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Higher-order propagation of chaos in L? for interacting diffusions
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Abstract

In this paper, we study diffusions in the torus with bounded pairwise interaction. We
show for the first time propagation of chaos on arbitrary time horizons in a stronger L2-based
distance, as opposed to the usual Wasserstein or relative entropy distances. The estimate is
based on iterating inequalities derived from the BBGKY hierarchy and does not follow directly
from bounds on the full N-particle density. This argument gives the optimal rate in N, showing
the distance between the j-particle marginal density and the tensor product of the mean-field
limit is O(N~1). We use cluster expansions to give perturbative higher-order corrections to the
mean-field limit. For an arbitrary order i, these provide “low-dimensional” approximations to
the j-particle marginal density with error O(N _(i“)).
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1. Introduction

In this paper we consider systems of N interacting particles in T of the form

dX;n(t) = £ Shl K(Xn (), X n(1)dt +v/2dW,(t), jefl, -, N}
X;n(0) =Y,
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(1.1)

where the W;(t) are independent standard Brownian motions in T¢, Y; are i.i.d. random variables
with probability density f(x), and K(z,y) denotes the drift on a particle at position y induces on
a particle at position x. Particle systems of this form arise in many contexts such as vortices in
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viscous fluids [Ons49, MP94], the training of large neural networks [CB18, RVE22], and aggregation
and collective motion of microscopic organisms [TBL06, Per07].

We recall that the law of the vector (X1 n, X2 N, ..., Xn n) has a density fy n : [0,00) x TN
R, which solves the Liouville equation,

{@th,N — AfNN + % Dhomt Vay - (K (z,20) fvy) =0,
P (0,2) =TTy flay) = [N (),

By integrating the equation (1.2) over xj;1,...,xn one finds that the marginal densities f;
satisfy the PDE hierarchy

(1.2)

N—j
oufin— Af]N+ Z Vo (K (z, 20) fiN) = —TJ D Vay f K (2k, %) fi1,8 (2, 2) day (1.3)
ke 1 k=1

with initial data

fj,N(07') = f®]-
We note that fn n is exchangeable, therefore the j-particle marginals f; y are exchangeable and
independent of which N — j coordinates were integrated over.

We study the propagation of chaos of the system (1.1), that is for any fixed j, the convergence
as N — o0 of the marginal density f; y — p®7 | where p solves the McKean-Viasov equation

{&p( @) = Ap(t,x) + V- (§ K (2, 24)p(t, xs) dayp(t, x)) =0,
(t,) = f().

Propagation of chaos has been shown under a wide range of conditions on f, p, and K and under
various distances; for some recent results see [DEGZ20, LLX20, GBM23] and for a review of the
vast literature see [CD22]. Recently, there has been lots of activity around quantitative propagation
of chaos using relative entropy as a distance. In particular, global bounds—that is bounds on the
relative entropy between fy n and p®N —have been used to show quantitative propagation of chaos
such as in [BAZ99, JW16, Lacl8, Jab19] for non-singular interactions. Additionally, estimates of
this kind have been used for a large class of singular interactions [JW18, BJW19, dCRS23, RS23].

Results based on global bounds at best show

H(fiw [ 0%) = 0(\/4).

where H(f | g) is the relative entropy of f with respect to g. This was widely believed to be
optimal, but in [Lac23] it was shown that

(1.4)

H(fyx | p) = 0(2),

for a class of interactions satisfying an exponential integrability condition. Further, this rate was
shown to be optimal by constructing an example that saturates the bound. Instead of using global
bounds, [Lac23] uses the BBGKY hierarchy (1.3) to get bounds on H(f;n | p®’) in terms of
H(fjt1n | p®(j+1)). By iterating these bounds, one can show this optimal rate.

In this paper, we instead prove bounds in an L? norm. In particular, we show for initial
conditions f € L* and bounded interaction, that for any j = o(N?%/3),

Djy = (J\M\ p Jd:c>1/2 :o(%).
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We note that D?’N = xX2(fjn | p27), where x*(u | v) is the chi-squared divergence of p with respect
to v. Pinsker’s inequality and [SV16, Theorem 2] respectively imply the inequalities

1
H(p|v) < §x2(u | v),

N —

I = vty <

for any probability measures p and v. The L?-type convergence of fin — p®7 thus implies the
relative entropy convergence at the same optimal rate as in [Lac23], which in turn implies TV
convergence.

The L? bounds are shown using somewhat analogous techniques to [Lac23], controlling D;n
by D;i1 n and iterating these bounds. In contrast to relative entropy, no sufficiently strong global
bounds on Dy, n are available. In fact, the best bound we can show is

DN,N < CeCNt,

This bound is far from sufficient to directly imply that D;y — 0 for fixed j. As such, this L?
distance is not amenable to global techniques and so necessitates analysis of the BBGKY hierarchy.
We note in the recent preprint [BJS22], propagation of chaos is shown in certain LP spaces and
even for certain singular interactions, but only for sufficiently short times. In this paper, we show
convergence on any time horizon.

One heuristic justification for propagation of chaos involves discarding terms of order N~! in
the BBGKY hierarchy (1.3) and noting that the p®/ are a solution to the resulting hierarchy of
equations, as is explained in Subsection 1.2. This suggests that the tensor product of the McKean-
Vlasov solution p®/ is the Oth-order term of a perturbative expansion of f; v in powers of N -1
This turns out to be in fact true, as we show in this paper by constructing this perturbative
expansion and showing the appropriate bounds. Finding the correct perturbative approximation of
order greater than 0 requires the introduction of the cluster (or cumulant) expansion, which rewrite
the marginal densities f; v in terms of certain sums of products of cluster functions g;n, made
precise in (1.9). After the correct perturbative approximations are found through cluster expansion,
proving that they approximate f; x to the appropriate order follows by the same analysis as the
Oth-order case discussed above.

The higher-order terms of the perturbative approximation are, unlike the Oth-order terms p®7,
not positive. In fact, in order to preserve the mean of the perturbative approximation, the higher-
order terms are mean-zero and hence take both positive and negative values. As such, without
strong pointwise control on the higher-order terms, the positivity of the higher-order approximations
is unclear. This makes analyzing the error between f; x and its approximation less amenable to
probabilistic techniques such as relative entropy. In contrast, there are no such issues in the L2
analysis.

Cluster expansions—and related expansions using correlation errors or v-functions—have been
used in a wide variety of contexts to study asymptotics of statistical particle systems, for exam-
ple [DMP91, PS17, BGSRS20] and citations therein. Somewhat relevant to our current study,
[Due2l1] uses Glauber calculus to estimate cluster functions in the kinetic setting without noise
in the evolution. In that work, the author uses a non-hierarchical technique and requires strong
bounds on the regularity of the interaction: to go to arbitrary order the interaction must be C®.

The pair of papers [PPS19, PP19] use a correlation error expansion and hierarchical techniques.
The authors consider an abstract setting that covers both quantum mean-field models as well as
stochastic jump processes such as the Kac model. Their analysis relies on iterating across the
BBGKY hierarchy to pass estimates on the correlation errors, which in turn implies propagation
of chaos. In [PP19], they take perturbative expansions of the correlation errors to construct higher



order corrections to propagation of chaos. In their setting, the time evolution is unitary, allowing
the use of techniques that are not clearly applicable to the setting we consider. Additionally, their
perturbative expansion involves approximations which meaningfully depend on N, and the number
of equations one must solve to construct the approximation of f; x to order i depends on j. In
contrast, in our approach neither of these properties appear.

1.1 Statement of main results

Before stating the results, we introduce some notation. The first three definitions are needed in
order to express the perturbative expansions.

Definition. For any set A, we use the notation 7 - A to denote that 7 is a partition of A. When
appearing in a sum

A

we mean that the sum is taken over all possible partitions of A. We often take 7 - [j] for some
7 € N where

7] :=A{1,...,7}.

Definition. Fix some finite set A and let (h;)i<j<|4) be a family of exchangeable functions such
that hj : T7¢ — R. Then for any partition = — A, we denote

[The:(@TH* >R

Pen
such that
[[hre@) =] hp "),
Pem Pem
where for z € (T4)4
a¥ = (21 )kep-

Note by exchangeability, the order of the zj, in ¥ doesn’t matter.

Definition. For any partition 7 I j where m = {Py, ..., P}, by

2

(iP)PET\'

Sip=i
we denote that the sum is over all choices of ip,,...,ip, € N such that > p._ip = 1.
Our first results are on the existence and representation of the perturbative approximation.

Definition 1.1. Let T = {(i,j) e N> : 1 < j <i+1,j > 1}. We define an ordering on T by saying
(,7) < (a,b) if
i <aorbothi=aandj=b.

Proposition 1.2. Suppose the initial distribution f € L*(T%) and the interaction K € L*(T?%).
Then there exists a family of functions gj- e L ([0,00), L*(T4)) n L2 ([0, 0), HY(T/?)), where

je{l,2,...} and i € {0,1,...} so that gg» solve the equations (2.4)' with initial data (2.5). More
so, the gg» have the properties:

n the linked equation, the operators Hj, and Sk,¢ appear. These are defined below in Definition 2.1.



1. For (i,5) ¢ T, g = 0.

2. For (i,j) € T, the equation for g;- depends only on the g5 with (k,£) < (i,5) under the ordering
onT. More so, the equation is linear in g;- for (i,7) > (0,1).

3. g? = p, the unique solution to the McKean-Viasov equation (1.4).
4. Assuming Property 1, these solutions are unique for fized f.

The functions gj— at this stage are somewhat opaque but are the natural perturbative expansion
of the cluster functions g; v, as will be made clear in Subsection 1.2.

Theorem 1.3. Suppose the initial distribution f € L?>(T?%) and the interaction K € L*(T??). Then

let
fi=2 2 1l (L5)

7151 (ip) per PET
Sip=i

where the g; are as in Proposition 1.2. Then

J J
atfjl - Afjl == Z Vay, - jK(gjkv‘/E*)f;’Jrl(vafE*)de* - Z Va, - (K(fnk,xé)f;'il)
=1 ki=1

J
+5 D Vay - JK(xk,x*)f;;}(x,x*)dx*, (1.6)
k=1

where we take the convention f;l =0 and the f; have initial data

) R 4 —
fi-(o,-)={fj .

0 1= 1.

In particular, we have
£ =%,
where p is the unique solution to the McKean-Viasov equation (1.4).

The case of ¢ = 0 in Proposition 1.2 and Theorem 1.3 is just the usual setting for propagation
of chaos: ¢¥ = p and f]o = p®. See Remark 1.13 for an explicit representation of the i = 1 case.

We note that the equation (1.6) is what one gets from formally expanding f;n = Y0y N~ ]’f,
plugging the right hand side into the BBGKY hierarchy (1.3), and collecting orders. Thus we
expect any f; solving (1.6) to be such that

fin =D, N Oo(N—+),
k=0

Theorem 1.3 gives an explicit representation (1.5) of solutions f; to (1.6). Further, properties 1
and 2 of Proposition 1.2 ensure that the expression (1.5) for f; is computable in terms of the finite
collection {gf : k < 4, (k,¢) € T} which depends only on i, not on j or N. That is, in order to
compute f]’: for any j, one only needs to solve %(z +2)(i + 1) equations.

The main result of this paper is then to show that the f; as constructed in Theorem 1.3

appropriately approximate f; .



Theorem 1.4. Suppose f € L®(T9), K € L®(T?%), and there exists m > 0 such that that f = m.
Then for each i € N, there exists C(| K| o (2q),i) < 0 such that for any N and any j with

j< C—le—Ct2N2/37

we have the bound

fin = Do NEFF P
e

1 >2(i+1) 7)

p dx e\ v

J

with the f]k given as in Theorem 1.3.

Remark 1.5. We note that in the above theorem we require f € L®(T¢) and f > m > 0, but
neither the L® norm of f nor the strict lower bound m show up in the constant C'. Thus these
are only qualitative assumptions. We need these assumptions to make sense of the PDEs under
study. For the well-posedness of the McKean-Vlasov equation as well as the Kolmogorov equation,
the assumption that f e L®(T9) is used (in that it implies f € L?(T%)). Additionally, in order to
show the result, we must repeatedly deal with terms involving p~!; for example taking derivatives
of them or integrating by parts against them. We thus really would like p~! to live in a reasonably
nice space, e.g. p~' € L, so as not to cause issues in the computations. Since we are working on
the torus and the McKean-Vlasov equation is diffusive, one can show for all positive times that p
is strictly bounded away from 0, but if the initial data f does not have such a bound, then this
breaks down as ¢ — 0. Thus we require the lower bound on the initial data f = m > 0, despite no
constants depending on this m. Similarly, to get all of the integrals to be clearly finite, we need
f e L®(T%).

As these assumptions of f € L®(T?) and f strictly bounded away from 0 are purely qualitative,
they are very soft restrictions. One may suspect that they should be able to be easily removed,
but doing so while preserving all of the estimates on the equations is somewhat non-obvious. In
any case, such an argument would be highly technical and distract from the main point of this
paper. The authors plan in forthcoming work to use more probabilistic techniques to prove L?-
based propagation of chaos without these assumptions—in particular allowing the domain to be R¢
in order to cover the second-order in time case, in which case no uniform positivity of the initial
data is possible.

Remark 1.6. For i > 1, the L:-type distance between f; y and 22:0 N_kff bounded in (1.7) is not
a chi-squared divergence, hence does not bound the relative entropy. Nevertheless, an application
of Holder’s inequality implies that under the same conditions of Theorem 1.4,
i Nk gk ceCt( I\
e S, sea(3)”
HfJ’N Z T3 HTV N

Remark 1.7. We note that in the ¢ = 0 case, Theorem 1.4 gives the estimate

VR | %) < Ce¥'

showing convergence in chi-squared divergence (and hence in relative entropy and total variation)
with optimal rate in N 1.

Remark 1.8. A simple argument shows that the rate

j fin = Do N7FfE

p®j

2
0% do = O(N*%‘H))




is optimal for some fixed j and 4, provided the next order correction f;“ is not identically zero. It
is not completely straightforward to construct examples for which one can show that f;“ # 0 for
some j, but it would be extremely surprising if there were no such examples. If that were the case,
there would be some i, such that for any f and K, we would have f; = 0 for all ¢ > i, and all j.
In particular, this would imply that f; v — ZZ*ZO N—F fj'? vanishes faster than any polynomial rate
in N1

Remark 1.9. Throughout this paper we assume that the initial data of f; y is completely ten-
sorized, that is f; n(0,-) = f®7. As is usual, we don’t strictly need this to be true; one can show
the same bound (1.7) at order 4, provided for all j, the initial data f; n(0,-) € L®(T/¢) and satisfies
the quantitative bound

for some Cj independent of j. Of course then the constant C' of the bound (1.7) would then depend
on Cy. We omit this argument as it adds notational complexity without adding any real content.

fin(0,-) — f®i 2
f®i

199 o < C'o(%)wﬂ),

Remark 1.10. We note the restriction j = o(N 2/ 3). This is not very constraining, and still shows
strong bounds along a broad class of simultaneous limits of (j, N) — (00, 00)—these simultaneous
limits are sometimes called increasing propagation of chaos [BAZ99, MMO1]. The restriction is
however worse than in [Lac23], which allows j = O(N). This restriction originates from the prefac-
tor Z{,—Z that appears on a term in the fundamental energy-type estimate given in Proposition 3.3.
We need the prefactor of this term to be O(1) in order to not cause growth when the hierarchy of
differential inequalities is iterated, thus we give the requirement that j = O(N 2/ 3). The time decay
in the upper bound on j, that j < C~1e=C” N2/3__and hence that j = o(N?/3)—then comes from
the iteration of a short time argument which requires us to restrict to a smaller set of j on each

iteration.

Remark 1.11. Theorem 1.4 in particular implies that for fixed j

in TV
N(f]JV _p®]) - j17

and similarly for the higher-order f; This justifies that the f; are the natural next order corrections.
We note that due to the N-dependence of the higher-order corrections in [PP19], no such result is
available in their analysis.

Remark 1.12. The interaction K has not been assumed to be symmetric nor has K(z,x) been
assumed to be 0. In particular, we allow

K(z,y) = b(z) + K(z —y)
where b is a drift affecting all particles and K is a translation-invariant pairwise interaction.

Remark 1.13. In order to make the general higher-order corrections more concrete, here we
explicitly give the first-order corrections: the gjl- and fjl. All the gjl- = 0 except j = 1,2. Letting p



be the unique solution to the McKean-Vlasov equation (1.4), g% solves the equation

Orgs — Ags + V- fK(wy ) (p(2)93 (Y, 25) + p(24) 95 (2, y)) dzs
1, ff«y, ) ()b (2 24) + p(e)gb (2, )) dity

=Vg- JK (@, z)p(z4) p(2)p(y) dzse + Vy - JK (y, z:) pz) p(2) p(y) dazs
— Ve (K(z,9)p(x)p(y) = Vy - (K(y,2)p(2)p(y)).

The equation for g} is

09t~ 8gh+ 9 - [ K(,2) (g} 5)p(o) + pla)g @) da
=V | Ko (pa)ota) = gh(o,20)) do = V- (K (. 2)p(0)).

Then for any j, fj1 is given by

J
fjl - Z g1 () p2U =D (2116 4 Z gs (@, 20) p®U =) (1R}
k=1 1<k<(<j

We note that the equation for g} only depends on p, the equation for gi only depends on p and g3,
and fj1 is computable for any j in terms of the three functions p, g}, and g3.

1.2 Overview of the argument

We first introduce the motivation and construction of the higher-order corrections f; through
the cluster expansion and perturbation theory. We then explain the L? analysis of the BBGKY
hierarchy that allows us to prove the bound (1.7).

1.2.1. Higher-order corrections to propagation of chaos. One formal argument for propagation of
chaos is given by discarding terms of order N1 in the hierarchy (1.3), which gives the hierarchy

{atf_;') - Afjo = _Z£=1 Va,, - SK($k,x*)f;)+1(x,x*)dx*v
f_70<07 ) = f®j7

where the notation f](-) is due to the fact we are only keeping track of terms to Oth order in N1,
One can then note that f](-) := p%/ is a solution to this system. Thus the tensor product p®’ is
formally the Oth order term of a perturbative expansion of f; y. We are then interested in the
higher-order terms of this expansion, so we formally suppose

e}
fin=Y,N"f}. (1.8)
i=0
Collecting orders of N1, we get that f]’: solves the equation (1.6). We note that for each i, this is

an infinite hierarchy of equations in j, with forcing depending on { f;il : j € N}. It is not at all
clear how to directly construct solutions to these hierarchies.



To solve this problem, we introduce the cluster (or cumulant) expansion. That is, we express
the f; ny in terms of a family of exchangeable functions gi v, ..., gn N, namely

fin = Z H9|P\N : (1.9)

| Perm

From this ansatz, one can deduce an inversion formula

gin = D3 O (a = DU T fippar(a®), (1.10)

(4] Per

which defines the gy v in terms of the f; . The BBGKY hierarchy (1.3) then induces the hierarchy
of equations (2.3) on the gi y. We can then take formal perturbative expansion of the gy y, writing

[ee}
gen = Y N7'gp, (1.11)
=0

and collect orders in equation (2.3) to get equation (2.4) on the g. Unlike the equations (1.6), the
equations for the g; can be inductively solved. Then plugging the expansion (1.11) into the cluster
expansion (1.9) and collecting orders of N~1, we formally find representation of the f; of (1.8) in
terms of the g;, as given in (1.5). Theorem 1.3 then gives that this expression for f; in terms of
the g7 actually solves the equation (1.6) we formally expect it to.

Remark 1.14. Note (1.7) gives that
fin =D NFfF+ o),
k=0

Inserting this approximation into (1.10) and using the definition of the ff, (1.5), one can show that

gin = >, N7FgF + O(N~(FD),
k=0

Since, as noted in Proposition 1.2 gj =0 for k < j — 2, we see by letting ¢ = j — 2 that
gin = O(N~U7D),

This shows that that g; y are small for all j > 2 and in particular allows estimates on the joint
cumulants of observables on j particles. That is, for any ¢1,...,¢; € C (Td, R) we have that

/i(gol(Xl,N(t)),...,gpj( JH% xk) giN(t, 21, ..., x5) d

< H lexlcollgsnlrv
k=1

— O(N~U=D),

where k(Z1,..,Z;) denotes the joint cumulant of Zi,...,Z;. Thus the results of this paper in
particular show the smallness of joint cumulants of observables of many particles, with a rate
getting very small as the number of particles gets large. We note that these estimates on cumulants
are related to the Bogolyubov corrections—a version of these bounds on the cumulants in the
context of second-order in time interacting particle systems conjectured by physicists [Bog60].



1.2.2. L? hierarchy estimates. We now sketch the L?-based estimates on the BBGKY hierarchy.
Fundamentally we are concerned with estimating the size of solutions to the hierarchy

1 N -
at'yj_A'Vj“‘N Z Vo (K (g, 20)75) + N J Z V- JK T, T )Vj+1(2, T) dvs = V-Rj, (1.12)
kl=1 =1

where the 7; have initial data 7;(0,-) = 0. In particular, for Theorem 1.4 we take for fixed 4,
i .
v; = fiN— Z Nﬁkf;
k=0

By construction, this v; satisfies (1.12) with an error R; such that R; = O(N~(*1). The goal then
is to show that v; = O(R;). This is accomplished by noting

d i+l |? @G P @i
- ®j it ®U+1) L]
dtf p@j‘ pe dx < 2]”K”Lw<j‘ G ‘ p dzdz J p@j‘ p dm)

2 e R:12 ..
+4—KLOOJ p@@\ P dm+2ﬂp7.]j‘ I dz, (1.13)

which is shown (see Proposition 3.3 for details) by directly expanding the time derivative on the left
hand side and using the equations solved by 7, and 0p®7 . This estimate is in many way analogous
to [Lac23, Equation (1-17)]. The bound is also used similarly. In particular letting 3 := 4| K|/%.

and ) R 12
~; _ . _
xj = f —p@;j’ 0% dz, rji= 2]‘—/)@)]].‘ %7 dz,

3
i < Bj(wjer — x5) + 5 3% + ;- (1.14)

(1.13) implies

In Proposition 3.6, we show that

r; < Ce Ct<]{7)2(2+1)’

where C' does not depend on j. It is worth noting that a more naive bound on r; would give
a suboptimal rate in j—giving j3*% instead of j2(*1)—but by taking advantage of certain L2
orthogonality, the above bound can be shown.

Now what remains to be shown is the r; are the leading order contribution to the size of the
xj. To see this, x; is controlled by iteratively applying Grénwall’s inequality to (1.14), which gives
an estimate of the form

-1
xj(t) < C’If(t) S%[;] zjre(s) +C Z I () ;{:2, (1.15)
se k=0

provided j + ¢ < N?/% and where the I f , defined in Definition 3.8, are certain iterated exponential
integrals. The [ f admit the estimates

-
() < <%) P peN. (1.16)
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By taking b = 2i + 3 and applying this bound we appropriately control the second term of (1.15),
namely

c Z [k+1 jTJJ:IZ: Ce0t<%)2(i+l).

The remaining issue is to bound I? 5 (t) supgeqo ) Tj+¢(s). In [Lac23], a simple a priori bound? on the
analog to zj; was available, giving that z; < Ckt. No such bound is available in our setting. The
best a priori bound we have is given by (3.4) which implies that x;, < Ce®**. Thus the best bound
of the remaining term that we have available is

s€(0,

For this, using (1.16) with fixed b is insufficient, as the exponential growth will always beat poly-
nomial decay. Instead, by optimally choosing b in (1.16), one can deduce the exponential decay

estimate
IL(t) < exp(—2e P710),  for j < e P71

By correctly choosing ¢ and constraining j, using this estimate one can show for sufficient small
times,

, i\ 20+1)
¢ . < Celluthttyy < o L
I;(t) szﬁﬁ] zjre(s) < Ce Ii(t) < C<N) .

From this, we then get for some t, and for all ¢ < t,, j < C~IN?/3,

J l’.‘zp@j dr = 7; < 0(%)2@“).

This is of course only a short time result and is essentially what is shown in Lemma 3.15. It turns
out one can essentially iterate this argument to get the result for all times, though substantial care
needs to be taken in propagating the correct estimates in time. See Lemma 3.15 for details.

1.2.3. Organization of the argument. In Section 2, we give all of the algebraic results of the cluster
expansion and perturbation theory as well as the qualitative properties of the perturbative approx-
imations. In Subsection 2.1, we introduce the cluster expansion and the hierarchy of equations
solved by the terms of the cluster expansion. In Subsection 2.2, we perturbatively expand the
terms of the cluster expansion and introduce the hierarchy of equations solved by these perturba-
tive approximations. We then use the perturbative expansion of the terms of the cluster expansion
to construct a perturbative expansion of the marginal densities. We then note the equations solved
by the terms of the perturbative expansion of the marginal densities. In Subsection 2.3, we supply
a proof of Proposition 1.2 as well as noting an additional important marginalization property of
the functions g; Theorem 1.3 is a direct consequence of the results of Section 2, as will be made
clear. Many of the proofs of the propositions stated in Section 2 will be deferred to Section 4, as
they laborious, elementary, and unenlightening.

In Section 3, we proceed with the analytic work of proving Theorem 1.4. We start by proving a
hierarchical “energy estimate” for the difference between f; y and its perturbative approximation
to finite order. The resulting bound can be viewed as a hierarchy of differential inequalities only
involving time derivatives. We then note basic estimates of the terms involved, though the proofs

2By a priori we mean that the bound is in some way independent of the perturbation theory and is rather just
an initial estimate of size.
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of these estimates are deferred to the end of the section, Subsection 3.3, in order to not distract
from the main analytic techniques for showing the L? bound. In Subsection 3.1, we prove estimates
on hierarchies of differential inequalities. In Subsection 3.2, we use the estimates of Subsection 3.1
together with the “energy estimate” to prove Theorem 1.4.
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2. Cluster expansions and perturbation theory

For the remainder of the paper, we suppress the dependence of f; y on N, simply writing f;. In
order to simplify the presentation of the algebra, we introduce abstract notation for the operators
appearing the in BBGKY hierarchy.

Definition 2.1. Let P € N u {#}3 with |P| < o0 and h : (T%)” — R. Then for any &,/ € P such
that k,¢ # =, we define
Speh s (THY - R

by
Skeh(x) == Vg, - (K (g, z0)h(x)).

Then, provided * € P, for any k € P such that k # =, we define
Hyh o (THP=H S R
by
Hph(zP~) .= v, - fK(a:k,x*)h(x) dzy.
With this notation, we can rewrite the BBGKY hierarchy (1.3) abstractly as

N
oufj — Afj+ ——2

1
D Hefjop + N D1 Skefj=0. (2.1)
ke[4] k. te[5]

2.1 Cluster expansion

We now introduce the cluster expansion of the f;.

Definition 2.2. Let g; : T4 — R be the exchangeable functions given by

gi= 2, (DM (x| =D ] s (2.2)

mH[7] Per

We call the function g; the jth cluster function of the distribution.

*Note here we are taking # as some index distinct from k € N. It will always be used for the non-local operator
Hy, for which it acts an index for the integration variable.
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Remark 2.3. We note the expression of g; in terms of the fj is analogous to the expression the
joint cumulant of a collection of j random variable in terms of their joint moments.

Although this dependence is suppressed, the g; depend on N through their dependence on the
fj- The g; are defined exactly so that the following expansion for the f; holds.

Z HQP

| Pem

Proposition 2.4.

This is a classical combinatorial fact frequently used to relate moments and cumulants of random
variables. The proof is found in Section 4.

Remark 2.5. The g; have the marginalization property that for any j > 2 and any 1 < ¢ < j,

jgj dxy = 0.

We don’t need this property, so we omit its proof. The argument uses the same elementary com-
binatorics as the rest of the proofs of the results of this section. We will however use the same
marginalization property for the terms perturbative expansion of the g, g;'-, which is noted in
Proposition 2.10.

By taking the time derivative of (2.2) and using the BBGKY hiearchy (2.1), we see that the g;
themselves solve equations, which we now give.

Proposition 2.6. For fized N, the cluster functions g;j, 1 < j < N, solve the hierarchy of equations

] .
—J j—1-|W|
0rg; — Agj = _T Z Higrjjoqsy + Z Z TN HRIw otk - (k) -w
k=1 k=1Wc[j]—{k}
N—j
i Z Hiegw o (k3 9110 ()W —{k}
k=1 WE[j]T-{k)
i .
j—1-—[W[-|R|
+ Z Z N Higw ok} 9RO () 9[- R—W — (k)
k=1wcl[jl-{k} Rc[j]- {k} w
1 j
Z Skegi — — Z DU Skegw o 9)— k- (2.3)
N2 kké =1 W] (k0
+

with initial conditions

f J:07
(0,-) =
9:(0:-) {0 j=1.

The proof of this proposition involves expanding out the g; in terms of f;, using the equations
for f;, and then re-expanding the f; in terms of g;. One must then carefully collect constant factors
before identical terms. We defer the unenlightening proof to Section 4.
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2.2 Perturbative expansion of the cluster functions

We note this subsection primarily consists of formal arguments, motivating the correct equations
for g;- and f; The actual analytic content of this section isn’t realized until we prove that this
formal perturbation theory gives good approximations to the true marginal densities in Section 3.
We are interested in computing solutions to this hierarchy perturbatively in N~!. Thus we now
take the perturbative ansatz for g;,
0
= Z Nilgé'v
i=0

where the gzj are assumed to be N-independent. Plugging this into (2.3) and collecting orders of
N~! we find that such g;- should be solutions to

drg; — g + Z Higly 9010510y Z Higi90s)
k=1
J 7 i—1

== 2 Hdhio = 20 2 2 Hegwom 9 —w—
k=1 k=1 Wc[j]—{k} m=1

J J i—1
+7 Z Hkgfib{*} + Z Z (] —1- |W| Z HkgWu{k *}gf;]li{n;
k=1 k=1 Wc[j]—{k} m=0
j i1
+3 )] Higiy 19510 (- w— (1)

i—1 i—1—-m

j
+>] G—1—[Wl=IR) > > Higi o 9ho 1901 e — )

k=1Wc[j]—{k} RE[j]—{k}-W m=0 n=0
J - J i—1 )
= D Skegy ' - Z Z 2 Skegiom G k- (2.4)
k=1 L1 WEL]— (k6 m=0

where we take the convention that g;l = 0 for any j and g, = 0 for any i. We also find that they
should have initial conditions
95(0,-) = { . (2.5)

0 otherwise.

Now that we have a representation of the perturbative expansion for the cluster functions gj,
we turn our attention back to the marginals f;. We seek a representation of their perturbative
expansion. To that end we write the formal expansions

0
ZNZf’ ZHQP—ZHZN"P AN DI I
| Pem j] Pemip=0 i=0 5] (’L’P')PE,{‘- Per
ip=1

Collecting terms by order, we get

=2 2 [l

1] (ip) pen PeT
Yip=i
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Further, plugging the perturbative expansion for f; = Z;’io N~ f; into the BBGKY hierarchy (2.1)
and collecting orders, we formally get

J J J
atsz' - AfJZ + Z ka[zj]u{*} =] Z ka[lﬁé{*} o Z Skvéf;_l'
k=1 k=1 k=1

Since the f; are defined in terms of the gﬁ-, which themselves solve equations, we need to check that
under our definition of the f;, this equation is in fact solved, as is given by the next proposition.

Proposition 2.7. Let f]’: be defined by (1.5) where the g;- solve the hierarchy (2.4). Then the f;
solve the hierarchy of equations (1.6).

Remark 2.8. Theorem 1.3 is an immediate consequence of this proposition and Proposition 1.2,
which will be proved in the next subsection.

The proof of Proposition 2.7 also proceeds by tedious but elementary algebraic manipulation,
so has been deferred to Section 4.

2.3 Existence and basic properties of the g;

As we will see in the proof of Proposition 1.2, g¢ will solve the equation

atgé — Agé + V- SK(az,x*)gé(x*)gé(a:) dre =0
9(1](07) = f

This makes gé special among the g§ in two ways, first it is the only g§ whose equation is nonlinear
in g; and second it is the only g;- with non-trivial initial data. We note that g§ is the mean-field
limit and its equation is the McKean-Vlasov equation. While existence theory for this equation is
well known, it is mostly done from the probabilistic perspective, showing the existence of solutions
to the associated McKean-Vlasov SDE, e.g. as in [MV21]. While the PDE existence can be deduced
from the SDE existence, in order to make this presentation more self-contained, we give a purely
PDE argument for the existence of solutions. The proof follows standard PDE arguments and so
is moved to the end of the paper, Appendix A.

Proposition 2.9. For f e L?>(T?%) and K € L®(T?%), there exists a unique p € C([0,00), L2(T%)) n
L2 ([0, T], H (T9)) such that

op—Ap+ V- S K(z,24)p(xs) p(x) dos

10(07 ) = .

For the remainder section we take p to be the unique solution to the McKean-Vlasov equation
given by Proposition 2.9. Now that we have a solution to the McKean-Vlasov equation, we can
prove that there actually is a solution to the hierarchy (2.4), which is the content of Proposition 1.2.

Proof of Proposition 1.2. The proof proceeds in two steps.

Step 1: We check that if we take g;- = 0 for all (i,7) ¢ T, then this does not contradict the
equations (2.4). That is to say, we just need to verify that if (¢,7) ¢ T, then all terms in the right
hand side of the equation for gg» involve gé? for some (k,?) ¢ T. This is easy to check for all terms
which do not involve products of the gé?. There are 5 terms which do involve products. We check
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the first term (in the order they appear in (2.4)), which already sharply generates the constraint
j =1+ 2, the others follow similarly. Consider

1—

Hygyw o (69151} —w— (i
for k € [j],W < [j] — {k}. Then the only way (m,|W|+ 1) and (i —m,j — |W|) are both in T is if
Wi+1l<m+1landj—|W|<i—m+ 1.

Simplifying and combining these constraints we find that j < i+1, which contradicts the assumption
that (i,4) ¢ T. The analysis of all other terms follows directly analogously.*

Step 2: Using Step 1, we will now make the a priori assumption that g§ =0 for all (¢,7) ¢ T.
We will inductively show unique existence for function g; with (7, ) € T using the ordering defined
above.

First, in the base case (0, 1), the equation for g0 reduces to the McKean-Vlasov equation (1.4).
Proposition 2.9 implies that there is a unique solution to g?, namely p.

Now, assuming that gf have been shown to uniquely exist for (k,¢) < (i,7) € T, we consider
the equation for g; We note that all the terms on the right hand side of the equation only involve
terms which are zero or satisfy (k,¢) < (i,7), while the terms on the left hand side are linear in g;
Standard parabolic existence theory (for example [LM72]) gives unique existence of a solution to
(2.4) in L2 ([0,00), HY(T9)) n L ([0, 0), L?(T¢)). This completes the induction. O

loc loc

Now that we have constructed a solution to the hierarchy (2.4), we wish to show that the g;
have the same marginalization properties as the g;. This is shown by inductively using the Gronwall
inequality, where the induction is done in the ordering on T'.

Proposition 2.10. For f € L*(T¢) and K € L*(T??), if g;- are as given by Proposition 1.2, then

for any i,j and any 1 < £ < 7,
. 1 i=0,j=1
de — ) )
fg] ‘ {0 otherwise.

ff;"ﬂ drjiy = f;" and f¢§+1 dzj1 = (‘0;

Thus

Proof. We will show this inductively using the order given in Definition 1.1. The base case holds
trivially since g = p is a probability density.

Fixing (i, §) such that (i, ) > (0, 1), suppose now that the marginalization holds for all g} with
(k,€) < (i,7). We define

(21, xjo) = fg;(a:) dz;.

Then integrating the equation (2.4) over z; we get

“In particular the first, fourth, and fifth terms sharply give the constraint j > i + 2, while the second and third
terms are not sharp
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Jj—1 Jj—1
o) — A+ 3 Hygly (a8 o N H () g
k=1 k=1

=1 ]
== 2 H Jgfj]u{*} dz; — > 2 fginvu{k}gw{*}—vv—{k} dz;j (26)

j—1 J— i—1
LI N [l dn e Y G WD Y [ ool o o 20
m=0

k=1 k=1wc[j]—{k}
7j—1 i—1 '
EPIDIEDY kaginvu{k}gfﬁi_{ﬁwm @ (28)
F=1 W[l (k) m=0
7j—1 i—1 i—1-m )
+ (J—1=[W[-I|R]) >, Hi fg%u{k}gﬁu{*}gfj_]l};v"{k} dz;
k=1 WwWc[j]—{k} m=0 n=0
Re[j]—{k}-W
Jj—1 7 - j—1 7 i—1
SN ERIAEED ) %, | St ol i 29)
k=10=1 h=1(=1 WE[j]~{k,0} m=0

where we’ve used that

for any function h. Both sums on line (2.6) are equal to zero by the induction hypothesis as all
the superscripts are larger than 1. The induction assumption also implies that the first sum on
line (2.7) equals 0 when ¢ > 2 as then the superscript ¢ —1 > 1. When ¢ = 1, it also equals 0, but
instead because g[oj]u{*} =0as |[j] U {*}| = 2.

The second sum on line (2.7) will be shown later to cancel with the first sum on line (2.9), so
we skip it for now.

For line (2.8), we note that all terms in the sum corresponding to 0 < m < i — 1 equal zero by
the induction hypothesis. We are thus left with

j—1 ,
DV VR

7l
k=1Wc[j]—{k}

1 i—1 0
U{#}—W—{k} dxj + Hy ngu{k}g[j]U{*}—W—{k} dz;.

The terms in this sum can be broken into two cases, either j € W or j ¢ W. If j € W then
W U {k}| = 2, thus g%/u{k} = ( and

jgé;b{k} dz; =0,
thus all these terms equal to 0. When j ¢ W, then |[j] U {+} — W — {k}| > 2, thus by an analogous

argument all the corresponding terms equal zero as well. This shows that line (2.8) equals zero as
well.
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We have so far simplified the entire equation to

Jj—1 J
o) — A+ Y Hygly (el =100 o N H () g,
k=1

k=1
= Z Z (] —1—|W]) Z ijgWu{k‘ *}QE;] {rr; Wd:Ej (2.10)
k=1wclj]- m=0
Jj—1 —1 i—1—
+ (j—1—|W[—I|R]) Z Z Hy, ngu{k}gRu{*}gf] o {k} dl‘j (2.11)
k=1 wWclj]l-{k}
Re[j]—{k}-W
-1 3J .
-2 2 j Skeg; " daj (2.12)
k=1¢=1
-1 3
N Z Z Jskégvvu{k}gj {} w4 (2.13)
k=1(=1Wcl[j {ké}m 0
k#L

First we claim that the sum (2.10) can be reduced to

j—1

1—1
2 Heg oy
k=1

This is clear when j = 1. Using the induction hypothesis when 0 < m < i — 1 we reduce (2.10) to

Z >, G-1-w)) (Hk Jg(v)vu{k,*}gfj]l_{k}_w dz;j + Hy, J‘g%ﬁ/kl){k,*}g?j]{k}w dmj)
k=1Wc[j]—{k}

Since |W U {k, }| = 2, gé;i{k 4 = 0 hence this further reduces to

Z > G —1—|W])H; Jgévb{k,*}g%]_{k}_w da;
k=1Wc[j]—{k}

The integral
i—1 0
fgWu{k,*}g[j]{k}W drj =0
unless W = [j — 1] — {k} hence

= . i—1 0
Z_: %: {k}U -1 |W|)ka9vvu{k,*}9m{k}w dej = Z ka 91101905 45

7j—1

= D Hgl ey
k=1

as claimed. This cancels exactly with (2.12) since if ¢ # j then



while when £ = j exchangeability implies

js’“’jg;'l dzj = Hygp; o pay-
Similarly, we can reduce (2.11) to
j—1
> 2 Z Hig oy 9011 - w ooy
k=1Wc[j—1]—{k} m=0

Indeed, if j € W or j € R then either

jg%u{k} dxj =0 or Jg%u{*} drj =0

respectively. When j ¢ R U W the integral

unlessi—1—m—n=0and RuW = [j — 1] — {k}. Thus

-1 i—1i—1

SN G W) XX e [ afomsh s T 4

k=1 WE[j]-{k} RE[j]—(k}—W

j—1
= 2, G-1-(-2) Z Hy fgwwk}gf Wyt 9y 4
=1 W1k}
j—1 i—1

- 2 H’fg%u{k}gff— 1-W—{k}o{s}" (2.14)
This then will cancel with (2.13). To see this not that when ¢ # j,

fsk € 9171 - w 45 = 0

since if j € W then |W u {k}| > 2 and if j € [j] — {k} — W then |[j] — {k} — W| = 2. The sum
(2.13) thus reduces to

1—1—m

f Sk 9W ok} 9151 1) w i

j—1

E=1W

which is then equal to (2.14) by exchangeability, so the terms cancel exactly.
We have thus shown that

cli]—{k,e} m=0

j—1 j—1
o) — A+ Y Hygly (el =170ty 4 N E gl ) = 0.
k=1 k=1

The claim is then completed by a Grénwall argument on |||?,(t) using that #(0,-) = 0. Using
the marginalization of the g; to give the marginalization of the f;» and the @5 18 direct from the
definition (1.5) of f]’ and then the definition (3.1) of gpz O

19



3. Hierarchy bounds

For this section, we let gg» be the unique family of functions solving (2.4) given by Proposition 1.2.
We will also need the stronger assumptions on f throughout, namely that f € L® and that there
exists m > 0 such that f > m. Given these assumptions, we note that by basic parabolic theory
applied to the McKean-Vlasov equation, since the initial data is upper and lower bounded, we get
that p+p~' € L® ([0,00), L®(T%)). Additionally, using the Liouville equation and marginalization,

loc

we see that f; € L ([0,00), L*(T?)). Similarly, using the equations for the gj-, we see that gj- €
L ([0,00), L*(T?)). We omit these arguments as they are standard, and we only need these bounds

qualitatively to ensure all the integrals are finite.

Having constructed the g;- and f; and shown basic properties of them, we are now prepared to
show the main result, which appropriately controls the error between f; and its approximation to
order i. First let’s introduce some more notation.

Definition 3.1. Letting f;f be defined by (1.5), we let
- Z NFf (3.1)

R;- = N2+1 Z er ® Z jK ﬂjk,lﬂ*)f[ ]U{*}d$* - (xk,ﬂfz)f;
k=1

Remark 3.2. The tensor product notation used in the definition of R;- is given such that

V- R

1 J J . .
= N Z Vi Z JK(mk,x*)f[j]u{*}d:E* — K(xk, z0) [,
k=1 /=1

where V- denotes the divergence on TJ9.

One can readily check using the equations the f]’: solve that <,0§- solves the following equation.

. J
(9t<p§- - Agoz- + NN J Z Va, -JK(mk,x*)gpé»H(x[j]u{*}) dx, + % Z Va, - (K(l‘k,iﬂg)(p;) =V R;
& ki=1

(3.2)
We now show the essential L? energy-type estimate for difference <,0§- — fj. We note that at
t=0, gpz- = f;, so this estimate allows us to control the size of gpz- — fj for t > 0 by a Gronwall-type
argument. We also give a somewhat brutal bound on the growth of f; that doesn’t depend on ©5-

We will use this brutal bound to “close” the hierarchy.

Proposition 3.3. Suppose f € L®(T?%), K € L*(T?%), and there exists m > 0 such that f = m
Then letting

;= @5 — fis

we have that

®j J+ ®(j+1) _ || ,®
il \p@] o da < zynKnLoo(ﬂ st | 2 doda = [| 25 dm)
J vE2 R 2 _.
4mK%wﬂp@’j‘ Py dm+2f‘p7.]j‘ 0% d. (3.3)
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We also have that
f’ ‘ P2 dr < 12§ K |2 f’ Ji ’ p® dz. (3.4)

Remark 3.4. Note the interesting—and essential—property of this estimate that all constants are

independent of p.

Proof. For notational simplicity, let us fix ¢ € N and drop the 7 dependence, writing v; for ’y; We
note that v; solves the equation

J
)41 (2P da, +— Z Vo - (K(zg,20)7;) =V - Ry,
k=1 ké 1

at’}/j — A’Vj +

where R; = R; We also have that

0ip®7 — Ap®7 4 Z V. fK Ty Ty ) p(24) dz g p® = 0.
k=1

We then compute

d 712 g} /7j2' ®j

N g :

p®J

2 _ J
+ va@]] -kgzlekK(xk,xg) —QV Rj

+2g V% -Vp ®3—2% V% Zeka Ty Ty ) p(24 ) dy p®7 dex.
pI p®I -

We note that - -
Qivy_1J  _ P ¥ ®jJ
PV o7 VY P VP

Thus
J V% -V +2p%V% V& dr = -2 J‘V ’p®3d:n

We then group terms,

A i V5 [P @i
at ) o ——2ﬂv@-\p dz
j
- < ’Yj+1 O ®j

—Q—JV Z eij (Tg, Tx)p (a:*)da:* P p®] dx

2 ; , . R .
+ — fvlﬂ . Z ekK(a:k,xg)%p@ dx — 2JVV—j. . p@]jp@ dx.
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Thus applying Young’s inequality, we see that

: 2
4 7] dx\2jf‘fK X1, Ty) i+ —l)p(az*)daz* p

i ®
dt PBGHD B du

+4 K%oojp@]jdx+2f‘p7.]j‘ %7 da.
We then note that by Holder’s inequality,

Vi i 2
| K wrwo (i - 25 ) ot e

Vi+1 Y \2
< [ Ktovwa2oten) do [ (225 = 25V ptan) o
Y 2 V; ’Y

2 Yi+1 |2

where we use Proposition 2.10 for the last line. Combining this with the previous inequality, we
get (3.3). Turning our attention (3.4), we note that repeating that above computations with f; in
place of v;, we get that

.3 2
®j J k2, | e

d 32 . fi+1 i 2

Then we note that

f & ) 5

| Kwrm (S = 25 ) oo de| < 1K (555 + 25 | o1 de) = 21K
Thus

d sz ®j fJ ®j

o [ e < il [ e ady e [ 2 e < veiiape [ L an
giving (3.4). O

With the energy estimate (3.3) in hand, we now need to understand how to bound hierarchies
of differential inequalities of the above sort. This is the focus of Subsection 3.1. Before that though,
we need to note bounds on the terms involved. The bound given by Proposition 3.6 is essential
for estimating the contribution of the remainder terms of (3.3); the bounds of Proposition 3.5 will
turn out to be useful as well for somewhat subtler reasons. We defer the combinatorial proofs of
these bounds to Subsection 3.3 so as not to distract from the heart of the argument.

J

Proposition 3.5. Suppose f € L°(T9), K € L*(T?%), and there exists m > 0 such that f > m
then there exists C(|K|p»,1) < o0 such that

Hp@
jw_
p

&7

I dr < C’eCt 2

and so

P dx < CeCl.
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Proposition 3.6. Suppose f € L®(T9), K € L*(T?%), and there exists m > 0 such that f > m,
then there exists C(|K|p»,1) < oo such that

7|2

f i)

G\ 2(+1)
- )

® do < Ct<_
pdr < Ce N

Remark 3.7. We note that the j dependence of the above bounds is a consequence of certain L?
orthogonality implicit in the definitions of the f;, which in turn is a consequence of the 0 marginal-
ization property of the g;- noted in Proposition 2.10. Without exploiting this L? orthogonality, one

can derive similar bounds but with worse rates in j. This then propagates to worse rates in j in
Theorem 1.4. Thus the marginalization property of Proposition 2.10 is essential to getting good
bounds in j.

3.1 ODE hierarchy estimates

We now consider passing estimates on hierarchies of differential inequalities of the form (3.3). By
repeatedly applying the Gronwall inequality to the hierarchy, iterated exponential integrals appear.
We introduce the following notation for these integrals.

Definition 3.8. For 3 := 4|K|%., let

I]lf(t) — Bé (](jf; 1 —B]tf f f BZk 25k o B(j+£—1)s1 d81 ng,

where I?(t) := 1 by convention.
The I f are related in the following way.

Proposition 3.9.
¢
ﬁje_ﬁﬂfo eﬁjsljﬁl(s) ds = I]“l(t).

Proof. If £ = 0, we see that

t t
ﬁjeﬁjtfo eﬁ’sI]QH(s) ds = Bjeﬁjtfo PUt1I=s1 gg) — I}.

Otherwise, we compute
Bje Pt f eﬁm“[jﬂ(seﬂ) dspiq
0

: | t s s
_ﬁ”lweﬁjrﬁf eﬁjsmeB(j+1)sz+1f“1...f F BTl sk US4 dsudse.
0

(—1!
BHl (j ~|—(f +1-—1)! _Bit J jszH js gyt st BUHH1I-1)s1 dsy - dsyi
j—1!
— 1)
] )
as desired. n

It is prefactors of I f (t) that will give sufficient decay when iterating up the hierarchy to prove

the bounds we require. As such, we need to understand how the I f decay as £ gets large. The
following proposition is the first such estimate and follows from a simple induction.
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Proposition 3.10. For any j,£ € N and any b e N,
Jj+b
1o < (20 o

Jj+L
Proof. We note that for any b > 0

t sy S92 ’ )
J j j E_sz:QSkeﬁ(]J’_é_l)sl dsl dse
j J J BZk 2 Sk Js eﬁ(j-ﬁ-f—l-i—b)sl dSl . dse
< sz 25ke B(j+L— 1+b)82d .ds
B(j +€— 1+b) J j J sarase

YL s [ Bl g
5(]+€—1+bff f - fe dsy - dse

1
<o < B(j+b)t eBl+b)t g—L
‘ Hﬁj+€—z+b) 4 H]+2~I—b

Thus, for b € N, exploiting cancellation in the product,

) < eﬁbtl_[ Jti (J + b>beﬁbt7
]+Z+b j+4

allowing us to conclude. O

For some of the estimates, the above polynomial decay will be sufficient; for others, we will
need an exponential rate of decay. This exponential rate can be found by simply choosing the
polynomial power b optimally in a time dependent way, as the below proposition shows.

Proposition 3.11. For any j,£ € N and for any t = 0, if

then
7 —2B8t—1
I j (t) < exp( pi= 0).

Remark 3.12. The above proposition is analogous to [Lac23, Proposition 5.1], although with a
different proof using elementary techniques.

Proof. Let
§ = L7281

w

We note that
< j <o,

thus [0¢] < 2¢. Then, letting b = [§/], by Proposition 3.10 we have that

¢ J b\ gy (6] 2856t st
') < (j+ e> < (36)1916289% < ox s (§0(28t + 10g(36))) = e,

where we use that by definition
26t + log(30) = —

Plugging the definition of § into the bound, we conclude. O
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Now that we have some control on the I f , we are ready to bound the hierarchies of differential
inequalities. The following is the first step to getting the correct bound, given by inductively
applying Gronwall’s inequality and using Proposition 3.9. The first bound (3.5) is sufficient to give
Theorem 1.4 for short times, but the second bound (3.6) is necessary to get the result for all times.

Proposition 3.13. Suppose xi = 0 satisfy the hierarchy of differential inequalities

& < Bk(ogxp1 — xk) + 7

for some ri, a = 0 constants. Then we have the bounds for any j,£ € N, for any t = 0

1 - itk
(t) < ASIE(t = AR () 3.5
33‘]( ) j ]( )SEE)I;] 33]+€ 5 g aj-i—k(j T k’)’ ( )

and for any ty = 0,t = to,

xj(t) < Af]f(t —to) sup xjie(s Z A +€ W) IRt —tg) sup zj40(s)
s€(to,t] s€[0,to]

14 Tjt+k

AkHIkH " It ’ 3.6
Z ()Oéj+k(3+k) (36)

where
j+k—1
21T
i=j

and we take Ag =1 by convention.

Proof. We note that by Gronwall’s inequality,

¢
. : re
zj < ﬁajjeﬁjtj eﬁjs<x]~+1(s) + -2 ) ds.
0

Note that
aj A, = Al (3.7)

We first prove (3.5). We prove this bound inductively in ¢, for all j. For ¢ = 0, the bound is direct
from I]Q (t) = A(])- = 1. Then inductively, we use Gronwall’s inequality together with the inductive
hypothesis to give that x; is bounded by

. _Bj Ti+1+k Ty
B(Jé'je ﬁjtf ﬁjs(Aé 1[( 1 sup Z Ak-‘rl[k-i-l J _ + ) ds
’ 0 rliile) refog Z prli aj+1+k(] +1+k)  Bajj
t
e . _ Tivk
= fBje Bﬂf 66]5<Aé-[£ L(s) sup xo(r E AkHIk ]7) ds,
0 J ]Jrl( )re[O,t] Jt+ J-‘rl( )ajJrk(] I k)

where we use (3.7) on the second line. The using Proposition 3.9, we get (3.5).
We now turn our attention to (3.6). Again we prove it inductively in ¢, for all j. For ¢ = 0, it
is again direct from I]Q(t) = A? = 1. Then inductively, we use Gronwall’s inequality then (3.5) to
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control the integral on [0, %] and the inductive hypothesis to control the integral on [tg,t]. This
gives

to
xj < ﬁozjjeﬁjtf ﬁ’sAﬁJijﬁ( ) sup x;ie(r)ds (3.8)
0 TE[O to]

+ 50@‘]'65th Bjs( Z AT g (o) 51" (s — to) sup ()
0

re[0,to]
+ AT (s — tg) : d 3.9
G+1d5+1 0) Sup :E]+g(7‘) S ( . )
T’E[to,t]
+5ajje_5jtf B]s( Z AR TR () Ttk LT ) ds. (3.10)
I aj+1+k(,7 +1+k)  Baj

We then note that top term (3.8) is equal to

e P AST (t0) sup @j40(s) < AT (to)I)(t — to) sup je(s),
s€[0,to] s€[0,to]

where we use (3.7), Proposition 3.9, and the brutal bound e Bilt=t0) < 1. Then the middle
term (3.9) is equal to

‘ 0 ' {—1
ﬁjeﬁmt@)j eﬁj(sft0)< Z A;Iﬁé_k(to)[fﬂ (s) sup xjqe(r) + Ag[fﬁ( ) sup xj+g(r)) ds
0 k=1 re[0,t0] relto,t]

= Z A +Z & (to) I “F(t—tg) sup xjp(s )+A§If(s) sup Zje(s),
s€[0,t0] s€(to,t]

we we again use (3.7) and Proposition 3.9. Lastly, we note that the third term (3.10) is equal to

/-1
1 itk
ﬁZg A PRy

where the computation follows exactly as in the proof of (3.5). Combining these three equalities
we get (3.6). O

Note. We remark that we take a very rough bound in the above argument, taking e~ #7(t=t0) < 1.
In other applications, one may wish to avoid taking this bound, but in this application, we will be
interested in ¢ — ¢ very small and supyepg ] Zj+¢ already O(1), as such we won’t need the extra
decay this exponential provides. Thus for simplicity, we discard it and get the above proposition.

We now can apply the exponential decay bound given by Proposition 3.11 to (3.6) to give the
following.

Proposition 3.14. Suppose xi = 0 satisfy the hierarchy of differential inequalities

& < Bk(ogxp1 — xk) + 7

for some ri, ap = 0 constants. Then for any 0 < tg <t and j,f € N such that

j<e 276 (3.11)
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we have the bound

z;(t) <A§’. exp(—e~28=10)=3p) gup ijrz(S)+A§e2ﬁt+7exp(_672ﬁt77€)

s€[to,t]

/-1

1 Tiik
S

EP I A AP ey

Proof. By (3.6), it suffices to bound
Ijz(t - 750) < eXp(—e_2B(t_t0)—3€)

and

Z A ok tO IZ k( tO) < e26t+7 eXp(—€_2Bt_7€).

sup x;1¢(s)
s€[0,t0]

The first bound is direct from Proposition 3.11 and the condition (3.11) on j. For the second, we

let
§ = Lo—2Bt0—1

12

and note that by (3.11),
j < tgem2hl=t) =1y,

Then we have that

)4
Z ekt IR (=) = Z Dyt t—te)+ > IF
k=|(1-0)¢|+1
Then, since for k€ {1,...,|(1 —0)¢]}, ¢ — k = 6¢ and
] < 1 72ﬁ(t to)— léf 72ﬂt 2£

we have from Proposition 3.11, using that I]’?M_k(to) <1,
[(1-6)¢
Z +z ktof Rt —to) < Z Iz}“t—to
exp(—ée—%“ R (0)
< exp(—%ée_w(t_to) 1y = L exp(—s5
Then, for ke {|(1 —§)¢] +1,...,¢},
JAHl—k<j+0l< te ol < Lem Py,
using the definition of ¢ and that (3.11) implies
j< 126—2&0—1&

Thus Proposition 3.11 gives that

Y l
Z I} (t0) I (= to) < Z If o (to)
k=[(1=6)0] k=[(1—6)f1

< Lexp(—ge 0TH(|(1 - 0)] + 1)) < Lexp(—

27
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Combining (3.12) and (3.13), we get

Z -k (to) IZ* (t —tg) < 2lexp(— 366 —2pt— 2€)
< 198628142 exp(— o—26t— 26) < 2847 exp(—e_wt_?ﬁ),

allowing us to conclude. O

3.2 Proof of Theorem 1.4

With the bounds given by Proposition 3.14 in hand, we are now ready to prove Theorem 1.4. The
heart of the proof is captured in the following lemma, which we will iterate to get the full result.

Lemma 3.15. Suppose f € L*(T?), K € L*(T??), and there exists m > 0 such that f = m. There
exists C(| K||p=,i) < 0 such that for any to =0, L > 0 with LN*3 < N and for any M > 1 with

(‘DiN2/3 — frnes |2 QLN2/3
sup ‘ p dr < M,

2/3
s€[0,to] P®LN /

then for 6 > 0 defined to be

1
§e2P0 = A1,
© T B[R]

we have for all j € N with
j < L€_2B(t0+l)_7N2/3,

and for all to <t <t + 9, the bound

j‘% i ‘ ®F dr < CeCtoJrLS((i)Z(i""l) N Ni{ﬂ)

2 —8i—1
= Z (L2N) )

Proof. We let ‘
O — Jk|?
Tp 1= f’ka’ p®kd$,
so by (3.3), we have that

3

k
ik < 4K Fok(tnr1 = an) + 4 KT Sz + 1o < Bh(aw@igs — @) + 7y

N2
where
k k+6—1
ozk:=1+ H i, Tk —2]‘ ’p®kdx
Then we note that
k4+£0—-1 k4+£0—-1 k4t (k‘—l—f)?’
log Af = log (1 2dr < .
og Ay = sz 0g<+ > Zz Lﬂx X N2
Thus, for k + ¢ < LN?%/3,
L3N?
Ay exp( E ) _— (3.14)



By Proposition 3.6, for all ¢ € [0,¢y + d], we can bound

T (t) < C’eCt<%)2(iH) < Cello <%)2(i+1). (3.15)

Then, for any
j < Le*Qﬂt077N2/3’

letting
we have that
j < e 2Bltot)=6y

so for any t € [0, §], we have by Proposition 3.14, (3.14), and (3.15) that x;(t) is bounded by

el exp(—e 280700730y gup Tpn2s(s) + el 2B(to+1)+7 exp(—e 2Pt D)=Tp) qup Ty n2s(S)
Se[to,t] s€[0,t0]
3
Ct k+1 24 +1
+ CeClo 5N2<z+1 Z I )G+ k) (3.16)
We note that by Proposition 3.10,
-1 —
Z I]l_chl( )(J+k)22+1 < eﬁ(2z+3 Z j+22+3 2z+3(j+k) 2 < CECtO 22+3j 72 < CECtOj2(i+1).
k=0 k=0 z=j
Thus o
L3 - , i\ 2(i+1)
Cty__ © k+1 . 2i+1 Cto+L3 ( J

Then we note that

_2B(t0+1)—7£) SUD T noss (S) < MeXp(_e—2B(to+1)—8LN2/3)
s€[0,to]

exp(—e

M((3(l + 1) +12 + 3/2)e2ﬁ(t0+1)+8L71)3(i+1)+12i+3/2
< - -
= (N2/3)3(z+1)+12z+3/2

CeClo M

N2(i+1) (L2N)_8i_1’

~

where we use that
_ m\m _..
e L (—) e ™.
a

Thus

eL3626(t0+1)+7 —2B(t0+1)77£) sup :ELN2/3(8)<C'eCt°+L3 M

< ——(L2N)~8 1L, 3.18
se[0,to] Nz(”l)( ) (3.18)

exp(—e
For the last term in (3.16), we need to control z; y2s(t) for t € [tg,to + 0]. Let

Jrnes ®L1\f2/3
yLNQ/S f‘ SLN2/3 dx.
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We note that by the triangle inequality

QDLNQ/S 2

Y N2/ (t(]) 23:‘LN2/3 (tO + QJ ‘W (t(]),()®LN2/3 (to) dx < CECtO M,

where we use that M > 1 and Proposition 3.5 to bound the term involving gp; Then we note
that (3.4) gives that
Jrnes < 12K |70 LN*Py; o,

thus, for tg <t <tg+9

(t) < el2HKHiOOLN2/3(tft0) < CeCtOMeHHKHQLwLNZ/%.

YLN2/3 yrn2s(to)

So

(’DLN2/3

2/3 2 2/3
Tpnes () < 2ypnes(t +2ﬂ LN QLN g < CeCto M2 Kl LNTZS,

Note that £ > j and j + ¢ = LN?%3_ g
(> 1IN,

Thus for tg <t <tg+ 9,
exp(—e28(—t0)=3p) s[up]a;LNz/a(s) < CeC M exp((12| K |26 — %6_266_3)[/]\[2/3)
selto,t
< CeClopg exp( —2p5— 3LN2/3)
where we use that by the definition of 4,

12| K708 < ge=2772.

Then
exp( —286— 3LN2/3) < exp(—e —28— 5LN2/3) N2g+1) (L2N)—8i—1_
Thus,
e’ exp(—e 2Et0)=30) sup 2 yas(s) < CeCt°+L3%(L2N)_8i_1. (3.19)

Se[t() 7t]

Then combining (3.16), (3.17), (3.18), and (3.19), we see that for any j < Le=2#%0~TN?/3 and any
to<t<ty+0,

Ciowrs [ F)20+D) M
j < Cer? ((ﬁ) N

as desired. n

(L2N) 7).

We now prove Theorem 1.4 by iterating Lemma 3.15. The main difficulty is controlling the
constants that appear in the iteration.

Proof of Theorem 1.4. Fix ¢ as in Lemma 3.15, so that

1
5e* = ——— AL
BT

Let Lo = 1 and let

Lip1 = lLkeizﬁék T— 25N2/3J 2/3‘
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We then claim inductively that for

F<LpN?3:. 0v (k—1)0 <t <kd,

JIH o < ()"

Bjs1 = CeC L1+ By(LEN) 7).

we have the bound

where By = 1 and

We note the bound is trivially true for k = 0. Then inductively, using Lemma 3.15 with ¢y = dk,
L =1L, and
M = By,

we get that for
j < Lk+1N2/3 < Lkef2ﬁ(k6+1)—7N2/3,

for 0k <t <6(k +1),

ﬂ% ®y dr < CeC (1 + B W(L2N) 5 1)<N)2(z+1) < Bk+l<i>2(z'+1)

9

N

Thus the induction closes.
Now we just need to control By, Li. First note that

Ly < Lp_qe 2000128 < [, 1 < < Lo =1,
and also that

Ly > Ly_qe 2800=1)=7-25 _ nr=2/3

k—1 k—1
> = exp (—(7 +28)k — 280 Z z’)Lo — N3 Z exp(—7¢)
=0 {=0
k—1
> exp <—(7 +26)k — 266 Y z> _oN“"23,
=0

Recalling Zf;oli = 3(k? — k), we have
Li, = exp(—(7 + 28)k — B6(k* — k)) — 2N ~2/3 > exp(—10(1 + B)k?) — 2N~2/3,
Thus, for &k < Cilm — C, we have,
IN"23 < < $exp(—10(1 + B)k?)

so that )
L > 3 exp(—10(1 4+ B)k?) = exp(—11(1 + B)k?).

Thus for k < C~14/log(N) —

1 1
—— < — 22(1 ) < N~Y2
N SN exp(22(1 + B)k) ,
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which implies that

CeCk

Biy1 < CeCF (1 + BR(LIN) 871 < 0 + N1

B < C(e“* + By).

Iterating this bound then gives
By < CeCF.

Therefore, for all k < C~14/log(N) — C, if
j <exp(—=11(1 + B)k*)L < Ly,
and 0 <t < kd,

ﬂ p@] ®] de < CeCk(J]\'[>2(i+1).

Choosing the optimal k, we get that for any ¢t < C~ \/W C,ifj<Ct exp(—Ctz)N2/3, we

get the bound
®] ol J 2(i+1)
j‘ p®? dr < Ce <N) .

This is almost precisely the result, except with an additional restriction on £. We note though that
the ¢t bound is superfluous as by choosing C' large enough, if t = Cy4/log(N) — Cp, then

Clexp(—Ct?)N?3 < 1,
so the result holds vacuously in this case. Thus we can remove the ¢ restriction and conclude. [

Note. We note by choosing the starting point of the induction Ly to be larger, one can slightly
expand the range of j for which one can prove the bound. This adds complication without being
of any particular interest, so we omit this argument.

3.3 Proofs of bounds on the g§, ;, and R;-

To bound the Ré- and f; we must first bound the g§ The following proof follows similarly to

Proposition 2.10, where we inductively iterate up the hierarchy of equations satisfied by g;- to find
estimates.

Proposition 3.16. Suppose f e L®(T9), K € L*(T??), and there exists m > 0 such that f = m
For all i = 0, letting ‘

~ 9j

g; = p&, (3.20)

there exists a constant C(|K|rx,i) such that
f@’;ﬁp@j dr < Ce“", (3.21)

Proof. We will inductively show this bound holds for (i,5) € T under the order given in Defini-
tion 1.1.
The bound trivially holds in the base case (i,5) = (0,1) since §9 = 1, thus

[ po® a1
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Assuming that for all (k,¢) < (i,7) the bound (3.21) holds, we group the terms on the right
hand side of the equation for g;- to write

J J
Ogs — DG + 3 Hedly 910 tsy—y + 2 Higljydly =V - F
k=1 k=1

where .
Fj = Z ik
k=1
with
= Z ek ®JK Tl T ) I )0 ) AT

i i—1
o= 2 L a® f K@k )91 0 091510 w1y L0
k=1 Wc[j]—{k} m=1

and the other FJZ i are defined similarly in the order of the equation (2.4). Taking a derivative we
find

2 i~ j (i
dtf|g]| ®7 = J20tgjgj—5tp®”(9j)2dw

—J2Ag§» — Ap®I (G ) da:+2fV-Ff§;-da:
j 0 . . j . 0 .
- QJ kZl Hrgy 910 51—y 95 9 = QJ kZl Hrg(97x95 12
j . .
+ JV . < Z ek ®Hkp®(3+1)> (§;)2 dx
k=1
A F! .
= —2j |V§Zj\2p®J dx — 2Jp—] . Vﬁ;-p@ dx
] . .
+ 2J ( Z ek ®jK Tk, Ty)Jf []]u{*} {k}P(l’*)dl’*> ’Vﬁljp@ dx
k=1
j
j

®] dx +2j f ‘ fK 21, 24)p(24) g [j]u{*} {1y 4

. Vﬁ;-p®j dr

. Vﬁ;-p®j dr

N— " —

2

] %7 da,

&J

<2f
p

where the last line follows via Young’s inequality. Using Jensen’s inequality

f‘fK l‘l,x* l‘*) []]u{*} {1} d:E*

2

¥ dx < f|K L1, T | ‘9] [lu{x}— {k}‘ p ®(+1) drdx,

< IK[ue | 1956 da.
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This has the form of a Gronwall term, thus all that remains is to bound the term involving F]Z
First we use the triangle inequality to bound

ﬂ ®J’P®]daz<CZf’ m’J’/J@]dx

The most intimidating term is ng which equals

i i1i-1-m
) Y G-1=WI=IR) D) D] JK(fﬂk,x*)g%u{k}gﬁu{*}gﬁ oW k) AT
k=1 m=0 n=0

weljl—{k} Re[j]—{k}-W

Using the triangle inequality over the sums and using exchangeability we find there exists a j
dependent constant such that

ﬂp@”‘p@]dm
i—1 i—1—m 2

<C Z ' ZO Z J’jK(fnly33*)WVU{1}%U{*}E~7Ej]l_}{fm7/1_{1}p($*)dﬂj* p®j du.
1} m n=

[] {1} w

We note that (m, |W|+1),(n,|R|+1), and (i—1—m—n,j—|R|—|W]|—1) are all less than (3, j).
We can thus bound

J 1] 5o on) BB iy dot)| 6 da
JUK (@1, 2%) Tk gy () Igwu{l}l N
KLOOJ|QRU{*}| |9WU{1}| i lRm;{f {1}|2 ®(+1) drdx,
= | K3 f |§?zu{*}|2,0®‘R|“ dx ot f |WVU{1}|2P®‘W|H daeW ot
y f|?-13m#{ }|2p®j—|R\—|W\—1 gzl R-W—{1)

<o [ ).
(ke

where the second inequality follows by Jensen’s inequality. Terms F 12 ; to F; 5Z ; are bounded similarly.

The bounds on Fﬁi’j and Féj are also straightforward and rely on bounding for W < [j] — {k, ¢}
integrals of the form

2 .
f [ o w3150 | 0%

HKHLOOJ|gWU{k}|2p®Wl+1deu{k}j|~z 1{:; 2% W glil= k=W

< CeCt sup f|g 2p% d
(k,0)<(%,9)
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All together these bounds imply that

ﬂp@

Thus, in total we’ve found that

P da < CeCt sup j\ge 2p®t d
(M (i,9)

dt2f\g]|2p®] da;<3jf\g]|2p®3da:+CeCt sup f\g |2 p®¢ dx) )
(k,0)<

Applying Grénwall’s inequality and inducting allows us to conclude, noting that j <1 + 1. O

With the bounds on gj- given by Proposition 3.16 in hand, we can now show the bounds on
]Z:, cpé-, and Ré- given in Proposition 3.5 and Proposition 3.6. Before continuing, we prove a useful
representation of the f;

Lemma 3.17.
= 2 2 2 AUIEI [T
Pc[j] =P (iq)qen Qerm
|P|<2i Dlig=t
ig=1

Proof. By the definition (1.5),

=2 2 |l
U'_[ ] (ZR)REO' Rem
Sig=t

Reo

Since gé? =0if £ > k + 1, the product

unless |R| < ig + 1 for all R € 0. Suppose that o corresponds to a nonzero product. Since
Y Rer iR = 1, we have that ig # 0 for at most ¢ sets R € 0. Thus it must be the case that

DUIRI< D ir+1<2

Reo Rem
ir7#0 ir7#0
Letting P = (J; ..o R, then |P| < 2i, 0 = 7u {{k} : k€ [j] - Q} where 7 - P, > i =i, ig > 1

for @ € mand iy = 0 for k ¢ P.
Re-indexing the sum which defines f]’: and using that g? = p we thus get the above claimed
representation of f]Z O

We now show the bounds on f; This will be a warm up for the more involved bounds on R;

Proof of Proposition 3.5. Using Lemma 3.17, and the definition of ?]Z] given in Proposition 3.16

Loy s 3 I

PCj] TP (i) ger QET
|P|<2i D=1t
ig=1
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Thus expanding out the sums

jfl] P dx = Z Z Z Z jn ngp@da;

PRC ] TP (ZQ Qen (ZW)WGT\' QET( Weo
Suppose that P # R, 7 = P, 0 = R, and i, iw = 1 where Q € m and W € 0. Then it must be the

|P, ‘R|<2ZUFR22Q i Y iw=i
case that
f xnaﬁ}’p@dazzo.

7,Q>1 iw=1
Q€7r Weo
Indeed, if z € Q € 7, but xj is not in R, then the marginalization given by Proposition 2.10 of gZQ

implies this. We thus find that in fact

[lAmw=x 5 58 (110 ]

m0=P (iQ)Qer (iw)wer © QET Weo
Hoélder’s inequality with Proposition 3.16 imply that

\P|<2z ZZQ i 2iw=i
’ HgQ ww P d:E < f|~2Q p®ICl 4@ x H f|"4W|2 SIW| g W

ZQ >1 iy =1
Qem Weo Qem Wen
Ct
< Ce™?,

where this constant only depends on i since there are at most ¢ terms in the products. On the

other hand |
Z 2 2 ) i< ) o<o”
Pc[j] m0=P (iQ)ger (iw)wen 7r,okP
|Pl<2i D=1t Siw =t

ig=1 iy =1

where the constant C' just depends on i. This completes the bound on the fjZ
The bound on gpé» is a direct consequence of this bound and the triangle inequality. O

Proof of Proposition 3.6. Throughout this proof, we somewhat abuse notation and denote

K« p(x jK x,y)p
First we note that

il Jo fi
S L L

Lemma 3.17 implies that

LSy sy [l

m=1 PC[j] 7P (ig)ger QET
|Pl=m 2iQ=i
ig=1
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Thus

fino /] N
I AD D YD M 12

m=1 Pc[j] m=Pu{*}(iq)qer Q€T
|P|=m—1 Dlig=i
ig=1
Using exchangeability we find

R’l
i)

p®i

)

®i g < — ZJ: K(zy,x )f[ij]u{*}dx — K(x x)L & dx
X N2(i+1) “ 1, L p®] * 1,4¢ p®] 1Y

i

2j J /] :
< Jemte J| 20 plan) ~ Ken ) | o o
21 2
Ng(H_l f‘ JK 331,3;* x* Z Z Z Z H ng dx ®‘7 dx.
m=1 Pc[j] m=Pu{#}(iq)qer QET
|P|l=m—1 Sig=i
ig=1
We first consider the second term. Applying Jensen’s inequality, we have
J‘JK(ml,JJ* () Z Z Z Z HgQde* %7 dz
m=1 Pc[j] n-Pu{x} (iQ)ger QET
‘P| mf ZZQ 7
ZQ>1
2i
ket 5 53 e
m=1 Pc[j] w=Pu{x}(iq)qer QET
|P|=m—1 D=1t
ig=1
2i
< 20 Z j‘K<xlax* Z Z Z HﬁZQ U+ dud,.
m=1 Pc[j] m-Pu{x} (ig)ger Q€T
|P|=m—1 Dlig=i
ig=1
We now fix m and analyze the term under the integral, expanding the square
J|K(x1,x* Z Z Z HNZQ U+ drda,
Pclj] mEPU{#} (iq)er QET
|P|l=m—1 Yig=i
Q=1
<X ¥ X N XN % [ 2P T35 T 020 dnda.
c[s] cli] m=Puf{s} o-Ru{x} (iQ)ger (iw)wes Qem Weo
\P| m— 1\R| m—1 Yig=t Xiw=i

ig=1 iy =1

Note then that unless P = R,

J|K Ty, x4 |2 Hg H g p®UHD dyde, = 0.

Qer Weo
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To see this, suppose P # R. Since |P| = |R|, then there exists p € P such that p ¢ R and there
exists 7 € R such that » ¢ P. We must have that p # 1 or r # 1. Let us suppose that p # 1, the

other case follows symmetrically. Then let S € 7 such that p € S. Then

f‘K (z1,74)| H g H g Wp®]p (z4) dada,
Qer Weo

= J|K(x1,x*

where we use that

Qer—{S} Weo

[ate #1510 i, = [ g, =0,

by Proposition 2.10, since ig > 1.
Using Holder’s inequality

f\K (21, 74)| Hg H g B+ dxda,

Qem Weo

1
< Il ( [ TTig o dxdw) ([ 1T o0 anas. )

Qem Weo

1 1
~ Il TT ([ o au?) TT ([l 2o ant)’
Qer Weo

Since ig < 4 for all Q) € m, Proposition 3.21 implies that

l l
<j|~zQ ®Qd:EQ> <J|§4W|2p®|W dr > (C«eCt)4i < CeCt.
Weo

Thus we always have that

Qem

f\K (21, x4)] H g H gW W o®I p(xy) dedr, < CeCt,
Qem Weo

We also have that for any P, R < [j] such that |P| = |R| = m — 1 < 24,

LI Y Y I

TPU{x} o Ru{*} (ZQ)QEW (iw)weo
ZZQ 7 ZZW i
ig=1 iw =1

Thus

p% p X)) drdz,

[JCEENIS S El

c[j] wHPU{*} (ZQ)Q(;,r Qen
‘P| m—1 ZZQ i
ig=1

< Z Z CeCt5p_R=CeCt< J ><C’eCtj2i_1,

Plj]  Rel) m=1
|P|=m—1|R|=m—1
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Putting it together, we so far have that

Ji=

All that remains therefore is to bound the second term above, which is somewhat more involved.

7

J i |2

5 S ple) — Ko ) 2
(=1 P

®] o 5\ 26+ 2j
,0®J dr < Ce ( > 4+ —

= NG p® dx.  (3.23)

Expanding pgj’ pulling out one of the sums then expanding the square, we get

. .2
J It
f Z(K x p(x1) — K(xl,xg))@]] &7 dx
{=1 P
21 J
< 2i le ; (K = p(x1) — K(x1,20)) Z[:] ZP( )Z %_INZQ p%7 dx
m= =1 T 1Q)Qer em
|P|=m ZZQ 1z
ZQZ

S IDIPY 2 )IEEDINE
Rc[j] =P o-R (iQ)ger (iw)weo

\P|:m\R|:m Sig=t 2 iw=i
ig=1 =1

< [0« ) = K(n,m) - (K« plon) = Klana) [0 [] o0 o (320)
Qem Weo
We then claim that
J(K x p(xy) — K(z1,20)) - (K # p(z1) — K(21, 1) H gQ H MV‘(/V &7 dg:
Qem Weo

< CeCt‘SZePuRu{l,k}(ngRu{l,Z,k}- (3.25)
kePURU{1,4} RcPuU{l,(k}

The bound by Ce®* follows by (3.22) as

U(K pln) — K(wn,a0) - (K = pler) — K(ern)) [ [ 5 T 0% dr
Qem Weo

1 1
<A4|K|%» H <f|~ZQ ®IRI 1 ) <f|’\/LW|2 ®IW| d$W>2 < CeCt,
Weo

Qem

Thus we just need to show that if if any of the above four conditions fails to hold, the integral is 0.
The integral and conditions are symmetric in ¢,k and also symmetric in P, R, so we just need to
check the two conditions. If £¢ P U R u {1, k}, then

[ ptar) = (a0 - (5 5 plan) = K orson)) [ 305 T] 30 5% do
Qem Weo
— [ ptan) - Koro) [T 35 130
Qem Weo

X j(K x p(v1) — K (21,20))p® daydry -+ - dxg_ydzeyy -~ dzj =0,
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where we use that

J(K x p(x1) — K(z1,20))p(x) dry = K * p(x1) — K = p(x1) = 0,

as ¢ # 1.
Thus we see we get the term d,cppro(1,x) in the bound and applying the argument with & and

¢ switched, we get the the term dpep_roy1,ep- Now suppose that P & R v {1,¢,k}, i.e. there exists
pePst.p¢ Ru{l,l k}. Then let S €7 such that p e S. Then we have that

J(K w p(x1) — K(x1,20)) - (K * p(x1) — K (21, 28)) H §22Q H %‘(,Vp@j dx
Qem Weo

_ j(K e plan) — K, z0)) - (K # plarn) — K (1, 21))

< T1 9 [ f???/’@j depday -+ day_1dzy,y - d; =0,
Qen—{S} Weo

where we use that

|95 i, = [ i i, =0,

by Proposition 2.10, using ig > 1. Thus we get the term dpcro1,0x) and symmetrically get the
term drc pu 1,0k}, thus showing the claim (3.25).
Thus we are left with bounding

27

J J
2i ZZ Z Z Z Z Z dePURL{1,k}OPSRU(1,4,k)

m=1/¢=1k=1 Pc[j] Rc[j] 7P o-R (iQ)ger (iw)weo kePURU{1,0} R<PuU{l,4k}

]
|P|=m |R|=m ZZQ i Y iw=t
ig=1 iy =1

J
=21 Z Z 5éePuRu{1,k}5P§Ru{1,é,k} Z Z Z Z

m=1¢=1k=1 Pc[j] Rc[j] kePVRU{1,l} RSPU{l.Lk} xr-PorR (iQ)oer (iw)weo

|P|l=m |R|=m Sig=t 2 iw=i
ig=>1 i =1
2 j J
BIIDND) OrePURU{1E}OPSRO{1OK} (3.26)
m=1¢=1k=1 Pc[j] R<[j kePURU{1,} RcPuU{1,(k}
|P|=m |R|=m

where we use that

IIDINDINDIELIPINDINDINP IR )<C.

TP ot R (iQ)ger (iw)weo m=[m] o-[m] (iQ)ger (iw)wes
Yig=i Diw=t Yig=i Siw =t
ZQZI =1 ZQZI i =1

We now claim that

dpcrufiery =0
RCPU{1,0k)}

unless P = Ror P = R—{a} u {b} with a € R;a # b;a,be {1,{,k}.
To see this, suppose P < R u {1,4,k} and R < P u {1,/,k}. Then note that the symmetric
difference PAR = (P — R) u (R — P) < {1,,k}. Then, since |P| = |R|, we have that

IP—R|=|P|—|RnP|=|Rl—|RnP|=|R-P|

40



Thus
|[PAR|=|P—-R|+|R— P|=2|P—R]|

Thus P AR is an even sized subset of {1,¢, k}, hence either P = R or P = R — {a} v {b} with
a € R;a # b;a,b e {1,/,k}, as claimed. Let us first deal with the case that P = R, in which case
the sum becomes

j_ g j
Z Z OePu{1,k}OkePu{1,ep < Z Z m+2 < CjHTL

Pc[j] t=1k=1 Pc[j] €=1
Pl=m

| |P|=m

using that m < 2i.
For P # R the remaining part of the sum to bound is

Jj J
> > Y0 (R {a)oi)oRULE

¢=1k=1R [j] ae{l,k,L}nRbe{l,k}—{a} ke(R—{a}u{b})LuRU{L,{}

Jj 7
- Z Z Z SeeRU{1,k,b)

Rc[j] t=1k=1ae{l,k,l}nRbe{l,k L} —{a} kERV{1,(,b}

J

j
< Ottt 4 Z Z Z Z decRU(b)

Rc[j] £=2 k=2,k#l ac{1,k,L} "R be{1,k,l}—{a} keRU{b}
|R|=m

where on the last line we split off the three cases £ = 1,k = 1, and ¢ = k and apply the straightfor-
ward bounds to them separately. We lastly split the remaining term along the cases thea = 1,a = k,
and a = £. The first case a = 1 gives

5 i
Z Z Z Z SeeRufb) O1eR < Z Z Z 2 < Cj2H1,
=2 k=2k

#0be{k, 0} keRu{b} Weljl—{1} £=2 k=2,k#¢
\RI |W|=m—1

The second case a = k gives

J J
22 D X Geropy <2m ), ) <O
RC[j] ¢=2 keR k#Lbe{1,0} keRU{b} Rc[j] ¢=2
|R[=m |R[=m

The third case a = £ follows symmetrically. Thus

2§ 2i
M Y Seporo(LiydperoqLery < Y, CH < 0P (3.27)
m=1¢=1k=1 Pc[j] R<[j] kePURU{1,4} RcSPuU{l1,(,k} m=1
|P|=m|R|=m
Combining (3.23), (3.24), (3.25), (3.26), and (3.27), we conclude. O
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4. Proofs of cluster expansions and perturbation theory

We give some additional notation for partitions.

Definition 4.1. We define the following partial order on partitions. If o, 7 — A, we say that o < 7
if for every P € 7, there exists @ € o such that P € Q. If 0 < 7 we say o is a combining of m. We
note that if o < 7 A, then |o| < |7] < |A].

We note the following combinatoric lemma which we will appeal to frequently in the below
proofs.

Lemma 4.2. Let S be a finite set, m — S. Then
1 =1
S o =4 LD
= 0 || =2

Proof. In order to evaluate these sums, we take advantage of the natural isomorphism from parti-
tions of 7 to combinings of 7. For Il - 7, we let

H):{UP:QEH}.
Pea

Note that o defines a bijection between partitions of 7 and combinings of 7, and further that
|o(IT)| = |II|. This immediately implies that

2 =D ol ==y ()M () - 1!

o<m I

The lemma then follows after applying the following fact

of— _Jla=1
2} (=11 (o] — 1)1 = {0 P

which follows by the Faa di Bruno’s formula applied to log e”. O

Proof of Proposition 2.4. We prove the equality inductively in j. The case j = 1 is clear. For j > 2,
we have

gi= >, ()M (x| =] [ fe

(4] Per
=fi+ 2 DT = ] e
w[4],| 7] =2 Per
D I D
w[4],| 7] =2 Perm 0P Qeo
=fi+ > O a =Y T g
w[7],|7|=2 o=T Qe
=fi+ Y > LR -] e
oH ] mo w2 Peo
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We have now collected all the terms [ [p, gp so all that remains is to compute the combinatoric
constants. To that end, using Lemma 4.2, we have

0 =1,
S () = 1) = <1+ Y (1) ] = 1) = { o
n<o,|w|>2 <o -1 o] =2
Plugging this in above allows us to conclude. n

Proof of Proposition 2.6. We start by just directly computing (J; — A)g; using the definition of g;
in terms of the f;,

g — Agy = Y, (D) (x| =01 Y (@ufe — Afe) ] fa

(4] Per Qem
Q#P
= S e - S A S f g+ S Sute | [T e
(4] Per keP k JLeP Qem
Q#P
(4.1)

Note that, consistent with the definition of Hj, the variable # is always the coordinate being
integrated over. We consider the Hj, terms and the Sy, , terms separately. We first consider the Sy ¢
terms. We use Proposition 2.4 to expand each of the fr in terms of gg

Z (=)= (|| - Z Z Skefp H fq

5] Per k,leP Qem
Q#P
= > DA = YT T D Sk [ ] ge
5] Perm kfeP n<o Qeo
J
-Y 5 (% o - ) s o
k,0=1 o-[5] <o Qeo

IPen {k,L}cP

=: Z ZGHSMHQP

kt=1oHj Peo

We now compute af, e Fix o, k,¢. We split into two cases, the first being that there exists Q) € o
such that {k,¢} < Q and second being that there exists Q, R € 0,Q # R such that k € Q,f € R.
Note that in the second case, it must be that k # £.

In the first case, since for any m < o, by definition of the order, there exists P € 7 such that
Q < P, as such {k,¢} < P. Thus

D D S Vi (R

<O
JPern {kL}cP

= D (=D (|a] = 1)!

<o
)1 ol =1
0 |o| =2,

43



where we use Lemma 4.2 to conclude.
For the second case, we first write o = {Q, R, W71, ..., W,,,} such that k € Q,¢ € R. Then define

g:={Qu R, Wy,..., W}

Then we note that 7 < o for which there exists P € m such that {k,¢} < P if and only if 7 < 5.

Thus
1 Jo]=2
afy =y (=) (|x) - 1)1 =
L= D0 =gy 722
once again using Lemma 4.2 and noting |o| = |&| + 1.

Combining these two cases, we note the complete formula for af , is given by

1 Jol=1
o7, — 1 o={Q,R},keQ,leR (4.2)
’ 0 o={Q,R},k, (e
0 |o|=3.

We have thus dealt with the S, s terms completely. We now proceed to the Hy, terms. Similarly,
we compute

> e - oY S w ) TT o

5] Per keP Qem
Q#P
ale N —|P|
= Y e - Y S Y Y e e
4] Perm keP 7<o Qeo

where if 7 = {P, W1, ..., Wy}, then, letting P := P U {x}, we define
T = {ﬁ)7 Wl)"me} = []] Y {*}

Continuing the above computation and reindexing sums, we get

> 0 - o S S T e

4] Perm keP <o Qeo

I I D N O e LI

k=lo-[jlu{+} \* _ #&<o _ Qeo
IPex, {k,x}< P

>0 D, WH] ] e

J
k=1oH[j]lu{*} Qeo

where we note 7 is a partition of the larger set [j] U {#}. We now compute b7. Similarly to above,
we split according to whether the relevant variables k,* are in the same block of 0. Writing
o={Q,R,W1,.., Wy}, the first case is that {k, *} < @ and the second case is that k € Q, * € R.
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In the first case, we note that if T < o, then by definition there exists P € 7 such that Q< ]3,
and as such {k,*} < P. Thus

; N N—|P|+1
i = 3 () -

<o

D Nt [ Ry g B (Ve { aat S P)
p<o—{Q} Sep

where for the second equality, in order to deal with the term |13|, we look at possible ways of

constructing P. We note that any combining 7 < o is generated by first taking a combing p <

o —{Q} and then either adding @ as its own block or unioning @ with a block of p. This corresponds

to the first and second term in the sum respectively.

The above computation is valid in the case that Q = [j] U {*}, but for the sake the analysis to
follow let us deal with this edge case now. A direct computation verifies that in that case, we have
that |o] = 1 and

o _ N _j
KON

Continuing the above computation with the additional assumption that |o| = 2, we first note that

S (a1 (o) - Y T @l

Sep N
= D)o~ I gy gy - 1]
Sep Sep
= (= o MLyt -l IO (4.0

For the last equality, we use that the first term doesn’t depend on S, and as such we just get a
multiplicative factor of |p|, which then goes into the factorial. For the second term, we use that

D ISI=1lv i -Ql=i+1-]Ql

Sep
Then, plugging (4.4) into (4.3) and noting the cancellation of the first two terms, we have that
. +1-1Q| _
s J+1-1Q| _ 1 o] =2
e D I e e e PR
p<o—{Q} ar=9

where we have once again used Lemma 4.2. Then recalling the above remarks on the case that
|o| = 1, we have that

N
—N] lo| =1
by = _J+1];|Q| o] =2
0 lo| > 3.

We now consider the other case, that k € @, * € R. We then, similarly to the analysis for the
Sy, terms, define

g:={QuR,Wy,... Wy}

45



Then we note that

. Sl N—|P|+1 S N —|P|+1
b = > (= 1(|7T|—1)!T = > (=D (x| —UlT-
<

x

3
Q

<o

IPex {kx}cP

We note now that we are in the same setting as we were for the previous case, except with & in
place of ¢ and Q U R in place of (). As such, the same computations demonstrate that, in this case,

N
by = _J+1—\]?\—|R\ lo| =3
0 lo| > 4,

B o] =1
N—j _
b% = N g {Q,R},k‘EQ,*eR (4‘5)
0 o ={Q,R,W},{k+}<Q
SRR 40 R WY ke Qxe R
0 lo| = 4.

We have thus computed all the coefficients, so we can plug in (4.2) and (4.5) into (4.1) to give

the PDE g; solves.
For the initial conditions, we remark that as f;(0,-) = f®/, the equation (2.2) gives that

g =1 Y (1) (x| - 1)!

m[4]
thus Lemma 4.2 gives the stated initial conditions.

Proof of Proposition 2.7. Computing (0; — A) f; using its definition we get

G-nf- Y N Na-se ]
01 Gr)rer Pen Qen—{(P)
ip=1
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Then using (2.4), this becomes

S % n(-Zme I1 6

4] (ip) per Pem keP Qen—{P}
Dip=t
ip ‘ .
-2 X X Hygw o ky 90 ()W — (k) [l 9
keP W P—{k} m=0 Qer—{P}
+ Z |P|Hk9§fuf{i} H géQQ
keP Qem—{P}
ip—1 .
ip—1l—m ?
+Z Z (1P| =1 —[W]) Z Hkgw o k,5)91P— (k) - H 9
keP W< P—{k} m=0 Qem—{P}
ip—1 .
+Z Z Z |P|HkgWu{k}gPu{*} W—{k} H gQQ
keP Wc P—{k} m=0 Qen—{P}

+2 X > (Pl=1-W|—|R])

keP W< P—{k} REP—{k}-W
ip—lip—1—m

m n ip—l—m—n i
X Z Z HkgWU{k}gRu{*}gl;iR*W*{k} H 95
m=0 n=0 QEW_{P}

= > Skedt T 98
kteP Qen—{P}

ip—1

-5 5 S st 11 )
Qen—{P}

kleP WcP—{k} m=0
Al

In order to conclude, we must show the above is equal to

Skef) !
1

J J
= > Hiflyoy T3 ) Hifj ™t -
k=1 k=1

== 2 2 H]lg
k w[j ]u{*}%P)Pew Pen
ip=1

i Z 2 ][ a¥

k- m[jlu{s} (ip)per

k

>'% “(]I\Mb'

dip=i—1
-2 2 n Swe]lar
k0 7T|—[]] (iP)PETr Pern
Dip=i—1

In particular, we show the following three claims.
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Claim 1:

222 He]ldE = Z Y X X 1 g

k m[jlu{*} (ip)per Pern ~[j] GGip) per Pem keP Qen—{P}
Dip=i ZZP i
iQ
DI IO IS Z Higiop 900w 11 9
7] (ip)per Pem kP WEP— (k) m=0 Qen—{P)
Sip=i
Claim 2:

i Z 2 ] ler

Forlilof) (ip)pen  Per
dip=i—1
IR ID N Lo | W (46)
m[4] %P‘)PE,‘r Per keP Qen—{P}
ip=t
ip—1 ' .
BN XS5 P-1- W) E ettt 11 65 6
]%P)PEfr Per kePWcP—{k} m=0 Qen—{P}
ip=i
ip—1 ‘ .
SN NN Y S et e 1168 (45)
(4] (ip')pgf'r Pen keP WeP—{k} m=0 Qen—{P}
ip=t

DIEDINDID IS >, (Pl-1—[W[-|R]) (4.9)

w[7] (ip) pexr PET kEP WS P—{k} REP—{k}—-W
Yip=i

ip—lip—1—m

P 1
p—1— 7
X Y0 D Heg g9k 98 k) Il o
m=0 n=0 Qenr—{P}

Claim 3:

S5 8 sell#- T X 8% sk 1

k& m=[5] (ip)per Per 7[j] (ip) per PET k LEP Qen—{P}
Sip=i—1 Sip=ti
ip—1
p—l-m i
LDINDIND NP IED WD W WALy ra I W
w[j] (ip) per PET kLeP WS P—{k £} m=0 Qen—{P}
Sip=i k#L

For Claim 1, we note that the first term of the right hand side is simply a sum over all partitions
7+ [j] U {*} such that k and # are in the same block of 7 (together with all choices of orders ip).
Then the second term on the right hand side is a sum over all partitions 7 such that k and * are
in the different blocks of 7. Thus together they give a sum over all partitions, which is equal then
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to the left hand side. Symbolically

2 X X [l a
m[4] %P')PE,F Perm keP Qem—{P}
ip=i

MRINPIPIPIED)

](ZP)Peﬂ- Pen keP Wc P—{k} m=0
-2 2

dip=i
k  w[jlu{*} (ip)per Pemn

> m[1d
IPem,{k,*}SP Y ip=i
2 x 2 ]l

m[lu{*}  (ip)per Pem
=2 X

JPem kePx¢P > ip=i
k ﬂl—[]]u{*} (ip)pgﬂ. Pen

S [ o
Sip=i

ip ' ,
ZHkg%u{k}g;fu{*}fo{k} Il 95

Qer—{P}

For Claim 2, we note the first and second terms, (4.6) and (4.7), sum over the same partitions,
namely those partitions 7  [j] U {*} such that k,* are in the same block of . Thus there is
“overcounting” and we have to compute the correct constant prefactor on each such partition.

Reindexing (4.6), we get

Z 2 X 2, 1PIHgECE

(5] (ip) per PET keP Qer—{P} ko welilu{xt  (ip)per
Dip=i IPem {k,%}CP Y ip=i—1
Then reindexing (4.7), we get
ip—1

[T o= X X

\P|H [ [ o

Pem

2T ZE Y (A== 5 Mot 1148

7] ¢ip) per PET kEP WS P—{k} m=0

>ip=t
PRI YD)
(ip)per Ber—{A}

=[] {x}
3Ae7r Ak x}SA> ip=i—1

=D, > G- IPhE g5

m=[ilu{*}  (ip)pPenr Qem
IPer {kx}CP Y ip=i—1

Qeﬂ-f {A7B}

Thus adding them together, we get

DI N

m=[jlu{x}  (ip)Pex Pem
3Pe7r Ak x}SP >lip=i—1

BlHpg'tg? || 95

Qer—{P}

(4.10)

Similarly, the third and fourth terms, (4.8) and (4.9), sum over the same set of partitions,
namely those partitions 7 - [j] U {*} such that k, = are in different blocks. So we again reindex to
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compute the constant prefactors. Reindexing (4.8), we get

ip—1
Z D 2 2 PG w11 98
T ]% P)per PemkeP WcP—{k} m=0 Qer—{P}
tp=1
= > YA+ 1Bl - DH [ [ g
K w-llofx)  (ip)pen Pen

JA,Berm ke Ax¢B,A#B Y ip=i

Finally, reindexing (4.9), we get

IEDIEDIDISY > (P -1 |W|-|R])
4] %,;)Pew’ Per keP WeP—{k} REP—{k}-W
1p=1

ip—lip—1-m
m n ip—l—m—n i
X Z Z HkQWU{k}gRU{*}ng—R—W—{k} H gég
m=0 n=0 Qen—{P}
Sy oy DR SN el I B
E o mellofs)  (ip)rer Cen—{A,B) Qer—{4.5.0)

JA, BE7r k€A x¢B,A#B Y ip=1

=] Yoo GH1-|Al=BNH, [ [ g
k

™ []]U{*} (iP)PETr CEW_{AvB} Pen
JA,Berm,keA,x¢B,A#B Y ip=i

So adding these together, we get

DI (4.11)
k

mH[jlu{x}  (ip)per Per
IPem,keP#¢P Y ip=i—1

Thus, adding (4.10) and (4.11), we have shown Claim 2.
Lastly, Claim 3 follows exactly as Claim 1. O

A. Existence of the mean-field limit

Proof of Proposition 2.9. Let us use the notation K # p(z) := §K(x,24)p(x4)dzs, so that the

equation becomes
op—Ap+ V- (K=pp)=0. (A1)

Note that for p € C([0, ), L*(T?)) n L2 ([0, T], H' (T¢)) such that p solves (A.1), treating K *p €
L* as a drift, we can view p as solving a drift-diffusion equation. Standard linear parabolic theory
gives that, since p(0,-) = f = 0, p > 0 for all times. Then, since the equation is mean preserving,

we get that for all times

ol = [ pdo = [ £z =1.
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Further, we have that

d
_HpHiz Tdy = 2 —|Vpl2 +Vp- (K * pp)
dt (T)

< J(K * pp)?

<Kl Zo 0121 pay 017 2 )

= | K12l pay,

so by Gronwall’s inequality, ,
HP||2L2(11*d)(t) < EHKHLwt”fH%Z(Td)-

For uniqueness, supposing that p, p’ € C([0,0), L?(T%)~ L2 ([0, T], H'(T%)) are both solutions

loc
to (A.1). Then

alp—p)=A(p—p)-V- (K* (p—p/)p+K*p/(p—p/)),
SO
d1 2 2
5l =PIz ay < f <K *(p— p’)p) + <K 0 (p— p’)) da
< C|K|Zollp = 012 pay 022 (pay + | K20 10170 (s |0 = 21270
2
< CIK R ™=t f17 2 a0 = 2172 pays

thus we can conclude by a Gronwall argument.
For existence, we use a fixed-point argument. Let

pO(tv ) =f

and for any j € N, let p;+1 € C([0,0), L2(T%)) n L?

loc

([0, T], H*(T%)) solve
Otpj+1 — Apje1 + V- (K #pjpje1) =0
pj+1(0,-) = f.

Note that, inductively, for all ¢, ||p;||;1(ra) = 1, since pj+1 solves a drift-diffusion equation with L®
drift, the equation is L! non-increasing, and the initial data satisfies | f| rirey = 1. Then we also
have the estimates

d

aHPjH”%%Td) = J—2|V,0j+1|2 +2Vp; - (K * pjpji1) dx
< J—|ij+1|2 + (K = pjpj1)° dx
< Vol Zagpay + 1K Re lpse1l 2 pay-

Thus, by Gronwall’s inequality,

K 2
HPjHH%%Td)(t) <el HLootHf”%%Td)-
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Also, we have that
2 ‘ 2 2 d 2
HVPJ'HHL?([O,t],L?(Td)) < L HKHLooHijrlHL2(Td)(3) - EHPJHHLQ(W)(S) ds
2 ! 2 K|?
< U o ([ 1130 s 1)
2
_ eHKHLOOt”fH%Z(Td)' (AQ)
Then we note that
at(IOjJrl - pj) = A(IOJ'Jrl - pj) -V (K * pj(ijrl — pj) + K = (pj — pjfl)pj)-

Thus

d
Zlpist = pillEacay < 1K+ pj(ps01 = o)1 izay + 1K * (0 = pi-1)p5 L2 pa)
<KL llpjr = pjl72ray + CIE T l0j1 F2iray |P5 = pi1l 2 ray
K|?
< Ko lpje1 = pilFaray + CIE N Eeoe! 2| £132 payl0j = £j=1l172(pa)-

Thus by Gronwall’s inequality,

|1 = PillT2ray() < CIE|Toll fI72(raye K'L“’tf l0j = pi=1172(pa) (5) ds

< C| R paye® ™ Vit sup [ pj = sl 32 ipa)(5),
s€[0,t]

therefore ,
lpi+1 = Pilloqo.a.cz ey < ClFlzae™e="Vt]p; — pi—1llcqo..c2(ay-

Let
1

= 2
4CHJCH%2(T¢1)62HKHLOO

then 0 < t, <1 and so
C £l 2rayel et v/, < §
thus
lo541 = pillcqotsy,z2ray < 5105 = pi-tloqo.e 2ma)-

This contraction then implies that there exists p € C([0,t4], L*(T%)) such that, in this norm,
pj — p. Note that, by (A.2), p; is also uniformly bounded in L2([0,t.], H*(T¢)), thus by weak
compactness and taking a subsequence, we get that p € L2([0,t,], H'(T¢)). That p distributionally
solves (A.1) is direct from testing the equation for p; against a C° function and using the strong

convergence. Thus we have a solution p for a short time ¢, = W We can iterate this result to
L2

get existence for all time, as long as the existence time ¢, doesn’t go to zero, which happens as long
as | p| z2(ray stays bounded, uniformly in time. To that end, we note that for some a € (1/2,1), by
the Gagliardo-Nirenberg embeddings,

Il 2(pay = € < o= U g2y < CIVplG20pa) |0l 1 pay = CIVAI2ray,

so that

—1

||VPH%2(W) = C_l(”PHLZ(W) - C)za 1HP||L2 Td) — C.
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Then we have that

d
GilplBag =2 [ <1Vl + 90 (K + o)

_HVP”%%W) + HKH%OOHPHi2(Td)

N

N

— (171
-C 1“/)”%2(’]1‘% +C+ HKH%OOHPHiQ(Td)'

Then we note that since a < 1, the right hand side is negative for || p||2L2 (T4) big enough. Thus there
exists C such that

lpllp2eray < C v [ fllL2rey-

Thus we have the global-in-time bound on | p|12(pay, so the existence times stays bounded below,
and we can iterate the local existence argued above to get global-in-time existence, allowing use to

conclude.
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