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Subdivision surfaces have become a standard geometric modeling tool for a va-
riety of applications. This survey is an introduction to subdivision algorithms for
arbitrary meshes and related mathematical theory; we review the most impor-
tant subdivision schemes the theory of smoothness of subidivision surfaces, and
known facts about approximation properties of subdivision bases.

1 Introduction

This survey is based on a series of lectures presented at the IMS-IDR-CWAIP
Joint Workshop on Data Representation at the National University of Singapore
in August 2004.

Our primary goal is to present a brief introduction to the algorithms and theory
related to subdivision surfaces from basic facts about subdivision to more recent
research developments. This tutorial is intended for a broad audience of computer
scientists and mathematicians. While not being comprehensive by any measure,
it aims to provide an overview of what the author considers the most important
aspects of subdivision algorithms and theory as well as provide references for
further study.

A large variety of algorithms and a comprehensive theory exist for subdivision
schemes on regular grids, which are only briefly mentioned in this survey. Sub-
division on regular grids, being closely related to wavelet constructions, has an
important applied role in many applications. However, ability to handle arbitrary
control meshes was one of the primary reasons for the rapid increase in popularity
of subdivision for computer graphics and geometric modeling applications during
the last decade. This motivates our focus on schemes designed for such meshes.

We start with a brief survey of applications of subdivision in computer graph-
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ics and geometric modeling in Section 1. In Section 2, we introduce the basic
concepts for both curve and surface subdivision. In the third section we review
different types of subdivision rules focusing on the most commonly used in prac-
tice (Loop and Catmull-Clark subdivision).

In contrast to the regular case, fewer general theoretical results and tools are
available for subdivision schemes on arbitrary meshes; in many aspects the the-
ory is somewhat behind the practice. The most important theoretical results on
smoothness and approximation properties of subdivision surfaces are reviewed in
Sections 5 and 6.

Sections 2–5 are partially based on the notes for the SIGGRAPH course “Sub-
division for Modeling and Animation” co-taught by the author in 1998-2000.
There is a number of excellent books and review articles on subdivision which
the author highly recommends for further reading: the monograph of Cavaretta et
al. [12] on subdivision on regular grids, survey articles by Dyn and Levin [19,20],
the book by Warren and Weiner [82], the articles by Sabin[69,68] and Schröder
[72,73].

1.1 Subdivision in Computer Graphics and Geometric Modeling

The idea of constructing smooth surfaces from arbitrary meshes using recursive
refinement was introduced in papers by Catmull and Clark [11] and Doo and
Sabin [18] in 1978. These papers built on subdivision algorithms for regular con-
trol meshes, found in the spline literature, which can be traced back to late 40s
when G. de Rham used “corner cutting” to describe smooth curves.

Wide adoption of subdivision techniques in computer graphics applications
occurred in the mid-nineties: with an increase in complexity of the models, the
need to extend traditional NURBS-based tools bacame apparent.

Constructing surfaces through subdivision elegantly addresses many issues
with which computer graphics and computer-aided design practitioners are con-
fronted. Most importantly, the need to handle control meshes of arbitrary topol-
ogy, while maintaining surface smoothness and visual quality automatically. Sub-
division surfaces easily admit multiresolution extensions, thus enabling efficient
hierarchical representations of complex surfaces. At the same time, most popular
subdivision schemes extend splines (and produce piecewise-polynomial surfaces
for regular control meshes), thus maintaining continuity with previously used rep-
resentations and inheriting some of the appealing qualities of splines. Another
important advantage of subdivision surfaces is that simple local modifications of
subdivision rules make it possible to introduce surface features of many different
types [26,9]. Finally, subdivision surfaces can be extended to hierarchical repre-
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sentations either of wavelet [48], pyramid type [93], or related displaced subdivi-
sion surfaces [39].

Over the past few years, a number of crucial geometric algorithms were de-
veloped for subdivision surfaces and subdivision-based multiresolution represen-
tations. One of the important steps that enabled many practical applications was
development of direct evaluation methods [76], that made it possible to evaluate,
in constant time, recursively defined subdivision surfaces at arbitrary points. Al-
gorithms were developed for trimming [44], performing boolean operations [8],
filleting and blending [85,57], fitting [35], computing surface volumes [60], loft-
ing [54,55,56,70] and other operations. Subdivision surfaces were demonstrated
to be a useful too for complex interactive surface editing [37,93,10,31].

Subdivision surfaces became a mature technology, used in a variety of appli-
cations. Examples of applications include representing and registering complex
range scan data [2], face modeling [75,45] and three dimensional extensions of
subdivision used in large-scale visualization [42,4].

As subdivision algorithms can be used to define bases on arbitrary mesh do-
mains, they are a natural candidate for higher-order finite element calculations for
engineering applications, shell problems in particular. First steps in this direction
were made in [13,14]. Natural refinement structure of subdivision surfaces leads
to adaptive hierarchal finite element constructions [36]. Subdivision-based mesh
generation for FEM is explored in [40,41].

2 Basics

In this section we introduce the basic concepts of subdivision needed to define
various subdivision schemes considered in Section 3

2.1 Subdivision curves

The goal of this section is to introduce the basic concepts using subdivision curves
as an example. The apparatus of subdivision matrices we introduce is not essential
for curves, as the same formulas can be obtained by other means; however, it is
indispensable for subdivision surfaces.

Subdivision algorithm. We can summarize the basic idea of subdivision as fol-
lows: subdivision defines a smooth curve or surface as the limit of of successive
refinements of an initial sequence of control points.

In this section, to simplify exposition, we only consider curves defined by
infinite sequences of control points indexed by integers and only one type of re-
finement: a new control point is added to the sequence between two old control
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points and the positions of old points are recomputed (Figure 1).

Fig. 1. Subdivision steps for a cubic spline.

The numbering for the refined sequence is chosen so that the point i in the
original sequence has even number 2i in the new sequence. We use notation pj for
the sequence of control points after j subdivision steps.

The most general definition of a linear subdivision rule is that it is a collection
of linear maps Sj , mapping pj to pj+1. In this survey we consider subdivision
rules which satisfy two additional requirements: the rules are stationary and have
finite support.

More formally, for the type of one-dimensional refinement described above,
stationary subdivision rules can be specified by two sequences of coefficients
{ae

i , |i ∈ Z} and {ao
i |i ∈ Z} which are usually referred to as even and odd masks.

For a given sequence of control points p = (pi ∈ Rn, i ∈ Z), a single subdivision
step produces a new refined sequence p′ of control points p′i, defined by

p′2i =
∑
j∈Z

ae
i−jpj

p′2i+1 =
∑
j∈Z

ao
i−jpj

(2.1)

For our choice of numbering, the even-numbered points correspond to the repo-
sitioned original control points, and odd-numbered points are the newly added
points. For stationary subdivision, the linear map from pj to pj+1 does not depend
on the level, i.e. there is a single linear operator S, such that pj+1 = Spj .

The rules have finite support if only a finite number of coefficients ao
i and ae

i

are nonzero. The set of indices for which the mask coefficients are not zero is
called mask support.

The most common subdivision scheme for uniform cubic B-splines has masks
with nonzero entries (1/8, 3/4, 1/8) with indices (−1, 0, 1) and (1/2, 1/2) with
indices (−1, 0), for even and odd control points respectively (Figure 1).

We can view the initial control points p0 as values assigned to integer points in
R. It is natural to assign control points p1 to half-integers, and in general control
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points pj to points of the form i/2j in R.
For each subdivision level j we then have a unique piecewise linear function

L[pj ], defined on R which interpolates the control points pj : L(i/2j) = pj
i . We

say that the subdivision scheme converges if for any initial control points p0, the
associated sequence of piecewise linear functions L[p(j)] converges pointwise.

In particular, for the cubic spline masks defined above, the limit curve is a
cubic polynomial on each integer interval [i, i+ 1]. The reason for this is that this
set of masks is derived from the well-known refinement relation for uniform cubic
B-splines:

B(t) =
1
8

(B(2t− 2) + 4B(2t− 1) + 6B(2t) + 4B(2t+ 1) +B(2t+ 2)) .
(2.2)

A cubic spline curve has the form
∑

i∈Z piB(t− i); applying the refinement
relation (2.2) to B(t− i) and collecting the terms, we obtain

∑
i∈Z

piB(t− i) =
∑
i∈Z

p′iB(2t− i)

with p′2i = (1/8)(pi−1 + 6pi + pi+1) and p′2i+1 = (1/2)(pi + pi+1), i.e. with p′i
defined by the subdivision rules stated above. We conclude that sequences pi and
p′i define the same spline curve. However, the refined control points p′i correspond
to scaled basis functions B(2t) with smaller support and are spaced closer to each
other. As we refine, we get control points for the same cubic curve f(t) but split
into shorter polynomial segments. One can show the piecewise linear functions,
connecting the control points, converge to f(t) pointwise.

While spline subdivision is a starting point for many subdivision construc-
tions, deriving subdivision masks from spline refinement is not essential for ob-
taining convergent schemes or schemes producing smooth curves or surfaces. For
example, one can replace the (1/8, 3/4, 1/8) rule by three perturbed coefficients
1/8 − w, 3/4 + 2w, 1/8 − w), and still maintain convergence and tangent con-
tinuity of limit curves for sufficiently small w. However, the limit curves for the
modified rules in general cannot be expressed in closed form.

Modified coefficients are usually chosen to meet a set of requirements neces-
sary for desirable scheme behavior. The most basic requirement is

Affine invariance. If the points of sequence q are obtained by applying an affine
transformation T to points of p, then [Sq]i = T [Sp]i, i ∈ Z.

By considering translations by t, qi = pi + t, and substituting into the subdi-
vision rules 2.1, we immediately obtain that the coefficients of masks should sum
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up to one: ∑
i∈Z

ae
i = 1,

∑
i∈Z

ao
i = 1.

In other words, the subdivision operator S should have a eigenvector with con-
stant components pi = 1, for all i, and eigenvalue 1. It can also be shown this is
necessary (but not sufficient) condition for convergence.

Subdivision matrices. As we have seen above, a subdivision step can be repre-
sented by a linear operator acting on sequences. It is often useful to consider local
subdivision matrices of finite dimension. Such matrices have an important role,
both in practice and in theory, as they can be used for limit control point positions
and tangent vectors and analysis of convergence and continuity. These local matri-
ces are restrictions of the infinite subdivision matrices to invariant neighborhoods
of points.

Fix an integer i; then the invariant neighborhood Nm of size m for i is the set
of indices {i−m, . . . i+m}, such that the control points p1

j , j = 2i−m. . . 2i+m,
can be computed using only points p0

i , for i ∈ Nm. The minimal size of the
invariant neighborhood depends only on the support of the masks. For example,
the minimal size m for the cubic B-spline subdivision rules is 1 because one can
compute points p1

2i−1, p1
2i and p1

2i+1 given points p0
i−1, p0

i and p0
i+1.

We often need to consider invariant neighborhoods of larger size, such that the
control points in the neighborhood define the curve completely on some interval
containing the point of interest. For cubic splines, a curve segment, corresponding
to an integer interval [i, i+ 1], requires four control points. To obtain a part of the
curve, containing i in the interior of its domain, we need to consider both [i− 1, i]
and [i, i + 1] for a total of five points, which correspond to the neighborhood of
size 2.

The subdivision rules for computing five control points, centered at i, on level
j + 1 from five control points, centered at i on level j can be written as


pj+1
2i−2

pj+1
2i−1

pj+1
2i

pj+1
2i+1

pj+1
2i+2

 =
1
8


1 6 1 0 0
0 4 4 0 0
0 1 6 1 0
0 0 4 4 0
0 0 1 6 1



pj

i−2

pj
i−1

pj
i

pj
i+1

pj
i+2

 .

The 5 by 5 matrix in this expression is the subdivision matrix. If the same sub-
division rules are used everywhere, this matrix does not depend on the choice of
i.
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Fig. 2. In the case of cubic B-spline subdivision, the invariant neighborhood is of size 2. It takes 5
control points at the coarsest level to determine the behavior of the subdivision limit curve over the
two segments adjacent to the origin. At each level, we need one more control point on the outside of
the interval t ∈ [−1, 1] in order to continue on to the next subdivision level. 3 initial control points for
example would not be enough.

The eigenvalues and eigenvectors of the subdivision matrix allow one to an-
alyze how the control points in the invariant neighborhoods change from level to
level.

Suppose an n× n subdivision matrix is non-defective, i.e. has n independent
eigenvectors xi, i = 0, . . . n − 1. Then, any vector of initial control points p can
be written as a linear combination of eigenvectors of the matrix: p =

∑n
i=0 aixi.

The coefficients ai can be computed using eigenvectors as

ai = (li · p),

using the dual basis of left eigenvectors li, i = 0 . . . n−1, satisfying (xi·lk) = δik.
In this form, the result of applying the subdivision matrix j times, i.e. the control
points on j-th subdivision level in the invariant neighborhood, can be written as

Sjp =
n∑

i=0

λjaixi (2.3)

where λi, i = 0 . . . n− 1, are the eigenvalues.

Limit positions. One can immediately observe that for convergence it is nec-
essary that all eigenvalues of the matrix have magnitudes no greater than one.
Furthermore, one can easily show that if there is more than one eigenvalue of
magnitude one, the scheme does not converge either. At the same time, λ0 = 1 is
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an eigenvalue corresponding to eigenvector [1, 1, . . . 1]. The reason is that multi-
plying S by this eigenvector is equivalent to summing up the entries in each row,
and by affine invariance, these entries sum up to one.

Next, we observe that for i ≥ 1, |λi| < 1, all terms excluding the first on
the right-hand side of (2.3) vanish, leaving only the term a0x0 = [a0, a0, . . . a0].
This means that in the limit, all points in the invariant neighborhood approach
a0, i.e. a0 is the value of the limit subdivision curve at the center of the invariant
neighborhood.

Tangent vectors. If we further assume that |λ1| > |λ2| and λ2 is real and pos-
itive, consideration of the first two dominant terms in (2.3) makes it possible to
compute the tangent to the curve under some additional conditions on the subdi-
vision scheme, which will be considered in Section 5 for surfaces. Consider the
vector of differences Sjp−a0x0 between all points in the invariant neighborhood
at level j and the center of the invariant neighborhood. if we scale this vector by
1/λ1, it converges to a1x1 = [a1x

1
1, a1x

2
1, . . . a1x

n
1 ], i.e. all limit difference vec-

tors are collinear and parallel to a1. This suggestS (but does not guarantee without
additional assumptions, which hold for most common schemes) that a1 = (l1 · p)
is a tangent vector to the curve.

The observations above show the left eigenvectors, corresponding to the eigen-
value 1 and the second largest eigenvalue λ1, play a special role, defining the limit
positions and tangents for a subdivision curve.

Example. The eigenvalues and eignevectors of the subdivision matrix for cubic
splines are

(λ0, λ1, λ2, λ3, λ4) =
(

1,
1
2
,
1
4
,
1
8
,
1
8

)

(x0,x1,x2,x3,x4) =


1 −1 1 1 0
1 − 1

2
2
11 0 0

1 0 − 1
11 0 0

1 1
2

2
11 0 0

1 1 1 0 1

 .

The left eigenvectors of eigenvalue 1 and subdominant eigenvalue 1/2 are
[0, 1/6, 2/3, 1/6, 0] and [0,−1, 0, 1, 0], which yield the formulas for the curve
point and tangent

a0 =
1
6
(pi−1 + 4pi + pi+1); a1 = pi+1 − pi−1,
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which coincide with the formulas obtained by direct evaluation of cubic B-spline
curves.

2.2 Subdivision surfaces

Most of the concepts we have introduced for subdivision curves can be extended
to surfaces, but significant differences exist. While the control points for a curve
have a natural ordering, this is no longer true for arbitrary meshes. Furthermore,
for an arbitrary mesh, local mesh structure may vary: e.g. a vertex can share an
edge with an arbitrary number of neighbors, rather than only one or two, as is
the case for a curve and the polygonal faces of the mesh which may have different
numbers of sides. A finer mesh can be obtained from a given coarser mesh in many
different ways. Thus, in the case of subdivision for meshes, one needs to define
refinement rules, which specify how the connectivity of the mesh is changed when
it is refined, and geometric rules, which specify the way the control point positions
are computed for the refined mesh.

Another important difference is that while the curves can always be considered
to be functions on a domain in R, there is no simple natural domain for surfaces.
To be able to define subdivision surfaces as a limit of refinement, we need to con-
struct a suitable domain out of the control mesh of the surface. We start with a
specific example, the Loop subdivision scheme, to motivate the formal construc-
tions we need to introduce.

Refinement of triangular manifold meshes. This scheme uses triangular mani-
fold control meshes. Such control mesh consists of a complex K, which is a triple
(V,E, F ) of sets of vertices, edges and faces, and control points p0, associated
with each vertex in V . We use notation pj(v) for a control point at refinement
level j associated with vertex v. The sets of vertices, edges and faces satisfy the
following constraints:

• each edge is a pair of distinct vertices;
• each face is a set of three distinct vertices;
• each pair of vertices of a face is an edge;
• the intersection of two faces is either empty or an edge;
• each edge belongs to exactly two faces;
• the link of a vertex v (the set of edges of all faces containing v, excluding

the edges that contain v themselves) can be ordered cyclically such that
each two sequential edges share a vertex.

Two complexes are isomorphic if between their vertices there is a one-to-one map,
which maps faces to faces and edges to edges.
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Similarly to the curve case, we define neighborhoods on meshes. A 1-
neighborhood N1(v,K) of a vertex v is a set of faces, consisting of all triangles,
containing v. A 1-neighborhood N1(G,K) of a set of faces G consists of all tri-
angles of 1-neighborhoods of the vertices of G. An m-neighborhood Nm(v,K)
is defined recursively as 1-neighborhood of m− 1 neighborhood.

The most common refinement rule for such meshes is face quadrisection. The
new mesh is formed as follows: all old vertices are retained; a new vertex is added
for each edge, splitting it into two; each edge is replaced by two new edges and
each face by four new faces. One can easily see that all new vertices inserted
using this refinement rule have valence 6, and only the vertices of the original
mesh may have a different valence. The vertices of valence 6 are called regular,
and the vertices of other valences are called extraordinary.

The Loop subdivision scheme. To define how the control points are computed,
we need to specify rules for updating the positions of existing control points and
for computing newly inserted control points.

1/8

3/8 3/8

1/8

1{kβ
β

β

β

Fig. 3. Loop subdivision masks for new control points and updated positions of old control points.
Vertices, for which control points are computed, are marked with circles.

These rules for the Loop subdivision scheme are shown in Figure 3. The rule
for a vertex, inserted on an edge e, uses the control points for two triangles sharing
e:

pj+1(w) =
3
8
pj(v1) +

3
8
pj(v2) +

1
8
pj(v3) +

1
8
pj(v4),

where v1, v2 are edge endpoints, and v3 and v4 are the two remaining vertices of
triangles sharing e.

The rule for updating positions of existing vertices is actually a parametric



September 11, 2005 22:5 WSPC/Lecture Notes Series: 9in x 6in main

Subdivision on Arbitrary Meshes: Algorithms and Theory 11

family of rules, with coefficients depending on the valence k of the vertex.

pj+1(v) = (1− kβ) + β
∑

vi∈N1(v)

pj(v)

where β can be taken to be 3/8k, for k > 3, and β = 1/16 for k = 3 (this is the
simplest choice of β different choices of β are possible).

If the mesh is fully regular, i.e. all vertices have valence 6, these rules reduce
to the subdivision rules for quartic box splines and can be derived from scaling
relations similar to (2.2).

We note that these rules only depend on the local structure of the mesh, using
only points within a fixed-size neighborhood of the point being computed: if we
measure the neighborhood size in the refined mesh, both types of rules use level j
control points, corresponding to vertices within the 2-neighborhood at level j+1;
this is the analog of finite support in the curve case.

Furthermore, we observe that the rules depend only on the mesh structure of
the 1-neighborhood of the vertex (specifically, the number of adjacent vertices),
not on the subdivision level, or vertex numbering. This is the analog of being
stationary in the curve case. We will give a more precise definition below.

To reason about convergence of this scheme, we also need to define the piece-
wise linear interpolants similar to L[pj ], defined for curves. Unfortunately, there
is no natural way to map the vertices of an arbitrary mesh to points in the plane
or some other standard domain, so one cannot use a similar simple construction.
For mesh subdivision to be able to define the limit surfaces rigorously, we need to
construct special domains for each complex; subdivision surfaces are defined as
functions on these domains.

Domains for subdivision surfaces. The simplest construction of the domain for
the subdivision surface requires an additional assumption. For triangular meshes,
the control points p0 in Rn can be used to define an geometric realization of a
complex. Each face of K (i.e. a triple of vertices (u, v, w)) corresponds to the tri-
angle in Rn, defined by three control points (p0(u), p0(v), p0(w)). We addition-
ally require that no two control points coincide, and for any two triangles in Rn,
corresponding to faces of K, their intersection is either a control point, a trian-
gle edge, empty, or, informally, the initial control mesh has no self-intersections.
With this additional assumption, one can use the initial mesh as the domain on
which the linear interpolants of control points at different levels of refinement are
defined. We denote this domain |K0|.

The initial control points p0 are already associated with the points in the do-
main (the control points themselves). It remains to associate the control points on
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finer levels with points on the initial mesh. This can be done recursively. Suppose
a vertex w of the refined complex Kj+1 is inserted on the edge connecting ver-
tices u and v ofKj . Suppose these vertices are already associated with points t(u)
and t(v) on |K0|, contained in the same triangle T of |K0|. Then we associate w
with the midpoint (1/2)(t(u) + t(v)), which, by convexity, is also contained in
the same triangle T . It is easy to show that no two vertices can be assigned to
the same point in the domain: the points obtained after j refinement steps form a
regular grid on each triangle of |K0|.

Now we can define the piecewise linear interpolants, similar to the ones used
for curves. Fix a refinement level j and a triangle T of |K0|. The vertices of Kj

form a regular grid on T , with triangles corresponding to faces of Kj . For points
of |K0| inside each subtriangle (u, v, w) of T , we define L[pj ] to be the linear
interpolant between pj(u), pj(v) and pj(w).

In this way, we obtain a sequence of functions L[pj ] defined on |K0|; the limit
subdivision surface is a the pointwise limit of this sequence, if it exists. Thus the
subdivision surface is defined as a function on |K0| with values in Rn.

Stationary subdivision in 2D. The Loop subdivision scheme is an example of
a stationary subdivision scheme. More generally, for any complex K and its re-
finements Kj , K0 = Kj , a linear subdivision scheme gives a sequence of linear
operators Sj(K), mapping control points for vertices V j to control points for
vertices V j+1. This means that for a given vertex w of Kj+1,

pj+1(w) =
∑
v∈V

avwp
j(v) (2.4)

We say that a scheme is finitely supported if there is an M , such that for any
w and v 6∈ NM (w,Kj+1), avw = 0. The support suppw of the mask of the
scheme at w is the minimal subcomplex containing all vertices v of Kj such
that avw 6= 0. We say that the scheme is stationary or invariant, with respect to
isomorphisms, if the coefficients avw coincide for vertices, for which supports are
isomorphic. More precisely, if there is an isomorphism ι : suppw1 → suppw2,
and ι(w1) = w2 then aι(v)w2 = avw1 . The invariance can be also defined with
respect to a restricted set of isomorphisms, e.g. if the mesh is tagged.

Subdivision matrices in 2D. The definition of invariant neighborhoods and the
construction of subdivision matrices for subdivision on meshes is completely anal-
ogous to the curve case. However, the size of the matrix is variable and depends
on the number of points in the invariant neighborhood. Another difference is re-
lated to the fact that invariant neighborhoods may not exist for a finite number
of initial subdivision levels, as the mesh structure changes with each refinement.
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For a given neighborhood size m, however, after a sufficient number of subdivi-
sion steps, each extraordinary vertex v is surrounded by sufficiently many layers
of regular vertices, and m-neighborhoods of v on different subdivision levels are
similar.

For example, for the Loop scheme, the invariant neighborhood size is 2. For
a vertex of valence k, it contains 3k + 1 vertices. The subdivision matrix has the
following general form:


1− kβ aT

01 0 0
a10 A11 0 0
a20 A21 A22 0
a30 A32 A32 A33

 ,

where all vectors aij are of length k and have constant elements (a01 = β1,
a02 = (3/8)1, a02 = (1/8)1, a03 = (1/16)1. The blocks Aij are cyclic k × k,
defined as follows,

A11 =
1
8

Cyclic(3, 1, 0, . . . 0, 1),

A21 =
1
8

Cyclic(3, 3, 0 . . . 0), A22 =
1
8

Cyclic(1, 0, . . . 0),

A31 =
1
16

Cyclic(10, 1, 0, . . . 0, 1), A32 =
1
16

Cyclic(1, 0, . . . 0, 1),

A33 =
1
16

Cyclic(1, 0, . . . 0).

Limit positions and tangent vectors in 2D. The computation of the limit posi-
tions for mesh subdivision scheme is the same as for curves: one needs to compute
the dot product of the left eigenvector of eigenvalue 1 with the vector of control
points in the invariant neighborhood.

The computation of tangent vectors is slightly different. Instead of a unique
tangent vector, a smooth subdivision surface has at least two nonuniquely de-
fined independent tangent vectors spanning the tangent plane. In the case of sur-
faces, we further assume that the eigenvalues of the subdivision matrix satisfy
1 = |λ0| > |λ1| ≥ |λ2| > |λ3| and λ1,2 are real. This is not necessary for tan-
gent plane continuity, but this assumption commonly holds and greatly simplifies
the exposition. In this case, again under some additional assumptions to be dis-
cussed in Section 5, one can compute the tangent vectors to the surface using right
eigenvectors l1 and l2, corresponding to the eigenvalues λ1 and λ2.

For the Loop scheme, the masks for limit positions and tangent vectors are
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quite simple: both have supports in the 1-neighborhood of a vertex. The coef-
ficients of the mask for the limit position, i.e. the entries of the left eigenvec-
tor l0, have the same form as the vertex rule, with β replaced with βlimit =
8β/(3 + 8kβ). The two tangent masks l1 and l2 can be chosen to be cos 2πj/k
and sin 2πj/k for the vertices of 1-neighborhood distinct from the center indexed
by j. The coefficient for the center itself is 0. This choice is not unique: for the
Loop scheme and most other commonly used schemes, λ1 = λ2, and any linear
combination c1l1 + c2l2 is also a left eigenvector.

3 Overview of Subdivision Schemes

In this section we review a number of stationary subdivision schemes generat-
ing C1-continuous surfaces on arbitrary meshes. Our discussion is not exhaustive
even for stationary schemes. We discuss two most common schemes (Loop and
Catmull-Clark) and their variations in considerable detail, and briefly several ex-
amples of other types of schemes; more detailed information on other schemes
can be found in provided references.

3.1 Classification of subdivision schemes

Refinement rules. The variety of stationary subdivision schemes for surfaces is
primarily due to the many possible ways to define refinement of complexes. Sev-
eral classifications of refinement rules (e.g. [28,1,25]) were proposed; our discus-
sion mostly follows [28].

Almost all refinement rules are extensions of refinement rules for periodic
tilings of the plane. The principal reason is there is an extensive theory for analysis
of subdivision on regular planar grids which can be used to analyze the surface,
constructed from an arbitrary mesh everywhere excluding a set of isolated points.

A single refinement step typically maps a tiling to a finer tiling, which is
obtained by scaling and optionally rotating the original tiling; however, some
schemes may alternate between different tiling types.

All known schemes with one exception are based on refinements of regu-
lar monohedral tilings, for which all tiles are regular polygons. The 4-8 scheme
[81,80], originally formulated using a tiling with right triangles, can be reformu-
lated using regular quad tilings, i.e. it also fits into this category. There are only
three regular tilings: triangular, quadrilateral and hexagonal. Hexagonal tilings are
rarely used, and stationary schemes for such tilings were considered in detail only
recently [15,86,58].

Once the tiling is fixed, there are still many ways to define how it is refined,
even if we require that the refined tiling is of the same type. Dodgson [16] lists a
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set of heuristics that are typically used to limit the variety of possible refinement
rules. Here we briefly review these heuristics and their motivation.

1 Refinement of regular tilings is used. While other tiling types, such as peri-
odic (e.g. Laves or Archimedes tilings) or aperiodic (Penrose tilings) can be
considered, all schemes proposed so far meet this requirement.

2/3 A refinement rule either maps all vertices of the original tiling to the vertices
of the refined tiling, or it maps them to the face centers of the refined tiling.
Again, it is possible to consider other types of rules, but all known schemes
are in one of these categories.

4 If a point is a center of rotational symmetry of order k in the tiling (i.e. the ro-
tations by 2πj/k around this vertex map the tiling to itself), then in the refined
tiling, it should be a center of rotational symmetry of at least the same order.
If this requirement is not satisfied, one can show that the result of refinement
depends on the way the vertices of a tiling are enumerated. Given the first 3
heuristics, this heuristic excludes refinement rules, mapping triangle vertices
to centers, and hexagon centers to vertices.

5 For some number s, s times refined tiling is aligned with the original tiling,
i.e. is obtained by uniform scaling. This is also justified by symmetry consid-
erations, although, as pointed out in [16] is not strictly necessary. However,
all schemes satisfying heuristic 7 in the stronger form that we use also satisfy
this heuristic.

6 Triangle and quadrilateral schemes are generally useful but hexahedral
schemes are more limited in their applications. One reason is that hexahedral
tiling does not contain any multiple-edge straight lines, which can be used for
meshes with boundaries and features.

7 Low arity (the ratio of the edge length of the refined tiling to the original
tiling) is preferable. According to [16] arities higher than four are not likely
to be useful. All practical and most known schemes, with exception of three
recently proposed schemes, have arity two or less. As schemes of high arities
result in very rapid decrease in the edge length, which is often undesirable, it
is likely that only schemes of arity two or less will be used in applications.

These heuristics reduce the number of possible refinement rules to just six:
four for quadrilateral tilings and two for triangle tilings (Figure 4).

We note that classifications, based on considering various possible transfor-
mations of tilings, do not yield an immediate recipe for refinement purely in terms
of mesh connectivity; generalization to arbitrary connectivity meshes is not auto-
matic either.

The remaining six refinement rules are uniquely identified by three parame-
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TP, arity 2 QP, arity 2 QD, arity 2

TP, arity QP, arity QD, arity p2 p2p3

Fig. 4. Different refinement rules.

ters:

Tiling. The tile can be triangle or quadrilateral.
Vertex mapping. Vertices are mapped to vertices (primal) or vertices are mapped

to faces (dual). Dual triangle refinement are excluded by heuristics 4.
Arity. For triangle tilings can be 2 or

√
3; for quad meshes can be 2 or

√
2.

Each of the six refinement rules can be easily formulated in terms of mesh con-
nectivity in such a way that the refinement can be applied to an arbitrary polygonal
mesh. For ease of understanding, we provide a somewhat informal description.
We only specify the set of new vertices and edges, with faces defined implicitly as
loops of edges. For primal rules, old vertices are retained, and old edges are dis-
carded. For dual rules, both old vertices and edges are discarded. For each rule, we
list how many different types of geometric rules are necessary to construct a subdi-
vision scheme for meshes without boundaries. To handle meshes with boundaries,
additional special rules for boundary vertices are necessary.

While triangle-based refinement rules can be applied to any mesh, known ge-
ometric rules for such schemes are only formulated for triangle meshes.

Primal triangle rule (TP) of arity 2. This is the rule considered in Section 2:
create new vertices for each old edge and split each old edge in two; for each
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old face onnect new vertices inserted on edges of this face sequentially. Two
geometric rules are necessary: one to update control points for old vertices
(vertex rule) and another to compute positions of new control points (edge
rule).

Primal triangle (TP) rule of arity
√

3. Create a new vertex for each face; con-
nect old vertices with new vertices for each old face containing the old vertex;
connect new vertices for adjacent old faces. Two similar geometric rules (ver-
tex and edge) are needed.

Primal quad rule (QP) of arity 2. Create new vertices for each old edge and
face; split old edges in two; for each old face, connect corresponding new
vertex with new vertices inserted on edges. Three geometric rules are neces-
sary: one for old vertices (vertex rule), one for new vertices corresponding to
edges (edge rule), and one for new vertices corresponding to faces (face rule).

Primal quad rule (QP) of arity
√

2. Create a new vertex for each face; connect
old vertices to new vertices for all adjacent faces. Two geometric rules are
necessary, similar to the TP rules, the edge rule, and the face rule.

Dual quad rule (QD) of arity 2. For every face, create new vertices for every
corner of the face and connect them into a face; connect new vertices cor-
responding to the same old vertex from adjacent faces. Only one geometric
rule is necessary.

Dual quad rule (QD) of arity
√

2. Add a new vertex for each edge; for each
face, connect new vertices on edges sequentially. Only one geometric rule
is necessary.

The general property of the triangle rules is that it does not increase the number
of non-triangular faces in the mesh. The general property of the quad rules is that
they do not increase the number of non-quadrilateral faces. Moreover, both primal
quad rules and the

√
3 triangle rule make all faces of a mesh triangular after one

refinement step.

Classification. For each refinement rule type, there may be many different subdi-
vision schemes depending on the choice of geometric rules. The geometric rules
can be further classified by two characteristics: whether they are approximating
or interpolating, and by their support size. Interpolating schemes do not alter the
control points at vertices, inherited from the previous refinement level; approxi-
mating schemes do. The distinction between approximating and interpolating for
schemes with arity no greater than two makes sense only for primal schemes.

With this criteria in place, we can classify most known schemes; in most cases,
only one scheme of a given type is known. The reason for this is that only schemes
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with small support are practical, and additional symmetry considerations con-
siderably reduce the number of degrees of freedom in coefficients. Maximizing
smoothness of resulting surfaces on regular grids further restricts the choices, in
most cases yielding a known parametric family of schemes.

The table below lists all schemes known to fit into our classification.

Refinement type Approximating Interpolating
TP, arity 2 Loop [46,26,9,47,63] Butterfly [22,92]
TP, arity

√
3

√
3,[34], composite

√
3 [58] interpolatory

√
3,[38]

QP, arity 2 Catmull-Clark [11] iterated [91,77] Kobbelt [32]
QP, arity

√
2 4-8 [81,80] interpolating

√
2 [27]

QD, arity 2 Doo-Sabin [17,18], iterated [91] —
QD, arity

√
2 Midedge [61,24] —

Polygonal meshes with boundaries. The minimal number of geometric rules,
ranging from one to three, is sufficient if we require the rules to be invariant with
respect to isomorphisms of mask supports and assume the meshes do not have
boundaries.

However, in practice it is not sufficient to consider only this class of meshes:
in any practical application, the control mesh may have a boundary. Furthermore,
the boundary may not be smooth everywhere: it may consist of several smooth
pieces, jointed at corners. The definition of meshes with boundary is identical to
the polygonal mesh definition in Section 2; the only differences are that an edge
can be contained only in one face, and the link of a vertex is a chain of edges, with
last vertex not connected to the first.

While a boundary edge or vertex is identified unambiguously, corner vertices
on the boundary require tags.It turns out that depending on the type of corner
(convex or concave); different rules need to be used, so at least two different tags
are needed.

We have already seen that subdivision schemes defined on triangular meshes
create new vertices only of valence 6 in the interior. On the boundary, the newly
created vertices have valence 4. Similarly, on quadrilateral meshes both primal and
dual schemes create only vertices of valence 4 in the interior and 3 on the bound-
ary. Hence, after several subdivision steps, most vertices in a mesh will have one
of these valences (6 in the interior, 4 on the boundary for triangular meshes, 4
in the interior, 3 on the boundary for quadrilateral). The vertices with these va-
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lences are called regular, and vertices of other valences are called extraordinary.
Similarly, faces with 3 and 4 vertices are called regular for triangle and quadrilat-
eral schemes respectively, and faces with a different number of vertices are called
extraordinary.

Next, we consider several examples of subdivision schemes. We start with a
detailed description of two schemes that are used in most applications: Loop and
Catmull-Clark, which use TP and QP refinement rules of arity 2. Then we con-
sider examples of interpolating schemes (Butterfly), dual schemes (Doo-Sabin)
and non-arity 2 schemes (Midedge and 4-8 subdivision).

3.2 Loop Scheme

The Loop scheme for meshes without boundary was already described in Sec-
tion 2. The scheme is based on the three-directional box spline, which produces
C2-continuous surfaces on the regular meshes. The Loop scheme produces sur-
faces which areC2-continuous everywhere except at extraordinary vertices, where
they are C1-continuous. C1-continuity of this scheme for valences up to 100,
including the boundary case, was proved by Schweitzer [74]. The proof for all
valences can be found in [89]. In addition to already defined rules for interior ver-
tices, it remains to specify rules for vertices on or near the boundary. The rules we
define here were proposed in [9].

A common requirement for rules for boundary vertices is that the control
points on level j + 1 should only depend on boundary control points on level
j. In the case of the Loop scheme, for compatibility with the regular case, we
use the standard cubic spline rules, both for edge points and vertex points (Fig-
ure 5). If a vertex v is tagged as a corner vertex, a trivial interpolating rule is used:
pj+1(v) = pj(v).

Adding these rules formally completes the definition of the scheme for all pos-
sible cases; unfortunately, this set of rules is insufficient to produce limit surfaces
which are C1 continuous at the extraordinary boundary vertices or surfaces with
concave corners on the boundary. To achieve this, spatial edge rules are applied at
edge points adjacent to extraordinary boundary vertices.

For edge points, our algorithm consists of two stages, which, if desired, can be
merged, but are conceptually easier to understand separately.

The first stage is a single iteration over the mesh during which we apply the
vertex rules and compute initial control points for vertices inserted on edges. All
rules used at this stage are shown in Figures 3 and Figure 5. The mask support is
the same, but the coefficients are modified. The change in coefficient ensures that
the surface is C1 for boundary vertices. However, the scheme still cannot produce
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concave corners: The surface develops a “flip” at these vertices; the reason for this,
informally, is that the invariant configuration defined by subdominant eigenvectors
of subdivision matrix in this case does not have a concave corner; rather, it has a
convex one.

1

1

1/2 1/2

1/8 3/4 1/8 1/8

1/8

3/8{°

°

vertex             rules

convex        corner boundary

concave        corner

smooth   boundary

edge           rules   

boundary   neighbor

Fig. 5.

The γ is given in terms of parameter θk, defined differently for corner and
boundary vertices:

γ (θk) = 1/2− 1/4 cos θk

For boundary vertices v not tagged as corners, we use θk = π/k, where k is
the number of polygons adjacent to v. For a vertex v tagged as a convex corner,
we use θk = α/k, where α < π, and for concave corner we choose α > π. The
parameter α can be either fixed (e.g. π/2 for convex and 3π/2 for concave) or
can be chosen depending on the angle between the vectors from p0(v) to adjacent
boundary control points adjacent to v.

To ensure the correct behavior at the concave corner vertices, an additional
step flatness modification is required which is defined as follows.

Flatness modification. To avoid the flip problem described above, one needs
to ensure that the eigenvalues corresponding to a pair of “correct” eigenvectors,
forming a concave corner, are subdominant. The following simple technique pro-
posed in [9] achieves this. We introduce a flatness parameter s and modify the
subdivision rule to scale all eigenvalues except λ0 and λ = λ1 = λ2, correspond-
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ing to the desired eigenvectors, by factor 1−s. The vector of control points p after
subdivision in a neighborhood of a point is modified as follows:

pnew = (1− s) p+ s
(
a0x

0 + a1x
1 + a2x

2
)
,

where, as before, ai = (li · p), and 0 ≤ s ≤ 1. Geometrically, the modified
rule blends between control point positions before the flatness modification and
certain points in the tangent plane, which are typically close to the projection
of the original control point. The limit position a0 of the center vertex remains
unchanged.

The flatness modification is always applied at concave corner vertices; the
default values for the flatness parameter is s = 1 − (1/4)/λ3, where λ3 =
(1/4)(cosπ/k) − cos (θk)) + 1/2 (the largest eigenvalue 6= 1 of the subdivi-
sion matrix before the modification). The modification ensures that the surface is
C1 in this case. In other cases, s can be taken to be 0 by default.

The formulas for limit positions and tangents for all possible cases can be
found in [9].

3.3 Catmull-Clark scheme

The Catmull-Clark scheme [11] probably is the most widely used subdivision
scheme. One of the reasons is it extends tensor-product bicubic B-spline surfaces,
the most commonly used type of spline surfaces. This scheme uses the QP re-
finment rule with arity 2. It produces surfaces that are C2 everywhere, except at
extraordinary vertices, where they are C1. The tangent plane continuity of the
scheme was analyzed in [6], and C1-continuity in [62].

The masks are shown in Figure 6; for interior vertices, there are three types
of masks: for new vertices inserted at edges and faces and for update of control
points at old vertices.

If k = 4, the masks reduce to subdivision masks for bicubic B-splines. Similar
to the Loop scheme, cubic spline rules are applied at the boundary, and at the
corner boundary vertices, the trivial interpolating rule is used. Again, just as is
the case for the Loop scheme, the minimal set of rules results in surfaces which
lack smoothness at extraordinary boundary vertices. A similar technique is used
for Catmull-Clark, with parameter γ computed as

γ (θk) = 3/8− 1/4 cos θk.

The parameter θk is defined exactly in the same way as for the Loop scheme.
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smooth   boundary
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1/4 1/4

face

interior   vertex

1{β  1{β2
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Fig. 6. Catmull-Clark subdivision. Catmull and Clark suggest the following coefficients for rules at
extraordinary vertices: β1 = 3

2k
and β2 = 1

4k

Finally, a similar extra step is used to ensure correct behaviour at concave
corners:

pnew = (1− s) p+ s
(
a0x

0 + a1x
1 + a2x

2
)
.

The limit position and tangent vector coefficients are listed in [9].
The geometric rules of the Catmull-Clark scheme are defined above for

meshes with quadrilateral faces. Arbitrary polygonal meshes can be reduced to
a quadrilateral mesh using a more general form of Catmull-Clark rules [11]:

• a face control point for an n-gon is computed as the average of the corners of
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the polygon;
• an edge control point is the average of the endpoints of the edge and newly

computed face control points of adjacent faces;
• the vertex rule can be chosen in different ways; the original formula is

pj+1(v) =
k − 2
k

pj(v) +
1
k2

k−1∑
i=0

pj(vi) +
1
k2

k−1∑
i=0

pj+1(vf
i )

where vi are the vertices adjacent to v on level j, and vf
i are face vertices on

level j + 1 corresponding to faces adjacent to v.

4 Modified Butterfly Scheme

The Butterfly scheme was proposed in [22]. Although the original Butterfly
scheme is defined for arbitrary triangular meshes, the limit surface is not C1-
continuous at extraordinary points of valence k = 3 and k > 7 [89]. The scheme
is C1 on regular meshes.

Unlike approximating schemes based on splines, this scheme does not produce
piecewise polynomial surfaces in the limit. In [92] a modification of the Butterfly
scheme was proposed, which guarantees that the scheme produces C1-continuous
surfaces for arbitrary meshes as proved in [89]. The scheme is known to be C1 but
not C2 on regular meshes. The masks for the the scheme are shown in Figure 7.

{1/16 {1/169/16 9/16
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1/2 1/2

1/8

{1/16
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1/4{1/8 {1/8

1/16

3/8 5/8

3/16{1/16 {1/8

{1/16

regular   interior          

boundary-boundary    2 boundary-boundary   1 extraordinary neighborboundary-interior
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Fig. 7. Modified Butterfly subdivision. The coefficients si are 1
k

`
1
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+ cos 2iπ
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´
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k > 5. For k = 3, s0 = 5
12

, s1,2 = − 1
12

; for k = 4, s0 = 3
8

, s2 = − 1
8

, s1,3 = 0.
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The tangent vectors at extraordinary interior vertices can be computed using
the same rules as for the Loop scheme. For regular vertices, the formulas are more
complex: in this case, we have to use control points in a 2-neighborhood of a
vertex. The masks are shown in Figure 8.

Because the scheme is interpolating, no formulas are needed to compute the
limit positions: all control points are on the surface. On the boundary, the four
point subdivision scheme is used [21]. To achieve C1-continuity on the boundary,
special coefficients have to be used.

Boundary rules. The rules extending the Butterfly scheme to meshes with
boundary are somewhat more complex, because the stencil of the Butterfly scheme
is relatively large. A complete set of rules for a mesh with boundary (up to head-
tail permutations), includes 7 types of rules: regular interior, extraordinary inte-
rior, regular interior-boundary, regular boundary-boundary 1, regular boundary-
boundary 2, boundary, and extraordinary boundary neighbor; see Figures 7. To
put it all into a system, the main cases can be classified by the types of head and
tail vertices of the edge on which we add a new vertex. The following table shows
how the type of rule to be applied for computing a non-boundary vertex is de-
termined from the valence of the adjacent vertices, and whether they are on the
boundary or not. The only case when additional information is necessary, is when
both neighbors are regular crease vertices.

Head Tail Rule
regular interior regular interior standard rule
regular interior regular crease regular interior-crease
regular crease regular crease regular crease-crease 1 or 2
extraordinary interior extraordinary interior average two extraordinary rules
extraordinary interior extraordinary crease same
extraordinary crease extraordinary crease same
regular interior extraordinary interior interior extraordinary
regular interior extraordinary crease crease extraordinary
extraordinary interior regular crease interior extraordinary
regular crease extraordinary crease crease extraordinary
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Fig. 8. Tangent masks for regular vertices (Butterfly scheme).

The extraordinary crease rule (Figure 7) uses coefficients cij , j = 0 . . . k, to
compute the vertex number i in the ring, when counted from the boundary. Let
θk = π/k. The following formulas define cij :

c0 = 1− 1
k

(
sin θk sin iθk

1− cos θk

)

ci0 = −cik =
1
4

cos iθk −
1
4k

(
sin 2θk sin 2θki

cos θk − cos 2θk

)
cij =

1
k

(
sin iθk sin jθk +

1
2

sin 2iθk sin 2jθk

)

4.1 Doo-Sabin scheme

The Doo-Sabin subdivision is quite simple conceptually: a single mask is suf-
ficient to define the scheme. Special rules are required only for the boundaries,
where the limit curve is a quadratic spline. It was observed by Doo that this can
also be achieved by replicating the boundary edge, i.e., creating a quadrilateral
with two coinciding pairs of vertices. Nasri [53] describes other ways of defining
rules for boundaries. The rules for the Doo-Sabin scheme are shown in Figure 9.
C1-continuity for schemes similar to the Doo-Sabin schemes was analyzed in
[62].

4.2 Midedge scheme and other non-integer arity schemes

A scheme described in [61] is an arity
√

2 QD scheme; two steps of refinement of
this type result in Doo-Sabin type scheme.
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α0

α1α2

α  k − 1

1/4 3/4

Fig. 9. The Doo-Sabin subdivision. The coefficients are defined by the formulas α0 = 1/4 + 5/4k
and αi = (3 + 2 cos(2iπ/k))/4k, for i = 1 . . . k − 1

The rules for the simplest version of this scheme are very straightforward: the
point inserted on an edge is the average of the endpoints. While the limit surface is
smooth for this rule, the quality of the surface is not good for extraordinary faces;
the rules can be modified to improve surface quality.

An example of a QP scheme of arity
√

2 is the 4-8 scheme [81,80]. While
originally defined in terms of 4-8 refinement, it can be easily reinterpreted in terms
of regular quadrilateral grid refinement as shown in Figure 10.

It should be noted that for quadrilateral schemes of non-integer arity; there
appears to be no natural treatment for the boundaries: as each quad for the refined
mesh has vertices from two quads sharing an edge, it is impossible to construct
quads in the same way on the boundary. One needs to introduce special refinement
rules on the boundary and corresponding special geometric rules. A set of such
rules is described in [81]. The rules are quite complex (six different rules are
needed), in contrast to the rules for interior vertices.

On regular grids this scheme produces surfaces of high smoothness (C4) de-
spite its small support, but at extraordinary vertices, it is still only C1.

The first TP scheme of arity
√

3 was described in [34]; other schemes were
considered in [58].

4.3 Comparison

We conclude our survey of subdivision schemes with some comparisons. For suf-
ficiently smooth and fine control meshes, the results for most common schemes
are indistinguishable visually. We use relatively simple meshes to demonstrate the
differences in clear form; for most meshes used in applications, the differences
are less apparent. In our comparison, we consider Loop, Catmull-Clark, Modified
Butterfly and Doo-Sabin subdivision.
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Fig. 10. The 4-8 subdivision scheme rules refinement. As the edges are not refined, only face and
vertex rules are necessary.

Figure 11 shows the surfaces obtained by subdividing a cube. Loop and
Catmull-Clark subdivision produce surfaces of higher visual quality, as these
schemes reduce to C2 splines on a regular mesh. As all faces of the cube are
quads, Catmull-Clark yields the nicest surface; the surface generated by the Loop
scheme is more asymmetric because the cube had to be triangulated before the
scheme is applied. At the same time, Doo-Sabin and Modified Butterfly reproduce
the shape of the cube more closely. The surface quality is worst for the Modified
Butterfly scheme, which interpolates the original mesh. We observe that there is
a tradeoff between interpolation and surface quality: the closer the surface is to
interpolating, the lower the surface quality.

Figure 12 shows the results of subdividing a tetrahedron. Similar observations
hold in this case. In addition, we observe extreme shrinking for the Loop and
Catmull-Clark subdivision schemes.

Overall, Loop and Catmull-Clark appear to be the best choices for most appli-
cations, which do not require exact interpolation of the initial mesh. The Catmull-
Clark scheme is most appropriate for meshes with a significant fraction of quadri-
lateral faces. It might not perform well on certain types of meshes, most no-
tably triangular meshes obtained by triangulation of a quadrilateral mesh (see Fig-
ure 13). The Loop scheme performs reasonably well on any triangular mesh, thus,
when triangulation is not objectionable, this scheme might be preferable.

More in-depth studies of subdivision surface behavior focusing on curvature
can be found in [67,59,30]. Ways to improve surface appearance using coefficient
tuning were explored in [7].
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5 Smoothness of subdivision surfaces

In this section we review the theory of smoothness of surfaces generated using
stationary subdivision. Smoothness is the focus of most of the work in theory of
subdivision. The standard goal is to establish conditions on masks of subdivision
schemes that ensure that the limit surfaces, for almost all configurations of control
points, are in a smoothness class. Most commonly, the classes Cr, for integer
values of r are considered.

In the regular case, powerful analysis tools exist. (see e.g. a recent survey [20]
or the book [12] as well as [29] for further references). In most cases, subdivision
schemes for surfaces are constructed by generalizing relatively simple schemes
for regular grids, for which smoothness analysis is relatively straightforward.

Due to locality of subdivision rules, this ensures surfaces are smooth away

Loop Butterfly

Catmull-Clark Doo-Sabin

Fig. 11. Results of applying various subdivision schemes to the cube. For triangular schemes (Loop
and Butterfly) the cube was triangulated first.
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Loop Butterfly

Catmull-Clark Doo-Sabin

Fig. 12. Results of applying various subdivision schemes to a tetrahedron.

from isolated points, corresponding to vertices or face centers of the initial
meshes. To complete the analysis for arbitrary meshes, one needs to analyze be-
haviour near such points; in this section we concentrate on this topic.

To be able to formulate the criteria for surface smoothness, we precisely de-
fine the limit subdivision surfaces and review tangent plane continuity and Cr-
continuous surfaces.

5.1 Cr-continuity and tangent plane continuity

There are many different equivalent or nearly equivalent ways to define Cr-
surfaces for integer r. A standard approach in differential geometry is to define
Cr manifolds, and then define Cr surfaces in Rn as Cr-continuous immersions
or embeddings of Cr manifolds. However, this approach is not the most conve-
nient for our purposes, as no a priori smooth structure exists on the domain of
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Initial mesh Loop Catmull-Clark
Catmull-

Clark,after
triangulation

Fig. 13. Applying Loop and Catmull-Clark subdivision schemes to a model of a chess rook. The
initial mesh is shown on the left. Before the Loop scheme was applied, the mesh was triangulated.
Catmull-Clark was applied to the original quadrilateral model and to the triangulated model; note the
substantial difference in surface quality.

subdivision surfaces. Thus, we take a somewhat different but equivalent approach.
We do not require a smooth structure and say that a surface defined on a domain,
for which only topological structure exists, is Cr if there is a Cr-continuous local
reparameterization for a neighborhood of any point. More formally, we use the
following definition.

Definition 5.1: A surface f : M → Rn, where M is a topological 2D manifold,
is Cr-continuous, for r ≥ 1, if for every point x ∈ M there exists an open
neighborhood Ux in M of x, and a regular parameterization π : D → f(Ux)
of f(Ux) over an open unit disk D in the plane, A regular parameterization
π is one that is r-times continuously differentiable, one-to-one, and has a Jacobi
matrix of maximum rank, i.e. if (s, t) is a choice of coordinates onD ∂sπ and ∂tπ

for any choice of coordinates on D are independent.

We call a subdivision scheme Cr continuous if for any complex K and almost
any choice of control points p for vertices of this complex, resulting limit surfaces
are Cr-continuous. In practice, however, it is difficult to prove this for arbitrary
complexes, and additional restrictions have to be imposed.

The condition that the Jacobi matrix of p has maximum rank is necessary to
make sure that there no degeneracies, i.e., f represents a surface, not a curve or
point.
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In our constructions, it is useful to consider a weaker definition of surface
smoothness at a point. This definition captures the intuitive idea that the tangent
plane to a surface changes continuously, and is applicable only for an isolated
point, i.e. we assume that the surface is Cr-continuous everywhere excluding a
point. We first define a tangent plane continuous surface in R3. Note that if the
surface is C1-continuous in R3 in a neighborhood of a point, there is a well-
defined normal at that point given for a choice of coordinates (s, t) by ∂sπ× ∂tπ.

Definition 5.2: A surface f : M → R3 is tangent plane continuous at x ∈ M

if and only if it is C1-continuous in a neighborhood of x, and there exists a limit
of normals at x.

An example of a surface which is tangent plane continuous but not C1-
continuous is (x = s2 − t2, y = 2 ∗ s ∗ t, z = s3).

We will also need the definition of tangent plane continuity in higher dimen-
sions; for n > 3, the appropriate generalization of the cross product is the exterior
(wedge) product, Rn × Rn → Rn(n−1)/2; for two vectors v, w, their product
v∧w has components viwj − vjwi, 0 ≤ i < j ≤ n. The exterior product is linear
in each argument and antisymmetric ( v ∧ w = −w ∧ v). From antisymmetry, it
follows that v ∧ v = 0. For n = 3, the exterior product is identical to the cross
product. The exterior product v ∧ w defines a plane in n dimensions spanned by
vectors v and w just as normal v × w defines the plane in 3D. In higher dimen-
sions, the definition of tangent plane continuity is identical to 3D, with exterior
product ∂s ∧ ∂t considered instead of the normal.

The following fact can be easily proved: if a surface is tangent plane continu-
ous at a point and the projection of the surface onto the tangent plane at that point
is one-to-one for a neighborhood of the point, the surface is C1.

The definition of tangent plane continuity for a subdivision scheme is similar
to the definition of Cr-continuity.

5.2 Universal surfaces

We present an approach to establishing smoothness criteria for subdivision
schemes described in [90]. We do not derive the necessary and sufficient condi-
tions in full generality, as required algebraic machinery is relatively complicated
and obscures the main ideas. Instead, we derive conditions similar to Reif’s origi-
nally proposed sufficient condition [65]. We use the more general approach based
on the universal surfaces over Reif’s original derivation since in author’s view it
provides better geometric intuition for tangent plane continuity and C1 continu-
ity. Most statements are presented without proof. For more complete analysis and
proofs, we refer the reader to [64,88,90].
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It is intuitively clear that to verify that a subdivision scheme with finitely
supported masks produces smooth surfaces for almost all configurations of con-
trol points, it is sufficient to consider behavior of a part of the surface on a 1-
neighborhood of an extraordinary vertex v |N1(v)|. We further assume that the
control mesh for |N1(v)| contains a single extraordinary vertex and is an invariant
neighborhood. This is, in fact, a limiting assumption; however, all known analysis
techniques rely on this assumption, as verification of smoothness of subdivision
schemes in a more general setting so far is not possible. This problem is discussed
in greater detail in [90].

In this restricted setting, we can regard a regular k-gon U centered at zero
in R2, as the domain of the patch of the subdivision surface in which we are
interested. Let S be the subdivision matrix, and pj vectors of control points for
U at subdivision levels j, pj+1 = Spj . Let N be the number of points in p. An
important observation following from the construction of the limit subdivision
surface is that p1 = Sp is the vector of control points for the scaled domain
(1/2)U , and in general, pj = Sjp0 is the vector of control points for (1/2j)U ; in
other words, the limit function f [p] evaluated on (1/2)U satisfies

f [p](y/2) = f [Sjp](y) (5.1)

Consider a basis e1, . . . eN ; then p =
∑

i piei. By linearity of subdivi-
sion, we can write f [p] = f [

∑
i piei] =

∑
i pif [ei]. We introduce the map

ψ : U → RN , defined as f = (f [e1], f [e2], . . . f [eN ]). This surface (the uni-
versal surface)defined by this map is defined uniquely up to a nonsingular linear
transformation.

For any vector of control points p, we can regard the subdivision surface f [p]
as a linear map of the universal surface to three-dimensional space give by

f [p](y) = (p · ψ(y))

It immediately follows from (5.1) that ψ satisfies

ψ(y/2) = STψ(y) (5.2)

Furthermore, we can verify by direct computation that the normal to the sub-
division surface f [p](y) at points y where it is f is differentiable can be computed
as

∂1f [p]∧∂2f [p] = N(y) = ((py ∧ pz) · w(y), (pz ∧ px) · w(y), (px ∧ py) · w(y))
(5.3)
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where w(y) = ∂1ψ(y) ∧ ∂2ψ(y), i.e. the analog of the normal for the universal
surface. We also note that f is differentiable everywhere on U except at edges of
triangles of U . Furthermore, one-sided derivative limits exist at edges, excluding
the center of U , i.e. zero. One can show that using one-sided limits of derivatives
on either side of the edge yields the same vector w(y), so it is defined everywhere.

This surface has the following important property.

Theorem 5.1: A subdivision scheme is tangent plane continuous (Cr) at vertices
of a given valence if and only if the universal surface for this valence is tangent
plane continuous, assuming that the universal surface isC1-continuous away from
zero. The universal surface is Cr-continuous if and only if the subdivision scheme
is Cr continuous.

This theorem allows us to replace analysis of all possible surfaces generated
using a subdivision scheme with analysis of a single surface in higher-dimensional
space for each valence. The assumption of the theorem about C1-continuity away
from zero typically follows from the analysis of the regular case and the charac-
teristic map as explained below.

To analyze whether the universal surface is tangent plane continuous, we need
to look at the behavior of the vectorsw(y) (the generalized normals) as y → 0. For
any linear transform A, Aw ∧ Av = (ΛA)(w ∧ v) defines a natural extension of
A to the space of exterior products. Thus, taking derivatives and wedge products,
we obtain

w(y/2) = ∂1ψ(y/2) ∧ ∂2ψ(y/2) = 4(ΛST )∂1ψ(y) ∧ ∂2ψ(y) = 4(ΛST )w(y)
(5.4)

i.e. the vector w(y) satisfies a scaling relation, but with a different matrix.
As a result, our problem is reduced to the following: under which conditions

does the direction of Ajw(y), where A = 4ΛST , converge to a unique limit for
j →∞ and for any choice of y?

5.3 Sufficient smoothness criteria

So far, our discussion has been completely general. Without any assumptions on
the matrix S, the conditions for convergence to a unique limit can be quite com-
plex and require analysis of the Jordan normal form of the subdivision matrix.
The main ideas can be easily understood if we consider the special case when S
satisfies the conditions of Section 2: the matrix has a basis of eigenvectors, λ1 and
λ2 are real positive, λ0 = 1 > λ1 ≥ λ2 > |λ3|, if the eigenvalues are ordered by
magnitude, and each is repeated once for each of its eigenvectors.
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In the case of such matrices, the matrix ΛS also has a simple structure. First,
we observe that if xi and xj are independent eigenvectors of S, with eigenvalues
λi and λj , then ΛS(xi ∧ xj) = Sxi ∧ Sxj = λiλjxi ∧ xj , i.e. xi ∧ xj is an
eigenvector with eigenvalue λiλj . There are N(N − 1)/2 such eigenvectors, and
these eigenvectors are independent. We conclude that ΛS also has a complete
system of eigenvectors, with eigenvalues equal to λiλj , with i < j.

This observation allows us to understand the behavior of Ajw(y). Suppose
w(y) =

∑
i αixi where xi are eigenvectors of A. Then, the direction of Ajw(y)

converges to the direction of xi, where xi is the the eigenvector with largest eigen-
value such that αi 6= 0.

We observe that we can define ψ =
∑
cifi, where fi = f [xi] is the eigenbasis

function corresponding to eigenvalue λi; in particular, by affine invariance, f0 is
a constant.

w(y) =
∑
i<j

(ci ∧ cj)(∂1fi∂2fj − ∂2fi∂1fj) =
∑
i<j

(ci ∧ cj)J [fi, fj ]

where J [fi, fj ] denotes the Jacobian of two functions.
We note that the terms corresponding to i = 0 vanish because f0 is a constant.

Thus, the largest eigenvalue which may have a nonzero term in this decomposition
is λ1λ2.

If we assume that for any y, J [fi, fj ](y) 6= 0, we see that the limit direction
of Ajw(y) = w(y/2j) is always c1 ∧ c2, i.e. all these sequences converge to the
same limit. With more careful analysis, one can easily establish that the limit is
the same for any sequence w(yj), with yj → 0.

We obtain the following sufficient condition for tangent plane continuity:

Theorem 5.2: Suppose for a valence k, the subdivision matrix is non-defective
and has eigenvalues satisfying λ0 = 1 > λ1 ≥ λ2 > |λ3|, when ordered
in non-increasing order, each eigenvalue repeated according to its multiplicity.
Suppose the eigenbasis functions corresponding to eigenvalues λ1 and λ2 satisfy
J [f1, f2] 6= 0 everywhere on the regular k-gon U \ {0}. Then, the scheme pro-
duces tangent plane continuous surfaces on U for almost any choice of control
points.

The pair of functions (f1, f2) defines a map U → R2. This planar map is
called the characteristic mapa.

aReif’s original definition is somewhat different: only the restriction of (f1, f2) to an annular region
around zero is included.
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This condition is not necessary, even given the assumptions on the scheme:
e.g. the Jacobian of f1 and f2 can be zero everywhere, but the scheme can still
be tangent plane continuous if e.g. the Jacobian of f1 and f3 does not vanish.
Theorem 5.2 is a weaker form of Reif’s criterion; note that we do not obtain C1

continuity, only tangent plane continuity. However, we note that the stronger C1-
continuity criterion immediately follows from combining Theorem 5.2 with the
observation from Section 5.1 that C1 continuity is equivalent to tangent plane
continuity and injectivity of projection to the tangent plane.

We observe that in the coordinate system with basis vectors ci, the projection
of the universal surface to the tangent plane is equivalent to simply discarding all
components except f1 and f2; this projection is one-to-one, if the map (f1, f2) :
U → R2 is one-to-one, i.e. the characteristic map is injective. This yields the
following criterion.

Corollary 5.3: (Reif’s criterion) If the assumptions of Theorem 5.2 are satis-
fied, and in addition the characteristic map is injective, the scheme produces C1-
continuous surfaces on U for almost any choice of control points p.
Higher-order smoothness. The general conditions for higher order smoothness
have quite elaborate form and are beyond the scope of this tutorial. We only state a
necessary and sufficient condition for C2-continuity, which are of greatest practi-
cal relevance, for a limited class of schemes since the conditions have simple and
intuitive form:

Proposition 5.4: Suppose a scheme satisfies conditions of Corollary 5.3 and has
equal subdominant eigenvalues λ = λ1 = λ2. Then the scheme produces C2 con-
tinuous surfaces if and only if for any eigenvalue µ 6= λ, µ 6= 1, either |µ| < λ2 or
µ = λ2, and the corresponding eigenbasis function is a homogeneous quadratic
function of f1 and f2.

This condition shows a serious limitation of stationary subdivision: the sim-
plest approach to constructing C2 schemes is to ensure that all non-subdominant
eigenvalues are sufficiently small. This can be easily achieved by manipulation
of coefficients, as was shown in [9,63], but results in surfaces, which have zero
quadratic approximants at extraordinary vertices, i.e. zero curvature. To obtain
non-zero curvature, we need to satisfy a much more difficult condition on the
eigenbasis functions. In fact, it was demonstrated in [66] that this is impossible to
achieve for schemes based on low degree splines.
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6 Approximation properties of subdivision surfaces

While smoothness of subdivision surfaces with arbitrary control meshes has re-
ceived a lot of attention, much less is known about approximation properties: to
the best of our knowledge, there is a single published work on the topic [3]. Given
that subdivision bases for refined grids coincide with spline surfaces almost ev-
erywhere, one would expect similar approximation behavior. However, available
estimates do not fully confirm this. At the same time, subdivision surfaces are
used by many authors as a practical approximation tool [49,43,71,78,51,2] with
good results, which highlights the need for more thorough theoretical exploration
of this aspect of subdivision.

In this section we review the main concepts of approximation of surfaces and
state the estimates obtained in [3] as well as some results of [87].

6.1 Functional spaces on surfaces

A typical form of the approximation estimates for finite element and splines spaces
is

‖g − g̃‖Hs(Ω) < Cht−s‖g‖Ht(Ω),

where g ∈ Ht is the approximated function, g̃ is the best approximation (the
closest point from the approximating space), h is a parameter characterizing the
approximation space (e.g. element size for finite elements, or support size of indi-
vidual basis functions), and Hs(Ω) and Ht(Ω) are Sobolev spaces on the domain
Ω.

Our goal is to derive similar estimates for subdivision surfaces. The task is
complicated by the fact that the domains on which subdivision bases are defined
(polygonal complexes) do not have an intrinsic smoothness structure, and it is
impossible to define Sobolev spaces on these domains without introducing such
structure.

On the other hand, one can observe that subdivision itself can be used to intro-
duce a smoothness structure on the domain using the characteristic maps. Before
we explain the construction, we review the needed general concepts: Cr,1 man-
ifolds and Sobolev spaces on these manifolds in the context of polygonal com-
plexes.

First, we recall the definition of spaces Hs(Ω) for an open domain Ω in Rn.
Consider a function f in C∞

0 (Ω), the space of compactly supported smooth func-
tions on Ω. For an integer s, define the seminorm |f |Hs(Ω) as the Lp norm of the
s-th differential of f on Ω (recall that the s-th differential is a multilinear form in
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s variables with coefficients equal to partial derivatives of total order s). The norm
‖f‖Hs(Ω) is defined as ‖f‖Lp(Ω) + |f |Hs(Ω).

A Cr,1 2D manifold structure on a subset M of Euclidean space is an atlas,
which is a collection of charts (χi,Ωi), χi : Ωi →M , and Ωi is an open domain
in R2. Charts satisfy several conditions: (1) the union of χi(Ωi) is M ; (2) the
transition maps χ−1

j ◦χi are of smoothness classCr,1, i.e. of r-times differentiable
functions with Lipshitz r-th derivatives. We need to consider Cr,1 smoothness
structures, rather than simply Cr because they allow us to construct a broader
range of functional spaces on manifolds with smoothness structure defined by
subdivision.

Let ρi be a partition of unity subordinated to the atlas χi, that is, the support
of each ρi is contained in the range of χi (note that the support of a function is
defined to be the closure of the set where the function is not zero, and therefore,
the distance from supp ρi to ∂Ω is positive.) For a Cr,1 and s ≤ r + 1 function
f : M → R define the norm

‖f‖Hs(Ωi) =
∑

i

‖(ρif) ◦ χi‖HsΩi

The space Hs(M) is the completion of Ck,1(M) with respect to this norm. It
is straightforward to show that the norms defined with respect to different atlases
or partitions of unity M are equivalent; thus, the definition of the space Hs(M)
does not depend on the atlas or the partition of unity. The fact that f ◦ g is in Hs

if f is in Hs and g is in Cs−1,1 is necessary to prove invariance [52].
In this definition, the norm is not invariant with respect to the change of atlas:

while the spaces stay the same, the norms may change.
These definitions allow us to formulate approximation estimates for bases de-

fined on manifolds. It remains to define a sufficiently smooth structure on the
domain of subdivision surfaces.

6.2 Manifold structure defined by subdivision

As in the previous section, we restrict our attention to TP schemes of arity 2, i.e.
schemes similar to the Loop scheme.

Suppose for regular grids a subdivision scheme yields functions which are
Cr,1, for example it is based on B-splines of degree r + 1. We note that these
splines reproduce polynomials of degree r+1, and therefore, have approximation
order r + 2 for functions from the space Hr+2.

We also assume that the characteristic map is regular, in the sense defined in
the previous section, and one-to-one. For each vertex v of a complex K, consider
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the inverse of the composition of a piecewise linear map from |N1(K)| to the
regular k-gon Uk, with the characteristic map Φk : Uk → R2. We denote this
map χv . We use the interior of images Φk(Uk) as the domains of the charts, and
χv as the chart maps for out atlas.

One can easily show that for any two adjacent vertices v and w for any interior
point of |N1(v)| ∩ |N2(w)|, the composition χ−1

v ◦ χw is Cr,1, i.e. the structure
defined by these charts is Cr,1.

We conclude that for a scheme producing Cr,1-continuous surfaces for regular
control grid and with regular and one-to-one characteristic maps, we can define
smoothness spaces up to order k+ 1 on arbitrary meshes. This result is somewhat
unsatisfactory as we cannot consider functions of higher smoothness k + 2, for
which the scheme has the best approximation rate in the regular case.

Now we can state the result obtained in [3].

Theorem 6.1: Consider bases defined by the Loop subdivision scheme on com-
plexes K0, K1, . . .Kj . . . , obtained by quadrisection refinement of the ini-
tial complex K0 = K. Then, the C2,1 manifold structure and Sobolev spaces
Ht(|K|) for t ≤ 3 are defined on |K| as described above, and the best approxi-
mation f̃ by subdivision basis functions of a function f ∈ Ht(|K|) satisfies

‖f − f̃‖Hs(|K|) < Cλt−s
max‖f‖Ht(|K|)

for any s ≤ 2, where λmax is the maximal subdominant eigenvalue for all valences
of vertices in K.

Comparing with what is known for quartic box splines, on which Loop scheme
is based, we see that this statement is limiting in several ways. First, the maximal
exponent is 3 rather than 4; this is due to the limited smoothness of the chosen
manifold structure on |K|. The order of approximation is further reduced by hav-
ing to use λmax, which can be as high as 5/8 instead of 1/2, as the scale parameter.

Finally, the norm on the left-hand side can be at most H2. This is due to
the fact that the basis functions are C1, and therefore, are in H2 but not higher
smoothness spaces.

Given that the basis produced by subdivision almost everywhere coincides
with the basis in the regular case, one expects that better estimates should be
possible. Indeed, one can show that by choosing a different smoothness structure
on |K|, one can obtain the following estimate [87]

‖f − f̃‖L2(|K|) < C(1/2)t‖f‖Ht(|K|)
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for t ≤ 4. While exactly matching splines for L2 = H2 norms on the right-hand
side, the choice of smoothness structure results in the loss of estimates forH1 and
H2.

The optimal choice of structure for estimates of this type remains open.

7 Conclusions

The survey we have presented is far from exhaustive. We did not discuss many
important theoretical and algorithmic topics related to stationary subdivision on
meshes. There are a few important extensions. Examples include variational sub-
division [33] and PDE-based schemes [83,84,82], subdivision schemes in higher
dimensions [5,50] and schemes for arbitrary mesh refinement [23]. Multiresolu-
tion surfaces based on subdivision were not considered either.

While there was a rapid progress in subdivision theory in the late 90s, few
questions were resolved conclusively. While smoothness criteria exist and are
well established, applying these criteria remains difficult, especially for paramet-
ric families of subdivision schemes and requires extensive computations. There
are no criteria directly relating smoothness of limit surfaces to easy-to-verify con-
ditions on mask coefficients; although, recent work by Prautzsch and Umlauf [79]
is a promising step in this direction. Analysis approximation properties and fair-
ness of limit surfaces is even further from completion.

In contrast, an increasing number of applications use subdivision as the surface
representation of choice, and applications appear in other areas (e.g. subdivision-
based finite elements). We hope that the needs of practical applications will en-
courage further theoretical advances.
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eling, finite-element analysis, and engineering design for thin-shell structures using
subdivision. Computer Aided Design, 34(2):137–48, 2002.

15. J. Claes, K. Beets, and F. Van Reeth. A corner-cutting scheme for hexagonal subdivi-
sion surfaces. In Proceedings SMI. Shape Modeling International 2002, pages 13–20.
2002. 17-22 May 2002.

16. N.A. Dodgson. An heuristic analysis of the classification of bivariate subdivision
schemes. Technical Report 611, University of Cambridge Computer Laboratory, De-
cember 2004.

17. D. Doo. A subdivision algorithm for smoothing down irregularly shaped polyhedrons.
In Proceedings on Interactive Techniques in Computer Aided Design, pages 157–165,
Bologna, 1978.

18. D. Doo and M. Sabin. Analysis of the behaviour of recursive division surfaces near
extraordinary points. Computer-Aided Design, 10(6):356–360, 1978.

19. Nira Dyn and David Levin. The subdivision experience. Wavelets, images, and surface
fitting (Chamonix-Mont-Blanc, 1993), pages 229–244, 1994.

20. Nira Dyn and David Levin. Subdivision schemes in geometric modelling. Acta Nu-
merica, 11:73–144, 2002.

21. Nira Dyn, David Levin, and John A. Gregory. A 4-point interpolatory subdivision
scheme for curve design. Computer-Aided Geometric Design, 4(4):257–68, 1987.

22. Nira Dyn, David Levin, and John A. Gregory. A butterfly subdivision scheme for sur-
face interpolation with tension control. ACM Transactions on Graphics, 9(2):160–9,
1990.

23. Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution signal processing
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