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Higher-order propagation of chaos in L
2 for interacting diffusions

Elias Hess-Childs∗ Keefer Rowan†
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Abstract

In this paper, we study diffusions in the torus with bounded pairwise interaction. We
show for the first time propagation of chaos on arbitrary time horizons in a stronger L2-based
distance, as opposed to the usual Wasserstein or relative entropy distances. The estimate is
based on iterating inequalities derived from the BBGKY hierarchy and does not follow directly
from bounds on the full N -particle density. This argument gives the optimal rate in N , showing
the distance between the j-particle marginal density and the tensor product of the mean-field
limit is OpN´1q. We use cluster expansions to give perturbative higher-order corrections to the
mean-field limit. For an arbitrary order i, these provide “low-dimensional” approximations to
the j-particle marginal density with error OpN´pi`1qq.
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1. Introduction

In this paper we consider systems of N interacting particles in T
d of the form

#
dXj,N ptq “ 1

N

řN
k“1

KpXj,N ptq,Xk,N ptqqdt `
?
2dWjptq, j P t1, ¨ ¨ ¨ , Nu

Xj,N p0q “ Yj ,
(1.1)

where the Wjptq are independent standard Brownian motions in T
d, Yj are i.i.d. random variables

with probability density fpxq, and Kpx, yq denotes the drift on a particle at position y induces on
a particle at position x. Particle systems of this form arise in many contexts such as vortices in
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viscous fluids [Ons49, MP94], the training of large neural networks [CB18, RVE22], and aggregation
and collective motion of microscopic organisms [TBL06, Per07].

We recall that the law of the vector pX1,N ,X2,N , . . . ,XN,N q has a density fN,N : r0,8qˆT
Nd Ñ

R, which solves the Liouville equation,
#

BtfN,N ´ ∆fN,N ` 1

N

řN
k,ℓ“1

∇xk
¨ pKpxk, xℓqfN,N q “ 0,

fN,N p0, xq “ śN
k“1

fpxkq “ fbN pxq.
(1.2)

By integrating the equation (1.2) over xj`1, . . . , xN one finds that the marginal densities fj,N
satisfy the PDE hierarchy

Btfj,N´∆fj,N` 1

N

jÿ

k,ℓ“1

∇xk̈
pKpxk, xℓqfj,N q “ ´N ´ j

N

jÿ

k“1

∇xk̈

ż
Kpxk, x˚qfj`1,N px, x˚q dx˚ (1.3)

with initial data
fj,Np0, ¨q “ fbj.

We note that fN,N is exchangeable, therefore the j-particle marginals fj,N are exchangeable and
independent of which N ´ j coordinates were integrated over.

We study the propagation of chaos of the system (1.1), that is for any fixed j, the convergence
as N Ñ 8 of the marginal density fj,N Ñ ρbj, where ρ solves the McKean-Vlasov equation

#
Btρpt, xq ´ ∆ρpt, xq ` ∇ ¨

` ş
Kpx, x˚qρpt, x˚q dx˚ρpt, xq

˘
“ 0,

ρpt, ¨q “ fp¨q.
(1.4)

Propagation of chaos has been shown under a wide range of conditions on f, ρ, and K and under
various distances; for some recent results see [DEGZ20, LLX20, GBM23] and for a review of the
vast literature see [CD22]. Recently, there has been lots of activity around quantitative propagation
of chaos using relative entropy as a distance. In particular, global bounds—that is bounds on the
relative entropy between fN,N and ρbN—have been used to show quantitative propagation of chaos
such as in [BAZ99, JW16, Lac18, Jab19] for non-singular interactions. Additionally, estimates of
this kind have been used for a large class of singular interactions [JW18, BJW19, dCRS23, RS23].

Results based on global bounds at best show
b
Hpfj,N | ρbjq “ O

´b
j
N

¯
,

where Hpf | gq is the relative entropy of f with respect to g. This was widely believed to be
optimal, but in [Lac23] it was shown that

b
Hpfj,N | ρbjq “ O

´ j

N

¯
,

for a class of interactions satisfying an exponential integrability condition. Further, this rate was
shown to be optimal by constructing an example that saturates the bound. Instead of using global
bounds, [Lac23] uses the BBGKY hierarchy (1.3) to get bounds on Hpfj,N | ρbjq in terms of
Hpfj`1,N | ρbpj`1qq. By iterating these bounds, one can show this optimal rate.

In this paper, we instead prove bounds in an L2 norm. In particular, we show for initial
conditions f P L8 and bounded interaction, that for any j “ opN2{3q,

Dj,N :“
ˆ ż ˇ̌

ˇfj,N ´ ρbj

ρbj

ˇ̌
ˇ
2

ρbj dx

˙
1{2

“ O
´ j

N

¯
.
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We note that D2

j,N “ χ2pfj,N | ρbjq, where χ2pµ | νq is the chi-squared divergence of µ with respect
to ν. Pinsker’s inequality and [SV16, Theorem 2] respectively imply the inequalities

}µ´ ν}2TV ď 1

2
Hpµ | νq ď 1

2
χ2pµ | νq,

for any probability measures µ and ν. The L2-type convergence of fj,N Ñ ρbj thus implies the
relative entropy convergence at the same optimal rate as in [Lac23], which in turn implies TV
convergence.

The L2 bounds are shown using somewhat analogous techniques to [Lac23], controlling Dj,N

by Dj`1,N and iterating these bounds. In contrast to relative entropy, no sufficiently strong global
bounds on DN,N are available. In fact, the best bound we can show is

DN,N ď CeCNt.

This bound is far from sufficient to directly imply that Dj,N Ñ 0 for fixed j. As such, this L2

distance is not amenable to global techniques and so necessitates analysis of the BBGKY hierarchy.
We note in the recent preprint [BJS22], propagation of chaos is shown in certain Lp spaces and
even for certain singular interactions, but only for sufficiently short times. In this paper, we show
convergence on any time horizon.

One heuristic justification for propagation of chaos involves discarding terms of order N´1 in
the BBGKY hierarchy (1.3) and noting that the ρbj are a solution to the resulting hierarchy of
equations, as is explained in Subsection 1.2. This suggests that the tensor product of the McKean-
Vlasov solution ρbj is the 0th-order term of a perturbative expansion of fj,N in powers of N´1.
This turns out to be in fact true, as we show in this paper by constructing this perturbative
expansion and showing the appropriate bounds. Finding the correct perturbative approximation of
order greater than 0 requires the introduction of the cluster (or cumulant) expansion, which rewrite
the marginal densities fj,N in terms of certain sums of products of cluster functions gj,N , made
precise in (1.9). After the correct perturbative approximations are found through cluster expansion,
proving that they approximate fj,N to the appropriate order follows by the same analysis as the
0th-order case discussed above.

The higher-order terms of the perturbative approximation are, unlike the 0th-order terms ρbj ,
not positive. In fact, in order to preserve the mean of the perturbative approximation, the higher-
order terms are mean-zero and hence take both positive and negative values. As such, without
strong pointwise control on the higher-order terms, the positivity of the higher-order approximations
is unclear. This makes analyzing the error between fj,N and its approximation less amenable to
probabilistic techniques such as relative entropy. In contrast, there are no such issues in the L2

analysis.
Cluster expansions—and related expansions using correlation errors or v-functions—have been

used in a wide variety of contexts to study asymptotics of statistical particle systems, for exam-
ple [DMP91, PS17, BGSRS20] and citations therein. Somewhat relevant to our current study,
[Due21] uses Glauber calculus to estimate cluster functions in the kinetic setting without noise
in the evolution. In that work, the author uses a non-hierarchical technique and requires strong
bounds on the regularity of the interaction: to go to arbitrary order the interaction must be C8.

The pair of papers [PPS19, PP19] use a correlation error expansion and hierarchical techniques.
The authors consider an abstract setting that covers both quantum mean-field models as well as
stochastic jump processes such as the Kac model. Their analysis relies on iterating across the
BBGKY hierarchy to pass estimates on the correlation errors, which in turn implies propagation
of chaos. In [PP19], they take perturbative expansions of the correlation errors to construct higher
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order corrections to propagation of chaos. In their setting, the time evolution is unitary, allowing
the use of techniques that are not clearly applicable to the setting we consider. Additionally, their
perturbative expansion involves approximations which meaningfully depend on N , and the number
of equations one must solve to construct the approximation of fj,N to order i depends on j. In
contrast, in our approach neither of these properties appear.

1.1 Statement of main results

Before stating the results, we introduce some notation. The first three definitions are needed in
order to express the perturbative expansions.

Definition. For any set A, we use the notation π $ A to denote that π is a partition of A. When
appearing in a sum ÿ

π$A

we mean that the sum is taken over all possible partitions of A. We often take π $ rjs for some
j P N where

rjs :“ t1, . . . , ju.

Definition. Fix some finite set A and let phjq1ďjď|A| be a family of exchangeable functions such

that hj : T
jd Ñ R. Then for any partition π $ A, we denote

ź

PPπ

hP : pTdqA Ñ R

such that ź

PPπ

hP pxq :“
ź

PPπ

h|P |pxP q,

where for x P pTdqA
xP :“ pxkqkPP .

Note by exchangeability, the order of the xk in xP doesn’t matter.

Definition. For any partition π $ j where π “ tP1, ..., Pku, by
ÿ

piP qPPπř
iP “i

we denote that the sum is over all choices of iP1
, . . . , iPk

P N such that
ř

PPπ iP “ i.

Our first results are on the existence and representation of the perturbative approximation.

Definition 1.1. Let T “ tpi, jq P N
2 : 1 ď j ď i` 1, j ě 1u. We define an ordering on T by saying

pi, jq ď pa, bq if
i ă a or both i “ a and j ě b.

Proposition 1.2. Suppose the initial distribution f P L2pTdq and the interaction K P L8pT2dq.
Then there exists a family of functions gij P L8

locpr0,8q, L2pTjdqq X L2

locpr0,8q,H1pTjdqq, where
j P t1, 2, . . . u and i P t0, 1, . . . u so that gij solve the equations (2.4)1 with initial data (2.5). More

so, the gij have the properties:

1In the linked equation, the operators Hk and Sk,ℓ appear. These are defined below in Definition 2.1.
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1. For pi, jq R T , gij “ 0.

2. For pi, jq P T , the equation for gij depends only on the gkℓ with pk, ℓq ď pi, jq under the ordering

on T . More so, the equation is linear in gij for pi, jq ą p0, 1q.

3. g0
1

“ ρ, the unique solution to the McKean-Vlasov equation (1.4).

4. Assuming Property 1, these solutions are unique for fixed f .

The functions gij at this stage are somewhat opaque but are the natural perturbative expansion
of the cluster functions gj,N , as will be made clear in Subsection 1.2.

Theorem 1.3. Suppose the initial distribution f P L2pTdq and the interaction K P L8pT2dq. Then
let

f ij :“
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ź

PPπ

giPP (1.5)

where the gij are as in Proposition 1.2. Then

Btf ij ´ ∆f ij “ ´
jÿ

k“1

∇xk
¨

ż
Kpxk, x˚qf ij`1px, x˚q dx˚ ´

jÿ

k,ℓ“1

∇xk
¨ pKpxk, xℓqf i´1

j q

` j

jÿ

k“1

∇xk
¨
ż
Kpxk, x˚qf i´1

j`1
px, x˚q dx˚, (1.6)

where we take the convention f´1

j “ 0 and the f ij have initial data

f ijp0, ¨q “
#
fbj i “ 0,

0 i ě 1.

In particular, we have
f0j “ ρbj,

where ρ is the unique solution to the McKean-Vlasov equation (1.4).

The case of i “ 0 in Proposition 1.2 and Theorem 1.3 is just the usual setting for propagation
of chaos: g0

1
“ ρ and f0j “ ρbj. See Remark 1.13 for an explicit representation of the i “ 1 case.

We note that the equation (1.6) is what one gets from formally expanding fj,N “ ř8
i“0

N´if ij ,
plugging the right hand side into the BBGKY hierarchy (1.3), and collecting orders. Thus we
expect any f ij solving (1.6) to be such that

fj,N “
iÿ

k“0

N´kfkj `OpN´pi`1qq.

Theorem 1.3 gives an explicit representation (1.5) of solutions f ij to (1.6). Further, properties 1

and 2 of Proposition 1.2 ensure that the expression (1.5) for f ij is computable in terms of the finite

collection tgkℓ : k ď i, pk, ℓq P T u which depends only on i, not on j or N . That is, in order to
compute f ij for any j, one only needs to solve 1

2
pi ` 2qpi ` 1q equations.

The main result of this paper is then to show that the f ij as constructed in Theorem 1.3
appropriately approximate fj,N .
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Theorem 1.4. Suppose f P L8pTdq,K P L8pT2dq, and there exists m ą 0 such that that f ě m.
Then for each i P N, there exists Cp}K}L8pT2dq, iq ă 8 such that for any N and any j with

j ď C´1e´Ct2N2{3,

we have the bound ż ˇ̌
ˇ̌fj,N ´

ři
k“0

N´kfkj

ρbj

ˇ̌
ˇ̌
2

ρbj dx ď CeCt
´ j

N

¯2pi`1q
, (1.7)

with the fkj given as in Theorem 1.3.

Remark 1.5. We note that in the above theorem we require f P L8pTdq and f ě m ą 0, but
neither the L8 norm of f nor the strict lower bound m show up in the constant C. Thus these
are only qualitative assumptions. We need these assumptions to make sense of the PDEs under
study. For the well-posedness of the McKean-Vlasov equation as well as the Kolmogorov equation,
the assumption that f P L8pTdq is used (in that it implies f P L2pTdq). Additionally, in order to
show the result, we must repeatedly deal with terms involving ρ´1; for example taking derivatives
of them or integrating by parts against them. We thus really would like ρ´1 to live in a reasonably
nice space, e.g. ρ´1 P L8, so as not to cause issues in the computations. Since we are working on
the torus and the McKean-Vlasov equation is diffusive, one can show for all positive times that ρ
is strictly bounded away from 0, but if the initial data f does not have such a bound, then this
breaks down as t Ñ 0. Thus we require the lower bound on the initial data f ě m ą 0, despite no
constants depending on this m. Similarly, to get all of the integrals to be clearly finite, we need
f P L8pTdq.

As these assumptions of f P L8pTdq and f strictly bounded away from 0 are purely qualitative,
they are very soft restrictions. One may suspect that they should be able to be easily removed,
but doing so while preserving all of the estimates on the equations is somewhat non-obvious. In
any case, such an argument would be highly technical and distract from the main point of this
paper. The authors plan in forthcoming work to use more probabilistic techniques to prove L2-
based propagation of chaos without these assumptions—in particular allowing the domain to be Rd

in order to cover the second-order in time case, in which case no uniform positivity of the initial
data is possible.

Remark 1.6. For i ě 1, the L2-type distance between fj,N and
ři

k“0
N´kfkj bounded in (1.7) is not

a chi-squared divergence, hence does not bound the relative entropy. Nevertheless, an application
of Hölder’s inequality implies that under the same conditions of Theorem 1.4,

›››fj,N ´
iÿ

k“0

N´kfkj

›››
TV

ď CeCt
´ j

N

¯i`1

.

Remark 1.7. We note that in the i “ 0 case, Theorem 1.4 gives the estimate

b
χ2pfj,N | ρbjq ď CeCt j

N
,

showing convergence in chi-squared divergence (and hence in relative entropy and total variation)
with optimal rate in N´1.

Remark 1.8. A simple argument shows that the rate

ż ˇ̌
ˇ̌fj,N ´ ři

k“0
N´kfkj

ρbj

ˇ̌
ˇ̌
2

ρbj dx “ OpN´2pi`1qq

6



is optimal for some fixed j and i, provided the next order correction f i`1

j is not identically zero. It

is not completely straightforward to construct examples for which one can show that f i`1

j ‰ 0 for
some j, but it would be extremely surprising if there were no such examples. If that were the case,
there would be some i˚ such that for any f and K, we would have f ij “ 0 for all i ě i˚ and all j.

In particular, this would imply that fj,N ´ ři˚

k“0
N´kfkj vanishes faster than any polynomial rate

in N´1.

Remark 1.9. Throughout this paper we assume that the initial data of fj,N is completely ten-
sorized, that is fj,Np0, ¨q “ fbj. As is usual, we don’t strictly need this to be true; one can show
the same bound (1.7) at order i, provided for all j, the initial data fj,Np0, ¨q P L8pTjdq and satisfies
the quantitative bound

ż ˇ̌
ˇ̌fj,Np0, ¨q ´ fbj

fbj

ˇ̌
ˇ̌
2

fbj dx ď C0

´ j

N

¯
2pi`1q

,

for some C0 independent of j. Of course then the constant C of the bound (1.7) would then depend
on C0. We omit this argument as it adds notational complexity without adding any real content.

Remark 1.10. We note the restriction j “ opN2{3q. This is not very constraining, and still shows
strong bounds along a broad class of simultaneous limits of pj,Nq Ñ p8,8q—these simultaneous
limits are sometimes called increasing propagation of chaos [BAZ99, MM01]. The restriction is
however worse than in [Lac23], which allows j “ OpNq. This restriction originates from the prefac-

tor j3

N2 that appears on a term in the fundamental energy-type estimate given in Proposition 3.3.
We need the prefactor of this term to be Op1q in order to not cause growth when the hierarchy of
differential inequalities is iterated, thus we give the requirement that j “ OpN2{3q. The time decay
in the upper bound on j, that j ď C´1e´Ct2N2{3—and hence that j “ opN2{3q—then comes from
the iteration of a short time argument which requires us to restrict to a smaller set of j on each
iteration.

Remark 1.11. Theorem 1.4 in particular implies that for fixed j

Npfj,N ´ ρbjq TVÑ f1j ,

and similarly for the higher-order f ij . This justifies that the f
i
j are the natural next order corrections.

We note that due to the N -dependence of the higher-order corrections in [PP19], no such result is
available in their analysis.

Remark 1.12. The interaction K has not been assumed to be symmetric nor has Kpx, xq been
assumed to be 0. In particular, we allow

Kpx, yq :“ bpxq ` pKpx´ yq

where b is a drift affecting all particles and pK is a translation-invariant pairwise interaction.

Remark 1.13. In order to make the general higher-order corrections more concrete, here we
explicitly give the first-order corrections: the g1j and f1j . All the g1j “ 0 except j “ 1, 2. Letting ρ

7



be the unique solution to the McKean-Vlasov equation (1.4), g1
2
solves the equation

Btg12 ´ ∆g12 ` ∇x ¨
ż
Kpx, x˚q

`
ρpxqg12py, x˚q ` ρpx˚qg12px, yq

˘
dx˚

` ∇y ¨
ż
Kpy, x˚q

`
ρpyqg12px, x˚q ` ρpx˚qg12px, yq

˘
dx˚

“ ∇x ¨
ż
Kpx, x˚qρpx˚qρpxqρpyq dx˚ ` ∇y ¨

ż
Kpy, x˚qρpx˚qρpxqρpyq dx˚

´ ∇x ¨
`
Kpx, yqρpxqρpyq

˘
´ ∇y ¨

`
Kpy, xqρpxqρpyq

˘
.

The equation for g1
1
is

Btg11 ´ ∆g11 ` ∇ ¨
ż
Kpx, x˚q

`
g11px˚qρpxq ` ρpx˚qg11pxq

˘
dx˚

“ ∇ ¨
ż
Kpx, x˚q

`
ρpx˚qρpxq ´ g12px, x˚q

˘
dx˚ ´ ∇ ¨

`
Kpx, xqρpxq

˘
.

Then for any j, f1j is given by

f1j “
jÿ

k“1

g11pxkqρbpj´1qpxrjs´tkuq `
ÿ

1ďkăℓďj

g12pxk, xℓqρbpj´2qpxrjs´tk,ℓuq.

We note that the equation for g1
2
only depends on ρ, the equation for g1

1
only depends on ρ and g1

2
,

and f1j is computable for any j in terms of the three functions ρ, g1
1
, and g1

2
.

1.2 Overview of the argument

We first introduce the motivation and construction of the higher-order corrections f ij through

the cluster expansion and perturbation theory. We then explain the L2 analysis of the BBGKY
hierarchy that allows us to prove the bound (1.7).

1.2.1. Higher-order corrections to propagation of chaos. One formal argument for propagation of
chaos is given by discarding terms of order N´1 in the hierarchy (1.3), which gives the hierarchy

#
Btf0j ´ ∆f0j “ ´ řj

k“1
∇xk

¨
ş
Kpxk, x˚qf0j`1

px, x˚q dx˚,

f0j p0, ¨q “ fbj,

where the notation f0j is due to the fact we are only keeping track of terms to 0th order in N´1.

One can then note that f0j :“ ρbj is a solution to this system. Thus the tensor product ρbj is
formally the 0th order term of a perturbative expansion of fj,N . We are then interested in the
higher-order terms of this expansion, so we formally suppose

fj,N “
8ÿ

i“0

N´if ij . (1.8)

Collecting orders of N´1, we get that f ij solves the equation (1.6). We note that for each i, this is

an infinite hierarchy of equations in j, with forcing depending on tf i´1

j : j P Nu. It is not at all
clear how to directly construct solutions to these hierarchies.

8



To solve this problem, we introduce the cluster (or cumulant) expansion. That is, we express
the fj,N in terms of a family of exchangeable functions g1,N , ..., gN,N , namely

fj,N “
ÿ

π$rjs

ź

PPπ

g|P |,NpxP q. (1.9)

From this ansatz, one can deduce an inversion formula

gj,N “
ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ź

PPπ

f|P |,NpxP q, (1.10)

which defines the gk,N in terms of the fj,N . The BBGKY hierarchy (1.3) then induces the hierarchy
of equations (2.3) on the gk,N . We can then take formal perturbative expansion of the gk,N , writing

gk,N “
8ÿ

i“0

N´igik, (1.11)

and collect orders in equation (2.3) to get equation (2.4) on the gik. Unlike the equations (1.6), the
equations for the gik can be inductively solved. Then plugging the expansion (1.11) into the cluster
expansion (1.9) and collecting orders of N´1, we formally find representation of the f ij of (1.8) in

terms of the gij, as given in (1.5). Theorem 1.3 then gives that this expression for f ij in terms of

the gij actually solves the equation (1.6) we formally expect it to.

Remark 1.14. Note (1.7) gives that

fj,N “
iÿ

k“0

N´kfkj `OpN´pi`1qq.

Inserting this approximation into (1.10) and using the definition of the fkj , (1.5), one can show that

gj,N “
iÿ

k“0

N´kgkj `OpN´pi`1qq.

Since, as noted in Proposition 1.2 gkj “ 0 for k ď j ´ 2, we see by letting i “ j ´ 2 that

gj,N “ OpN´pj´1qq.

This shows that that gj,N are small for all j ě 2 and in particular allows estimates on the joint
cumulants of observables on j particles. That is, for any ϕ1, . . . , ϕj P CpTd,Rq we have that

κ
´
ϕ1

`
X1,N ptq

˘
, . . . , ϕj

`
Xj,Nptq

˘¯
“

ż jź

k“1

ϕkpxkq gj,N pt, x1, . . . , xjq dx

ď
jź

k“1

}ϕk}C0}gj,N}TV

“ OpN´pj´1qq,

where κpZ1, .., Zjq denotes the joint cumulant of Z1, ..., Zj . Thus the results of this paper in
particular show the smallness of joint cumulants of observables of many particles, with a rate
getting very small as the number of particles gets large. We note that these estimates on cumulants
are related to the Bogolyubov corrections—a version of these bounds on the cumulants in the
context of second-order in time interacting particle systems conjectured by physicists [Bog60].
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1.2.2. L2 hierarchy estimates. We now sketch the L2-based estimates on the BBGKY hierarchy.
Fundamentally we are concerned with estimating the size of solutions to the hierarchy

Btγj´∆γj` 1

N

jÿ

k,ℓ“1

∇xk
¨pKpxk, xℓqγjq`N ´ j

N

jÿ

k“1

∇xk
¨
ż
Kpxk, x˚qγj`1px, x˚q dx˚ “ ∇¨Rj , (1.12)

where the γj have initial data γjp0, ¨q “ 0. In particular, for Theorem 1.4 we take for fixed i,

γj “ fj,N ´
iÿ

k“0

N´kf ij .

By construction, this γj satisfies (1.12) with an error Rj such that Rj “ OpN´pi`1qq. The goal then
is to show that γj “ OpRjq. This is accomplished by noting

d

dt

ż ˇ̌
ˇ γj
ρbj

ˇ̌
ˇ
2

ρbj dx ď 2j}K}2L8

˜ ż ˇ̌
ˇ γj`1

ρbpj`1q

ˇ̌
ˇ
2

ρbpj`1q dx˚dx ´
ż ˇ̌

ˇ γj
ρbj

ˇ̌
ˇ
2

ρbj dx

¸

` 4
j3

N2
}K}2L8

ż ˇ̌
ˇ γj
ρbj

ˇ̌
ˇ
2

ρbj dx` 2

ż ˇ̌
ˇ Rj

ρbj

ˇ̌
ˇ
2

ρbj dx, (1.13)

which is shown (see Proposition 3.3 for details) by directly expanding the time derivative on the left
hand side and using the equations solved by γj and ρbj. This estimate is in many way analogous
to [Lac23, Equation (1-17)]. The bound is also used similarly. In particular letting β :“ 4}K}2L8

and

xj :“
ż ˇ̌

ˇ γj
ρbj

ˇ̌
ˇ
2

ρbj dx, rj :“ 2

ż ˇ̌
ˇ Rj

ρbj

ˇ̌
ˇ
2

ρbj dx,

(1.13) implies

9xj ď βjpxj`1 ´ xjq ` β
j3

N2
xj ` rj. (1.14)

In Proposition 3.6, we show that

rj ď CeCt
´ j

N

¯2pi`1q
,

where C does not depend on j. It is worth noting that a more naive bound on rj would give
a suboptimal rate in j—giving j3`4i instead of j2pi`1q—but by taking advantage of certain L2

orthogonality, the above bound can be shown.
Now what remains to be shown is the rj are the leading order contribution to the size of the

xj. To see this, xj is controlled by iteratively applying Grönwall’s inequality to (1.14), which gives
an estimate of the form

xjptq ď CIℓjptq sup
sPr0,ts

xj`ℓpsq `C

ℓ´1ÿ

k“0

Ik`1

j ptq rj`k

j ` k
, (1.15)

provided j ` ℓ ď N2{3 and where the Iℓj , defined in Definition 3.8, are certain iterated exponential

integrals. The Iℓj admit the estimates

Iℓj ptq ď
´j ` b

j ` ℓ

¯b

eβbt, b P N. (1.16)
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By taking b “ 2i ` 3 and applying this bound we appropriately control the second term of (1.15),
namely

C

ℓ´1ÿ

k“0

Ik`1

j ptq rj`k

j ` k
ď CeCt

´ j

N

¯2pi`1q
.

The remaining issue is to bound Iℓj ptq supsPr0,ts xj`ℓpsq. In [Lac23], a simple a priori bound2 on the
analog to xk was available, giving that xk ď Ckt. No such bound is available in our setting. The
best a priori bound we have is given by (3.4) which implies that xk ď CeCkt. Thus the best bound
of the remaining term that we have available is

Iℓj ptq sup
sPr0,ts

xj`ℓpsq ď CeCpj`ℓqtIℓj ptq.

For this, using (1.16) with fixed b is insufficient, as the exponential growth will always beat poly-
nomial decay. Instead, by optimally choosing b in (1.16), one can deduce the exponential decay
estimate

Iℓj ptq ď expp´1

3
e´βt´1ℓq, for j ď 1

3
e´βt´1ℓ.

By correctly choosing ℓ and constraining j, using this estimate one can show for sufficient small
times,

Iℓj ptq sup
sPr0,ts

xj`ℓpsq ď CeCpj`ℓqtIℓj ptq ď C
´ j

N

¯
2pi`1q

.

From this, we then get for some t˚ and for all t ď t˚, j ď C´1N2{3,

ż ˇ̌
ˇ γj
ρbj

ˇ̌
ˇ
2

ρbj dx “ xj ď C
´ j

N

¯
2pi`1q

.

This is of course only a short time result and is essentially what is shown in Lemma 3.15. It turns
out one can essentially iterate this argument to get the result for all times, though substantial care
needs to be taken in propagating the correct estimates in time. See Lemma 3.15 for details.

1.2.3. Organization of the argument. In Section 2, we give all of the algebraic results of the cluster
expansion and perturbation theory as well as the qualitative properties of the perturbative approx-
imations. In Subsection 2.1, we introduce the cluster expansion and the hierarchy of equations
solved by the terms of the cluster expansion. In Subsection 2.2, we perturbatively expand the
terms of the cluster expansion and introduce the hierarchy of equations solved by these perturba-
tive approximations. We then use the perturbative expansion of the terms of the cluster expansion
to construct a perturbative expansion of the marginal densities. We then note the equations solved
by the terms of the perturbative expansion of the marginal densities. In Subsection 2.3, we supply
a proof of Proposition 1.2 as well as noting an additional important marginalization property of
the functions gij . Theorem 1.3 is a direct consequence of the results of Section 2, as will be made
clear. Many of the proofs of the propositions stated in Section 2 will be deferred to Section 4, as
they laborious, elementary, and unenlightening.

In Section 3, we proceed with the analytic work of proving Theorem 1.4. We start by proving a
hierarchical “energy estimate” for the difference between fj,N and its perturbative approximation
to finite order. The resulting bound can be viewed as a hierarchy of differential inequalities only
involving time derivatives. We then note basic estimates of the terms involved, though the proofs

2By a priori we mean that the bound is in some way independent of the perturbation theory and is rather just

an initial estimate of size.
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of these estimates are deferred to the end of the section, Subsection 3.3, in order to not distract
from the main analytic techniques for showing the L2 bound. In Subsection 3.1, we prove estimates
on hierarchies of differential inequalities. In Subsection 3.2, we use the estimates of Subsection 3.1
together with the “energy estimate” to prove Theorem 1.4.

1.3 Acknowledgments

The authors thank Daniel Lacker and Sylvia Serfaty for stimulating discussions about the pre-
sentation and context of the main results. EHC acknowledges the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC), [funding reference number PGSD3-557776-
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2. Cluster expansions and perturbation theory

For the remainder of the paper, we suppress the dependence of fj,N on N , simply writing fj. In
order to simplify the presentation of the algebra, we introduce abstract notation for the operators
appearing the in BBGKY hierarchy.

Definition 2.1. Let P Ď N Y t˚u3 with |P | ă 8 and h : pTdqP Ñ R. Then for any k, ℓ P P such
that k, ℓ ‰ ˚, we define

Sk,ℓh : pTdqP Ñ R

by
Sk,ℓhpxq :“ ∇xk

¨ pKpxk, xℓqhpxqq.
Then, provided ˚ P P , for any k P P such that k ‰ ˚, we define

Hkh : pTdqP´t˚u Ñ R

by

HkhpxP´t˚uq :“ ∇xk
¨

ż
Kpxk, x˚qhpxq dx˚.

With this notation, we can rewrite the BBGKY hierarchy (1.3) abstractly as

Btfj ´ ∆fj ` N ´ j

N

ÿ

kPrjs

HkfrjsYt˚u ` 1

N

ÿ

k,ℓPrjs

Sk,ℓfj “ 0. (2.1)

2.1 Cluster expansion

We now introduce the cluster expansion of the fj.

Definition 2.2. Let gj : T
jd Ñ R be the exchangeable functions given by

gj :“
ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ź

PPπ

fP . (2.2)

We call the function gj the jth cluster function of the distribution.

3Note here we are taking ˚ as some index distinct from k P N. It will always be used for the non-local operator

Hk, for which it acts an index for the integration variable.

12



Remark 2.3. We note the expression of gj in terms of the fk is analogous to the expression the
joint cumulant of a collection of j random variable in terms of their joint moments.

Although this dependence is suppressed, the gj depend on N through their dependence on the
fj. The gj are defined exactly so that the following expansion for the fj holds.

Proposition 2.4.

fj “
ÿ

π$rjs

ź

PPπ

gP .

This is a classical combinatorial fact frequently used to relate moments and cumulants of random
variables. The proof is found in Section 4.

Remark 2.5. The gj have the marginalization property that for any j ě 2 and any 1 ď ℓ ď j,

ż
gj dxℓ “ 0.

We don’t need this property, so we omit its proof. The argument uses the same elementary com-
binatorics as the rest of the proofs of the results of this section. We will however use the same
marginalization property for the terms perturbative expansion of the gj , g

i
j , which is noted in

Proposition 2.10.

By taking the time derivative of (2.2) and using the BBGKY hiearchy (2.1), we see that the gj
themselves solve equations, which we now give.

Proposition 2.6. For fixed N , the cluster functions gj , 1 ď j ď N , solve the hierarchy of equations

Btgj ´ ∆gj “ ´N ´ j

N

jÿ

k“1

HkgrjsYt˚u `
jÿ

k“1

ÿ

WĎrjs´tku

j ´ 1 ´ |W |
N

HkgWYtk,˚ugrjs´tku´W

´ N ´ j

N

jÿ

k“1

ÿ

WĎrjs´tku

HkgWYtkugrjsYt˚u´W´tku

`
jÿ

k“1

ÿ

WĎrjs´tku

ÿ

RĎrjs´tku´W

j ´ 1 ´ |W | ´ |R|
N

HkgWYtkugRYt˚ugrjs´R´W´tku

´ 1

N

jÿ

k,ℓ“1

Sk,ℓgj ´ 1

N

jÿ

k,ℓ“1

k‰ℓ

ÿ

WĎrjs´tk,ℓu

Sk,ℓgWYtkugrjs´tku´W , (2.3)

with initial conditions

gjp0, ¨q “
#
f j “ 0,

0 j ě 1.

The proof of this proposition involves expanding out the gj in terms of fi, using the equations
for fi, and then re-expanding the fi in terms of gk. One must then carefully collect constant factors
before identical terms. We defer the unenlightening proof to Section 4.
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2.2 Perturbative expansion of the cluster functions

We note this subsection primarily consists of formal arguments, motivating the correct equations
for gij and f ij . The actual analytic content of this section isn’t realized until we prove that this
formal perturbation theory gives good approximations to the true marginal densities in Section 3.

We are interested in computing solutions to this hierarchy perturbatively in N´1. Thus we now
take the perturbative ansatz for gj ,

gj “
8ÿ

i“0

N´igij ,

where the gji are assumed to be N -independent. Plugging this into (2.3) and collecting orders of
N´1, we find that such gij should be solutions to

Btgij ´ ∆gij `
jÿ

k“1

Hkg
0

tkug
i
rjsYt˚u´tku `

jÿ

k“1

Hkg
i
rjsg

0

t˚u

“ ´
jÿ

k“1

Hkg
i
rjsYt˚u ´

jÿ

k“1

ÿ

WĎrjs´tku

i´1ÿ

m“1

Hkg
m
WYtkug

i´m
rjsYt˚u´W´tku

` j

jÿ

k“1

Hkg
i´1

rjsYt˚u `
jÿ

k“1

ÿ

WĎrjs´tku

pj ´ 1 ´ |W |q
i´1ÿ

m“0

Hkg
m
WYtk,˚ug

i´1´m
rjs´tku´W

` j

jÿ

k“1

ÿ

WĎrjs´tku

i´1ÿ

m“0

Hkg
m
WYtkug

i´1´m
rjsYt˚u´W´tku

`
jÿ

k“1

ÿ

WĎrjs´tku

ÿ

RĎrjs´tku´W

pj ´ 1 ´ |W | ´ |R|q
i´1ÿ

m“0

i´1´mÿ

n“0

Hkg
m
WYtkug

n
RYt˚ug

i´1´m´n
rjs´R´W´tku

´
jÿ

k,ℓ“1

Sk,ℓg
i´1

j ´
jÿ

k,ℓ“1

k‰ℓ

ÿ

WĎrjs´tk,ℓu

i´1ÿ

m“0

Sk,ℓg
m
WYtkug

i´1´m
rjs´tku´W

, (2.4)

where we take the convention that g´1

j “ 0 for any j and gi
0

“ 0 for any i. We also find that they
should have initial conditions

gijp0, ¨q “
#
f i “ 0, j “ 1,

0 otherwise.
(2.5)

Now that we have a representation of the perturbative expansion for the cluster functions gj ,
we turn our attention back to the marginals fj. We seek a representation of their perturbative
expansion. To that end we write the formal expansions

8ÿ

i“0

N´if ij “ fj “
ÿ

π$rjs

ź

PPπ

gP “
ÿ

π$rjs

ź

PPπ

8ÿ

iP “0

N´iP giPP “
8ÿ

i“0

N´i
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ź

PPπ

giPP .

Collecting terms by order, we get

f ij :“
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ź

PPπ

g
iP
P .
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Further, plugging the perturbative expansion for fj “ ř8
i“0

N´if ij into the BBGKY hierarchy (2.1)
and collecting orders, we formally get

Btf ij ´ ∆f ij `
jÿ

k“1

Hkf
i
rjsYt˚u “ j

jÿ

k“1

Hkf
i´1

rjsYt˚u
´

jÿ

k,ℓ“1

Sk,ℓf
i´1

j .

Since the f ij are defined in terms of the gij , which themselves solve equations, we need to check that

under our definition of the f ij , this equation is in fact solved, as is given by the next proposition.

Proposition 2.7. Let f ij be defined by (1.5) where the gij solve the hierarchy (2.4). Then the f ij
solve the hierarchy of equations (1.6).

Remark 2.8. Theorem 1.3 is an immediate consequence of this proposition and Proposition 1.2,
which will be proved in the next subsection.

The proof of Proposition 2.7 also proceeds by tedious but elementary algebraic manipulation,
so has been deferred to Section 4.

2.3 Existence and basic properties of the gij

As we will see in the proof of Proposition 1.2, g1
0
will solve the equation

#
Btg10 ´ ∆g1

0
` ∇ ¨

ş
Kpx, x˚qg1

0
px˚qg1

0
pxq dx˚ “ 0

g1
0
p0, ¨q “ f.

This makes g1
0
special among the gij in two ways, first it is the only gij whose equation is nonlinear

in gij and second it is the only gij with non-trivial initial data. We note that g1
0
is the mean-field

limit and its equation is the McKean-Vlasov equation. While existence theory for this equation is
well known, it is mostly done from the probabilistic perspective, showing the existence of solutions
to the associated McKean-Vlasov SDE, e.g. as in [MV21]. While the PDE existence can be deduced
from the SDE existence, in order to make this presentation more self-contained, we give a purely
PDE argument for the existence of solutions. The proof follows standard PDE arguments and so
is moved to the end of the paper, Appendix A.

Proposition 2.9. For f P L2pTdq and K P L8pT2dq, there exists a unique ρ P Cpr0,8q, L2pTdqq X
L2

locpr0, T s,H1pTdqq such that

#
Btρ´ ∆ρ` ∇ ¨

ş
Kpx, x˚qρpx˚qρpxq dx˚

ρp0, ¨q “ f.

For the remainder section we take ρ to be the unique solution to the McKean-Vlasov equation
given by Proposition 2.9. Now that we have a solution to the McKean-Vlasov equation, we can
prove that there actually is a solution to the hierarchy (2.4), which is the content of Proposition 1.2.

Proof of Proposition 1.2. The proof proceeds in two steps.
Step 1: We check that if we take gij “ 0 for all pi, jq R T , then this does not contradict the

equations (2.4). That is to say, we just need to verify that if pi, jq R T , then all terms in the right
hand side of the equation for gij involve gkℓ for some pk, ℓq R T . This is easy to check for all terms

which do not involve products of the gkℓ . There are 5 terms which do involve products. We check
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the first term (in the order they appear in (2.4)), which already sharply generates the constraint
j ě i` 2, the others follow similarly. Consider

Hkg
m
WYtkug

i´m
rjsYt˚u´W´tku

,

for k P rjs,W Ď rjs ´ tku. Then the only way pm, |W | ` 1q and pi´m, j ´ |W |q are both in T is if

|W | ` 1 ď m` 1 and j ´ |W | ď i ´m` 1.

Simplifying and combining these constraints we find that j ď i`1, which contradicts the assumption
that pi, jq R T. The analysis of all other terms follows directly analogously.4

Step 2: Using Step 1, we will now make the a priori assumption that gij “ 0 for all pi, jq R T .
We will inductively show unique existence for function gij with pi, jq P T using the ordering defined
above.

First, in the base case p0, 1q, the equation for g0
1
reduces to the McKean-Vlasov equation (1.4).

Proposition 2.9 implies that there is a unique solution to g0
1
, namely ρ.

Now, assuming that gkℓ have been shown to uniquely exist for pk, ℓq ă pi, jq P T , we consider
the equation for gij . We note that all the terms on the right hand side of the equation only involve

terms which are zero or satisfy pk, ℓq ă pi, jq, while the terms on the left hand side are linear in gij .
Standard parabolic existence theory (for example [LM72]) gives unique existence of a solution to
(2.4) in L2

locpr0,8q,H1pTdqq X L8
locpr0,8q, L2pTdqq. This completes the induction.

Now that we have constructed a solution to the hierarchy (2.4), we wish to show that the gij
have the same marginalization properties as the gj . This is shown by inductively using the Grönwall
inequality, where the induction is done in the ordering on T .

Proposition 2.10. For f P L2pTdq and K P L8pT2dq, if gij are as given by Proposition 1.2, then
for any i, j and any 1 ď ℓ ď j,

ż
gij dxℓ “

#
1 i “ 0, j “ 1,

0 otherwise.

Thus ż
f ij`1 dxj`1 “ f ij and

ż
ϕi
j`1 dxj`1 “ ϕi

j .

Proof. We will show this inductively using the order given in Definition 1.1. The base case holds
trivially since g0

1
“ ρ is a probability density.

Fixing pi, jq such that pi, jq ě p0, 1q, suppose now that the marginalization holds for all gkℓ with
pk, ℓq ă pi, jq. We define

ψpx1, ..., xj´1q :“
ż
gijpxq dxj .

Then integrating the equation (2.4) over xj we get

4In particular the first, fourth, and fifth terms sharply give the constraint j ě i ` 2, while the second and third

terms are not sharp
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Btψ ´ ∆ψ `
j´1ÿ

k“1

Hkg
0

tkuψpxrj´1s´tkuYt˚uq `
j´1ÿ

k“1

Hkψpxqg0t˚u

“ ´
j´1ÿ

k“1

Hk

ż
girjsYt˚u dxj ´

j´1ÿ

k“1

ÿ

WĎrjs´tku

i´1ÿ

m“1

Hk

ż
gmWYtkug

i´m
rjsYt˚u´W´tku dxj (2.6)

` j

j´1ÿ

k“1

Hk

ż
gi´1

rjsYt˚u dxj `
j´1ÿ

k“1

ÿ

WĎrjs´tku

pj ´ 1 ´ |W |q
i´1ÿ

m“0

Hk

ż
gmWYtk,˚ug

i´1´m
rjs´tku´W

dxj (2.7)

` j

j´1ÿ

k“1

ÿ

WĎrjs´tku

i´1ÿ

m“0

Hk

ż
gmWYtkug

i´1´m
rjsYt˚u´W´tku dxj (2.8)

`
j´1ÿ

k“1

ÿ

WĎrjs´tku
RĎrjs´tku´W

pj ´ 1 ´ |W | ´ |R|q
i´1ÿ

m“0

i´1´mÿ

n“0

Hk

ż
gmWYtkug

n
RYt˚ug

i´1´m´n
rjs´R´W´tku dxj

´
j´1ÿ

k“1

jÿ

ℓ“1

ż
Sk,ℓg

i´1

j dxj ´
j´1ÿ

k“1

jÿ

ℓ“1
k‰ℓ

ÿ

WĎrjs´tk,ℓu

i´1ÿ

m“0

ż
Sk,ℓg

m
WYtkug

i´1´m
rjs´tku´W

dxj . (2.9)

where we’ve used that ż
∇xj

¨ hdxj “ 0

for any function h. Both sums on line (2.6) are equal to zero by the induction hypothesis as all
the superscripts are larger than 1. The induction assumption also implies that the first sum on
line (2.7) equals 0 when i ě 2 as then the superscript i ´ 1 ě 1. When i “ 1, it also equals 0, but
instead because g0rjsYt˚u “ 0 as |rjs Y t˚u| ě 2.

The second sum on line (2.7) will be shown later to cancel with the first sum on line (2.9), so
we skip it for now.

For line (2.8), we note that all terms in the sum corresponding to 0 ă m ă i ´ 1 equal zero by
the induction hypothesis. We are thus left with

j

j´1ÿ

k“1

ÿ

WĎrjs´tku

Hk

ż
g0WYtkug

i´1

rjsYt˚u´W´tku dxj `Hk

ż
gi´1

WYtkug
0

rjsYt˚u´W´tku dxj .

The terms in this sum can be broken into two cases, either j P W or j R W . If j P W then
|W Y tku| ě 2, thus g0

WYtku “ 0 and

ż
gi´1

WYtku dxj “ 0,

thus all these terms equal to 0. When j R W , then |rjs Y t˚u ´W ´ tku| ě 2, thus by an analogous
argument all the corresponding terms equal zero as well. This shows that line (2.8) equals zero as
well.
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We have so far simplified the entire equation to

Btψ ´ ∆ψ `
j´1ÿ

k“1

Hkg
0

tkuψpxrj´1s´tkuYt˚uq `
j´1ÿ

k“1

Hkψpxqg0t˚u

“
j´1ÿ

k“1

ÿ

WĎrjs´tku

pj ´ 1 ´ |W |q
i´1ÿ

m“0

Hk

ż
gmWYtk,˚ug

i´1´m
rjs´tku´W

dxj (2.10)

`
j´1ÿ

k“1

ÿ

WĎrjs´tku
RĎrjs´tku´W

pj ´ 1 ´ |W | ´ |R|q
i´1ÿ

m“0

i´1´mÿ

n“0

Hk

ż
gmWYtkug

n
RYt˚ug

i´1´m´n
rjs´R´W´tku dxj (2.11)

´
j´1ÿ

k“1

jÿ

ℓ“1

ż
Sk,ℓg

i´1

j dxj (2.12)

´
j´1ÿ

k“1

jÿ

ℓ“1
k‰ℓ

ÿ

WĎrjs´tk,ℓu

i´1ÿ

m“0

ż
Sk,ℓg

m
WYtkug

i´1´m
rjs´tku´W

dxj . (2.13)

First we claim that the sum (2.10) can be reduced to

j´1ÿ

k“1

Hkg
i´1

rj´1sYt˚u.

This is clear when j “ 1. Using the induction hypothesis when 0 ă m ă i´ 1 we reduce (2.10) to

j´1ÿ

k“1

ÿ

WĎrjs´tku

pj ´ 1 ´ |W |q
˜
Hk

ż
g0WYtk,˚ug

i´1

rjs´tku´W
dxj `Hk

ż
gi´1

WYtk,˚u
g0rjs´tku´W dxj

¸

Since |W Y tk, ˚u| ě 2, gi´1

WYtk,˚u “ 0 hence this further reduces to

j´1ÿ

k“1

ÿ

WĎrjs´tku

pj ´ 1 ´ |W |qHk

ż
gi´1

WYtk,˚ug
0

rjs´tku´W dxj .

The integral ż
gi´1

WYtk,˚ug
0

rjs´tku´W dxj “ 0

unless W “ rj ´ 1s ´ tku hence

j´1ÿ

k“1

ÿ

WĎrjs´tku

pj ´ 1 ´ |W |qHk

ż
gi´1

WYtk,˚ug
0

rjs´tku´W dxj “
j´1ÿ

k“1

Hk

ż
gi´1

rj´1sYt˚ug
0

tju dxj

“
j´1ÿ

k“1

Hkg
i´1

rj´1sYt˚u,

as claimed. This cancels exactly with (2.12) since if ℓ ‰ j then

ż
Sk,ℓg

i´1

j dxj “ 0
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while when ℓ “ j exchangeability implies
ż
Sk,jg

i´1

j dxj “ Hkg
i´1

rj´1sYt˚u.

Similarly, we can reduce (2.11) to

j´1ÿ

k“1

ÿ

WĎrj´1s´tku

i´1ÿ

m“0

Hkg
m
WYtkug

i´1´m
rj´1s´tku´WYt˚u.

Indeed, if j P W or j P R then either
ż
gmWYtku dxj “ 0 or

ż
gnRYt˚u dxj “ 0,

respectively. When j R R YW the integral
ż
gi´1´m´n

rjs´R´W´tku dxj “ 0

unless i´ 1 ´m´ n “ 0 and R YW “ rj ´ 1s ´ tku. Thus
j´1ÿ

k“1

ÿ

WĎrjs´tku

ÿ

RĎrjs´tku´W

pj ´ 1 ´ |W | ´ |R|q
i´1ÿ

m“0

i´1´mÿ

n“0

Hk

ż
gmWYtkug

n
RYt˚ug

i´1´m´n
rjs´R´W´tku dxj

“
j´1ÿ

k“1

ÿ

WĎrj´1s´tku

pj ´ 1 ´ pj ´ 2qq
i´1ÿ

m“0

Hk

ż
gmWYtkug

i´1´m
rj´1s´W´tkuYt˚ug

0

tju dxj

“
j´1ÿ

k“1

ÿ

WĎrj´1s´tku

i´1ÿ

m“0

Hkg
m
WYtkug

i´1´m
rj´1s´W´tkuYt˚u

. (2.14)

This then will cancel with (2.13). To see this not that when ℓ ‰ j,

ż
Sk,ℓg

m
WYtkug

i´1´m
rjs´tku´W

dxj “ 0

since if j P W then |W Y tku| ě 2 and if j P rjs ´ tku ´ W then |rjs ´ tku ´ W | ě 2. The sum
(2.13) thus reduces to

j´1ÿ

k“1

ÿ

WĎrjs´tk,ℓu

i´1ÿ

m“0

ż
Sk,jg

m
WYtkug

i´1´m
rjs´tku´W

dxj

which is then equal to (2.14) by exchangeability, so the terms cancel exactly.
We have thus shown that

Btψ ´ ∆ψ `
j´1ÿ

k“1

Hkg
0

tkuψpxrj´1s´tkuYt˚uq `
j´1ÿ

k“1

Hkψg
0

t˚u “ 0.

The claim is then completed by a Grönwall argument on }ψ}2
L2ptq using that ψp0, ¨q “ 0. Using

the marginalization of the gij to give the marginalization of the f ij and the ϕi
j is direct from the

definition (1.5) of f ij and then the definition (3.1) of ϕi
j .
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3. Hierarchy bounds

For this section, we let gij be the unique family of functions solving (2.4) given by Proposition 1.2.
We will also need the stronger assumptions on f throughout, namely that f P L8 and that there
exists m ą 0 such that f ě m. Given these assumptions, we note that by basic parabolic theory
applied to the McKean-Vlasov equation, since the initial data is upper and lower bounded, we get
that ρ`ρ´1 P L8

locpr0,8q, L8pTdqq. Additionally, using the Liouville equation and marginalization,
we see that fj P L8

locpr0,8q, L8pTdqq. Similarly, using the equations for the gij , we see that gij P
L8
locpr0,8q, L8pTdqq.We omit these arguments as they are standard, and we only need these bounds

qualitatively to ensure all the integrals are finite.
Having constructed the gij and f ij and shown basic properties of them, we are now prepared to

show the main result, which appropriately controls the error between fj and its approximation to
order i. First let’s introduce some more notation.

Definition 3.1. Letting f ij be defined by (1.5), we let

ϕi
j :“

iÿ

k“0

N´kfkj , (3.1)

Ri
j :“

1

N i`1

jÿ

k“1

ek b
jÿ

ℓ“1

ż
Kpxk, x˚qf irjsYt˚udx˚ ´Kpxk, xℓqf ij .

Remark 3.2. The tensor product notation used in the definition of Ri
j is given such that

∇ ¨Ri
j “ 1

N i`1

jÿ

k“1

∇xk
¨

jÿ

ℓ“1

ż
Kpxk, x˚qf irjsYt˚udx˚ ´Kpxk, xℓqf ij ,

where ∇¨ denotes the divergence on T
jd.

One can readily check using the equations the f ij solve that ϕi
j solves the following equation.

Btϕi
j ´ ∆ϕi

j ` N ´ j

N

ÿ

k

∇xk
¨
ż
Kpxk, x˚qϕi

j`1pxrjsYt˚uq dx˚ ` 1

N

jÿ

k,ℓ“1

∇xk
¨ pKpxk, xℓqϕi

jq “ ∇ ¨Ri
j .

(3.2)
We now show the essential L2 energy-type estimate for difference ϕi

j ´ fj. We note that at

t “ 0, ϕi
j “ fj, so this estimate allows us to control the size of ϕi

j ´ fj for t ą 0 by a Grönwall-type

argument. We also give a somewhat brutal bound on the growth of fj that doesn’t depend on ϕi
j .

We will use this brutal bound to “close” the hierarchy.

Proposition 3.3. Suppose f P L8pTdq,K P L8pT2dq, and there exists m ą 0 such that f ě m.
Then letting

γij :“ ϕi
j ´ fj,

we have that

d

dt

ż ˇ̌
ˇ
γij

ρbj

ˇ̌
ˇ
2

ρbj dx ď 2j}K}2L8

˜ ż ˇ̌
ˇ
γij`1

ρbpj`1q

ˇ̌
ˇ
2

ρbpj`1q dx˚dx ´
ż ˇ̌

ˇ
γij

ρbj

ˇ̌
ˇ
2

ρbj dx

¸

` 4
j3

N2
}K}2L8

ż ˇ̌
ˇ
γij

ρbj

ˇ̌
ˇ
2

ρbj dx` 2

ż ˇ̌
ˇ
Ri

j

ρbj

ˇ̌
ˇ
2

ρbj dx. (3.3)
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We also have that
d

dt

ż ˇ̌
ˇ fj
ρbj

ˇ̌
ˇ
2

ρbj dx ď 12j}K}2L8

ż ˇ̌
ˇ fj
ρbj

ˇ̌
ˇ
2

ρbj dx. (3.4)

Remark 3.4. Note the interesting—and essential—property of this estimate that all constants are
independent of ρ.

Proof. For notational simplicity, let us fix i P N and drop the i dependence, writing γj for γij. We
note that γj solves the equation

Btγj ´ ∆γj ` N ´ j

N

jÿ

k“1

∇ ¨
ż
Kpxk, x˚qγj`1pxrjsYt˚uq dx˚ ` 1

N

jÿ

k,ℓ“1

∇xk
¨ pKpxk, xℓqγjq “ ∇ ¨Rj ,

where Rj “ Ri
j. We also have that

Btρbj ´ ∆ρbj `
jÿ

k“1

∇ ¨
ż
Kpxk, x˚qρpx˚q dx˚ρ

bj “ 0.

We then compute

d

dt

ż
γ2j

ρbj
dx “

ż
2
γj

ρbj
Btγj ´

γ2j

pρbjq2 Btρbj dx

“
ż

´2∇
γj

ρbj
¨ ∇γj ` 2

N ´ j

N
∇
γj

ρbj
¨

jÿ

k“1

ek

ż
Kpxk, x˚qγj`1pxrjsYt˚uq dx˚

` 2

N
∇
γj

ρbj
¨

jÿ

k,ℓ“1

ekKpxk, xℓqγj ´ 2∇
γj

ρbj
¨Rj

` 2
γj

ρbj
∇
γj

ρbj
¨ ∇ρbj ´ 2

γj

ρbj
∇
γj

ρbj
¨

jÿ

k“1

ek

ż
Kpxk, x˚qρpx˚q dx˚ρ

bj dx.

We note that
ρbj

∇
γj

ρbj
“ ∇γj ´ γj

ρbj
∇ρbj.

Thus ż
´2∇

γj

ρbj
¨ ∇γj ` 2

γj

ρbj
∇
γj

ρbj
¨ ∇ρbj dx “ ´2

ż ˇ̌
ˇ∇ γj

ρbj

ˇ̌
ˇ
2

ρbj dx.

We then group terms,

d

dt

ż
γ2j

ρbj
dx “ ´2

ż ˇ̌
ˇ∇ γj

ρbj

ˇ̌
ˇ
2

ρbj dx

` 2
N ´ j

N

ż
∇
γj

ρbj
¨

jÿ

k“1

ek

ż
Kpxk, x˚q

´ γj`1

ρbpj`1q
´ γj

ρbj

¯
ρpx˚q dx˚ ρ

bj dx

´ 2
j

N

ż
∇
γj

ρbj
¨

jÿ

k“1

ek

ż
Kpxk, x˚qρpx˚q dx˚

γj

ρbj
ρbj dx

` 2

N

ż
∇
γj

ρbj
¨

jÿ

k,ℓ“1

ekKpxk, xℓq
γj

ρbj
ρbj dx´ 2

ż
∇
γj

ρbj
¨ Rj

ρbj
ρbj dx.
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Thus applying Young’s inequality, we see that

d

dt

ż
γ2j

ρbj
dx ď 2j

ż ˇ̌
ˇ
ż
Kpx1, x˚q

´ γj`1

ρbpj`1q
´ γj

ρbj

¯
ρpx˚q dx˚

ˇ̌
ˇ
2

ρbj dx

` 4
j3

N2
}K}2L8

ż
γ2j

ρbj
dx` 2

ż ˇ̌
ˇ Rj

ρbj

ˇ̌
ˇ
2

ρbj dx.

We then note that by Hölder’s inequality,
ˇ̌
ˇ
ż
Kpx1, x˚q

´ γj`1

ρbpj`1q
´ γj

ρbj

¯
ρpx˚q dx˚

ˇ̌
ˇ
2

ď
ż
Kpx1, x˚q2ρpx˚q dx˚

ż ´ γj`1

ρbpj`1q
´ γj

ρbj

¯2

ρpx˚q dx˚

ď }K}2L8

˜ ż ˇ̌
ˇ γj`1

ρbpj`1q

ˇ̌
ˇ
2

ρpx˚q dx˚ ´ 2
γj

pρbjq2
ż
γj`1 dx˚ `

ˇ̌
ˇ γj
ρbj

ˇ̌
ˇ
2

ż
ρpx˚q dx˚

¸

“ }K}2L8

˜ ż ˇ̌
ˇ γj`1

ρbpj`1q

ˇ̌
ˇ
2

ρpx˚q dx˚ ´
ˇ̌
ˇ γj
ρbj

ˇ̌
ˇ
2

¸
,

where we use Proposition 2.10 for the last line. Combining this with the previous inequality, we
get (3.3). Turning our attention (3.4), we note that repeating that above computations with fj in
place of γj, we get that

d

dt

ż
f2j

ρbj
dx ď 2j

ż ˇ̌
ˇ
ż
Kpx1, x˚q

´ fj`1

ρbpj`1q
´ fj

ρbj

¯
ρpx˚q dx˚

ˇ̌
ˇ
2

ρbj dx ` 4
j3

N2
}K}2L8

ż
f2j

ρbj
dx.

Then we note that
ˇ̌
ˇ
ż
Kpx1, x˚q

´ fj`1

ρbpj`1q
´ fj

ρbj

¯
ρpx˚q dx˚

ˇ̌
ˇ ď }K}L8

´ fj

ρbj
` 1

ρbj

ż
fj`1 dx˚

¯
“ 2}K}L8

fj

ρbj
.

Thus

d

dt

ż
f2j

ρbj
dx ď 8j}K}2L8

ż ˇ̌
ˇ fj
ρbj

ˇ̌
ˇ
2

ρbj dx` 4
j3

N2
}K}2L8

ż
f2j

ρbj
dx ď 12j}K}2L8

ż ˇ̌
ˇ fj
ρbj

ˇ̌
ˇ
2

ρbj dx,

giving (3.4).

With the energy estimate (3.3) in hand, we now need to understand how to bound hierarchies
of differential inequalities of the above sort. This is the focus of Subsection 3.1. Before that though,
we need to note bounds on the terms involved. The bound given by Proposition 3.6 is essential
for estimating the contribution of the remainder terms of (3.3); the bounds of Proposition 3.5 will
turn out to be useful as well for somewhat subtler reasons. We defer the combinatorial proofs of
these bounds to Subsection 3.3 so as not to distract from the heart of the argument.

Proposition 3.5. Suppose f P L8pTdq,K P L8pT2dq, and there exists m ą 0 such that f ě m,
then there exists Cp}K}L8 , iq ă 8 such that

ż ˇ̌
ˇ̌ f

i
j

ρbj

ˇ̌
ˇ̌
2

ρbj dx ď CeCtj2i,

and so ż ˇ̌
ˇ̌ ϕ

i
j

ρbj

ˇ̌
ˇ̌
2

ρbj dx ď CeCt.

22



Proposition 3.6. Suppose f P L8pTdq,K P L8pT2dq, and there exists m ą 0 such that f ě m,
then there exists Cp}K}L8 , iq ă 8 such that

ż ˇ̌
ˇ̌ R

i
j

ρbj

ˇ̌
ˇ̌
2

ρbj dx ď CeCt
´ j

N

¯
2pi`1q

.

Remark 3.7. We note that the j dependence of the above bounds is a consequence of certain L2

orthogonality implicit in the definitions of the f ij , which in turn is a consequence of the 0 marginal-

ization property of the gij noted in Proposition 2.10. Without exploiting this L2 orthogonality, one
can derive similar bounds but with worse rates in j. This then propagates to worse rates in j in
Theorem 1.4. Thus the marginalization property of Proposition 2.10 is essential to getting good
bounds in j.

3.1 ODE hierarchy estimates

We now consider passing estimates on hierarchies of differential inequalities of the form (3.3). By
repeatedly applying the Grönwall inequality to the hierarchy, iterated exponential integrals appear.
We introduce the following notation for these integrals.

Definition 3.8. For β :“ 4}K}2L8 , let

Iℓj ptq :“ βℓ
pj ` ℓ´ 1q!

pj ´ 1q! e´βjt

ż t

0

ż sℓ

0

¨ ¨ ¨
ż s2

0

e´β
řℓ

k“2
skeβpj`ℓ´1qs1 ds1 ¨ ¨ ¨ dsℓ,

where I0j ptq :“ 1 by convention.

The Iℓj are related in the following way.

Proposition 3.9.

βje´βjt

ż t

0

eβjsIℓj`1psq ds “ Iℓ`1

j ptq.

Proof. If ℓ “ 0, we see that

βje´βjt

ż t

0

eβjsI0j`1psq ds “ βje´βjt

ż t

0

eβpj`1´1qs1 ds1 “ I1j .

Otherwise, we compute

βje´βjt

ż t

0

eβjsℓ`1Iℓj`1psℓ`1q dsℓ`1

“ βℓ`1
pj ` ℓq!
pj ´ 1q!e

´βjt

ż t

0

eβjsℓ`1e´βpj`1qsℓ`1

ż sℓ`1

0

¨ ¨ ¨
ż s2

0

e´β
řℓ

k“2
skeβpj`1`ℓ´1qs1 ds1 ¨ ¨ ¨ dsℓdsℓ`1

“ βℓ`1
pj ` ℓ` 1 ´ 1q!

pj ´ 1q! e´βjt

ż t

0

ż sℓ`1

0

¨ ¨ ¨
ż s2

0

e´β
řℓ`1

k“2
skeβpj`ℓ`1´1qs1 ds1 ¨ ¨ ¨ dsℓ`1

“ Iℓ`1

j ptq,

as desired.

It is prefactors of Iℓj ptq that will give sufficient decay when iterating up the hierarchy to prove

the bounds we require. As such, we need to understand how the Iℓj decay as ℓ gets large. The
following proposition is the first such estimate and follows from a simple induction.
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Proposition 3.10. For any j, ℓ P N and any b P N,

Iℓj ptq ď
´j ` b

j ` ℓ

¯b

eβbt.

Proof. We note that for any b ě 0,

ż t

0

ż sℓ

0

¨ ¨ ¨
ż s2

0

e´β
řℓ

k“2
skeβpj`ℓ´1qs1 ds1 ¨ ¨ ¨ dsℓ

ď
ż t

0

ż sℓ

0

¨ ¨ ¨
ż s3

0

e´β
řℓ

k“2
sk

ż s2

0

eβpj`ℓ´1`bqs1 ds1 ¨ ¨ ¨ dsℓ

ď 1

βpj ` ℓ´ 1 ` bq

ż t

0

ż sℓ

0

¨ ¨ ¨
ż s3

0

e´β
řℓ

k“2
skeβpj`ℓ´1`bqs2ds2 ¨ ¨ ¨ dsℓ

“ 1

βpj ` ℓ´ 1 ` bq

ż t

0

ż sℓ

0

¨ ¨ ¨
ż s4

0

e´β
řℓ

k“3
sk

ż s3

0

eβpj`ℓ´2`bqs2ds2 ¨ ¨ ¨ dsℓ

ď ¨ ¨ ¨ ď eβpj`bqt
ℓź

i“1

1

βpj ` ℓ´ i` bq “ eβpj`bqtβ´ℓ
ℓ´1ź

i“0

1

j ` i` b
.

Thus, for b P N, exploiting cancellation in the product,

Iℓj ptq ď eβbt
ℓ´1ź

i“0

j ` i

j ` i ` b
ď

´j ` b

j ` ℓ

¯b

eβbt,

allowing us to conclude.

For some of the estimates, the above polynomial decay will be sufficient; for others, we will
need an exponential rate of decay. This exponential rate can be found by simply choosing the
polynomial power b optimally in a time dependent way, as the below proposition shows.

Proposition 3.11. For any j, ℓ P N and for any t ě 0, if

j ď 1

3
e´2βt´1ℓ,

then
Iℓj ptq ď expp´1

3
e´2βt´1ℓq.

Remark 3.12. The above proposition is analogous to [Lac23, Proposition 5.1], although with a
different proof using elementary techniques.

Proof. Let
δ :“ 1

3
e´2βt´1.

We note that
1 ď j ď δℓ,

thus rδℓs ď 2δℓ. Then, letting b “ rδℓs, by Proposition 3.10 we have that

Iℓj ptq ď
´j ` b

j ` ℓ

¯b

eβbt ď p3δqrδℓse2βδℓt ď exppδℓp2βt ` logp3δqqq “ e´δℓ,

where we use that by definition
2βt ` logp3δq “ ´1.

Plugging the definition of δ into the bound, we conclude.
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Now that we have some control on the Iℓj , we are ready to bound the hierarchies of differential
inequalities. The following is the first step to getting the correct bound, given by inductively
applying Grönwall’s inequality and using Proposition 3.9. The first bound (3.5) is sufficient to give
Theorem 1.4 for short times, but the second bound (3.6) is necessary to get the result for all times.

Proposition 3.13. Suppose xk ě 0 satisfy the hierarchy of differential inequalities

#
9xk ď βkpαkxk`1 ´ xkq ` rk

xkp0q “ 0,

for some rk, αk ě 0 constants. Then we have the bounds for any j, ℓ P N, for any t ě 0

xjptq ď Aℓ
jI

ℓ
j ptq sup

sPr0,ts
xj`ℓpsq ` 1

β

ℓ´1ÿ

k“0

Ak`1

j Ik`1

j ptq rj`k

αj`kpj ` kq , (3.5)

and for any t0 ě 0, t ě t0,

xjptq ď Aℓ
jI

ℓ
j pt´ t0q sup

sPrt0,ts
xj`ℓpsq `

ℓÿ

k“1

Aℓ
jI

k
j`ℓ´kpt0qIℓ´k

j pt´ t0q sup
sPr0,t0s

xj`ℓpsq

` 1

β

ℓ´1ÿ

k“0

Ak`1

j Ik`1

j ptq rj`k

αj`kpj ` kq , (3.6)

where

Ak
j :“

j`k´1ź

i“j

αi,

and we take A0

j “ 1 by convention.

Proof. We note that by Grönwall’s inequality,

xj ď βαjje
´βjt

ż t

0

eβjs
´
xj`1psq ` rj

βαjj

¯
ds.

Note that
αjA

k
j`1 “ Ak`1

j (3.7)

We first prove (3.5). We prove this bound inductively in ℓ, for all j. For ℓ “ 0, the bound is direct
from I0j ptq “ A0

j “ 1. Then inductively, we use Grönwall’s inequality together with the inductive
hypothesis to give that xj is bounded by

βαjje
´βjt

ż t

0

eβjs
´
Aℓ´1

j`1
Iℓ´1

j`1
psq sup

rPr0,ts
xj`ℓprq ` 1

β

ℓ´2ÿ

k“0

Ak`1

j`1
Ik`1

j`1
psq rj`1`k

αj`1`kpj ` 1 ` kq ` rj

βαjj

¯
ds

“ βje´βjt

ż t

0

eβjs
´
Aℓ

jI
ℓ´1

j`1
psq sup

rPr0,ts
xj`ℓprq ` 1

β

ℓ´1ÿ

k“0

Ak`1

j Ikj`1psq rj`k

αj`kpj ` kq
¯
ds,

where we use (3.7) on the second line. The using Proposition 3.9, we get (3.5).
We now turn our attention to (3.6). Again we prove it inductively in ℓ, for all j. For ℓ “ 0, it

is again direct from I0j ptq “ A0
j “ 1. Then inductively, we use Grönwall’s inequality then (3.5) to
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control the integral on r0, t0s and the inductive hypothesis to control the integral on rt0, ts. This
gives

xj ď βαjje
´βjt

ż t0

0

eβjsAℓ´1

j`1
Iℓ´1

j`1
psq sup

rPr0,t0s
xj`ℓprq ds (3.8)

` βαjje
´βjt

ż t

t0

eβjs
ˆ ℓ´1ÿ

k“1

Aℓ´1

j`1
Ikj`ℓ´kpt0qIℓ´1´k

j`1
ps´ t0q sup

rPr0,t0s
xj`ℓprq

`Aℓ´1

j`1
Iℓ´1

j`1
ps´ t0q sup

rPrt0,ts
xj`ℓprq

˙
ds (3.9)

` βαjje
´βjt

ż t

0

eβjs
´ 1

β

ℓ´2ÿ

k“0

Ak`1

j`1
Ik`1

j`1
psq rj`1`k

αj`1`kpj ` 1 ` kq ` rj

βαjj

¯
ds. (3.10)

We then note that top term (3.8) is equal to

e´βjpt´t0qAℓ
jI

ℓ
j pt0q sup

sPr0,t0s
xj`ℓpsq ď Aℓ

jI
ℓ
j pt0qI0j pt´ t0q sup

sPr0,t0s
xj`ℓpsq,

where we use (3.7), Proposition 3.9, and the brutal bound e´βjpt´t0q ď 1. Then the middle
term (3.9) is equal to

βje´βjpt´t0q

ż t´t0

0

eβjps´t0q
´ ℓ´1ÿ

k“1

Aℓ
jI

k
j`ℓ´kpt0qIℓ´1´k

j`1
psq sup

rPr0,t0s
xj`ℓprq `Aℓ

jI
ℓ´1

j`1
psq sup

rPrt0,ts
xj`ℓprq

¯
ds

“
ℓ´1ÿ

k“1

Aℓ
jI

k
j`ℓ´kpt0qIℓ´k

j pt´ t0q sup
sPr0,t0s

xj`ℓpsq `Aℓ
jI

ℓ
j psq sup

sPrt0,ts
xj`ℓpsq,

we we again use (3.7) and Proposition 3.9. Lastly, we note that the third term (3.10) is equal to

1

β

ℓ´1ÿ

k“0

Ak`1

j Ik`1

j ptq rj`k

αj`kpj ` kq ,

where the computation follows exactly as in the proof of (3.5). Combining these three equalities
we get (3.6).

Note. We remark that we take a very rough bound in the above argument, taking e´βjpt´t0q ď 1.
In other applications, one may wish to avoid taking this bound, but in this application, we will be
interested in t ´ t0 very small and supsPr0,t0s xj`ℓ already Op1q, as such we won’t need the extra
decay this exponential provides. Thus for simplicity, we discard it and get the above proposition.

We now can apply the exponential decay bound given by Proposition 3.11 to (3.6) to give the
following.

Proposition 3.14. Suppose xk ě 0 satisfy the hierarchy of differential inequalities
#

9xk ď βkpαkxk`1 ´ xkq ` rk

xkp0q “ 0,

for some rk, αk ě 0 constants. Then for any 0 ď t0 ď t and j, ℓ P N such that

j ď e´2βt´6ℓ, (3.11)
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we have the bound

xjptq ď Aℓ
j expp´e´2βpt´t0q´3ℓq sup

sPrt0,ts
xj`ℓpsq `Aℓ

je
2βt`7 expp´e´2βt´7ℓq sup

sPr0,t0s
xj`ℓpsq

` 1

β

ℓ´1ÿ

k“0

Ak`1

j Ik`1

j ptq rj`k

αj`kpj ` kq .

Proof. By (3.6), it suffices to bound

Iℓj pt ´ t0q ď expp´e´2βpt´t0q´3ℓq

and
ℓÿ

k“1

Ikj`ℓ´kpt0qIℓ´k
j pt´ t0q ď e2βt`7 expp´e´2βt´7ℓq.

The first bound is direct from Proposition 3.11 and the condition (3.11) on j. For the second, we
let

δ :“ 1

12
e´2βt0´1

and note that by (3.11),
j ď 1

3
δe´2βpt´t0q´1ℓ.

Then we have that

ℓÿ

k“1

Ikj`ℓ´kpt0qIℓ´k
j pt´ t0q “

tp1´δqℓuÿ

k“1

Ikj`ℓ´kpt0qIℓ´k
j pt´ t0q `

ℓÿ

k“tp1´δqℓu`1

Ikj`ℓ´kpt0qIℓ´k
j pt´ t0q.

Then, since for k P t1, . . . , tp1 ´ δqℓuu, ℓ´ k ě δℓ and

j ď 1

3
e´2βpt´t0q´1δℓ “ 1

36
e´2βt´2ℓ,

we have from Proposition 3.11, using that Ikj`ℓ´kpt0q ď 1,

tp1´δqℓuÿ

k“1

Ikj`ℓ´kpt0qIℓ´k
j pt´ t0q ď

tp1´δqℓuÿ

k“1

Iℓ´k
j pt´ t0q

ď ℓ expp´1

3
e´2βpt´t0q´1pℓ ´ kqq

ď ℓ expp´1

3
δe´2βpt´t0q´1ℓq “ ℓ expp´ 1

36
e´2βt´2ℓq. (3.12)

Then, for k P ttp1 ´ δqℓu ` 1, . . . , ℓu,

j ` ℓ´ k ď j ` δℓ ď 1

6
e´2βt0´1ℓ ď 1

3
e´2βt0´1k,

using the definition of δ and that (3.11) implies

j ď 1

12
e´2βt0´1ℓ.

Thus Proposition 3.11 gives that

ℓÿ

k“rp1´δqℓs

Ikj`ℓ´kpt0qIℓ´k
j pt ´ t0q ď

ℓÿ

k“rp1´δqℓs

Ikj`ℓ´kpt0q

ď ℓ expp´1

3
e´2βt0´1ptp1 ´ δqℓu ` 1qq ď ℓ expp´1

6
e´2βt0´1ℓq. (3.13)
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Combining (3.12) and (3.13), we get

ℓÿ

k“1

Ikj`ℓ´kpt0qIℓ´k
j pt ´ t0q ď 2ℓ expp´ 1

36
e´2βt´2ℓq

ď 128e2βt`2 expp´ 1

72
e´2βt´2ℓq ď e2βt`7 expp´e´2βt´7ℓq,

allowing us to conclude.

3.2 Proof of Theorem 1.4

With the bounds given by Proposition 3.14 in hand, we are now ready to prove Theorem 1.4. The
heart of the proof is captured in the following lemma, which we will iterate to get the full result.

Lemma 3.15. Suppose f P L8pTdq,K P L8pT2dq, and there exists m ą 0 such that f ě m. There
exists Cp}K}L8 , iq ă 8 such that for any t0 ě 0, L ą 0 with LN2{3 ď N and for any M ě 1 with

sup
sPr0,t0s

ż ˇ̌
ˇ
ϕi
LN2{3 ´ fLN2{3

ρbLN2{3

ˇ̌
ˇ
2

ρbLN2{3
dx ď M,

then for δ ą 0 defined to be

δe2βδ :“ 1

48e3}K}2L8

^ 1,

we have for all j P N with
j ď Le´2βpt0`1q´7N2{3,

and for all t0 ď t ď t` δ, the bound

ż ˇ̌
ˇ
ϕi
j ´ fj

ρbj

ˇ̌
ˇ
2

ρbj dx ď CeCt0`L3
´´ j

N

¯2pi`1q
` M

N2pi`1q
pL2Nq´8i´1

¯
.

Proof. We let

xk :“
ż ˇ̌

ˇ
ϕi
k ´ fk

ρbk

ˇ̌
ˇ
2

ρbk dx,

so by (3.3), we have that

9xk ď 4}K}2L8kpxk`1 ´ xkq ` 4}K}2L8

k3

N2
xk ` rk ď βkpαkxk`1 ´ xkq ` rk,

where

αk :“ 1 ` k2

N2
, Aℓ

k :“
k`ℓ´1ź

i“k

αi, rk :“ 2

ż ˇ̌
ˇ
rik
ρbk

ˇ̌
ˇ
2

ρbk dx.

Then we note that

logAℓ
k “

k`ℓ´1ÿ

i“k

log
´
1 ` i2

N2

¯
ď 1

N2

k`ℓ´1ÿ

i“k

i2 ď 1

N2

ż k`ℓ

k`1

x2 dx ď pk ` ℓq3
N2

.

Thus, for k ` ℓ ď LN2{3,

Aℓ
k ď exp

´L3N2

N2

¯
“ eL

3

. (3.14)
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By Proposition 3.6, for all t P r0, t0 ` δs, we can bound

rkptq ď CeCt
´ k

N

¯
2pi`1q

ď CeCt0
´ k

N

¯
2pi`1q

. (3.15)

Then, for any
j ď Le´2βt0´7N2{3,

letting
ℓ :“ LN2{3 ´ j ě 1

2
LN2{3,

we have that
j ď e´2βpt0`1q´6ℓ,

so for any t P r0, δs, we have by Proposition 3.14, (3.14), and (3.15) that xjptq is bounded by

eL
3

expp´e´2βpt´t0q´3ℓq sup
sPrt0,ts

xLN2{3psq ` eL
3

e2βpt0`1q`7 expp´e´2βpt0`1q´7ℓq sup
sPr0,t0s

xLN2{3psq

` CeCt0
eL

3

βN2pi`1q

ℓ´1ÿ

k“0

Ik`1

j ptqpj ` kq2i`1. (3.16)

We note that by Proposition 3.10,

ℓ´1ÿ

k“0

Ik`1

j ptqpj`kq2i`1 ď eβp2i`3qt
ℓ´1ÿ

k“0

pj`2i`3q2i`3pj`kq´2 ď CeCt0j2i`3

ż 8

x“j

x´2 ď CeCt0j2pi`1q.

Thus

CeCt0
eL

3

βN2pi`1q

ℓ´1ÿ

k“0

Ik`1

j ptqpj ` kq2i`1 ď CeCt0`L3
´ j

N

¯
2pi`1q

. (3.17)

Then we note that

expp´e´2βpt0`1q´7ℓq sup
sPr0,t0s

xLN2{3psq ď M expp´e´2βpt0`1q´8LN2{3q

ď Mpp3pi ` 1q ` 12i ` 3{2qe2βpt0`1q`8L´1q3pi`1q`12i`3{2

pN2{3q3pi`1q`12i`3{2

ď CeCt0M

N2pi`1q
pL2Nq´8i´1,

where we use that
xme´ax ď

´m
a

¯m

e´m.

Thus

eL
3

e2βpt0`1q`7 expp´e´2βpt0`1q´7ℓq sup
sPr0,t0s

xLN2{3psq ď CeCt0`L3 M

N2pi`1q
pL2Nq´8i´1. (3.18)

For the last term in (3.16), we need to control xLN2{3ptq for t P rt0, t0 ` δs. Let

yLN2{3ptq :“
ż ˇ̌

ˇ fLN2{3

ρbLN2{3

ˇ̌
ˇ
2

ρbLN2{3
dx.
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We note that by the triangle inequality

yLN2{3pt0q ď 2xLN2{3pt0q ` 2

ż ˇ̌
ˇ
ϕi
LN2{3

ρbLN2{3

ˇ̌
ˇ
2

pt0qρbLN2{3pt0q dx ď CeCt0M,

where we use that M ě 1 and Proposition 3.5 to bound the term involving ϕi
j . Then we note

that (3.4) gives that
9yLN2{3 ď 12}K}2L8LN2{3yLN2{3 ,

thus, for t0 ď t ď t0 ` δ

yLN2{3ptq ď e12}K}2
L8LN2{3pt´t0qyLN2{3pt0q ď CeCt0Me12}K}2

L8LN2{3δ.

So

xLN2{3ptq ď 2yLN2{3ptq ` 2

ż ˇ̌
ˇ
ϕi
LN2{3

ρbLN2{3

ˇ̌
ˇ
2

ρbLN2{3
dx ď CeCt0Me12}K}2

L8LN2{3δ.

Note that ℓ ě j and j ` ℓ “ LN2{3, so
ℓ ě 1

2
LN2{3.

Thus for t0 ď t ď t0 ` δ,

expp´e´2βpt´t0q´3ℓq sup
sPrt0,ts

xLN2{3psq ď CeCt0M exppp12}K}2L8δ ´ 1

2
e´2βδ´3qLN2{3q

ď CeCt0M expp´1

4
e´2βδ´3LN2{3q,

where we use that by the definition of δ,

12}K}2L8δ ď 1

4
e´2βδ´3.

Then

expp´1

4
e´2βδ´3LN2{3q ď expp´e´2β´5LN2{3q ď C

N2pi`1q
pL2Nq´8i´1.

Thus,

eL
3

expp´e´2βpt´t0q´3ℓq sup
sPrt0,ts

xLN2{3psq ď CeCt0`L3 M

N2pi`1q
pL2Nq´8i´1. (3.19)

Then combining (3.16), (3.17), (3.18), and (3.19), we see that for any j ď Le´2βt0´7N2{3 and any
t0 ď t ď t0 ` δ,

xj ď CeCt0`L3
´´ j

N

¯
2pi`1q

` M

N2pi`1q
pL2Nq´8i

¯
,

as desired.

We now prove Theorem 1.4 by iterating Lemma 3.15. The main difficulty is controlling the
constants that appear in the iteration.

Proof of Theorem 1.4. Fix δ as in Lemma 3.15, so that

δe2βδ :“ 1

48e3}K}2L8

^ 1.

Let L0 “ 1 and let
Lk`1 :“ tLke

´2βδk´7´2βN2{3uN´2{3.
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We then claim inductively that for

j ď LkN
2{3; 0 _ pk ´ 1qδ ď t ď kδ,

we have the bound ż ˇ̌
ˇ
ϕi
j ´ fj

ρbj

ˇ̌
ˇ
2

ρbj dx ď Bk

´ j

N

¯
2pi`1q

,

where B0 “ 1 and
Bk`1 “ CeCδk`L3

kp1 `BkpL2

kNq´8i´1q.
We note the bound is trivially true for k “ 0. Then inductively, using Lemma 3.15 with t0 “ δk,

L “ Lk, and
M “ Bk,

we get that for
j ď Lk`1N

2{3 ď Lke
´2βpkδ`1q´7N2{3,

for δk ď t ď δpk ` 1q,
ż ˇ̌

ˇ
ϕi
j ´ fj

ρbj

ˇ̌
ˇ
2

ρbj dx ď CeCδk`L3

kp1 `BkpL2

kNq´8i´1q
´ j

N

¯2pi`1q
ď Bk`1

´ j

N

¯2pi`1q
,

Thus the induction closes.
Now we just need to control Bk, Lk. First note that

Lk ď Lk´1e
´2βδpk´1q´7´2β ď Lk´1 ď ¨ ¨ ¨ ď L0 “ 1,

and also that

Lk ě Lk´1e
´2βδpk´1q´7´2β ´N´2{3

ě ¨ ¨ ¨ ě exp
´

´p7 ` 2βqk ´ 2βδ
k´1ÿ

i“0

i
¯
L0 ´N´2{3

k´1ÿ

ℓ“0

expp´7ℓq

ě exp
´

´p7 ` 2βqk ´ 2βδ
k´1ÿ

i“0

i
¯

´ 2N´2{3.

Recalling
řk´1

i“0
i “ 1

2
pk2 ´ kq, we have

Lk ě expp´p7 ` 2βqk ´ βδpk2 ´ kqq ´ 2N´2{3 ě expp´10p1 ` βqk2q ´ 2N´2{3.

Thus, for k ď C´1
a

logpNq ´ C, we have,

2N´2{3 ď 1

2
expp´10p1 ` βqk2q

so that

Lk ě 1

2
expp´10p1 ` βqk2q ě expp´11p1 ` βqk2q.

Thus for k ď C´1
a

logpNq ´ C,

1

L2

kN
ď 1

N
expp22p1 ` βqk2q ď N´1{2,
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which implies that

Bk`1 ď CeCkp1 `BkpL2

kNq´8i´1q ď CeCk ` CeCk

N1{2
Bk ď CpeCk `Bkq.

Iterating this bound then gives
Bk ď CeCk.

Therefore, for all k ď C´1
a

logpNq ´ C, if

j ď expp´11p1 ` βqk2qL ď Lk,

and 0 ď t ď kδ, ż ˇ̌
ˇ
ϕi
j ´ fj

ρbj

ˇ̌
ˇ
2

ρbj dx ď CeCk
´ j

N

¯
2pi`1q

.

Choosing the optimal k, we get that for any t ď C´1
a

logpNq ´ C, if j ď C´1 expp´Ct2qN2{3, we
get the bound ż ˇ̌

ˇ
ϕi
j ´ fj

ρbj

ˇ̌
ˇ
2

ρbj dx ď CeCt
´ j

N

¯
2pi`1q

.

This is almost precisely the result, except with an additional restriction on t. We note though that
the t bound is superfluous as by choosing C large enough, if t ě C0

a
logpNq ´C0, then

C´1 expp´Ct2qN2{3 ă 1,

so the result holds vacuously in this case. Thus we can remove the t restriction and conclude.

Note. We note by choosing the starting point of the induction L0 to be larger, one can slightly
expand the range of j for which one can prove the bound. This adds complication without being
of any particular interest, so we omit this argument.

3.3 Proofs of bounds on the gij , f
i
j , and Ri

j

To bound the Ri
j and f ij we must first bound the gij . The following proof follows similarly to

Proposition 2.10, where we inductively iterate up the hierarchy of equations satisfied by gij to find
estimates.

Proposition 3.16. Suppose f P L8pTdq,K P L8pT2dq, and there exists m ą 0 such that f ě m.
For all i ě 0, letting

rgij :“
gij

ρbj
, (3.20)

there exists a constant Cp}K}L8 , iq such that

ż
|rgij |2ρbj dx ď CeCt. (3.21)

Proof. We will inductively show this bound holds for pi, jq P T under the order given in Defini-
tion 1.1.

The bound trivially holds in the base case pi, jq “ p0, 1q since rg0
1

“ 1, thus

ż
|rg01 |2ρbj dx “ 1.
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Assuming that for all pk, ℓq ă pi, jq the bound (3.21) holds, we group the terms on the right
hand side of the equation for gij to write

Btgij ´ ∆gij `
jÿ

k“1

Hkg
0

tkug
i
rjsYt˚u´tku `

jÿ

k“1

Hkg
i
rjsg

0

t˚u “ ∇ ¨ F i
j

where

F i
j “

8ÿ

k“1

F i
j,k

with

F i
j,1 “ ´

jÿ

k“1

ek b
ż
Kpxk, x˚qgirjsYt˚u dx˚

F i
j,2 “ ´

jÿ

k“1

ÿ

WĎrjs´tku

i´1ÿ

m“1

ek b
ż
Kpxk, x˚qgmWYtkug

i´m
rjsYt˚u´W´tku dx˚

and the other F i
j,k are defined similarly in the order of the equation (2.4). Taking a derivative we

find

d

dt

ż ˇ̌
rgij

ˇ̌
2
ρbj “

ż
2Btgijrgij ´ Btρbjprgijq2 dx

“
ż
2∆gijrgij ´ ∆ρbjprgijq2 dx ` 2

ż
∇ ¨ F i

jrgij dx

´ 2

ż jÿ

k“1

Hkg
0

tkug
i
rjsYt˚u´tkurgij dx ´ 2

ż jÿ

k“1

Hkg
i
rjsg

0

t˚urgij dx

`
ż
∇ ¨

ˆ jÿ

k“1

ek bHkρ
bpj`1q

˙
prgijq2 dx

“ ´2

ż
|∇rgij |2ρbj dx ´ 2

ż
F i
j

ρbj
¨ ∇rgijρbj dx

` 2

ż ˜
jÿ

k“1

ek b
ż
Kpxk, x˚qrgirjsYt˚u´tkuρpx˚q dx˚

¸
¨ ∇rgijρbj dx

` 2

ż
rgij

˜
jÿ

k“1

ek b
ż
Kpxk, x˚qρpx˚q dx˚

¸
¨ ∇rgijρbj dx

´ 2

ż
rgij

˜
jÿ

k“1

ek b
ż
Kpxk, x˚qρpx˚q dx˚

¸
¨ ∇rgijρbj dx

ď 2

ż ˇ̌
ˇ̌ F

i
j

ρbj

ˇ̌
ˇ̌
2

ρbj dx ` 2j

ż ˇ̌
ˇ̌
ż
Kpx1, x˚qρpx˚qrgirjsYt˚u´t1u dx˚

ˇ̌
ˇ̌
2

ρbj dx,

where the last line follows via Young’s inequality. Using Jensen’s inequality

ż ˇ̌
ˇ̌
ż
Kpx1, x˚qρpx˚qrgirjsYt˚u´t1u dx˚

ˇ̌
ˇ̌
2

ρbj dx ď
ż

|Kpx1, x˚q|2
ˇ̌
rgirjsYt˚u´tku

ˇ̌
2
ρbpj`1q dxdx˚

ď }K}L8

ż
|rgij |2ρbj dx.
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This has the form of a Grönwall term, thus all that remains is to bound the term involving F i
j .

First we use the triangle inequality to bound

ż ˇ̌
ˇ
F i
j

ρbj

ˇ̌
ˇ
2

ρbj dx ď C

8ÿ

m“1

ż ˇ̌
ˇ
F i
m,j

ρbj

ˇ̌
ˇ
2

ρbj dx.

The most intimidating term is F i
6,j which equals

jÿ

k“1

ek
ÿ

WĎrjs´tku

ÿ

RĎrjs´tku´W

pj´1´|W |´|R|q
i´1ÿ

m“0

i´1´mÿ

n“0

ż
Kpxk, x˚qgmWYtkug

n
RYt˚ug

i´1´m´n
rjs´R´W´tku

dx˚.

Using the triangle inequality over the sums and using exchangeability we find there exists a j

dependent constant such that

ż ˇ̌
ˇ
F i
k,j

ρbj

ˇ̌
ˇ
2

ρbj dx

ď C
ÿ

WĎrjs´t1u
RĎrjs´t1u´W

i´1ÿ

m“0

i´1´mÿ

n“0

ż ˇ̌
ˇ̌
ż
Kpx1, x˚qrgmWYt1urgnRYt˚urgi´1´m´n

rjs´R´W´t1uρpx˚q dx˚

ˇ̌
ˇ̌
ˇ

2

ρbj dx.

We note that pm, |W | ` 1q, pn, |R| ` 1q, and pi´ 1´m´n, j´ |R| ´ |W | ´ 1q are all less than pi, jq.
We can thus bound

ż ˇ̌
ˇ
ż
Kpx1, x˚qrgmWYt1urgnRYt˚urgi´1´m´n

rjs´R´W´t1u
dρpx˚q

ˇ̌
ˇ
2

ρbj dx

ď
ż ˇ̌

ˇ
ż
Kpx1, x˚qrgnRYt˚udρpx˚q

ˇ̌
ˇ
2

|rgmWYt1u|2|rgi´1´m´n
rjs´R´W´t1u|2ρbj dx

ď }K}2L8

ż
|rgnRYt˚u|2|rgmWYt1u|2|rgi´1´m´n

rjs´R´W´t1u|2ρbpj`1q dxdx˚

“ }K}2L8

ż
|rgnRYt˚u|2ρb|R|`1 dxRYt˚u

ż
|rgmWYt1u|2ρb|W |`1 dxWYt1u

ˆ
ż

|rgi´1´m´n
rjs´R´W´t1u

|2ρbj´|R|´|W |´1 dxrjs´R´W´t1u

ď CeCt
´

sup
pk,ℓqăpi,jq

ż
|rgkℓ |2ρbℓ dx

¯3

,

where the second inequality follows by Jensen’s inequality. Terms F i
1,j to F

i
5,j are bounded similarly.

The bounds on F i
6,j and F i

8,j are also straightforward and rely on bounding for W Ă rjs ´ tk, ℓu
integrals of the form

ż ˇ̌
ˇKpxk, xℓqrgmWYtkurgi´1´m

rjs´t1u´W

ˇ̌
ˇ
2

ρbj dx

ď }K}2L8

ż
|rgmWYtku|2ρb|W |`1 dxWYtku

ż
|rgi´1´m

rjs´tku´W
|2ρbj´1´|W | dxrjs´tku´W

ď CeCt
´

sup
pk,ℓqăpi,jq

ż
|rgkℓ |2ρbℓ dx

¯2

.
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All together these bounds imply that

ż ˇ̌
ˇ
F i
j

ρbj

ˇ̌
ˇ
2

ρbj dx ď CeCt
´

sup
pk,ℓqăpi,jq

ż
|rgkℓ |2ρbℓ dx

¯3

.

Thus, in total we’ve found that

d

dt

1

2

ż
|rgij |2ρbj dx ď 3j

ż
|rgij |2ρbj dx ` CeCt

´
sup

pk,ℓqăpi,jq

ż
|rgkℓ |2ρbℓ dx

¯3

.

Applying Grönwall’s inequality and inducting allows us to conclude, noting that j ď i ` 1.

With the bounds on gij given by Proposition 3.16 in hand, we can now show the bounds on

f ij , ϕ
i
j , and R

i
j given in Proposition 3.5 and Proposition 3.6. Before continuing, we prove a useful

representation of the f ij .

Lemma 3.17.

f ij “
ÿ

PĎrjs
|P |ď2i

ÿ

π$P

ÿ

piQqQPπř
iQ“i

iQě1

ρbpj´|P |qpxrjs´P q
ź

QPπ

g
iQ
Q .

Proof. By the definition (1.5),

f ij “
ÿ

σ$rjs

ÿ

piRqRPσř
iR“i

ź

RPπ

giRR .

Since gkℓ “ 0 if ℓ ą k ` 1, the product ź

RPσ

giRR “ 0

unless |R| ď iR ` 1 for all R P σ. Suppose that σ corresponds to a nonzero product. Sinceř
RPπ iR “ i, we have that iR ‰ 0 for at most i sets R P σ. Thus it must be the case that

ÿ

RPσ
iR‰0

|R| ď
ÿ

RPπ
iR‰0

iR ` 1 ď 2i.

Letting P “ Ť
iR‰0

R, then |P | ď 2i, σ “ πY ttku : k P rjs ´Qu where π $ P ,
ř

QPπ iQ “ i, iQ ě 1
for Q P π and itku “ 0 for k R P .

Re-indexing the sum which defines f ij and using that g0
1

“ ρ we thus get the above claimed

representation of f ij .

We now show the bounds on f ij . This will be a warm up for the more involved bounds on Ri
j.

Proof of Proposition 3.5. Using Lemma 3.17, and the definition of rgji given in Proposition 3.16

f ij

ρbj
“

ÿ

PĎrjs
|P |ď2i

ÿ

π$P

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ .
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Thus expanding out the sums

ż ˇ̌
ˇ̌ f

j
i

ρbj

ˇ̌
ˇ̌
2

ρbj dx “
ÿ

P,RĎrjs
|P |,|R|ď2i

ÿ

π$P
σ$R

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPπř
iW “i

iW ě1

ż ź

QPπ

rgiQQ ˆ
ź

WPσ

rgiWW ρbj dx.

Suppose that P ‰ R, π $ P , σ $ R, and iQ, iW ě 1 where Q P π and W P σ. Then it must be the
case that ż ź

QPπ

rgiQQ ˆ
ź

WPσ

rgiWW ρbj dx “ 0.

Indeed, if xk P Q P π, but xk is not in R, then the marginalization given by Proposition 2.10 of g
iQ
Q

implies this. We thus find that in fact

ż ˇ̌
ˇ̌ f

j
i

ρbj

ˇ̌
ˇ̌
2

ρbj dx “
ÿ

PĎrjs
|P |ď2i

ÿ

π,σ$P

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPπř
iW “i

iW ě1

ż ź

QPπ

rgiQQ ˆ
ź

WPσ

rgiWW ρbj dx.

Hölder’s inequality with Proposition 3.16 imply that

ˇ̌
ˇ̌
ż ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbj dx

ˇ̌
ˇ̌
2

ď
ź

QPπ

ż
|rgiQQ |2ρb|Q| dxQ ˆ

ź

WPπ

ż
|rgiWW |2ρb|W | dxW

ď CeCt,

where this constant only depends on i since there are at most i terms in the products. On the
other hand ÿ

PĎrjs
|P |ď2i

ÿ

π,σ$P

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPπř
iW “i

iW ě1

1 ď
ÿ

π,σ$P

C ď Cj2i

where the constant C just depends on i. This completes the bound on the f ij .

The bound on ϕi
j is a direct consequence of this bound and the triangle inequality.

Proof of Proposition 3.6. Throughout this proof, we somewhat abuse notation and denote

K ˚ ρpxq :“
ż
Kpx, yqρpyq dy.

First we note that

Ri
j

ρbj
“ 1

N i`1

jÿ

k“1

ek b
jÿ

ℓ“1

ż
Kpxk, x˚q

f irjsYt˚u

ρbj
dx˚ ´Kpxk, xℓq

f ij

ρbj
.

Lemma 3.17 implies that

f ij

ρbj
“

2iÿ

m“1

ÿ

PĎrjs
|P |“m

ÿ

π$P

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ .
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Thus
f irjsYt˚u

ρbj
“

f ij

ρbj
ρpx˚q ` ρpx˚q

2iÿ

m“1

ÿ

PĎrjs
|P |“m´1

ÿ

π$PYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ .

Using exchangeability we find

ż ˇ̌
ˇ̌
ˇ
Ri

j

ρbj

ˇ̌
ˇ̌
ˇ

2

ρbj dx ď j

N2pi`1q

ˇ̌
ˇ̌
ˇ

jÿ

ℓ“1

ż
Kpx1, x˚q

f irjsYt˚u

ρbj
dx˚ ´Kpx1, xℓq

f ij

ρbj

ˇ̌
ˇ̌
ˇ

2

ρbj dx

ď 2j

N2pi`1q

ż ˇ̌
ˇ̌
ˇ

jÿ

ℓ“1

pK ˚ ρpx1q ´Kpx1, xℓqq
f ij

ρbj

ˇ̌
ˇ̌
ˇ

2

ρbj dx

` 2j3

N2pi`1q

ż ˇ̌
ˇ̌
ˇ

ż
Kpx1, x˚qρpx˚q

2iÿ

m“1

ÿ

PĎrjs
|P |“m´1

ÿ

π$PYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ dx˚

ˇ̌
ˇ̌
ˇ

2

ρbj dx.

We first consider the second term. Applying Jensen’s inequality, we have

ż ˇ̌
ˇ̌
ˇ

ż
Kpx1, x˚qρpx˚q

2iÿ

m“1

ÿ

PĎrjs
|P |“m´1

ÿ

π$PYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ dx˚

ˇ̌
ˇ̌
ˇ

2

ρbj dx

ď
ż ˇ̌

ˇ̌
ˇKpx1, x˚q

2iÿ

m“1

ÿ

PĎrjs
|P |“m´1

ÿ

π$PYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ

ˇ̌
ˇ̌
ˇ

2

ρbpj`1q dxdx˚

ď 2i
2iÿ

m“1

ż ˇ̌
ˇ̌
ˇKpx1, x˚q

ÿ

PĎrjs
|P |“m´1

ÿ

π$PYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ

ˇ̌
ˇ̌
ˇ

2

ρbpj`1q dxdx˚.

We now fix m and analyze the term under the integral, expanding the square

ż ˇ̌
ˇ̌
ˇKpx1, x˚q

ÿ

PĎrjs
|P |“m´1

ÿ

π$PYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ

ˇ̌
ˇ̌
ˇ

2

ρbpj`1q dxdx˚

ď
ÿ

PĎrjs
|P |“m´1

ÿ

RĎrjs
|R|“m´1

ÿ

π$PYt˚u

ÿ

σ$RYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPσř
iW “i

iW ě1

ż
|Kpx1, x˚q|2

ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbpj`1q dxdx˚.

Note then that unless P “ R,

ż
|Kpx1, x˚q|2

ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbpj`1q dxdx˚ “ 0.
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To see this, suppose P ‰ R. Since |P | “ |R|, then there exists p P P such that p R R and there
exists r P R such that r R P . We must have that p ‰ 1 or r ‰ 1. Let us suppose that p ‰ 1, the
other case follows symmetrically. Then let S P π such that p P S. Then

ż
|Kpx1, x˚q|2

ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbjρpx˚q dxdx˚

“
ż

|Kpx1, x˚q|2
ź

QPπ´tSu

rgiQQ
ź

WPσ

rgiWW
ż

rgiSS ρbpj`1q dxpdx1 ¨ ¨ ¨ dxp´1dxp`1 ¨ ¨ ¨ dxjdx˚ “ 0,

where we use that ż
rgiSS ρb|S|pxSq dxp “

ż
giSS dxp “ 0,

by Proposition 2.10, since iS ě 1.
Using Hölder’s inequality

ż
|Kpx1, x˚q|2

ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbpj`1q dxdx˚

ď }K}2L8

ˆ ż ź

QPπ

|rgiQQ |2ρbpj`1q dxdx˚

˙ 1

2

ˆ ż ź

WPσ

|rgiWW |2ρbpj`1q dxdx˚

˙ 1

2

“ }K}2L8

ź

QPπ

ˆ ż
|rgiQQ |2ρb|Q| dxQ

˙ 1

2 ź

WPσ

ˆ ż
|rgiWW |2ρb|W | dxW

˙ 1

2

Since iQ ď i for all Q P π, Proposition 3.21 implies that

ź

QPπ

ˆ ż
|rgiQQ |2ρb|Q| dxQ

˙ 1

2 ź

WPσ

ˆ ż
|rgiWW |2ρb|W | dxW

˙ 1

2

ď pCeCtq4i ď CeCt. (3.22)

Thus we always have that
ż

|Kpx1, x˚q|2
ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbjρpx˚q dxdx˚ ď CeCt.

We also have that for any P,R Ď rjs such that |P | “ |R| “ m´ 1 ď 2i,

ÿ

π$PYt˚u

ÿ

σ$RYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPσř
iW “i

iW ě1

1 ď C.

Thus

ż ˇ̌
ˇ̌
ˇKpx1, x˚q

ÿ

PĎrjs
|P |“m´1

ÿ

π$PYt˚u

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ

ˇ̌
ˇ̌
ˇ

2

ρbjρpx˚q dxdx˚

ď
ÿ

PĎrjs
|P |“m´1

ÿ

RĎrjs
|R|“m´1

CeCtδP“R “ CeCt

ˆ
j

m´ 1

˙
ď CeCtj2i´1.
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Putting it together, we so far have that

ż ˇ̌
ˇ̌
ˇ
Ri

j

ρbj

ˇ̌
ˇ̌
ˇ

2

ρbj dx ď CeCt
´ j

N

¯2pi`1q
` 2j

N2pi`1q

ż ˇ̌
ˇ̌
ˇ

jÿ

ℓ“1

pK ˚ ρpx1q ´Kpx1, xℓqq
f ij

ρbj

ˇ̌
ˇ̌
ˇ

2

ρbj dx. (3.23)

All that remains therefore is to bound the second term above, which is somewhat more involved.

Expanding
f i
j

ρbj , pulling out one of the sums then expanding the square, we get

ż ˇ̌
ˇ̌
ˇ

jÿ

ℓ“1

pK ˚ ρpx1q ´Kpx1, xℓqq
f ij

ρbj

ˇ̌
ˇ̌
ˇ

2

ρbj dx

ď 2i
2iÿ

m“1

ż ˇ̌
ˇ̌
ˇ

jÿ

ℓ“1

pK ˚ ρpx1q ´Kpx1, xℓqq
ÿ

PĎrjs
|P |“m

ÿ

π$P

ÿ

piQqQPπř
iQ“i

iQě1

ź

QPπ

rgiQQ

ˇ̌
ˇ̌
ˇ

2

ρbj dx

ď 2i
2iÿ

m“1

jÿ

ℓ“1

jÿ

k“1

ÿ

PĎrjs
|P |“m

ÿ

RĎrjs
|R|“m

ÿ

π$P

ÿ

σ$R

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPσř
iW “i

iW ě1

1

ˆ
ż

pK ˚ ρpx1q ´Kpx1, xℓqq ¨ pK ˚ ρpx1q ´Kpx1, xkqq
ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbj dx. (3.24)

We then claim that
ż

pK ˚ ρpx1q ´Kpx1, xℓqq ¨ pK ˚ ρpx1q ´Kpx1, xkqq
ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbj dx

ď CeCtδℓPPYRYt1,ku
kPPYRYt1,ℓu

δPĎRYt1,ℓ,ku
RĎPYt1,ℓ,ku

. (3.25)

The bound by CeCt follows by (3.22) as
ˇ̌
ˇ̌
ˇ

ż
pK ˚ ρpx1q ´Kpx1, xℓqq ¨ pK ˚ ρpx1q ´Kpx1, xkqq

ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbj dx

ˇ̌
ˇ̌
ˇ

ď 4}K}2L8

ź

QPπ

ˆ ż
|rgiQQ |2ρb|Q| dxQ

˙1

2 ź

WPσ

ˆ ż
|rgiWW |2ρb|W | dxW

˙ 1

2

ď CeCt.

Thus we just need to show that if if any of the above four conditions fails to hold, the integral is 0.
The integral and conditions are symmetric in ℓ, k and also symmetric in P,R, so we just need to
check the two conditions. If ℓ R P YR Y t1, ku, then

ż
pK ˚ ρpx1q ´Kpx1, xℓqq ¨ pK ˚ ρpx1q ´Kpx1, xkqq

ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbj dx

“
ż

pK ˚ ρpx1q ´Kpx1, xkqq
ź

QPπ

rgiQQ
ź

WPσ

rgiWW

ˆ
ż

pK ˚ ρpx1q ´Kpx1, xℓqqρbj dxℓdx1 ¨ ¨ ¨ dxℓ´1dxℓ`1 ¨ ¨ ¨ dxj “ 0,
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where we use that
ż

pK ˚ ρpx1q ´Kpx1, xℓqqρpxℓq dxℓ “ K ˚ ρpx1q ´K ˚ ρpx1q “ 0,

as ℓ ‰ 1.
Thus we see we get the term δℓPPYRYt1,ku in the bound and applying the argument with k and

ℓ switched, we get the the term δkPPYRYt1,ℓu. Now suppose that P Ę R Y t1, ℓ, ku, i.e. there exists
p P P s.t. p R R Y t1, ℓ, ku. Then let S P π such that p P S. Then we have that

ż
pK ˚ ρpx1q ´Kpx1, xℓqq ¨ pK ˚ ρpx1q ´Kpx1, xkqq

ź

QPπ

rgiQQ
ź

WPσ

rgiWW ρbj dx

“
ż

pK ˚ ρpx1q ´Kpx1, xℓqq ¨ pK ˚ ρpx1q ´Kpx1, xkqq

ˆ
ź

QPπ´tSu

rgiQQ
ź

WPσ

rgiWW
ż

rgiSS ρbj dxpdx1 ¨ ¨ ¨ dxp´1dxp`1 ¨ ¨ ¨ dxj “ 0,

where we use that ż
rgiSS ρb|S|pxSq dxp “

ż
g
iS
S dxp “ 0,

by Proposition 2.10, using iS ě 1. Thus we get the term δPĎRYt1,ℓ,ku and symmetrically get the
term δRĎPYt1,ℓ,ku, thus showing the claim (3.25).

Thus we are left with bounding

2i
2iÿ

m“1

jÿ

ℓ“1

jÿ

k“1

ÿ

PĎrjs
|P |“m

ÿ

RĎrjs
|R|“m

ÿ

π$P

ÿ

σ$R

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPσř
iW “i

iW ě1

δℓPPYRYt1,ku
kPPYRYt1,ℓu

δPĎRYt1,ℓ,ku
RĎPYt1,ℓ,ku

“ 2i
2iÿ

m“1

jÿ

ℓ“1

jÿ

k“1

ÿ

PĎrjs
|P |“m

ÿ

RĎrjs
|R|“m

δℓPPYRYt1,ku
kPPYRYt1,ℓu

δPĎRYt1,ℓ,ku
RĎPYt1,ℓ,ku

ÿ

π$P

ÿ

σ$R

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPσř
iW “i

iW ě1

1

ď C

2iÿ

m“1

jÿ

ℓ“1

jÿ

k“1

ÿ

PĎrjs
|P |“m

ÿ

RĎrjs
|R|“m

δℓPPYRYt1,ku
kPPYRYt1,ℓu

δPĎRYt1,ℓ,ku
RĎPYt1,ℓ,ku

, (3.26)

where we use that
ÿ

π$P

ÿ

σ$R

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPσř
iW “i

iW ě1

1 “
ÿ

π$rms

ÿ

σ$rms

ÿ

piQqQPπř
iQ“i

iQě1

ÿ

piW qWPσř
iW “i

iW ě1

1 “ Cpm, iq ď C.

We now claim that
δPĎRYt1,ℓ,ku
RĎPYt1,ℓ,ku

“ 0

unless P “ R or P “ R ´ tau Y tbu with a P R; a ‰ b; a, b P t1, ℓ, ku.
To see this, suppose P Ď R Y t1, ℓ, ku and R Ď P Y t1, ℓ, ku. Then note that the symmetric

difference P ∆R “ pP ´Rq Y pR ´ P q Ď t1, ℓ, ku. Then, since |P | “ |R|, we have that

|P ´R| “ |P | ´ |R X P | “ |R| ´ |R X P | “ |R ´ P |.
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Thus
|P ∆R| “ |P ´R| ` |R ´ P | “ 2|P ´R|.

Thus P ∆R is an even sized subset of t1, ℓ, ku, hence either P “ R or P “ R ´ tau Y tbu with
a P R; a ‰ b; a, b P t1, ℓ, ku, as claimed. Let us first deal with the case that P “ R, in which case
the sum becomes

ÿ

PĎrjs
|P |“m

jÿ

ℓ“1

jÿ

k“1

δℓPPYt1,kuδkPPYt1,ℓu ď
ÿ

PĎrjs
|P |“m

jÿ

ℓ“1

m` 2 ď Cj2i`1,

using that m ď 2i.
For P ‰ R the remaining part of the sum to bound is

jÿ

ℓ“1

jÿ

k“1

ÿ

RĎrjs
|R|“m

ÿ

aPt1,k,ℓuXR

ÿ

bPt1,k,ℓu´tau

δℓPpR´tauYtbuqYRYt1,ku
kPpR´tauYtbuqYRYt1,ℓu

“
ÿ

RĎrjs
|R|“m

jÿ

ℓ“1

jÿ

k“1

ÿ

aPt1,k,ℓuXR

ÿ

bPt1,k,ℓu´tau

δℓPRYt1,k,bu
kPRYt1,ℓ,bu

ď Cij
2i`1 `

ÿ

RĎrjs
|R|“m

jÿ

ℓ“2

jÿ

k“2,k‰ℓ

ÿ

aPt1,k,ℓuXR

ÿ

bPt1,k,ℓu´tau

δℓPRYtbu
kPRYtbu

,

where on the last line we split off the three cases ℓ “ 1, k “ 1, and ℓ “ k and apply the straightfor-
ward bounds to them separately. We lastly split the remaining term along the cases the a “ 1, a “ k,

and a “ ℓ. The first case a “ 1 gives

ÿ

RĎrjs
|R|“m

jÿ

ℓ“2

jÿ

k“2,k‰ℓ

ÿ

bPtk,ℓu

δℓPRYtbu
kPRYtbu

δ1PR ď
ÿ

WĎrjs´t1u
|W |“m´1

jÿ

ℓ“2

jÿ

k“2,k‰ℓ

2 ď Cj2i`1.

The second case a “ k gives

ÿ

RĎrjs
|R|“m

jÿ

ℓ“2

ÿ

kPR,k‰ℓ

ÿ

bPt1,ℓu

δℓPRYtbu
kPRYtbu

ď 2m
ÿ

RĎrjs
|R|“m

jÿ

ℓ“2

ď Cj2i`1.

The third case a “ ℓ follows symmetrically. Thus

2iÿ

m“1

jÿ

ℓ“1

jÿ

k“1

ÿ

PĎrjs
|P |“m

ÿ

RĎrjs
|R|“m

δℓPPYRYt1,ku
kPPYRYt1,ℓu

δPĎRYt1,ℓ,ku
RĎPYt1,ℓ,ku

ď
2iÿ

m“1

Cj2i`1 ď Cj2i`1. (3.27)

Combining (3.23), (3.24), (3.25), (3.26), and (3.27), we conclude.
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4. Proofs of cluster expansions and perturbation theory

We give some additional notation for partitions.

Definition 4.1. We define the following partial order on partitions. If σ, π $ A, we say that σ ď π

if for every P P π, there exists Q P σ such that P Ď Q. If σ ď π we say σ is a combining of π. We
note that if σ ď π $ A, then |σ| ď |π| ď |A|.

We note the following combinatoric lemma which we will appeal to frequently in the below
proofs.

Lemma 4.2. Let S be a finite set, π $ S. Then

ÿ

σďπ

p´1q|σ|´1p|σ| ´ 1q! “
#
1 |π| “ 1,

0 |π| ě 2.

Proof. In order to evaluate these sums, we take advantage of the natural isomorphism from parti-
tions of π to combinings of π. For Π $ π, we let

σpΠq “
#

ď

PPα

P : α P Π

+
.

Note that σ defines a bijection between partitions of π and combinings of π, and further that
|σpΠq| “ |Π|. This immediately implies that

ÿ

σďπ

p´1q|σ|´1p|σ| ´ 1q! “
ÿ

Π$π

p´1q|Π|´1p|Π| ´ 1q!

The lemma then follows after applying the following fact

ÿ

α$rjs

p´1q|α|´1p|α| ´ 1q! “
#
1 j “ 1,

0 j ě 2,

which follows by the Faà di Bruno’s formula applied to log ex.

Proof of Proposition 2.4. We prove the equality inductively in j. The case j “ 1 is clear. For j ě 2,
we have

gj “
ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ź

PPπ

fP

“ fj `
ÿ

π$rjs,|π|ě2

p´1q|π|´1p|π| ´ 1q!
ź

PPπ

fP

“ fj `
ÿ

π$rjs,|π|ě2

p´1q|π|´1p|π| ´ 1q!
ź

PPπ

ÿ

σ$P

ź

QPσ

gQ

“ fj `
ÿ

π$rjs,|π|ě2

p´1q|π|´1p|π| ´ 1q!
ÿ

σěπ

ź

QPσ

gQ

“ fj `
ÿ

σ$rjs

ÿ

πďσ,|π|ě2

p´1q|π|´1p|π| ´ 1q!
ź

PPσ

gP .
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We have now collected all the terms
ś

PPσ gP so all that remains is to compute the combinatoric
constants. To that end, using Lemma 4.2, we have

ÿ

πďσ,|π|ě2

p´1q|π|´1p|π| ´ 1q! “ ´1 `
ÿ

πďσ

p´1q|π|´1p|π| ´ 1q! “
#
0 |σ| “ 1,

´1 |σ| ě 2.

Plugging this in above allows us to conclude.

Proof of Proposition 2.6. We start by just directly computing pBt ´ ∆qgj using the definition of gj
in terms of the fj,

Btgj ´ ∆gj “
ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ÿ

PPπ

pBtfP ´ ∆fP q
ź

QPπ
Q‰P

fQ

“ ´
ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ÿ

PPπ

¨
˝N ´ |P |

N

ÿ

kPP

HkfPYt˚u ` 1

N

ÿ

k,ℓPP

Sk,ℓfP

˛
‚ ź

QPπ
Q‰P

fQ.

(4.1)

Note that, consistent with the definition of Hk, the variable ˚ is always the coordinate being
integrated over. We consider the Hk terms and the Sk,ℓ terms separately. We first consider the Sk,ℓ
terms. We use Proposition 2.4 to expand each of the fR in terms of gQ

ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ÿ

PPπ

ÿ

k,ℓPP

Sk,ℓfP
ź

QPπ
Q‰P

fQ

“
ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ÿ

PPπ

ÿ

k,ℓPP

ÿ

πďσ

Sk,ℓ
ź

QPσ

gQ

“
jÿ

k,ℓ“1

ÿ

σ$rjs

ˆ ÿ

πďσ
DPPπ,tk,ℓuĎP

p´1q|π|´1p|π| ´ 1q!
˙
Sk,ℓ

ź

QPσ

gQ

“:

jÿ

k,ℓ“1

ÿ

σ$rjs

aσk,ℓSk,ℓ
ź

PPσ

gP .

We now compute aσk,ℓ. Fix σ, k, ℓ. We split into two cases, the first being that there exists Q P σ
such that tk, ℓu Ď Q and second being that there exists Q,R P σ,Q ‰ R such that k P Q, ℓ P R.
Note that in the second case, it must be that k ‰ ℓ.

In the first case, since for any π ď σ, by definition of the order, there exists P P π such that
Q Ď P , as such tk, ℓu Ď P . Thus

aσk,ℓ “
ÿ

πďσ
DPPπ,tk,ℓuĎP

p´1q|π|´1p|π| ´ 1q!

“
ÿ

πďσ

p´1q|π|´1p|π| ´ 1q!

“
#
1 |σ| “ 1

0 |σ| ě 2,
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where we use Lemma 4.2 to conclude.
For the second case, we first write σ “ tQ,R,W1, ...,Wmu such that k P Q, ℓ P R. Then define

rσ :“ tQ YR,W1, ...,Wmu.

Then we note that π ď σ for which there exists P P π such that tk, ℓu Ď P if and only if π ď rσ.
Thus

aσk,ℓ “
ÿ

πďrσ
p´1q|π|´1p|π| ´ 1q! “

#
1 |σ| “ 2

0 |σ| ě 3,

once again using Lemma 4.2 and noting |σ| “ |rσ| ` 1.
Combining these two cases, we note the complete formula for aσk,ℓ is given by

aσk,ℓ “

$
’’’’&
’’’’%

1 |σ| “ 1

1 σ “ tQ,Ru, k P Q, ℓ P R
0 σ “ tQ,Ru, k, ℓ P Q
0 |σ| ě 3.

(4.2)

We have thus dealt with the Sk,ℓ terms completely. We now proceed to the Hk terms. Similarly,
we compute

ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ÿ

PPπ

N ´ |P |
N

ÿ

kPP

HkfPYt˚u

ź

QPπ
Q‰P

fQ

“
ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ÿ

PPπ

N ´ |P |
N

ÿ

kPP

ÿ

rπďσ

Hk

ź

QPσ

gQ,

where if π “ tP,W1, ...,Wmu, then, letting rP :“ P Y t˚u, we define

rπ :“ t rP,W1, ...,Wmu $ rjs Y t˚u.

Continuing the above computation and reindexing sums, we get

ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!
ÿ

PPπ

N ´ |P |
N

ÿ

kPP

ÿ

rπďσ

Hk

ź

QPσ

gQ

“
jÿ

k“1

ÿ

σ$rjsYt˚u

ˆ ÿ

rπďσ

D rPPrπ,tk,˚uĎ rP

p´1q|rπ|´1p|rπ| ´ 1q!N ´ | rP | ` 1

N

˙
Hk

ź

QPσ

gQ

“:

jÿ

k“1

ÿ

σ$rjsYt˚u

bσkHk

ź

QPσ

gQ,

where we note rπ is a partition of the larger set rjs Y t˚u. We now compute bσk . Similarly to above,
we split according to whether the relevant variables k, ˚ are in the same block of σ. Writing
σ “ tQ,R,W1, ...,Wmu, the first case is that tk, ˚u Ď Q and the second case is that k P Q, ˚ P R.
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In the first case, we note that if rπ ď σ, then by definition there exists rP P rπ such that Q Ď rP ,
and as such tk, ˚u Ď rP . Thus

bσk “
ÿ

rπďσ

p´1q|rπ|´1p|rπ| ´ 1q!N ´ | rP | ` 1

N

“
ÿ

ρďσ´tQu

p´1q|ρ||ρ|!N ´ |Q| ` 1

N
`

ÿ

SPρ

p´1q|ρ|´1p|ρ| ´ 1q!N ´ |S YQ| ` 1

N
, (4.3)

where for the second equality, in order to deal with the term | rP |, we look at possible ways of
constructing rP . We note that any combining rπ ď σ is generated by first taking a combing ρ ď
σ´tQu and then either adding Q as its own block or unioning Q with a block of ρ. This corresponds
to the first and second term in the sum respectively.

The above computation is valid in the case that Q “ rjs Y t˚u, but for the sake the analysis to
follow let us deal with this edge case now. A direct computation verifies that in that case, we have
that |σ| “ 1 and

bσk “ N ´ j

N
.

Continuing the above computation with the additional assumption that |σ| ě 2, we first note that

ÿ

SPρ

p´1q|ρ|´1p|ρ| ´ 1q!N ´ |S YQ| ` 1

N

“
ÿ

SPρ

p´1q|ρ|´1p|ρ| ´ 1q!N ´ |Q| ` 1

N
´

ÿ

SPρ

p´1q|ρ|´1p|ρ| ´ 1q! |S|
N

“ p´1q|ρ|´1|ρ|!N ´ |Q| ` 1

N
´ p´1q|ρ|´1p|ρ| ´ 1q!j ` 1 ´ |Q|

N
. (4.4)

For the last equality, we use that the first term doesn’t depend on S, and as such we just get a
multiplicative factor of |ρ|, which then goes into the factorial. For the second term, we use that

ÿ

SPρ

|S| “ |rjs Y t˚u ´Q| “ j ` 1 ´ |Q|.

Then, plugging (4.4) into (4.3) and noting the cancellation of the first two terms, we have that

bσk “ ´j ` 1 ´ |Q|
N

ÿ

ρďσ´tQu

p´1q|ρ|´1p|ρ| ´ 1q! “
#

´ j`1´|Q|
N

|σ| “ 2

0 |σ| ě 3,

where we have once again used Lemma 4.2. Then recalling the above remarks on the case that
|σ| “ 1, we have that

bσk “

$
’&
’%

N´j
N

|σ| “ 1

´ j`1´|Q|
N

|σ| “ 2

0 |σ| ě 3.

We now consider the other case, that k P Q, ˚ P R. We then, similarly to the analysis for the
Sσ
k,ℓ terms, define

rσ :“ tQ YR,W1, ...,Wmu.

45



Then we note that

bσk “
ÿ

rπďσ

D rPPrπ,tk,˚uĎ rP

p´1q|rπ|´1p|rπ| ´ 1q!N ´ | rP | ` 1

N
“

ÿ

rπďrσ
p´1q|rπ|´1p|rπ| ´ 1q!N ´ | rP | ` 1

N
.

We note now that we are in the same setting as we were for the previous case, except with rσ in
place of σ and QYR in place of Q. As such, the same computations demonstrate that, in this case,

bσk “

$
’&
’%

N´j
N

|σ| “ 2

´ j`1´|Q|´|R|
N

|σ| “ 3

0 |σ| ě 4,

where we note that |σ| “ |rσ| ` 1. Thus, in total, we have that

bσk “

$
’’’’’’’’’&
’’’’’’’’’%

N´j
N

|σ| “ 1

´ j`1´|Q|
N

σ “ tQ,Ru, tk, ˚u Ď Q
N´j
N

σ “ tQ,Ru, k P Q, ˚ P R
0 σ “ tQ,R,W u, tk, ˚u Ď Q

´ j`1´|Q|´|R|
N

σ “ tQ,R,W u, k P Q, ˚ P R
0 |σ| ě 4.

(4.5)

We have thus computed all the coefficients, so we can plug in (4.2) and (4.5) into (4.1) to give
the PDE gj solves.

For the initial conditions, we remark that as fjp0, ¨q “ fbj, the equation (2.2) gives that

gj “ fbj
ÿ

π$rjs

p´1q|π|´1p|π| ´ 1q!

thus Lemma 4.2 gives the stated initial conditions.

Proof of Proposition 2.7. Computing pBt ´ ∆qf ij using its definition we get

pBt ´ ∆qf ij “
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

pBt ´ ∆qgiPP
ź

QPπ´tP u

g
iQ
Q .
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Then using (2.4), this becomes

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

˜
´

ÿ

kPP

Hkg
iP
PYt˚u

ź

QPπ´tP u

g
iQ
Q

´
ÿ

kPP

ÿ

WĎP´tku

iPÿ

m“0

Hkg
m
WYtkug

iP ´m
PYt˚u´W´tku

ź

QPπ´tP u

g
iQ
Q

`
ÿ

kPP

|P |Hkg
iP ´1

PYt˚u

ź

QPπ´tP u

g
iQ
Q

`
ÿ

kPP

ÿ

WĎP´tku

p|P | ´ 1 ´ |W |q
iP ´1ÿ

m“0

Hkg
m
WYtk,˚ug

iP ´1´m
|P |´tku´W

ź

QPπ´tP u

g
iQ
Q

`
ÿ

kPP

ÿ

WĎP´tku

iP ´1ÿ

m“0

|P |Hkg
m
WYtkug

iP ´1´m
PYt˚u´W´tku

ź

QPπ´tP u

g
iQ
Q

`
ÿ

kPP

ÿ

WĎP´tku

ÿ

RĎP´tku´W

p|P | ´ 1 ´ |W | ´ |R|q

ˆ
iP ´1ÿ

m“0

iP ´1´mÿ

n“0

Hkg
m
WYtkug

n
RYt˚ug

iP ´1´m´n
P´R´W´tku

ź

QPπ´tP u

g
iQ
Q

´
ÿ

k,ℓPP

Sk,ℓg
iP ´1

P

ź

QPπ´tP u

g
iQ
Q

´
ÿ

k,ℓPP
k‰ℓ

ÿ

WĎP´tk,ℓu

iP ´1ÿ

m“0

Sk,ℓg
m
WYtkug

iP ´1´m
P´tku´W

ź

QPπ´tP u

g
iQ
Q

¸
.

In order to conclude, we must show the above is equal to

´
jÿ

k“1

Hkf
i
rjsYt˚u ` j

jÿ

k“1

Hkf
i´1

j ´
jÿ

k,ℓ“1

Sk,ℓf
i´1

j

“ ´
ÿ

k

ÿ

π$rjsYt˚u

ÿ

piP qPPπř
iP “i

Hk

ź

PPπ

giPP

` j
ÿ

k

ÿ

π$rjsYt˚u

ÿ

piP qPPπř
iP “i´1

Hk

ź

PPπ

giPP

´
ÿ

k,ℓ

ÿ

π$rjs

ÿ

piP qPPπř
iP “i´1

Sk,ℓ
ź

PPπ

g
iP
P .

In particular, we show the following three claims.
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Claim 1:

ÿ

k

ÿ

π$rjsYt˚u

ÿ

piP qPPπř
iP “i

Hk

ź

PPπ

g
iP
P “

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

Hkg
iP
PYt˚u

ź

QPπ´tP u

g
iQ
Q

`
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

ÿ

WĎP´tku

iPÿ

m“0

Hkg
m
WYtkug

iP ´m
PYt˚u´W´tku

ź

QPπ´tP u

g
iQ
Q .

Claim 2:

j
ÿ

k

ÿ

π$rjsYt˚u

ÿ

piP qPPπř
iP “i´1

Hk

ź

PPπ

giPP

“
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

|P |Hkg
iP ´1

PYt˚u

ź

QPπ´tP u

g
iQ
Q (4.6)

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

ÿ

WĎP´tku

p|P | ´ 1 ´ |W |q
iP ´1ÿ

m“0

Hkg
m
WYtk,˚ug

iP ´1´m
|P |´tku´W

ź

QPπ´tP u

g
iQ
Q (4.7)

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

ÿ

WĎP´tku

iP ´1ÿ

m“0

|P |Hkg
m
WYtkug

iP ´1´m
PYt˚u´W´tku

ź

QPπ´tP u

g
iQ
Q (4.8)

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

ÿ

WĎP´tku

ÿ

RĎP´tku´W

p|P | ´ 1 ´ |W | ´ |R|q (4.9)

ˆ
iP ´1ÿ

m“0

iP ´1´mÿ

n“0

Hkg
m
WYtkug

n
RYt˚ug

iP ´1´m´n
P´R´W´tku

ź

QPπ´tP u

g
iQ
Q .

Claim 3:

ÿ

k,ℓ

ÿ

π$rjs

ÿ

piP qPPπř
iP “i´1

Sk,ℓ
ź

PPπ

giPP “
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

k,ℓPP

Sk,ℓg
iP ´1

P

ź

QPπ´tP u

g
iQ
Q

`
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

k,ℓPP
k‰ℓ

ÿ

WĎP´tk,ℓu

iP ´1ÿ

m“0

Sk,ℓg
m
WYtkug

iP ´1´m
P´tku´W

ź

QPπ´tP u

g
iQ
Q .

For Claim 1, we note that the first term of the right hand side is simply a sum over all partitions
π $ rjs Y t˚u such that k and ˚ are in the same block of π (together with all choices of orders iP ).
Then the second term on the right hand side is a sum over all partitions π such that k and ˚ are
in the different blocks of π. Thus together they give a sum over all partitions, which is equal then
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to the left hand side. Symbolically

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

Hkg
iP
PYt˚u

ź

QPπ´tP u

g
iQ
Q

`
ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

ÿ

WĎP´tku

iPÿ

m“0

Hkg
m
WYtkug

iP ´m
PYt˚u´W´tku

ź

QPπ´tP u

g
iQ
Q

“
ÿ

k

ÿ

π$rjsYt˚u
DPPπ,tk,˚uĎP

ÿ

piP qPPπř
iP “i

Hk

ź

PPπ

g
iP
P

`
ÿ

k

ÿ

π$rjsYt˚u
DPPπ,kPP,˚RP

ÿ

piP qPPπř
iP “i

Hk

ź

PPπ

g
iP
P

“
ÿ

k

ÿ

π$rjsYt˚u

ÿ

piP qPPπř
iP “i

Hk

ź

PPπ

giPP .

For Claim 2, we note the first and second terms, (4.6) and (4.7), sum over the same partitions,
namely those partitions π $ rjs Y t˚u such that k, ˚ are in the same block of π. Thus there is
“overcounting” and we have to compute the correct constant prefactor on each such partition.
Reindexing (4.6), we get

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

|P |Hkg
iP ´1

PYt˚u

ź

QPπ´tP u

g
iQ
Q “

ÿ

k

ÿ

π$rjsYt˚u
DPPπ,tk,˚uĎP

ÿ

piP qPPπř
iP “i´1

|P |Hk

ź

PPπ

g
iP
P .

Then reindexing (4.7), we get

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

ÿ

WĎP´tku

p|P | ´ 1 ´ |W |q
iP ´1ÿ

m“0

Hkg
m
WYtk,˚ug

iP ´1´m
P´tku´W

ź

QPπ´tP u

g
iQ
Q

“
ÿ

k

ÿ

π$rjsYt˚u
DAPπ,tk,˚uĎA

ÿ

piP qPPπř
iP “i´1

ÿ

BPπ´tAu

|B|Hkg
iA
A g

iB
B

ź

QPπ´tA,Bu

g
iQ
Q

“
ÿ

k

ÿ

π$rjsYt˚u
DPPπ,tk,˚uĎP

ÿ

piP qPPπř
iP “i´1

pj ´ |P |qHk

ź

QPπ

g
iQ
Q .

Thus adding them together, we get

j
ÿ

k

ÿ

π$rjsYt˚u
DPPπ,tk,˚uĎP

ÿ

piP qPPπř
iP “i´1

Hk

ź

PPπ

giPP . (4.10)

Similarly, the third and fourth terms, (4.8) and (4.9), sum over the same set of partitions,
namely those partitions π $ rjs Y t˚u such that k, ˚ are in different blocks. So we again reindex to
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compute the constant prefactors. Reindexing (4.8), we get

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

ÿ

WĎP´tku

iP ´1ÿ

m“0

|P |Hkg
m
WYtkug

iP ´1´m
PYt˚u´W´tku

ź

QPπ´tP u

g
iQ
Q

“
ÿ

k

ÿ

π$rjsYt˚u
DA,BPπ,kPA,˚RB,A‰B

ÿ

piP qPPπř
iP “i

p|A| ` |B| ´ 1qHk

ź

PPπ

g
iP
P .

Finally, reindexing (4.9), we get

ÿ

π$rjs

ÿ

piP qPPπř
iP “i

ÿ

PPπ

ÿ

kPP

ÿ

WĎP´tku

ÿ

RĎP´tku´W

p|P | ´ 1 ´ |W | ´ |R|q

ˆ
iP ´1ÿ

m“0

iP ´1´mÿ

n“0

Hkg
m
WYtkug

n
RYt˚ug

iP ´1´m´n
P´R´W´tku

ź

QPπ´tP u

g
iQ
Q

“
ÿ

k

ÿ

π$rjsYt˚u
DA,BPπ,kPA,˚RB,A‰B

ÿ

piP qPPπř
iP “i

ÿ

CPπ´tA,Bu

|C|Hkg
iA
A g

iB
B giCC

ź

QPπ´tA,B,Cu

g
iQ
Q

“
ÿ

k

ÿ

π$rjsYt˚u
DA,BPπ,kPA,˚RB,A‰B

ÿ

piP qPPπř
iP “i

ÿ

CPπ´tA,Bu

pj ` 1 ´ |A| ´ |B|qHk

ź

PPπ

g
iP
P .

So adding these together, we get

j
ÿ

k

ÿ

π$rjsYt˚u
DPPπ,kPP,˚RP

ÿ

piP qPPπř
iP “i´1

Hk

ź

PPπ

giPP . (4.11)

Thus, adding (4.10) and (4.11), we have shown Claim 2.
Lastly, Claim 3 follows exactly as Claim 1.

A. Existence of the mean-field limit

Proof of Proposition 2.9. Let us use the notation K ˚ ρpxq :“
ş
Kpx, x˚qρpx˚q dx˚, so that the

equation becomes
Btρ´ ∆ρ` ∇ ¨ pK ˚ ρρq “ 0. (A.1)

Note that for ρ P Cpr0,8q, L2pTdqq XL2

locpr0, T s,H1pTdqq such that ρ solves (A.1), treating K ˚ ρ P
L8 as a drift, we can view ρ as solving a drift-diffusion equation. Standard linear parabolic theory
gives that, since ρp0, ¨q “ f ě 0, ρ ě 0 for all times. Then, since the equation is mean preserving,
we get that for all times

}ρ}L1pTdq “
ż
ρ dx “

ż
f dx “ 1.
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Further, we have that

d

dt
}ρ}2

L2pTdq “ 2

ż
´|∇ρ|2 ` ∇ρ ¨ pK ˚ ρρq

ď
ż

pK ˚ ρρq2

ď }K}2L8}ρ}2
L1pTdq}ρ}2

L2pTdq

“ }K}2L8}ρ}2
L2pTdq,

so by Grönwall’s inequality,
}ρ}2

L2pTdqptq ď e}K}2
L8 t}f}2

L2pTdq.

For uniqueness, supposing that ρ, ρ1 P Cpr0,8q, L2pTdqqXL2

locpr0, T s,H1pTdqq are both solutions
to (A.1). Then

Btpρ ´ ρ1q “ ∆pρ´ ρ1q ´ ∇ ¨
´
K ˚ pρ´ ρ1qρ`K ˚ ρ1pρ ´ ρ1q

¯
,

so

d

dt

1

2
}ρ´ ρ1}2

L2pTdq ď
ż ´

K ˚ pρ ´ ρ1qρ
¯
2

`
´
K ˚ ρ1pρ´ ρ1q

¯
2

dx

ď C}K}2L8}ρ´ ρ1}2L2pTdq}ρ}2L2pTdq ` }K}2L8}ρ1}2L1pTdq}ρ´ ρ1}2L2pTdq

ď C}K}2L8e}K}2
L8 t}f}2

L2pTdq}ρ´ ρ1}2
L2pTdq,

thus we can conclude by a Grönwall argument.
For existence, we use a fixed-point argument. Let

ρ0pt, ¨q :“ f

and for any j P N, let ρj`1 P Cpr0,8q, L2pTdqq X L2

locpr0, T s,H1pTdqq solve

#
Btρj`1 ´ ∆ρj`1 ` ∇ ¨ pK ˚ ρjρj`1q “ 0

ρj`1p0, ¨q “ f.

Note that, inductively, for all t, }ρj}L1pTdq “ 1, since ρj`1 solves a drift-diffusion equation with L8

drift, the equation is L1 non-increasing, and the initial data satisfies }f}L1pTdq “ 1. Then we also
have the estimates

d

dt
}ρj`1}2

L2pTdq “
ż

´2|∇ρj`1|2 ` 2∇ρj ¨ pK ˚ ρjρj`1q dx

ď
ż

´|∇ρj`1|2 ` pK ˚ ρjρj`1q2 dx

ď ´}∇ρj`1}2
L2pTdq ` }K}2L8}ρj`1}2

L2pTdq.

Thus, by Grönwall’s inequality,

}ρj`1}2L2pTdqptq ď e}K}2
L8 t}f}2L2pTdq.
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Also, we have that

}∇ρj`1}2L2pr0,ts,L2pTdqq ď
ż t

0

}K}2L8}ρj`1}2L2pTdqpsq ´ d

ds
}ρj`1}2L2pTdqpsq ds

ď }f}2L2pTdq

´ ż t

0

}K}2L8e}K}2
L8s ds` 1

¯

“ e}K}2
L8 t}f}2

L2pTdq. (A.2)

Then we note that

Btpρj`1 ´ ρjq “ ∆pρj`1 ´ ρjq ´ ∇ ¨ pK ˚ ρjpρj`1 ´ ρjq `K ˚ pρj ´ ρj´1qρjq.

Thus

d

dt
}ρj`1 ´ ρj}2

L2pTdq ď }K ˚ ρjpρj`1 ´ ρjq}2
L2pTdq ` }K ˚ pρj ´ ρj´1qρj}2L2pTdq

ď }K}2L8}ρj`1 ´ ρj}2L2pTdq ` C}K}2L8}ρj}2L2pTdq}ρj ´ ρj´1}2L2pTdq

ď }K}2L8}ρj`1 ´ ρj}2
L2pTdq ` C}K}2L8e}K}2

L8 t}f}2
L2pTdq}ρj ´ ρj´1}2

L2pTdq.

Thus by Grönwall’s inequality,

}ρj`1 ´ ρj}2L2pTdqptq ď C}K}2L8}f}2L2pTdqe
}K}2

L8 t

ż t

0

}ρj ´ ρj´1}2L2pTdqpsq ds

ď C}f}2
L2pTdqe

2}K}2
L8 tt sup

sPr0,ts
}ρj ´ ρj´1}2

L2pTdqpsq,

therefore
}ρj`1 ´ ρj}Cpr0,ts,L2pTdqq ď C}f}L2pTdqe

}K}2
L8 t

?
t}ρj ´ ρj´1}Cpr0,ts,L2pTdqq.

Let

t˚ :“ 1

4C}f}2
L2pTdq

e2}K}2
L8
,

then 0 ă t˚ ď 1 and so
C}f}L2pTdqe

}K}2
L8 t˚

?
t˚ ď 1

2
,

thus
}ρj`1 ´ ρj}Cpr0,t˚s,L2pTdqq ď 1

2
}ρj ´ ρj´1}Cpr0,t˚s,L2pTdqq.

This contraction then implies that there exists ρ P Cpr0, t˚s, L2pTdqq such that, in this norm,
ρj Ñ ρ. Note that, by (A.2), ρj is also uniformly bounded in L2pr0, t˚s,H1pTdqq, thus by weak
compactness and taking a subsequence, we get that ρ P L2pr0, t˚s,H1pTdqq. That ρ distributionally
solves (A.1) is direct from testing the equation for ρj against a C8

c function and using the strong
convergence. Thus we have a solution ρ for a short time t˚ “ 1

C}f}2
L2

. We can iterate this result to

get existence for all time, as long as the existence time t˚ doesn’t go to zero, which happens as long
as }ρ}L2pTdq stays bounded, uniformly in time. To that end, we note that for some a P p1{2, 1q, by
the Gagliardo-Nirenberg embeddings,

}ρ}L2pTdq ´ C ď }ρ´ 1}L2pTdq ď C}∇ρ}aL2pTdq}ρ}1´a
L1pTdq

“ C}∇ρ}aL2pTdq,

so that
}∇ρ}2

L2pTdq ě C´1p}ρ}L2pTdq ´ Cq2a´1 ě C´1}ρ}2a´1

L2pTdq ´C.
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Then we have that

d

dt
}ρ}2L2pTdq “ 2

ż
´|∇ρ|2 ` ∇ρ ¨ pK ˚ ρρq

ď ´}∇ρ}2
L2pTdq ` }K}2L8}ρ}2

L2pT dq

ď ´C´1}ρ}2a´1

L2pTdq ` C ` }K}2L8}ρ}2
L2pT dq.

Then we note that since a ă 1, the right hand side is negative for }ρ}2
L2pTdq

big enough. Thus there

exists C such that
}ρ}L2pTdq ď C _ }f}L2pTdq.

Thus we have the global-in-time bound on }ρ}L2pTdq, so the existence times stays bounded below,
and we can iterate the local existence argued above to get global-in-time existence, allowing use to
conclude.
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