Propositions 2.1
and Proposition 3.1 replaced by Proposition 2.1 and Proposition 2.12 respectively. O

2.4 Functional convergence.

We have all the prerequisite inequalities to adapt the proof of Proposition 2.3 for empirical tra-
jectories. Besides using Proposition 2.1 instead of (2.3), there is some technical difficulty in
dealing with the fact that we only define Fy(z,,v) when v € L®(T¢). To handle this when
w ¢ L°([0,T], L*(T%)), we mollify x in space and use that whenever |u|z« appears in the renor-
malized estimates, it is paired with a negative power of N.

There is also some additional technical difficulty in the interpolation argument between the
convergence of uy to p in C([0,T], P(T¢)) and the uniform bounds on Q% (z,). We want to use
the equivalence (2.10) to say that

T T N
1 N
_ t -6 o () -5
J( A)Hy (zy) dt + OT || =N Nd,SL )Ni;% oesa b+ Tl NP,

0

but this only actually holds when s < d — 4 as when s > d — 4 the parameter corresponding to
(—A)g is greater than or equal to d — 2. Instead we use the fact that if s < d — 2, then (—A)g
is more singular than any Riesz kernel with parameter between s and s + 2. We can then use the
bound on Q% (zy) to instead control

T N
Jy Iy ot

for some & > 0. This is sufficient for the interpolation argument.

2
o O

Proposition 2.16. Suppose that z, € C([0,T], (TH)N) and p e C([0,T], P(T9)) are such that

{(QL (zN)} is uniformly bounded,
pn — pin C([0,T], P(TY)).

Then
lim inf QR (zx) > Q" (1), (2.39)
—00

and for any ¢ € C*([0,T] x T?)
T T
g [ [] Kes@nd@adwa- || Kot ad@ aiea. @)
(T4A\A (T)2

Proof. As Q% (zy) is uniformly bounded so are

{ sw vt} ana { | T(—A)meév)dt}.

te[0,T] 0
Truncating g and (—Ag) near zero and using weak convergence, we easily find that

liminf Hy(2l) = £(u)
N—0
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and
lim inf(—A) Hy (2ly) > (—A)E ().
—00

Fatou’s lemma then implies that for all ¢

t t

(—A)Hy(a}) dr > E(u1) + 2aj (—A)E(uT) dr.

liminf Hy (z%) + 20J
N—0 0

0
In particular, the uniform bounds on Q% (z,) guarantee that for all ¢

() + 20L(—A)8(;ﬂ) dr < oo,

thus u'Vg = ut is well defined. We will again need to prove (2.40) before proving that Qﬁ satisfy
the Gamma-limit upper bound (2.39).

We let nx be a family of mollifiers converging to do so that [nx|re = o(N?) for 3 from
Proposition 2.13. First we split

|| Kowte s @duito) ~ [ Koo o't w)
(THAA (T)2
|| Ko@) - || Keslomdit cov@dit v @4y
(THAH\A (T4)2
+ || Kew@nan snv@an sav) - || Keppdid@idi'e). @2
(T4)2 (T4)2

Proposition 2.14 bounds (2.41) by

1 1
Co(Fw(aly, '+ ) + Clon =N 70)* (€ + Hy(ah) + 1 Byaga )0 (249)
and Proposition 2.2 bounds (2.42) by
;
t)2
Coll = = il gt (1 I8 e, ) (2.44)

where Cy is some constant that depends on the derivative of ¢ and we’ve used that

by 0 » and % 2 2
" =N re < lInnlz s 77NH =54 pay < |t H 254 pay’

Together (2.43) and (2.44) imply that

Koo (2 0)dpy (s (0) [ Koot (@)t 0) (2.45)
(’Jl’d )2\A (T4)2

T t)2
<Co (1) T = e (2.46)

1

T
t )2 2 t t -8
+Cy L (O + HnGh) + 101 e, ) (Pl e o) + Ol | N70) i (247)

SIS
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Since pu! * ny — pt in H*3* for fixed t, and supe(o i ot < % the dominated convergence
theorem implies that

T
: 2 —
i [ 0 e ) 5= =0

Applying Holder’s inequality we have that

T 1 1
| (0 it 4 R s ) (Bl s ) + Cln o N 2)
0 *2° (14)

[SIES

1

5 T

<TY? sup <C + Hy(zy) + |1 H2 > <J Fn(zly, p * ) dt + CT||77N|LOON_ﬁ>
t[0,T7] 2" (1) 0

Since sup;epo ) Hn(2%y) are uniformly bounded and
li o NP =
A o] 0,

to conclude (2.40) it suffices to show that

T

lim Fy(zhy, u* +ny)dt = 0.
N—o 0

Let § > 0 so that s <s + 0 < max{s + 2,d — 2}. Then letting g solve

)

(~A)72 g = cass(00 — 1),
as —Ag is more singular than g at zero it holds that
g€ Sas (Ag)(z —y) + C,

for some constant C' depending on d and s. Letting

~ 1 -
Hy(zy) =+ Z g(@i — ),
1<i,j<Nsi#j

then Corollary 2.9 with p = 1 implies that
il sgea < S Hy(ay) + C Sas (-A)Hy(zy) + C,

where we note that the definition of ¥ for s and s + ¢ agree when N is sufficiently large. As a
consequence, we have the bound

T T
[ 2 gt 50 [ M)Ak O
0 T H T2 0

Since H,utHHHsﬁ}d = cqs(—A)E(u') we also have that

T T
£12 )2
s—a dt < eq dt T < .
L I HH‘HQ d d,sj0 (7 HHH—Td +CT <
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sec:energy-control

. 0+s—d

The sequence (py7 — g * ny) is thus uniformly bounded in L?([0,7], H, * (T¢)). Since r; are
asymptotically vanishing and 7y converges to the identity, uxr and p * ny both converge to
p in C([0,T],P(T?)). As in Proposition 2.3, this implies that puyz — p * ny converge to 0 in
c([o,T ],HO_ *(T?)) for some sufficiently large o > 0. We can then again interpolate between
H™5* and H~° to find that

T
li b — 2 oy dt = 0.
Jim [yt e =0

Proposition 2.13 then implies that

T T
J Fy (ly, p* # nn) dt < f |z — 1 WN\\Zydt + CT |y = N7,
0 0
thus taking the limit in N completes the proof of (2.40).

To complete the proposition, we must only finish showing the upper Gamma-limit bound (2.39).
It suffices to show that for all ¢

¢ t
J |div (1" Vg = MT)H2—1,M dr < lim inff Dy (zy) dr.
0 N—aw Jo
The Cauchy-Schwarz inequality implies that

! E( [[ oo o) i) sy = f}viww(fv 5, Vel -aj))ar

Td)2\A 1<j<Nji#j

t 1/2 t 1/2
<< [ DN@;V)dT) (L | |V¢T|2dlﬁvd7> .

The rest of the proof follows identically to the lower semi-continuity of Q7 in Proposition 2.3 using
the convergence (2.40). O

3. Existence, energy control and exponential tightness

In this section we show that there are unique strong solutions to the SDE (1.1), that there are
exponential bounds on the probability that Q%(g ~) is large, and that the empirical trajectories
corresponding to the solutions of (1.1) are exponentially tight when the initial conditions sat-
isfy (1.8).

We prove the existence of (1.1) and the exponential probability bounds on QT (x,/) simultane-
ously. Formally computing the It6 derivative of Hy(z;) when z; solves (1.1) we find the identity

t

Hy(zly) + 20[ (—A)Hpy(z}y)dr + QL Dy (z}y)dr = M' + HN(QR,)

0

where M! is a martingale with quadratic variation % Sé D (z}) dr. Accordingly, we should be
able to bound the probability that

t

Hy(ay) + 20 f (—A)Hy(a}) dr + jo Dy (%) dr

0
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is large, where we’ve lost the 2 in front of the Dy (z};) term so we can write that the above is equal
to Mt — (MY + Hy(2%)).

As this formula for Hy (z!;) does not rely on the form of g, it actually holds when we replace g
with a smooth truncation g5), equal to g(z) except when || < §. The SDE for this truncation is
well defined, and more so, as long as no two particles are closer than ¢, its paths should agree with
those of (1.1). We can then bound the probability that any two particles are close using the above
energy equation and the fact that the truncated energy is large if any pair of particles is close to
show that as § — 0 the probability any two particles get close goes to 0. This allows us to define a
solution to (1.1) as the limit of these truncated processes, and will also allow us to give bounds on
the probability Q% (zy) is large.

The following exponential version of Doob’s martingale inequality is vital for the desired expo-
nential bounds, and is also important for proving the mean-field limit later in the paper.

cexponential-doobs  Lemma 3.1. Let M be a positive continuous martingale. Then for any L € R

IP’( sup log M* > L) < E[M]e™ L.
te[0,T]

As we will use them for the lower LDP bound, we will actually show the unique existence of
solutions to (1.22).

opsencrgy-cstimate  Proposition 3.2. For b € L2([0,T],C1(TY)) the stochastic differential equations (1.22) admit
unique strong (and weak) solutions if Hy(zQ;) < 0. More so, if b= 0 and (1.8) holds, then

P(QF(zy) > L) < exp (— (L - Hy(aR)))-

Proof. Let x be a smooth function so that 0 < x < 1 and

Then g5)(z) := (1 — x(5))g(x) is a smooth truncation of g satisfying g(s)(z) = g(z) for |z| > 0.
Consequently there is a unique strong solution to the SDE

dwid =-5 X Vg ) (37575 - x;,a)dt + b(l"f,é)dt +v20dwy,
1<j<N;j#i (31) eq:truncated-SDE
; sli—0 = Tip.
Let 7y, be the stopping time defined by
TN, = inf{t > 0 : min |zl — 563-5‘ < 26}
7/#] b} K
Then when 0 <t < 75 it also holds that for all k£ > 0
k k
Vo) (i 5 — b 5) = V(x5 — 2’ 5)

for all ¢ # j. In particular, setting

1
Hys(zy) = N2 Z g(5) (zi — x5),



this implies that Hy s(zy5) = Hn(zy ) when 0 <t < 7y 6.
We proceed by applying It6’s formula to Hy s(xy ) to find

2
Hys(zly) = Hys(2) — 2 Z Vee) (s — xis)| dr
1<i#j<N
1 1
1= <JSNi#j
b1
+2UL]V21<Z Ag(g)( 6—.17 )d
i#j<N
W tf1 & . .

+ N Z J (N Z vg(a) (xi,(; — .Z']75) dwl . (32) eq:trunclto

i=170 1<i#j<N

The last term on the right-hand side of (3.2) is a martingale with respect to the filtration generated
by the noise, which we will denote by M?, which has quadratic variation
2

<Mt>:8§ 2 Vg (z]s — x5 5)| dr.

1<i#j<N

Applying Young’s inequality to the third term on the second line of (3.2) and rearranging we find
that for any parameter a < 1

2
Z Vg()( 5—33 ) dr

1<j<Nji#j

t
1
Hys(zly) — QUJ — > Agy(als —afs)dr +
0 1<i#j<N

(1-a)N
<Mt—87<Mt>+HN5xN 2]6 )2 dr
t (1 ) t T

<M —87<M>+HN5 Hb 12 dr.

Setting
t t

Oly(zy) = Hy(alyg) - 20 f (-A)Hx () dr + | Dy(ai)dn
0 0
we found that for 0 <t < 7n 5, letting Ay := (1_4%

~ )\ —
Q?V(QN,(S) <M' - TN<Mt> + HN(§9V) +ta 1Hb|‘%2([07T]7L00(11‘d))'
Using Lemma 3.1 with the optional sampling theorem applied to the continuous positive martingale
2
exp(ANM* — A7N<Mt>) we find that for all L > 0

P( sup Qiv(zys) = L)
[

te O,T/\TN,(;]

2
< ]P( Sup 10g eXp ()\NMt - )\TN<Mt>) > )\N(L - HN(&?\]) - Cb7()é)> (33) align:energydoobs
tE[O,T/\’TN’(;]

< exp < (L — Hy(2%) — Cbu))IE[exp (AnMY — %<M°>)]

= exp ( (L - Hy (%) - cw) , (3.4)
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for a constant C, , depending on b and «. As g and (—A)g are both bounded below there exists a
constant C' so that if 7y 5 < T', then

min|,|<o5 ()

ON" (@ g) = Hy(zyy) = CoT > —= =5

—C(1+0T),

where the second inequality follows because it must be that |:L“Z.T]g’5 — x;i\;’ﬂ < 26 for some pair of

indices ¢ and j. Setting

£(8) = mm'x;“j 80 _ o014 o1,

then f(d) — o0 as § — 0. Using (3.3) with L = f(§) we thus find that

~

P(rvs <T) < B(Q3(@ws) = £(9)) < exp (= Av(F(0) — Hn(ah) — Cb) ).

the right-hand side of which converges to 0 as § — 0. We can thus find a sequence d; — 0 such

that
Z IP’(TN@,C < T) < 0.
k=1

The Borell-Cantelli lemma with the monotonicty of 7y s in ¢ imply that lims_o7n,s > T almost
surely. Since 2y ; and 2y 5 agree on 0 < ¢ < 75 when ¢’ < §, this allows us to define a unique
strong (and weak) solution to (1.1).

Returning to the proof of (3.5), we note that

QN = sup Qf.
te[0,T7]

Thus when b = 0, as we can take o = 0, taking the pointwise limit in (3.3) as § — 0 gives that

P(Q%(EN) > L) < exp ( — %(L _ HN(&?V)),
as desired. .

corzenergy-estimate  Corollary 3.3. If z, are the unique solutions to (1.1) with initial conditions satisfying (1.8), then

1 1
lim sup N 10gIP’<Q%(gN) > L) < i <L - 5(M0)>~ (3.5)  eqienergy-control

N—o

Proof. Our assumptions on the initial conditions (1.8) imply that

Hy(z) — E(po)-

Indeed, expanding out the definition of Hy and Fxn we find that
9 N
H(a) = () + F(aheom) + 3 3 | (8(a? ~ ) = g (a? )y
i=1

N
1Y
+ QJg(JU —y)d<N Z5$?) —M0> dpo
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‘ponential-tightness

The second and fourth terms go to zero as N — o0 since duality and Proposition 2.9 imply that

N
1 )
2 [to -0 a5 > - 0 ) dit a1 = bl ool
1=

<as (Fn (2%, o) + C|lpo] oo ray N 7)1

lrtol  aa

H =z

The third term is bounded by | u||L< N7 as in Proposition 2.11, thus also vanishes.
Using (3.1) we thus find that

. 1 .
limsup - log P(Qn () > L) <limsup — (L — Hy(ay)) = —35(L = £(o)),

N—oo N—o

thus the corollary holds. O

The control on the probability that Hy (zl;) is large allows us to adapt the proof of exponential
tightness in [DG87] to our setting.

Proposition 3.4. The empirical paths {un}n=1 associated to (1.1) are exponentially tight in
C([0,T], P(T9)) if the initial conditions satisfy (1.8). That is, for all L > 0 there exists a compact
set K, = C([0,T],P(T%) such that
limsupP(uy € K7) < —L. (3.6)
N—0

Proof. The proof follows very similarly to the proof of exponential tightness for the measure paths of
regularly interacting particles [DG87], but a small modification is required to handle the singularity
which relies on the energy control (3.5).

Fixing R > 0, we will first show that for all ¢ € D and o > 0 there exists a compact set
Kq4 < C([0,T],R) so that

Py ¢) € K& Qi(ay) < B) <e ™. (3.7)

Applying It6’s formula to (i}, ¢™) we have that

t 1 N 1 N ¢
(uvs &) = iy ) = —f ~ 2 Vo) <N >, Vel —x;)>dT+af (i, Apydr + M,
s 1=1 s

1<J<N;ji#j

where

Mot = LS [(Votanar, oty =3 [ G, 9o dr
i=1v% s

is a martingale for fixed s. We note that for any z, € (T4

1 1 O 1
N > V(i) - (N >, Velwi— l“j)) D, (Vo(wi) = V() - Vel —z))
=1

~ N2
1<j<N;i#j 1<i#j<N

Sds [Vl re (HN@N) + C)

since there exists some constant C' so that |z||Vg(z)| < g(z) + C. When Q% (zy) < R, there exists
some constant k > 0 depending on R, 0, d, and s and the norms of the first two derivatives of ¢ so
that for all v > 0

Ny

(i, &) = (i, ) < w(L+7)(s — ) + M — 7<Ms’t>-
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Proceeding identically to as in [DG87] we thus find that for all § > 0, s < T — 26, and p > 4ké

2T — 4rk6)?
]P) Sup ‘<M§V7 ¢> — </’L?V7 ¢>| > p, Q% (EN) < R < —_ eXp ( - N(p)) . (38) eq.equicontinuity-b
0<s<t<T Y 32Kd
[s—t|<é
Letting
T
O = 51{:_2, Pk = 10/{a1/2k:_1/2,
then since (g, pr) — (0,0), the Arzela-Ascoli theorem implies that the set
Kag:= {x e O([0,T],R) : 2° < |¢||p=, sup |z' — 2% < py for all k > 1}
0<s<t<T
|s—t|<dp

is compact. Since pg = 4kdk, (3.8) implies that

P((U). ¢y € K&y, QN (zy) <R) < . P( sup  |[(uly, ) — v, ) > pr. Qi (zy) < R)

0<s<t<T
=1 |s—t|<dp
2
(Pk — 4K6y) >
< 3 oy (- yln st
= 32Ky,
< e—Noc’

where the last line follows by the choice of d; and pr. We have thus shown that for all a we can
find a compact set so that (3.7) holds.
Now, for fixed L > 0, since Hy(z%;) — &(u°), there exists R > 0 so that

1
+ 08 P(Qn(ay) > ) < - L,

for all N. Letting {¢¢}s>1 = D be dense in C(T¢), and K4, the compact subset of C([0,T],R)
so that (3.7) holds with ¢y and a = L + ¢ we define

Ky, = () {ve C(0.T), P(TY) : (v, 60) € Kpvig, }-

=1

Then the set K, is compact by [G&88, Lemma 1.3] since the Wasserstein-2 metric topologizes weak
convergence. Moreover,

P(un € K7) < D P((un, de) € Kf oy g, QN (zy) < R) +P(QN (zn) > R)
i>1

< Z e NIAO P(Q%@N) > R)
=1
< NL

9

thus indeed (3.6) holds. We have thus shown that uy are exponentially compact in C([0, 7], P(T%)).
O
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sec:upper-bound

prop:upper-bound

4. Upper bound

Now that we have shown that (1.1) is well defined and we have control on Q% (zy), we can use
Proposition 2.16 to give local LDP bounds. This proceeds very similarly to as in the sketch in the
introduction.

Proposition 4.1. For all p € C([0,T], P(T%), if unx are empirical trajectories corresponding
to (1.1) with initial conditions satisfying (1.8) then

1
hm hm Sup N IOgP(MN € B ( )) (Sup SS t(,U/y (b) O’ (QT(,U) - E(MO)) + O - 1,LL0=,LL0> . (41) eq:auxillary-upper-|

E£—00 N—o0

b,8,t

Proof. First we note Assumption 1.8 and Remark 2.10 imply that pQ — uo in P(T?). Thus if
pe C([0,T], P(T?)) is such that u° # po, then for any & > 0

1
limsupﬁlog}P’(,uN € B-(n)) = —0.

N—o0

On the other hand the upper Gamma-limit (2.39) implies that for all § > 0 there exists € > 0
so that for all sufficiently large N

{zzv LpN € Ba(ﬂ)} c {zN (QN(zn) > QT () A 5 — 5}'

Corollary 3.3 thus implies that

timsup - log P (s € Ba(1)) < —1-(Q (1) 5 5~ £(4°))

N—00

Taking § — 0 we then find that

lim hmsupﬁlog]P’(,uN € B-(n)) < (QT( ) — (MO)).

=0 Nooo
To complete the proposition it suffices to show that p e C([0,T], P(T%)) and QT (u) < co, then

lim hmsupIF’(uN € B-(1)) < —sup 5% (i, ¢).

=0 N b,8,t

Fixing ¢ € C*([0,T] x T?) and 0 < s < t < T, It6’s formula gives use the equation

< t (AN s s\ _ l & [t T(rTY . i T _ T
1ns @) =y, ¢ N Z Vo (x7) N Z Vg(x] —x7)dr |dr
i=1v$

1<j<N-z'7éj
¢
+ af Uy, 0ed™ + o AP )dr + — j Vo (z]) - dwy.
s i=1

By symmetrizing we see that

N
V2D (8 Vel -ap) -5 [[ Koo dom ).
=1

1<j<Nyi#j (T)2\A
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We have just found after rearranging that

S 20— il ! T T T ¢ T T S N S
54w, 9) = 5 Zf Vo' (a]) - duw] —af fms [ dufy dr = M — (M),
i=1v$ s

where for fixed s

N ¢
V2
Mot = TUE f Ve (a]) - dw]
i=1v$

is a bounded continuous martingale with respect to the filtration generated by the noise.
For any L > 0 we have the union bound

P(un € Be(n)) < P(un € B:(n), Qi () < L) + P(Q (zy) > L).

Thus letting An . 1, := {zy € C([0,T], (THYN) : un € B-(n), Q% (zy) < L}

2
Plux € Be(), Q% (ax) < L) < B[ exp(—NS™ (ux, 6)) exp(NM* — =)y |

< exp < — N inf S (uy, ¢))E[GXP(NMS’t - ]\;2<M5t>)]

TNEAN L

= exp ( — N inf S (uy, ¢))7

TNEAN L

where the last line follows as exp(NM$! — N72<M $1%) has expectation equal to 1. This gives that

1
lim lim sup N log P(pn € Be(p))

e=0 Now

1
< ( — limliminf inf  S%'(uy, qb)) % ( — limsup N log P(Q% (zy) > L))

e—0 N—>w QNEAN,E,L N—oo
Proposition 2.16 immediately implies that

S5, ¢) < lim liminf  inf S (uy, @).

e—>0 N—>wo gNeANYEYL

In total we have found that

lim limsup%bgﬂ”(u]\f € B-(p)) < (_ S5t (u, ¢)> v <_ lim sup L log P(Q% (zy) > L))

=0 N oo N—o N
Sending L — o and taking the infimum over all s,¢ and ¢ completes the proof. O
To rewrite the rate function in terms of | - |1, we need to show that if supy ., S**(x, ¢) < o0

and QT (p) < oo then € ACT. We will in particular show that g must solve the perturbed
McKean—Vlasov equation (1.22) which we can rewrite as

ﬁtudiv(<v'f+b+Vg*u)M> = 0.

Both b and Vg # i1 (or a representation of Vg * u) will be guaranteed to be in L2([0,T], L%(u})),
but to show that p is in ACT we still need to show that div (%,u) = Ap = div (Ep) for some

E e L%([0,T], L?(ut)). The following proposition shows this using entropy.
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absolute-contimiity Proposition 4.2. Suppose that p e C([0,T], P(T%)) is a weak solution to
Orpe — o Ap + div (bu) = 0,

for be L2([0,T], L*(u')) and Ent(u®) < co where

otherwise.

Ent(u) {Su x)log u(x)dx p <« dx

Then put « dz for all t € [0,T] and p e ACT.

Proof. We will consider the sequence of mollifications p. := p % ®°. We note that p. is uniformly
bounded below in space and time. As well, u. is a weak solution to

Otpte — 0 Ape — div ((bp)e) = 0.

Then, differentiating by time (which can be justified by mollifying in time), we find that

t T bT T

Ent(ut) — Ent(ud) = —o f H K2 gy ar + [ [oe T gy
0 He /‘5

<—Jﬂv“fd dr+ 2 fjb utdr

dul dr + = nybﬂ?cm dr

<5

where the first inequality follows by Young’s inequality, and the second follows by [AGS08, Lemma
8.1.10]. Rearranging, and using that Ent(u0) < Ent(u°), we have found that

Ent(ut) ff‘vﬂe

As the entropy is lower semi-continuous, this implies that Ent(u) < oo for all ¢ € [0, T'], thus u has
a density. As well, for all ¢ € C*([0,T] x T¢) the Cauchy-Schwarz inequality implies that

J JA¢> dpt dt < U ”WE d ng>1/2(LTf|v¢t|2du§dt>1/2.

Using that g, — p in C([0,T], P(T%)) and the uniform bound on the Fisher information of ., this

in turn implies that
T T 1/2
f quStdut dt < C(f Jywtﬁd,ﬁ dt) .
0 0

Accordingly, the Riesz representation theorem implies the existence of E € L2([0,T], L?(i1)) so
that

t
dul dr < Ent(p®) + ff]lﬂ?dlfdr
0

div (E'ut) = Ap
distributionally for almost every ¢. Lemma 8.3.1 in [AGS08] immediately implies that u € ACT. O

We will now use the above proposition to show that if Q7 (1) < o and supy ¢ ¢ S“° (1, ) < 0,
then we can rewrite supy ; , S**(u, ¢) into a form depending on 0y .
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prop:variation PI’OpOSition 4.3- L@t /J € C([O, T], P(Td)) Such that QT(M) < QO and

sup S (1, ¢) < 0.
¢7S’t

Then there exists b e L*([0,T], L?(ut)) so that p is a weak solution to

Ot — o Ap — div (uVg * p) = —div (bu). (4.2)  eqmvetb
More so pe ACT and
sup SS t(/’L (b J\ f ‘bt‘ dIU/tdt f H&t,U/ — O'AM —div (,LL Vg * L )H 1szt (43) eq:char
@,s,t

Proof. We begin by setting

t
L*Wumﬂ:=<Mu#>—<ui¢$-—f<uﬂ0m7>+<0AuT+wHVUFVg*MU,¢>dr
so that .
5540 0) = L o) —a [ [ 197 Pdurr

The function L*!(u, ¢) is thus a linear operator on C*([s,t] x T%).
Using that

t
oo | | IVorPawar
s JTd
is quadratic, we find that

isupLSt( ,0)? < sup S (p (JJ Vo | d,u7d7>

40 4.t 5.t

Thus if supy , ; S**(p, ¢) < 00, then L>' (i, ¢) is a bounded linear function on the Hilbert space

2 s 2 d
"= {V:peC([s ] x Td)}L ([s:t],L*(T ))7

for any s and ¢. The Riesz representation theorem implies the existence of b, ; € H5? such that for
all ¢ € C®([s,t] x ’]I‘d),

L5 (p J f by VoTdu'dr.
Using an approximation argument, for s < < t, it is easy to verlfy that bs; and b, agree on
[¢, 7], hence we may take b € H*T so that b st = b[ [s,¢ for all 0 < s <t <T. We have in fact found

that u weakly satisfies the partial differential equation
Ope — o Ap — div (Vg * p) = —div (bu).

Membership of p in ACT is then immediately implied by Proposition 4.2 and the fact that since
QT (1) < oo there exists E € L2([0,T], L?(u!)) so that div (u!Vg = ut) = div (Etu?) for almost every
t. This follows again by the Riesz representation theorem since for any ¢ € C([0,T] x T¢)

J (div (u'Vg * pub), o> dt < <f f\wﬂdu dt>1/2<f [div (u' Vg« ph)? ) dt)l/z.

44



Approximating b by elements of {V¢ : ¢ € C*([0,T],T¢)} we find that
1 T
f J\bTIQdquT < sup S (u, ¢)
4o 0 b,s,t
while Hélder’s inequality implies that
1LY
up §°4 (4, §) = - sup LU f | b auar
bt 4o g0 llol2,

thus

1 T
sup S (u, ¢) = 4J f!bT\zd/de.
b,8,t o Jo

— Y PN 1
Since b' € {Vo : ¢ € D}L )

T T
|1 @ = | [P
0 0

Together with the distributional definition of d;u! this implies that

for almost every t,

T

T T
| ot = ot = div (Vg )2 e = [ )= i 0 2 et = [Pt
0 0 0 JTd

completing the desired claims. O

There is still some small awkwardness in our definition of I in that x could be in ACT but
SUDg s ¢ S5t (u, @) could still be infinite. The following proposition handles this, and proves that I
is lower semi-continuous.

unction-equivalence COI‘OllaI‘y 4.4. FO?” all /J € C([O, T], P(Td))

I(,LL) - Zup Ss’t(,u, gb) \4 ﬁ(QT(/‘L) - g(/lo)) + Q0 - 1/1«0:#0’ (44) eq:rate-function-eqt
,8,t

and I is a good rate function.

Proof. Proposition 4.3 implies that if ¢ ACT, then

sup S (1, ¢) = 0.
¢7S’t

On the other hand, if u € ACT and Q7 (i) < oo, then for any ¢ € C*([0,T],T%) and 0 < s <
t<T

1 t T T : T T
1o | 10w = odum - div (T R e
t
= f sug {<8t,u7 —oAp" —div(p'Vg=pu'), oy —0o j \Vg0|2du7}d7'
s @€
t
> f (" —oAp” —div (Vg '), ¢7) — o f Vo™ [?duT dr
= 5 (1, ).
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This implies that

1 r T T : T T S
40[0 |op” — o AT — div (W"Vg # p7)|2y i dT = sup S (1, 9),

¢7S7t

thus

1 r T T . T T
Zul?t S5, ) = <40 Jo O™ — cAp™ —div (u"Vg * )HQ—LM dT) 1 caer +0- 1,4 07
757

This immediately implies the equivalence (4.4).

We now want to show that the sublevel sets of I are compact in C([0,T], P(T%)). First we will
show that they are closed, i.e. that I is lower semi-continuous. It suffices to prove that if uj are a
sequence that converges to p so that I(py) is uniformly bounded by some L > 0, then

liminf I'(pg) = I(p).
k—00
Using the lower semi-continuity of Q7 stated in (2.6), we have that
lim inf Q" (11) = Q" (n).
k—o0
Thus {x}r=1 U {i} is in the sublevel set {Q7 (1) < 40L + E(po)}. Since

(o) = 500 5™ (1, 6) v - (@ (k) — £G1°)

I is thus lower semi-continuous as long as

lim inf sup S (g, ¢) = sup S (u, ¢).
k=0 gost st

This follows since S**(¢, 1) is continuous on the sublevel sets of Q7 by Corollary 2.4, thus

p— sup S¥(u, ¢)
¢7S7t

is lower-semicontinuous as a function on the sublevel sets of Q7.

To conclude the goodness of I, we only have to establish that the sublevel sets {I(u) < L} are
precompact. Using the construction of a compact set used in the proof of exponential tightness, it
suffices to show that for all ¢ € D and € > 0 there exists § > 0 so that

I <ihe{n: s G -po)l <ef

0<t<s<T:|s—t|<d
This is easy to verify as if I(u) < L, then
[t =, )

t
f {oAu™ —div (uVg = u™) + div (b"u"), ¢y dr

< + +

t
j qub-de,quT

t t
| ondyar|+ | [ v (g ). o7yar
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We easily bound

t
f T oApydr| < (t — s)o|Ad| Lo,

while Cauchy-Schwarz implies that

t 1/2 t 1/2
< ([ [rvorranrar) ([ i g2y, ar)

< (t— )2V e (40 (L + Eu)) 2

t
J (div (uVg* pu"), ¢y dr

and

t t 1/2 t 1/2
J ngZbed,quT < <f J|V¢T|2dmd7) <f f|b7|2d;[dr> < (t—5)2| V| o (40 L) 2.
S S S

Thus if (s — t) is taken to be sufficiently small with respect to L,&(u’) and the norms of ¢, it’s
guaranteed that |(u! — uf, ¢y < e. O

We’ll now prove one of the two inequalities which imply Theorem 1.3. This is a direct conse-
quence of Proposition 4.1 and the fact that the modulated energy controls weak convergence.

Proposition 4.5. Suppose e L*([0,T], L*(T%)). Then

lim hmsuplog[P’( sup Fy(zly,ut) < 5) < —(I(,U,)].(M_DE%)T + - 1(N_1)¢<5T>.
€0 Now te[0,T]

Proof. First we’ll prove that if

1
lim lirnsuplog]P’< sup Fn(zhy, put) < 6) > —0
e20 Ny NV te[0,T]

then (u — 1) € 7. Indeed if this is the case, then there must exist a sequence of trajectories
zy, € C([0,T7, (T%)Nk) so that

lim sup Fy, (z,,p') = 0.
k=00 40,1

The asymptotic equivalence between Fy, (zfy, , p#*) and | /ngk - — p? ., then guarantees that
) H =2

: t t)2
Jim o I = HI 0 = 0.
It is easy to verify that (uy, ¢ — 1) is in €T, thus pu' must be as well as the limit of continuous
functions.

In particular, we only need to prove the proposition for y so that (i — 1) € €7, which in turn
implies that p e C([0,T], P(T%)). It thus suffices to prove that for all € > 0 there exists &’ > 0 so
that for all sufficiently large N

{t:[lol%] Fy(zly, 1) < 6’} < {#N € BE(M)},
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as then Proposition 4.1 and Corollary 4.4 complete the claim. Suppose this does not hold. Then
we can find a sequence of trajectories and times (z, ,tx) so that limg ot = t, d(uf@k, putk) = ¢
for all k£ and

lim Fy(alg. i) = 0,

First we claim that d(uﬁ\’}k,ut) — 0. Indeed, for any smooth ¢ € D we have that
fcbd(u?@k — ') = JM(M?@ — u'*) + fcbd(ut’f —uh).

By the continuity of y in time, the second term on the right-hand side above goes to zero as k — 0.
On the other hand, using identical bounds to as in Remark 2.10 we find that

1/2
‘ f dd(ug — p'*)| Sas (kumm + 10l azs (Td)) (FN(a:fsk,utk) + Ouuw)N—ﬂ) :

thus the first term also converges to 0, thus uf\’} converges to ! weakly. This gives us a contradiction
. k
since

d(u,, 1) = A, p'*) — d(u'*, 1)
and
lim inf d(ug,  u™*) — d(u", 1) > €.
O

Now that we have shown local LDP upper bounds and rewritten the rate function we can use
the exponential tightness of un to prove the upper bound in Theorem 1.1.

Proof of (1.9). Propositions 4.1 and Corollary 4.4 imply that for all u € C([0,T], P(T%))

1
lim lim sup N logP(un € B-(p)) < —I(p).

=0 N

Given a compact set K = C([0,T],P(T¢)) and any § > 0 we can thus cover K with a finite number
of balls By, (ux) where py, € K so that

1
limsupﬁlogP(uN € B, (i) < —(I(u) A3 — 5).

N—oo

This implies that

1
limsup  log P(uy € K) < —( inf 1) A} —9)
imsup = log Py € K) inf I(w) A 5

Thus taking § — 0 implies that uy satisfy a weak LDP upper bound. As uy are also exponentially
tight due to Proposition 3.4, this implies the strong LDP upper bound (1.9). O
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sec:LLN

5. Law of large numbers

In this section we show that the empirical measures associated to solutions to (1.22) satisfy a mean-
field limit when b and the solution to the McKean—Vlasov equation (4.2) are sufficiently regular.
The argument is very similar to as in [RS23], but we will make use of an emergent quadratic
variation term to give exponential bounds on the path.

Formally, by applying It6’s formula to Fy (2, u) when z is a solution to (1.22) and uf is a
solution to (4.2), we compute that there exists some martingale M® so that

Mt — —<Mt>+FN(xN, )
= Fy(zly, p J H —y)d(ufy — ") dr
(T4)2\A
f f f (Ve « 57 —b7)(@) — (Vg * 47 = b)(v)) - Vele — y)d(uly — u") dr.
(Td)2\A

Since (—A)g is also a Riesz-potential, the second term on the right-hand side has the form of
a modulated energy, so is asymptotically positive. The third term is exactly in the form of (2.15),
so we have the bound

f U (Vg s pu™ —b7)(x) — (Vg *pu” —b")(y)) - Va(z — y)d(uyy — p")® dr

']Td 2\A

Sas [ OGS 1) + CluloN~?) dr

where C(7) depends on the derivatives of Vg % u™ and b”. The conditions we require for u and b
guarantee that C(7) is L' in time.
Putting the above together, we have that

A t
Mt - N<Mt> + FN(&?VMMO) + ON(l) = ’FN(£§V7Mt)’ - L C(T)‘FN(Q}-VJ/—H dTv
thus Lemma 3.1 should control the probability the right-hand side is ever large. The contrapositive

of Gronwall’s inequality says that if
|En (@l 1')] > €

for some t then it must be the case that
T t
Enlalyo ) = [ COIEy ()| 7 > e 50O
0
for some t. We thus find using Lemma 3.1 that

]P)< sup |FN(I§V),U’t)| > 5) < exp(_N(Cilg - CFN(ES)Va MO) - Ol(N))7
te[0,T]

for some constant C' depending on A, i, and b.
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To make this argument rigorous we need to justify our use of Ito’s formula. We will use the
same truncated process x5 as defined in Proposition 3.2, and analogously define the truncated

modulated energy
®2
FN(S:L‘Nv . ff 5)$_ ( 25-’131_ ) l’y),

(T4)2\A

Before proceeding, the following proposition justifies the fact that the It6 correction term is
almost positive.

Proposition 5.1. For 0 < s < d — 2 there exists a constant 8 > 0 so that for every choice of
2y € (TYN pairwise distinct, u € P(T4) n L*(T9)

®2
A=V 5as [ By ( Z%—) (z,9).
(T4)2\A

Proof. When 0 <'s < d — 4 this is an immediate consequence of (2.20). When d —4 <s < d — 2,
it is a consequence of Proposition 5.6. in [dCRS23]. O

The following lemma is the consequence of applying Ito’s formula to Fy s(z, 1*) and rearrang-
ing appropriately.

Lemma 5.2. Let b € L?([0,T],CY(T%)), u e C([0,T],P(T%)) n L*([0,T], L*(T%)) be a weak
solution to (4.2), and z 5 be the solution to (3.1). Then

Fns(zhys ') — Fys(als n°)

Nt
DI
=N Ve (@i —y) dluys — 17)(y)| dr (5.1)
N Z; 0 ‘ T, ) ‘
t
* f jw A ((uf +07)(x) = (uf +b)(v)) - Ve (x — y)d(uky; — 1) (2, y) dr
t
+ QUJ f Ag ) (x — y)d(phys — 1) (x,y) dr
Td 2\A

2\/% ~ ) )
ZJ Jd\{ ) i,§ —y),d(,uNﬁ —u )(y)dwf

+2 fo | o = div (@ =) dloies = ),

where pn 5 s the empirical measure associated to xy 5, ut = Vg p! and uf = Vg(s) * ut.

Proof. The proof follows identically to that of Lemma 6.1 and Lemma 6.2 in [RS23]. The only
difference are the additional terms which appear due to the drift b. Splitting

N (25 1) = % D g (@i — ) — 2 i gs) * (i) + || &) (x — y)du(x)du(y)
E N N

1<i#j<N i=1
=: Term; + Termy + Terms,
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then the drift b contributes the following additional components to each term in the It6/differential

expansion.
Term, f Ve (] — 75) - (T s) — bl ) dr,
1<z;é]<N
2
Terms : N fo » Vg ) (xzé —y) - b (y)du’ (y) dr — — Z f f Vg(x] 16— b(fﬁiT,é) du” (y) dr,
=1

¢
Terms : 2J JVg(é) =’ - b du”.
0

These can be easily rearranged to

J H (07 (2) — b7 () - V) (@ — y)d(uky 5 — u7) 2 (x,y) dr, (5.2)  cabiorn
Td 2\A
which completes the claim. ]

With the above It expansion for Fy s(27;, #") we can now make the argument sketch given at
the beginning of this section rigorous.

propLy  Proposition 5.3. Suppose that p € C([0,T],P(T%)) n L*([0,T], L*(T%)) is a weak solution to
(4.2) with

H2 dt < oo,

T 12 d—s
Ch o= |19 oy + 1191

2d
= (T4)

and gﬁv is the solution to (1.22). Then there exists a constant C depending on d,s,b and u so that

P< sup F(zfy, p') > 5) < exp ( — N(C™'e = Fn(aR, 1°) — N_ﬁ)) (5.3)
te[0,T]

Proof. First we will show that the last term in (5.1) converges uniformly to 0 as 6 — 0. For any
z € T% we can bound

HU - U(SHLao

l8s) * div ((u” —uz)p")(x) < [Vl l(u” —ug)u’[e Sas
Using that g5 = (1 — x(-/0))g(x) we find that for any z € T¢
u” —ug|(z) < [p]z= J V(g —g@)l(x—y)dy sy |z JB (O)(|Vg| +87 gy Sas Iulr=817,
5
where the last line follows due to (2.13). Together these show that

lg5) * div((u” —uf)u")|(x) Sasp U700

I

thus

gd,s,T,x HM”%OO 5d_1_s- (54) eq:mollification-errc

t
2 [ [ o = div (0 = b)) s — )

We will once again take advantage of the fact that the term involving the Brownian motion

M= 2 Zf [l | e ats = s =) -
75
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is a continuous martingale with quadratic variation

arty =52 ZJ

and rearranging (5.1) we have that there exists a constant C so that

2
Lo, | 06T~ 0055 0|
75

Letting Ay = N

Fhs:=Fnslalys ') — 20f f Ags)(z — y)d(uy,s — w)® (x,y) dr
(T9)2\A

-[] — 0§ () Vo — y)d s — 1)), dr
Td 2\A

<M' - <Mt> + Fy s(al, p0) + 05471,

where the final term in the second line above comes from the bound (5.4).

2
Since exp(AyM* — )‘TN<M %) is a continuous martingale, Lemma 3.1 implies that

N
P( sup f]tvé > €> < exp ( - (8 — C(Sdilis — FN,&(&?Vv /,LO))) . (55) eq:molexpdoobbour
tefo,1] 4o
We will show that
llm Sup ‘FNé = Sup .FN, ]P) — a.Ss. (56) eq:truncated-path-c
8= te[0,T] te[0,T7]
where
Fy o= Entelon) - [ Jopo i (O 970 =7 40 0) - Vi~ s~ 7))

- 20[ J Ag(x —y)d(uy — p")® (2, y) dr.
0 Jrz\a

In Proposition 3.5 we showed that there exists a stopping time 7y 5 so that lims_,o 7n,5 = o0 almost
surely and

: t t
X =X min r: — x4 = 26
£N,6 LN> 1<i¢j<N| ) j‘ = 4%

when 0 <t < 7pn.
Thus if 7y s > T, expanding out the definition of Fyy and Fiv s for all t € [0,T]

Fys(zhy, n') — Fn(zly, ut)‘ = ’ J(W)Q(g(a) —g)(x —y) du(x) d(ply — p)dt

< 2l f 18s) — gl (2)dz
Td

L© 5d—S, (57) eq:molmodcon

gd,s

where the last line also follows by (2.13). Similarly we can bound the It correction term as follows

[ A -2 - - )P .y)
(T4)A\A

f A(gs) — 8)(x —y) du(z) d(2uly — ut)(y)‘
(T9)2\A

< Jullze fT Alg) — g)lde

Lo 5d—2—S. (58) eq:molitocon

Sd,s

52



Next we see that letting v := u? + b and ”fs = ug + b
[ 050 = 550) - Ve o — ) () o)
(TH)2\A
— [ (@)~ b)) - Vel — ) )P o)
(THAA
Using that |z||Vg(x)| <as g(z) + C and the mean value theorem we find that
‘ J (v5(z) — v5(v)) - Vo) (= — y) d(py) (2, y)
(T92\A

| 0@ =) - Vel - ) ) )
(THAA

N

f@dm [(uf = u) () = (us = u)(¥)| - [Vl — y)| d(ui 5)® (2,9)

Sas [V(u§ —u")| e (Hy (zly) + C)
< [lpllne (Hy(zi) + C)827.

The last line of the above follows from the bound
|V (us — u') |2 < [l o J IV2(g — gs)|de < | g5,

On the other hand using the triangle inequality we can bound
t t . . .
' f(ﬂrd)2 (U5($) - U&(y)) . Vg(5) (z —y) dpl(z) d(2ply — 1t (y)

<

f( (vh(e) — b)) - Ve — 8)(« — ) du () d(2uy — ut)(y)‘

The first term on the left-hand side of the above is easily bounded by

2[v*| e sl o f V(g — &)ldz Sasy (lulpe + [0 poe) o] o615

We can similarly bound the second term of (5.10) by

21Vl e s = u'lo Sasx lule0™"%

Combining (5.7)-(5.12) and that lims 075 > T and supp ) Hy(zl) < 0o almost surely, and

using the time integrability of b we find that (5.6) holds.
The convergence (5.6), (5.7) with (5.5) immediately imply that

P<tes[1(i1’}] Fi > E) < exp ( - %(s — FN@?\,,MO))>.
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(5.9)

Td)Z
+’ | ((ufs—U)(:v)—(Ufs—U)t(y))'Vg(x—y)dut(w)d@u’}v—Mt)(y)’- (5.10)
(Td)2

(5.11)

(5.12)

(5.13)

eq:molcomdif

eq:molcomdiftriang

eq:molcomdif2

eq:molcomdif3

eq:doob-bound-afte



sec:lower-bound

Equation (2.20) implies that
Fy(@ly, 1) > [Fi(aly, 1) — Cll o NP, (5.14)

while Proposition 2.15 gives that

j (07 () — v (4)) - V(o — )d(uly — 1) (z,p)
(T4)\A

Sds Cor (|FN(5U7]—V7MT) + CMHLwN_ﬁ) - (5.15)
where Cyr 1= |V || po + H|V|%’U7”Ld_2d_2 . Using the definition of F%, (5.14), (5.15) and Proposi-
tion 5.1 imply that

t
Falyo )| = | CorlPv(aieo )| dr < Fhy 4 C(1+ Tl o N~ (5.16)
0
We note that .
Ve L+ VIS 0] e S el (517

where we bound the first term using Young’s inequality and that V2g is integrable and for the
second we use fourier multipliers. This with our conditions on b imply that

T
J Cyrdr :=C < o,
0

for C depending on d,s,b and u. Gronwall’s inequality implies that if

t
sup |Fn(zhy, p')| — f Cor |[Fn (2], 1) dr < ee™ = sup |Fy(zly, p')| <e
te[0,T7] 0 te[0,T]

The contrapositive of this with (5.16) imply that

sup |Fi(zly, p')| > &= Fy + C(1+T)|preN"F > ee™@.

te[0,T]
Combining this with (5.13) concludes the proposition. O

Remark 5.4. Proposition 5.3 actually implies that if Fy (2%, u°) — 0, then

sup Fy(zly,p') — 0
te[0,T7]

almost surely. This says a strong pathwise law of large numbers holds for uy with respect to the
modulated energy.

6. Lower bound

We’ll now use the mean-field limit from Section 5 to prove the LDP lower bounds. This proceeds
in three steps.

o4

eq:positivity2

eq:rencombound

eq:modulated-absol



1. We show that if u satisfies the conditions of Proposition 5.3, then

1 T
lim li f—l P Fn(zh, ut > bt dut dt.
lim lim inf = log (tes[gg] N(v’UNaH)<5> 40J0 JI " dp

2. We show that for any u € &/ we can construct a sequence ui converging to u which satisfy
the conditions of Proposition 5.3 with respect to a drift by so that

T T
limsupj J|b';€|2d,u’,; dt < J J|bt|2d,ut dt.
k—oo JO 0

3. We use the first two points to complete the claimed LDP lower bounds.
We begin with the proof of the first point.

propilower-bound  Proposition 6.1. Suppose that zy solves (1.1) with initial conditions satisfying (1.8) and (,b)
solve (4.2) and the conditions of Proposition 5.3 with p|i—o = po. Then

1 1 ("
lim liminf — logP( sup Fn(zh,p') <e) > —J f b*|% dut dt. (6.1) ecqrp
N 4o 0 Td

€% N—w t€[0,T]

Proof. We will use the change of measure

;g;‘ (@ZJ b (= w—ZJ bt (! 2dt>

Our conditions on b ensure that b(z!) satisfy Novikov’s condition, thus we can use the Girsanov
theorem to see that zf; is a solution to (1.22) under P}, [KS98].
Letting AN := {supseo,r) Fv (2, 1) < €} we have that

dP 14 dP
P{ sup F a:t,t<€>=IE[1 ]zIP’A EE[NE}
<te[0,F7)“] N{zy: i) b A= g, (A )Es Py(An) dPy

Jensen’s inequality thus implies that

1 dP
)Eb|: -1 log 1AN,5:| . (62) eq:jensen

1 1
log]P’< sup F(zhy, p') < 5) = Nlogpb(AN’E) * W dPs

N te[0,T']

Proposition 5.3 implies that limy_,o, Py(An:) = 1, thus the first term on the right-hand side of
(6.2) converges to 0, while the denominator in the second term converges to 1. It thus suffices to
show that

o 1 dP L (T (o
EILII;) 11]511_}101’&1}‘]:@[; N]Og dTP)blAN’E > _@ 0 |b | d/,L dt, (63) eq:intermediate-low

to conclude.
Using the definition of jTI’i and Ay, we have that

1. dP
Eb[loglA 5] = [ j wi 5 sup Fy(zfhy, i <€]
N S dp, Av N+/20 : Z 1e[0.7] (1)

_Eb[élf f |bt(x)|2dMN(x)dt§ sup FN(f}L\/vut) <E]‘
o Jo Jrd te[0,T7]
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lem:gradcon

Hoélder’s inequality with the It isometry imply that

1/2
1 T
b (z :s Ft,t<s]< Jb”w de |
5 mZJ R o W
the right-hand side of which goes to 0 as N — c0. On the other hand
1 T t 2 t t 1 ‘ 112 t
Ep| 0°(2)|" dun (2) dt 3 sup F(zy,p’) <e|— - 67| dp” dt
4o Jo Jpa te[0,T] 4o Jo Jra
1 (T
\EbLj | @ d(ud — )@ dt 5 sup Flah, ') <e]
g Jo |J1d te[0,7]

1 t
+ Pb( sup F(zly,u) = 6) f J o' |2 dyt dt.
te[0,T] 4o Jo Jra

The second term on the right-hand side above goes to zero as N — o0 again using Proposition 5.3.
Using the computation in Remark 2.10

1 (7
E | —
b[élaL

1 T
Saa o | (VWP 1P

f 04 () Py — ) ()
Td

dt ; sup F(zly,p') <e
te[0,T7]

) (8 + C|‘MHLCO(Td)N75)dt

Clearly |V[b'[?|L < [b"|2, while the fractional Leibniz rule implies that

t2 t ¢
1 gy < ¥l 152
As 72 > 2 we can further bound Hth < H]V|d55 | 24 . Using our conditions on b
L d—2—s
and taking N — o and then € — oo this proves (6 3), and thus the claimed lower bound. O

To expand this lower bound to i € & we need to approximate by regular measure trajectories
in way that is well behaved with respect to the rate function. To do this, we need a particular
commutator involving pVg * u to disappear. The following functional inequality will help us show
this for measure trajectories in 7.

Lemma 6.2. For any p € D(T?%) n P(T9) and p,v € D(T?) it holds that

[Iv]z+=" - (6.4)

1,s-d
‘ | Ve s Vi vip| < IV 00 oy + DT ]

LSdsl

Consequently the operator on the right-hand side of (6.4) extends to an operator on {u € P(T?) :

1, s—d
V1355l e < o0},

Proof. For the sake of convenience, let f = Vg * u and g = Vg = v. First we split
ff-gp=ff-g(p—1)+ff-g
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prop:recovery

item:1

item:2

item:3

item:4

so that p — 1 has zero mean. Then using Fourier multipliers and Holder’s inequality

d—s_1
‘ | 7-9t0= 1] < U201 au V1301,
The fractional Leibniz rule in turn implies that
v d— v d— 1
9153 (f9)] | ea . < 1IV|'2 L AL s IV ]
By the definition of f
VI ~as IV 4
H| L3dE(sifl Tds p L3d§g71
while the Sobolev embedding theorem implies that
1,s—d
L Sas (VP2 e
Using identical arguments for g we find that
F-9lp=1)| <as IV 0] ot [IV]2F e
~as L3d = et
Finally Hélder’s inequality and Sobolev embedding in turn imply that
| 7+ 50a 191l 9155 2 |1V .
where we’ve used that T¢ has finite measure. This completes the claim. O

We will now show that we can approximate measures in &/ by measures which satisfy the
requirements of Proposition 6.1.

Proposition 6.3. Suppose p is a solution to (1.22) with I(n) < o0 and p € of. Then there exists
a sequence (jg)r=1 < C([0,T], P(T?)) satisfying the following properties:

1. prli=0 = po-
2. limy_,o0 pi = p in C([0,T], P(T%)).

3. g € L*([0,T], L°(T%)) for all k > 1 and is a weak solution to (1.22) with drift by, satisfying

H2

r 12 d—
L 0420 + V]

2d dt < 0.
d—2—s
4. Letting be L*([0,T], L?(ut)) so that

T T
L JIW dyt dt = fo |owp' — oAp' —div (u'Vg = u)|? 0 dt,

T T
limsupf begﬁdugdtsf f]thZdutdt.
k—0o0 0 0
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Proof. Since I(u) < oo, it must be the case that Q7 (1) < co and there exists b e L2([0,T], L?(u!))
so that (u,b) are a weak solution to (4.2) and

1 T 112 t
I — b2 dyt dt.
(u)>40f0j| | dp

First we will show that any subsequence of (j.)e~¢ satisfies Properties 2-4, and then we will
appropriately modify them to satisfy Property 1.

It is immediate that p. € L°([0,T], L*(T%)) and that p. — p in C([0,T], P(T%)) as ¢ — 0.

On the other hand . is also a weak solution to

Otpte — oA pe — div (uVg # o) = —div (bepie),

where

b V
be::%_i_Vg*ua_M.

He He
Vitally, we will use that since p is a probability measure and ®¢ is lower bounded on the torus
for all € > 0, p! is uniformly lower bounded. As a consequence (uc)~! € L*([0,T], C*(T%)) for any
kE=>1.
We note that by e L2([0,T], TV (T%)) since

1/2 1/2 1/2
[ ¢-btdut<< [ \bt\%w) ( | Wr?du) <( | rb“d/fdt) Iéllco.
Td

Combined with the regularity of (u.)~! this immediately implies that

LT UDE

He
The bound (2.4) then implies that uVg € L*([0,T], C¥(T?)') for any k > %5*. Again using
the regularity of (1¢)~' this implies that

[

Since Vg is integrable it is trivial that

2
—s (bu)e
+ H’v|d2 M
c! He

2d dt < Q0. (65) eq:b-mol-bound

L d—2—s

(W'Vg * p')e
e

as (P'Vg* pi')e

dt < Q0. (66) eq:slope-mol-bound
He

2d
L d—2—s

2
+ HM
Cl

T
d—s
J!Vg*uelléﬁrIIV!ZVg*ue v dt < oo

I
0 L d—2—s

thus with (6.5) and (6.6) we indeed have that Property 3 holds.
To show Property 4, since

T T | (pt,t t 12
b \v4
f fleIQduZdt=f ( Mt)EJrVg*MZ—w dyL dt,
0 0 € He
it suffices to show that
T toty |2 T
b
f j ( ,ut )6 dﬂé dt < j j |bt|2dlu’t dt? (67) eq:b-jensen
0 Jrd He o Jrd
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and
2

t t
(W'Vg* p)e dt dt 0.

T
lim sup J f
e—0 Jo Jrd He

The inequality (6.7) follows by [AGS08, Lemma 8.1.10 |.
To prove (6.8) we expand out the integral

f (w th*ut)

” th*u

Since p € o, for almost every ¢ € [0,T1],

— Vg * pul

2

— Vg put| pl

[|v]2+

s—d
2
'LLHLSdEg—I <%

For such t, for fixed € > 0 since usVg * us converges to Vg = u in distribution,
lim (u5 Vg # p1g)e = (n'Vg * 1)

pointwise. The dominated convergence theorem thus implies that
f‘(#tvz‘%t* #t)s _ hmf‘ 5Vg*u5
He
Lemma 8.1.10 in [AGSOS] and Lemma 6.2 imply that

” u5Vg*u5

(Ma)ﬁ-

Lemma 6.2 also implies that

£—00

Using that mollification is contractive it also holds that

‘ f(/Ng wpl)e - Vg w pl| = ’ qug s pb - Vg (1)t

and

1 —d
Sas 1+ V1370

6d -
3d—s—1

‘ f Vg * pl |2l

Altogether, we have shown that (6.9) converges to 0 almost surely in ¢, and is bounded above by a

constant times oy
1+ [[V[zt = pf?
L3

6d .
d—s—1

Z -2 J(Mth x 1) - Vg pie + J Vg # k| *dpt.

. 1, s—d
< tim [V bt = [ V8 = P <as 1+ VT
d—00 L3d—s—

1,s-d
Sas LIV )
[,3d—s—

(6.8)

(6.9)

lim [(uVg*p')e - Vg pul = JIVg « p' > dp’ and QE&JIVg * ptPul = f Ve« p' [ dpt.

Since p € o, the dominated convergence theorem thus implies that (6.8) holds, and in turn g,

satisfy Property 3.

All that remains is to modify the mollifications p. to have the proper initial conditions. Ac-

cordingly we define
67

0 de 0<t<
fe <t<T.

’ut—a " (I>Ue

99

(6.10)

eq:commutator-van

eq:square-expansior

eq:approximation-d



ace-approximations

Since pg € L®, pe € LP([0,T], L®(T%)). As well, since (ug)e — po in P(T?) and pe — p in
C([0,T],P(T9)), it also holds that fi. — u in C([0,T], P(T%)). Thus (fic)e=0 satisfy Properties 1
and 2.

It is easy to verify that fi. is a weak solution to

~

Otfte — oA — div (Vg * i) fie) = —div (befic)

where now
T _ Vg (). 0<t<e,
: b e e<t<T,

for b, as defined for p.. Since pg € L™ it is clear that Property 3 holds as well.
To show [i. satisfy Property 4, it suffices to note that

£—00

£
lim f Vg * (o)s[2(uo)e dt = 0,
0

which again holds due to the regularity of ug. O

Corollary 6.4. Suppose u e L*([0,T], L*(T%)) so that (u— 1) € €7 and I(u) < co. Then there
exists a sequence i satisfying properties 1, 3, and 4 in Proposition 6.3 so that (ux — p) — 0 in
€T, and py is uniformly bounded in L*([0,T], L*(T%)).

Proof. Tt is easy to verify that if u € L*([0,T], L®(T%)), then p € o/. We can thus use the
construction in Proposition 6.3 to find that fi. as defined in (6.10) satisfy properties 1, 3, and 4. As
it is immediate that fi. are uniformly bounded in L*([0,T], L*(T%)), we only need to show that
Tie — pu converges to zero in €.

First we note that p. — p converges to 0 in ¢7. This follows by the Arzela-Ascoli theorem since
s—d

(e — p) converges to 0 pointwise in time in HOT , while

|t — /”LSHHSEUZ < gt — /,LSHHSEd,

thus {pe — 1}.~0 is a uniformly continuous family.

. s—d
Since lim.o(po): — po = 0 in H,? (T9), and pu — 1 € €7, it immediately follows that fi. — u
converges to 0 as well. O

We'll now prove the LDP lower bound in Theorem 1.1.

Proof of (1.10). It suffices to prove that if p € o/ and I(u) < oo, then for all € > 0

|
liminf - log P(uy € B: (1)) = —1(n).

Since p satisfies the conditions of Proposition 6.3, there exists a sequence (uy)x>1 satisfying Prop-
erties 1-4 with drifts by,.

For all k sufficiently large that Bs(uy) < Be(u), the argument in Proposition 4.5 implies that
for all sufficiently small &’

{tes[lolr;] Fy(zly, 1) < 6/} c {MN € Bg(uk)},
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thus

Pluv € B) = Plux < Byu)) > 2( up F(eho i) < )
te|0,T

Proposition 6.1 then implies that

1 1
lim inf = log P(ux € Be(p) = Jim lim inf 10g]P’<t€S[1£ ] Fy(zly, p') < €'>

1 T ‘19
> —— by |* du dt.
40’f0 J|k| H

1 T 1 T
limsupllgf0 f|b2]2dukdt<40L J]bthudtSI(u),

k—o0

Since

we immediately find that
o1
lim inf - log P(un € Be(w) = —1(p)

as desired.
To prove the full lower LDP bound when s = 0, it suffices to prove that {Q7(u) < w0} < .
The Gagliardo-Nirenberg-Sobolev inequality implies that

V120l ga. < VT2l 2NVl
namely
fT IVIE 4 g dt< sup ], 4 fT 2y dt.
0 L3d-T efo,r] H % Jo H'™2
The right-hand is finite when Q7 (1) < co, therefore y € 7. O

As an immediate corollary, when y € &/ we can compare QT (1) with

T
| ot = ot = div (T2, e .
0

Corollary 6.5. If p€ o/ and I(u) < o, then

T
QT (n) — E(p) < L |0 — oAp’ = div (' Vg(u) |2, e dt.

Proof. The upper bound (1.9) and the computation used to prove the lower bound (1.10) together
imply that

I ST - 1
—40J; J|bt|2alult dt < iﬂl&nj&fﬁlogP(NN € B-(p)) < lim hmsupﬁlog]P’(,uN € B.(p))

=0 N
1 7
< - - )
15 (@ (1) = E(mo))
thus since
T T
J j|bt|2 dut = f |op’ — o Ap" — div (u* V()| . dt,
0 0

this says that
T

QT (1) — E(po) < fo [0 — o Ap — div (' Vg(u))[24 e dt

as claimed. 0
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We will now prove Theorem 1.3 which follows very similarly to as above.

Proof of Theorem 1.3. Due to Proposition 4.5, it suffices to prove that if (u—1) € €7 and I(y) < oo,
then for all e > 0

1
liminflogIP’< sup Fy(zly,u') < E) > —I(p).
N—w N te[0,T]

Using Corollary 6.4 we have that there exists a sequence up — p satisfying properties 1, 2,
and 4 so that pj, — pu converges to 0 in €7

First we’ll show that for every € > 0, there exists ¢ > 0 so that for all sufficiently large k¥ and
N

{ sup Fy(aly, i) <e'} c { sup Fy(zy, i) <e}.
te[0,T7] te[0,T7]

This follows by Corollary 2.9 and Proposition 2.13 since

Fn (@i, 1) Sas e — o'+ |z N7
< lulye = sl + it = sl + el o N7
Sas Fn(2hy, pp) + |1t — MZHHS;; + (|6 e + C ]| e ) NP

We thus find for every € > 0 that

1
liminf—log]P’( sup Fn(zlhy, put) < E) > liminf lim lim inf]P’( sup Fy(zly,uk) < 5/)
N> N te[0,1] k—o0 & —0 N—w te[0,1]

1 (T
> *J f|bt|2dut dt
40' 0
and conclude. O
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