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Abstract. A sufficient condition for C1-continuity of subdivision surfaces was proposed by Reif
[Comput. Aided Geom. Design, 12 (1995), pp. 153–174.] and extended to a more general setting in
[D. Zorin, Constr. Approx., accepted for publication]. In both cases, the analysis of C1-continuity
is reduced to establishing injectivity and regularity of a characteristic map. In all known proofs of
C1-continuity, explicit representation of the limit surface on an annular region was used to estab-
lish regularity, and a variety of relatively complex techniques were used to establish injectivity. We
propose a new approach to this problem: we show that for a general class of subdivision schemes,
regularity can be inferred from the properties of a sufficiently close linear approximation, and injec-
tivity can be verified by computing the index of a curve. An additional advantage of our approach
is that it allows us to prove C1-continuity for all valences of vertices, rather than for an arbitrarily
large but finite number of valences. As an application, we use our method to analyze C1-continuity
of most stationary subdivision schemes known to us, including interpolating butterfly and modified
butterfly schemes, as well as the Kobbelt’s interpolating scheme for quadrilateral meshes.
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1. Introduction. Subdivision is becoming increasingly popular as a surface rep-
resentation in computer graphics applications. To ensure that a subdivision algorithm
has the desired behavior for almost all input data, a theoretical analysis of the sur-
face has to be performed. For subdivision on arbitrary meshes, even the analysis
of the basic property of the surfaces, C1-continuity, poses a considerable challenge;
[19, 9, 15, 16, 20]. In this paper we describe a set of theoretical results and algorithms
that make it possible to perform the C1-continuity tests automatically.

The principal result allowing one to analyze C1-continuity of most subdivision
schemes is the sufficient condition of Reif [18]. This condition reduces the analysis of
stationary subdivision to the analysis of a single map, called the characteristic map,
for each valence of vertices in the mesh. The analysis of C1-continuity is performed
in three steps for each valence:

1. compute the control net of the characteristic map;
2. prove that the characteristic map is regular;
3. prove that the characteristic map is injective.

This map can be expressed in a closed form for spline-based subdivision schemes,
such as Loop, Catmull–Clark, and Doo–Sabin. For these schemes, proving regularity
of the characteristic map is tedious but straightforward, as the Jacobian of the map
can be expressed in terms of piecewise polynomial basis functions. Proving injectivity
is somewhat more difficult [19, 15].
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Our goal is to verify regularity and injectivity automatically for arbitrary (not
necessarily spline-based) subdivision schemes, once the control net for the character-
istic map is known. Our approach has two additional benefits:

1. With some mild assumptions on the dependence of the coefficients of the
characteristic scheme on the valence, we are able to analyze C1-continuity for all
valences.

2. Stability of C1-continuity with respect to perturbations of coefficients can be
estimated.

Our method is based on two results, discussed in sections 3.1 and 3.2. The
estimates of section 3.1 allow us to infer regularity from the properties of the linear
approximations to the limit map, which can be computed explicitly. In section 3.2
we show that a regular characteristic map can be proved to be injective simply by
verifying that the index of the curve, obtained by restricting the map to the boundary
of its domain, is 1. The latter result follows from self-similarity of the characteristic
map.1 Computing the index of a curve is a simple procedure that can be implemented
robustly. In contrast, global injectivity of a map is often difficult to prove directly.

In the second part of the paper we describe the algorithms for verification of
C1-continuity based on the theoretical results of sections 3.1 and 3.2. A crucial
element of our technique is the interval computation: although in many cases all
required calculations can be performed symbolically, it is much more efficient and, in
fact, simpler, to obtain guaranteed bounds on the quantities of interest using interval
arithmetics. As an additional benefit, we are able to prove facts not about single
characteristic maps defined by exact values of the control points, but about families
of maps, corresponding to the control points with interval components.

Using our method, we analyze interpolating triangular and quadrilateral subdivi-
sion schemes — the butterfly [6], the modified butterfly [24], and the scheme described
by Kobbelt [12]. (A similar scheme was proposed earlier by Leber [13].) We also re-
peat the analysis for two schemes that were analyzed previously by other authors:
the Loop [19] scheme and the Catmull–Clark scheme [15]. For the latter schemes we
extend the analysis to all valences. It is important to emphasize that once the control
points for the characteristic maps are computed, the same code is used to analyze all
these schemes.

Related work. This work further extends the results presented in [20]. To the
best of our knowledge, all schemes that were analyzed by most other authors admit-
ted closed-form expressions for the characteristic maps; one notable exception is the
analysis of Leber [13]. However, the analysis of [13] relies on the fact that the rule
used in the regular case is a tensor product of two identical one-dimensional rules,
as well as on some specific monotonicity properties of the one-dimensional rule. Our
method for establishing regularity radically differs both from symbolic methods used
in [19, 9, 15] and Leber’s approach: it is simpler to apply and more general.

Our estimates of the errors of linear approximations rely on the work of Cavaretta,
Dahmen, and Micchelli [2], and on the work of Cohen, Dyn, and Levin [3] on matrix
subdivision.

Initial discrete fourier transform (DFT) analysis that we use to find the control
points for the characteristic map for invariant schemes follows the well-established
pattern used in [1, 9, 19, 24, 15].

1In general, it is not true that a map is injective if it is regular on its domain even if the domain
is the plane and the map is polynomial. This statement is known as the Jacobian conjecture for
dimension 2, and a counterexample was found by S. Pinchuk in [17].
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Finally, we extensively use interval arithmetics (see, for example, [14]).

Overview. In section 2, we describe the notation for subdivision on complexes
and state relevant results from [22] and [20].

In section 3 we present the results forming the theoretical foundation of our
method. In section 3.1, we discuss the basic properties of the matrix subdivision
schemes, and we derive estimates for the convergence rates of linear and piecewise
constant approximations to the limit functions generated by subdivision. These esti-
mates are used to verify regularity of the characteristic maps. In section 3.2, we prove
that the index of a curve can be used to test injectivity of the characteristic map.

Section 4 provides a brief description of algorithms for verification of C1-continuity
based on the results of section 3.

In section 5 we apply our method to analyze C1-continuity of the butterfly and
the modified butterfly schemes, the Kobbelt interpolating scheme, and several other
schemes.

2. Subdivision schemes. In this section we summarize the main definitions
and facts about subdivision on complexes that we use. The main theorem is the
generalization of Reif’s sufficient condition (Theorem 2.1). The main results of the
paper, presented in the following sections, will provide a constructive way of verifying
the assumptions of this theorem. We also discuss the invariant subdivision schemes,
for which our algorithms can be further improved. Most commonly used schemes are
invariant, or are extensions of invariant schemes. The details and proofs can be found
in [22, 20].

2.1. Subdivision on complexes.

Simplicial complexes. Subdivision surfaces are naturally defined as functions on
two-dimensional simplicial complexes. Recall that a simplicial complex K is a set of
vertices, edges, and triangles in some Eucledean space RN , such that for any triangle
all its sides are in K, and for any edge its endpoints are vertices of K. We assume
that there are no isolated vertices or edges, that is, every vertex is an endpoint of an
edge and every edge is a side of a triangle. |K| denotes the union of triangles of the
complex regarded as a subset of RN with induced metric. We say that two complexes
K1 and K2 are isomorphic if there is a homeomorphism between |K1| and |K2| that
maps vertices to vertices, edges to edges, and triangles to triangles.

A subcomplex of a complexK is a subset ofK that is a complex. A 1-neighborhood
N1(v,K) of a vertex v in a complex K is the subcomplex formed by all triangles that
have v as a vertex. The m-neighborhood of a vertex v is defined recursively as a union
of all 1-neighborhoods of vertices in the (m − 1)-neighborhood of v. We omit K in
the notation for neighborhoods when it is clear what complex we refer to.

Recall that a link of a vertex is the set of edges of N1(v,K) that do not contain v.
We consider only complexes with all vertices having links that are connected simple
polygonal lines, open or closed. If the link of a vertex is an open polygonal line, this
vertex is a boundary vertex, otherwise it is an internal vertex.

Most of our constructions use two special types of complexes — k-regular com-
plexes Rk and the regular complex R. Each complex is simply a triangulation of the
plane consisting of identical triangles. In the regular complex each vertex has exactly
six neighbors. In a k-regular complex all vertices have six neighbors, except one vertex
C, which has k neighbors. We call C the central vertex of a k-regular complex and
identify it with the zero in the plane.
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Subdivision of simplicial complexes. We can construct a new complex D(K) from
a complex K by subdivision, adding the midpoints of all edges to the set of vertices
of the complex and replacing each old triangle with four new triangles. Note that
k-regular complexes are self-similar, that is, D(Rk) and Rk are isomorphic.

We use notation Kj for j times subdivided complex Dj(K) and V j for the set of
vertices of Kj . Note that the sets of vertices are nested: V 0 ⊂ V 1 ⊂ · · · .

Subdivision schemes. Next, we attach values to the vertices of the complex; in
other words, we consider the space of functions V → B, where B is a vector space
over R. The range B is typically Rl or Cl for some l. We denote this space P(V,B),
or P(V ), if the choice of B is not important.

A subdivision scheme for any function pj(v) on vertices V j of the complex Kj

computes a function pj+1(v) on the vertices of the subdivided complex D(K) = K1.
More formally, a subdivision scheme is a collection of operators S[K] defined for every
complex K, mapping P(V ) to P(V 1). We consider only subdivision schemes that are
linear, that is, the operators S[K] are linear functions on P(V ). In this case the
subdivision operators are defined by

p1(v) =
∑
w∈V

avwp
0(w)

for all v ∈ V 1. The coefficients avw may depend on K.
We restrict our attention to subdivision schemes which are finitely supported,

locally invariant with respect to a set of isomorphisms of complexes, and affinely
invariant.

A subdivision scheme is finitely supported if there is an integer M such that
avw �= 0 only if w ∈ NM (v,K1) for any complex K (note that the neighborhood is
taken in the complex K1). We call the minimal possible M the support size of the
scheme.

We assume our schemes to be locally defined and invariant with respect to iso-
morphisms of complexes.2

Together these two requirements can be defined as follows: there is a constant
L such that if for two complexes K1 and K2 and two vertices v1 ∈ V1 and v2 ∈ V2

there is an isomorphism ρ : NL(v1,K1) → NL(v2,K2), such that ρ(v1) = v2, then
av1w = av2ρ(w). In most cases, the localization size L = M .

The final requirement that we impose on subdivision schemes is affine invariance:
if T is an affine transformation B → B, then for any v, Tpj+1(v) =

∑
avwTpj(v).

This is equivalent to requiring that all coefficients avw for a fixed v sum up to 1.
Limit functions. For each vertex v ∈ ∪∞

j=0V
j there is a sequence of values pi(v),

pi+1(v), . . . where i is the minimal number such that V i contains v.
Definition 2.1. A subdivision scheme is called convergent on a complex K, if

for any function p ∈ P(V,B) there is a continuous function f defined on |K| with
values in B, such that

lim
j→∞

sup
v∈V j

∥∥pj(v)− f(v)
∥∥

2
→ 0.

The function f is called the limit function of subdivision.

2In fact, we need invariance only with respect to a sufficiently large set of isomorphisms of
complexes, including similarity transformations of k-regular complexes. This allows us to include
schemes defined on tagged complexes; see [22, 20].
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Notation: f [p] is the limit function generated by subdivision from the initial
values p ∈ P(V ).

It is easy to show that if a limit function exists, it is unique. A subdivision surface
is the limit function of subdivision on a complex K with values in R3. In this case
we call the initial values p0(v) the control points of the surface.

Locally any surface generated by a subdivision scheme on an arbitrary complex
can be thought of as a part of a subdivision surface defined on a k-regular complex.
More specifically, a part of the subdivision surface defined on the union of triangles
surrounding a vertex of valence k (a k-gonal patch) can be thought of as being defined
on a 1-neighborhood of the central vertex in a k-regular complex.

Note that this fact alone does not guarantee that it is sufficient to study subdi-
vision schemes only on k-regular complexes. Suppose the number of control points
defining the limit surface on a k-gonal patch of the initial complex is less than the
number of control points of the central k-gonal patch in the k-regular complex (these
numbers are finite by locality of subdivision). In this case only a proper subspace of
all possible configurations of control points on the subdivided complexes can be real-
ized. We call such complexes constrained. Although it is unlikely, it is possible that
for such complexes almost all configurations of control points will lead to nonsmooth
surfaces, while the scheme is smooth on the k-regular complexes. This problem is
discussed in greater detail in [22].

2.2. Subdivision matrices. The key to analysis of stationary subdivision is the
idea of the subdivision matrix. Eigenvalues and eigenvectors of this matrix are closely
related to the smoothness properties of subdivision. Consider the part of a subdivision
surface f [p](y) with y ∈ U j

1 = |N1(0,R
j
k)|, defined on the k-gon formed by triangles

of the subdivided complex R
j
k adjacent to the central vertex. It is straightforward to

show that the values at all dyadic points in this k-gon can be computed given the
initial values pj(v) for v ∈ NL(0,R

j
k). In particular, the control points pj+1(v) for

v ∈ NL(0,R
j+1
k ) can be computed using only control points pj(w) for w ∈ NL(0,R

j
k).

Let p̄j be the vector of control points pj(v) for v ∈ NL(0,R
j
k). Let Q + 1 be the

number of vertices in NL(0,Rk).

As the subdivision operators are linear, p̄j+1 can be computed from p̄j using a
(Q+ 1)× (Q+ 1) matrix Sj : p̄j+1 = Sj p̄j .

If for all j, Sj = S, we say that the subdivision scheme is stationary on the k-
regular complex, or simply stationary, and call S the subdivision matrix of the scheme.
Note that our definition in the case k = 6 is weaker than the standard definition of
stationary schemes on regular complexes [2].

As we will see, eigenvalues and eigenvectors of the matrix have fundamental im-
portance for smoothness of subdivision.

Eigenbasis functions. Let λ0 = 1, λi, . . . , λJ be different eigenvalues of the subdi-
vision matrix in nonincreasing order of magnitudes (in this list each distinct eigenvalue
is included once, even if its multiplicity is greater than one). We can assume that
λ0 = 1 because for the scheme to be convergent and have nontrivial limits it is neces-
sary that |λi| < 1 for all eigenvalues with i �= 0 (see [18, 20]).

For every λi, let J ij , j = 1 . . . , be the complex cyclic subspaces corresponding to
this eigenvalue.

Let nij be the orders of these cyclic subspaces; the order of a cyclic subspace is
equal to its dimension minus one.

Let bijr, r = 0 . . . nij , be the complex generalized eigenvectors corresponding to
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a b c

Fig. 1. Three types of characteristic maps: control points after four subdivision steps are shown.
(a) Two real eigenvalues. (b) A pair of complex-conjugate eigenvalues. (c) A single eigenvalue with
Jordan block of size 2.

the cyclic subspace J ij . The vectors bijr satisfy

Sbijr = λib
i
jr + bij r−1 if r > 0, Sbij0 = λib

i
j0.(2.1)

The complex eigenbasis functions are the limit functions defined by f ijr = f [bijr] :

U1 → C . Any subdivision surface f [p](y) : U1 → R3 can be represented as

f [p](y) =
∑
i,j,r

βijrf
i
jr(y),(2.2)

where βijr ∈ C3, and if bijr = bklt, β
i
jr = βklt, where the bar denotes complex conjuga-

tion.
One can show using the definition of limit functions of subdivision and (2.1) that

the eigenbasis functions satisfy the following set of scaling relations:

f ijr(y/2) = λif
i
jr(y) + f ij r−1(y) if r > 0, f ij0(y/2) = λif

i
j0(y).(2.3)

2.3. Sufficient condition for C1-continuity.
C1-continuity of surfaces. By C1-continuous surfaces we mean two-dimensional

manifolds immersed, but not necessarily embedded, in R3 (see [22] for more detailed
discussion). It can be easily shown that no scheme can generate C1-continuous sur-
faces for all possible configurations of control points. Hence, we require only that
subdivision generates C1-continuous surfaces for any choice of control points on a
complex K, except a nowhere dense set of configurations. In almost all cases, for
local schemes C1-continuity for arbitrary complexes follows from C1-continuity on
k-regular complexes. As we have already mentioned, a subtle problem may occur,
however, for the constrained complexes (see [22] for further details).

Characteristic maps.
Definition 2.2. The characteristic map Φ : U1 → R2 is defined for a pair of

cyclic subspaces Jab , J
c
d of the subdivision matrix as (fab0, f

a
b1) if J

a
b = Jcd, λa is real,

(fab0, f
c
d0) if J

a
b �= Jcd, λa, λc are real, and (
fab0,�fab0) if λa = λ̄c, b = d.

Three types of characteristic maps are shown in Figure 1.
The domain of a characteristic map is the k-gon U1, consisting of k triangles of

the k-regular complex adjacent to the central vertex; we call these triangles segments.
We assume that the subdivision scheme generates C1-continuous limit functions the
regular complexes, and the characteristic map is, therefore, C1-continuous inside each
segment and has continuous one-sided derivatives on the boundary of each segment.
Note that the characteristic map need not be continuous across the segment bound-
aries, and this does not preclude smoothness of the subdivision scheme. However, the
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Fig. 2. The k-gon without origin U1 {0} can be decomposed into similar rings, each two times
smaller than the previous ring. The size of the ring is chosen in such a way that the control set
of any ring does not contain the extraordinary vertex. In this figure the control set is assumed to
consist out of the vertices of the triangles of the ring itself, and of a single layer of vertices outside
the ring.

one-sided Jacobians of the characteristic map do coincide on two sides of the bound-
aries of segments, so we can regard the Jacobian as being defined on U1 without zero
(see [22] for more details).

Sufficient condition for C1-continuity. The following sufficient condition is a spe-
cial case of the condition that was proved in [22]. Although all our constructions apply
in the more general case, we state only a simplified version of the criterion sufficient
for our purposes. This form captures the main idea of the sufficient condition. This
condition generalizes Reif’s condition [18].

Define for any two cyclic subspaces ord(J ij , J
k
l ) to be nij + nkl if J ij �= Jkl ; let

ord(J ij , J
i
j) = 2nij−2; note that for nij = 0, this is a negative number, and it is less than

ord(·, ·) for any other pair. This number allows us to determine which components
of the limit surface contribute to the limit normal (see [22, 20] for details). We say
that a pair of cyclic subspaces Jab , J

c
d is dominant if for any other pair J ij , J

k
l we have

either |λaλc| > |λiλk|, or |λaλc| = |λiλk| and ord (Jab , J
c
d) > ord

(
J ij , J

k
l

)
; the blocks

of the dominant pair may coincide.
Theorem 2.1. Let

{
bijr
}
be a basis in which a subdivision matrix S has Jordan

normal form. Suppose that there is a dominant pair (Jab , J
c
d). If λaλc is positive real,

and the Jacobian of the characteristic map of Jab , Jcd has constant sign everywhere
on each segment of U1, including the segment boundaries but excluding zero, then
the subdivision scheme is tangent plane continuous on the k-regular complex. If the
characteristic map is injective, the subdivision scheme is C1-continuous.

In the special case when all Jordan blocks are trivial, this condition reduces to
an analogue of the Reif’s condition.

To apply Theorem 2.1, we use self-similarity of the characteristic map: for any
t ∈ U1, the Jacobian J [Φ](t/2) = 4λaλb[Φ](t). It is immediately clear that to prove
regularity of the characteristic map it is sufficient to consider the Jacobian on a single
annular portion of U1 as shown in Figure 2.

Our goal is to develop an efficient general method that would allow us to apply
Theorem 2.1 to arbitrary subdivision schemes. In the next two sections we develop a
theoretical foundation for constructive application of this criterion: In section 3.1, we
prove that regularity of the characteristic map can be verified using linear approxi-
mations to the map. This is sufficient to analyze tangent plane continuity. In section
3.2, we show that injectivity of the characteristic map can be verified by computing
the index of a curve.
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Fig. 3. The numbers of the vertices in a sector of the control mesh for the characteristic map.
Left: the numbering for triangular schemes; right: the numbering for quadrilateral schemes.

2.4. Invariant schemes. Specific examples of schemes considered in this pa-
per are invariant with respect to all isomorphisms of complexes.3 For such schemes,
the general algorithms we develop in subsequent sections can be simplified. Further-
more, the algorithm for verifying C1-continuity is formulated for invariant subdivision
schemes only.

In this section we introduce the notation for invariant schemes and describe trans-
formations of subdivision matrices for such that reduces them to the block-diagonal
form. We also state a necessary condition for C1-continuity of invariant schemes,
which can be used to prove that a scheme is not C1-continuous. In section 5.1 we use
it to prove that the original butterfly scheme is not C1-continuous. The constructions
of this section follow the ideas of Ball and Storry [1], also used in [24] and in [15].

If a scheme is invariant with respect to all isomorphisms of complexes, it is also
invariant with respect to automorphisms of a k-regular complex. If ρ is an automor-
phism of a complex K, the coefficients of subdivision satisfy

a(v, w) = a(ρ(v), ρ(w)).(2.4)

For k-regular complexes, the set of automorphisms consists of rotations around the
extraordinary vertex, mirror reflections, and their combinations; we use only rotations.

Let L be the localization/control size for the subdivision scheme on a k-regular
complex. In this case, the control set of U1 is an L-neighborhood of the extraordinary
vertex. One sector of this neighborhood (center excluded) contains L(L + 1)/2 = N
vertices, the total number of vertices being Nk+ 1. We will use notation [s j] for the
vertices; s is the number of the sector s = 0 . . . k − 1, j > 0 is an arbitrarily chosen
numbering of vertices within a sector. We use the numbering shown in Figure 3.

The central vertex is [0 0]. We assume that the numbering is chosen consistently
in each sector, that is, Rm ([s j]) = [s + mmod k j], where Rm corresponds to the
rotation of the plane by 2mπ/k.

With this notation, (2.4) becomes a ([s′ j′], [s j]) = a ([(s′ +m) j′], [(s+m) j]) for
any m, where the sums are modulo k.

The coefficients are functions of j,j′ and s − s′ only; in the cases when j = 0
or j′ = 0 (one of v, w is the extraordinary vertex), the coefficients do not depend
on s − s′. We introduce notation a ([s j], [s′ j′]) = aj j′(s − s′), bj = a ([0 0], [s j]),
cj = a ([s j], [0 0]), a00 = a ([0 0], [0 0]). The subdivision matrix will have a convenient
block form if we arrange the vertices “by symmetry class”: [0, 0], [0, 1], [1, 1], [2, 1] . . .
[k − 1, 1], [0, 2] . . . [k − 1, N ]. With this ordering of vertices, the subdivision matrix

3An example of a scheme which is not invariant with respect to some isomorphism is the piecewise-
smooth scheme of Hoppe et al. [10]
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has the form

S =




a00 bT0 · · · bTN−1

c0 A00 · · · A0N−1

...
...

. . .
...

cN−1 AN−1 0 · · · AN−1N−1


 ,(2.5)

where Aj j′ are k × k matrices with entries aj j′(s), s = 0 . . . k − 1. Clearly, these
matrices are cyclic. bj denotes the vector [bj , . . . , bj ]

T of size k with equal entries;
similarly, cj is the vector [cj , . . . , cj ]

T .
A cyclic matrix can be reduced to a diagonal form using the DFT. Let D =

diag(1, 1
kDk . . . · · · 1

kDk), where Dk is the DFT matrix of size k. The number of DFT
blocks in D is N .

Applying the transform to S, we obtain

DS D−1 =




a00 bT0 Dk · · · bTN−1Dk

1
kDkc0

1
kDkA00Dk · · · 1

kDkA0N−1Dk

...
...

. . .
...

1
kDkcN−1

1
kDkAN−1 0Dk · · · 1

kDkAN−1N−1Dk


 .

The matrices (1/k)DkADk are diagonal with entries on the diagonal Dkaj j′ ,
where a = [aj j′(0), . . . , aj j′(k − 1)]. Note that vectors Dkbj and Dkcn have ze-
ros in all positions except the first one or two: Dkbj = [k, bj , 0, . . . , 0]

T , Dkcj =
[cj , 0, . . . , 0]

T .
Finally, the subdivision matrix can be reduced to block diagonal form by applying

a permutation. Let P be the permutation that rearranges the entries of a vector of
length kN + 1 as follows: [0, 1, 2, 3, . . . , Nk] → [0, 1, k + 1, . . . , (N − 1)k + 1, 2, k +
2, . . . (N − 1)k + 2 . . . Nk]. Applying this permutation, we obtain

P DS D−1P−1 = diag
(
Z,B

(
e

2πi
k

)
, . . . , B

(
e

2(k−1)πi
k

))
.(2.6)

The matrix has k−1 N×N blocks B(ω), where ω = e2πi/k, . . . , e2(k−1)πi/k. Each
B(e2πmi/k) has entries [Daj j′ ]m, i.e., is composed of mth entries of DFT transforms
of all vectors bj j′ . For m = 0 we have to consider a larger (N + 1)× (N + 1) matrix
Z with vectors b = [b0, . . . , bN−1]

T and (1/k)c = (1/k)[c0, . . . , cN−1]
T added on two

sides. Note that B(e2mπi/k) = B(e2(k−m)πi/k) and the eigenvalues of these blocks
are conjugate. If an eigenvalue happens to be real and corresponds to the block
B(e2mπi/k) with m �= k/2 it necessarily has an eigenspace of dimension at least 2.
If x is its complex eigenvector obtained from an eigenvector of B(e2mπi/k), a pair of
real eigenvectors in this subspace can be taken to be 
x and �x. If an eigenvalue
λ is complex, the two-dimensional real eigenspace corresponding to λ and λ is also
spanned by 
x and �x.

Keeping in mind the support size of the scheme, it is easy to show that each block
B also has a particular structure, for a suitable choice of numbering of vertices in each
sector:

B(ω) =

(
B00(ω) 0
B10(ω) B11(ω)

)
.
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In this way, the size of the matrices that have to be analyzed is further reduced;
for example, for the butterfly scheme considered in section 5.1, B(ω) is 6 × 6 and
B00(ω) is 3× 3.

Necessary condition for tangent plane continuity of invariant schemes. Before
we proceed to the analysis of specific subdivision schemes, we formulate a necessary
condition for C1-continuity. We need this condition to show that the butterfly scheme
is not C1-continuous for most valences.

Each eigenvalue of the subdivision matrix is an eigenvalue of a block B(e2mπi/k),
m = 1 . . . k−1 or Z. Each eigenvector can be obtained by taking an eigenvector of one
of the blocks, setting the rest of the entries to 0, and transforming it using DP . This
means that the eigenvectors have symmetries that can be used to establish necessary
conditions on dominant eigenvalues of the subdivision matrix.

A condition of this type was proposed in [15, Theorem 3.1]. The theorem of Peters
and Reif states that the dominant eigenvalues for a subdivision scheme with an injec-
tive characteristic map necessarily have to be the eigenvalues of the blocks B(e2πi/k)
and B(e2(k−1)πi/k). Intuitively, it appears that this is true for any “reasonable” subdi-
vision scheme. However, it is possible to construct examples of C1-continuous schemes
with eigenvalues corresponding to the characteristic map being in other blocks. Typ-
ically, such schemes would have a noninjective characteristic map. Injectivity of a
characteristic map is not strictly necessary for C1-continuity of the scheme, contrary
to Theorem 2.2 of [15]. However, the cases when the scheme is C1-continuous and
the characteristic map is not injective are quite degenerate and are unlikely to be
practically useful.

A weaker version of the conditions of Peters and Reif under some additional
assumptions is proved in [20]. We offer a further simplified version of the condition,
which is sufficient for our purposes.

As the subdivision matrix for an invariant scheme can be reduced to the block
diagonal form, each cyclic subspace of the matrix is also a cyclic subspace of one of
Z, B(ω), ω = e2πi/k, . . . , e2(k−1)πi/k.

Lemma 2.2. Suppose that the subdivision matrix for a subdivision scheme has a
pair of dominant cyclic subspaces Jab , J

c
d, which either coincide and both have order

1, or are distinct and have order 0. Suppose these subspaces correspond to the blocks
B(e2πmi/k) and B(e2π(k−m)i/k), m �= 1, and the Jacobian of the characteristic map
of this pair of cyclic subspaces is not identically zero. Let λ be an eigenvalue of the
block B(e2πi/k) and let x be a corresponding complex eigenvector.

Suppose that for the limit map f : U1 → R2 generated by the pair 
x, �x the
following two conditions hold: f−1(0) = {0}, and the winding number of the curve
obtained by restricting f to the boundary of U1 is 1. Then the scheme is not C1-
continuous.

Proof. See [20] for the proof.

3. Results on regularity and injectivity.

3.1. Regularity on regular complexes. We have observed that regularity of
the characteristic map can be established, if it is known that the scheme is regu-
lar on an annular region (ring) shown in Figure 2. All control vertices for a ring
are regular, and the subdivision rules that are used to compute the limit surface
on the ring are the rules used for the regular complex. Clearly, the ring cannot
be identified with a subset of a regular complex. However, such identification can
be done for each of the k segments of the ring together with its control points.
Therefore, if we can prove regularity of a limit map on the regular complex, we
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can apply the same algorithm to prove regularity of the characteristic map for each
segment.

Our method for verifying regularity is based on the observation that we can
define a subdivision scheme for the vector of differences. The limit function of this
scheme is the vector of partial derivatives of the characteristic map. We estimate the
error of the piecewise-linear approximations produced by this scheme. From linear
approximations and errors we compute upper and lower bounds for the Jacobian of
the characteristic map. If these bounds have the same sign, we can conclude that the
map is regular.

Our derivations are similar to the derivations in Chapters 2 and 3 of Cavaretta,
Dahmen, and Micchelli [2], and those found in Dyn, Levin, and Micchelli [7]. We
have to consider convergence not only of the scheme, but also of the corresponding
scheme for differences, which, in general, is a matrix subdivision scheme. For this
reason, some of the theorems in [2] have to be generalized to the matrix case. Cohen,
Dyn, and Levin have developed the basic theory of univariate matrix schemes in [3].
We use multivariate matrix subdivision schemes, that is, we need a synthesis of the
theories presented in [2] and [3]. The theory of matrix subdivision differs from the
theory of scalar subdivision in a nontrivial way, when the components of the limit
functions generated by the scheme are interdependent [3]. However, this case is of
little interest to us: if the components of the difference scheme are interdependent,
the limit surfaces are degenerate. Hence we can assume independence of components.
With this assumption, the results in [2] can be readily extended to the matrix case.

Definitions. For a regular complex, the vertices can be identified with the integer
points in the plane. In general, we can consider functions on the integer lattice Z2

in R2. Most of the discussion applies to integer lattices Zs of arbitrary dimension
with minor changes. We perform the derivations for the case s = 2 to simplify
the presentation. We use Greek letters to denote multi-indices corresponding to the
points of the lattice: α = (α1, α2). A stationary matrix subdivision scheme on a
regular complex with the vertex set V = {vα|α ∈ Z2} is defined by the equation

(Sp) (vα) =
∑
β

Aα−2βp(vβ),

where Aα are n×n matrices and p is in P(V,Rn) =
(
1∞2
)n

=
(
1∞(Z2)× . . . 1∞(Z2)

)
,

the space of two-dimensional sequences of n-dimensional vectors with bounded norm.
In this section, we use notation pα for p(vα). As we are interested in schemes with
finite support, all results can be extended to arbitrary vectors pα in a straightforward
manner (see [2]). We are primarily interested in the cases n = 1, 2, 4, corresponding
to scalar subdivision, difference schemes, and second difference schemes, respectively.

If a subdivision scheme converges on the regular complex, there is a matrix func-
tion Ξ : Rn ×Rn → R, such that any limit function f [p] generated from the initial
values p ∈ (1∞2 )n, can be written as f [p](t) =

∑
α Ξ(t − α)pα, where t ∈ R2. The

matrix refinable function Ξ satisfies the refinement relation

Ξ(t) =
∑

Ξ(2t− α)Aα.

The function Ξ can be obtained as a limit of subdivision applied to initial matrix data
∆ with ∆α = 0 if α �= 0, and ∆0 is an n× n identity matrix.

We say that a matrix scheme is nondegenerate if the vectors f [p](t), t ∈ R2, for all
t for some p ∈ (1∞2 )n span the whole spaceRn. It is straightforward to show, following
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the derivation in [2], Proposition 2.1, that for a nondegenerate matrix scheme to be
convergent the following condition is necessary.

Theorem 3.1. For a nondegenerate matrix scheme S to be convergent it is
necessary that for any e = (e1, e2) , ei ∈ {0, 1},

∑
α

Ae−2α = I,(3.1)

where I is the identity matrix.

A matrix subdivision scheme is stable (or, more precisely, L∞-stable) [3] if the
matrix refinable function Ξ corresponding to the scheme satisfies the inequalities

c1 sup
α

∥∥pα∥∥∞ ≤ sup
t∈R2

∥∥∥∥∥
∑
α

Ξ(t− α)p

∥∥∥∥∥
∞

≤ c2 sup
α

∥∥pα∥∥∞(3.2)

for some positive constants c1, c2 and any p ∈ (1∞2 )n.
Convergence condition. To analyze convergence of matrix subdivision schemes,

we use the contraction functions. Let D(p) be a real-valued nonnegative function
defined on

(
1∞2
)n

. A subdivision scheme S is contractive relative to D if there is an
integer N and a positive constant γN < 1 for which we have

D(SNp) ≤ γND(p) for any p ∈ (1∞2 )n.
A typical contraction function has the form

∥∥∇p
∥∥
∞, where ∇p denotes the vector of

directional differences.

The following theorem is a direct generalization of [2, Theorem 3.1], with the
proof extended without any changes from the scalar case.

Theorem 3.2. Let S be a matrix subdivision scheme and D a contraction func-
tion. Suppose that for some scheme B, which we call a comparison scheme,

∥∥Sp−Bp
∥∥
∞ ≤ cD(p) for any p ∈ (1∞2 )n,

where c is a constant.
If the comparison scheme is stable and converges, then S also converges.

We use three types of comparison schemes in our analysis: schemes that produce
piecewise constant, piecewise linear, and piecewise bilinear limit functions.

Error estimates. Using Theorem 3.2, we can derive error estimates for the piece-
wise linear, bilinear, or constant approximations of the limit function of subdivision.
When applied to the difference schemes, these estimates allow us to estimate the Ja-
cobians of the maps produced by subdivision. Let Lm be the limit function obtained
by applying the comparison scheme B to the control values pm. This is our approx-
imation. The choice of B guarantees that the limit functions of B can be computed
trivially. Then we have

∥∥Lm+1 − Lm
∥∥
∞ =

∥∥(S −B)pm
∥∥
∞ < cD(pm).
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Suppose that m = kN + q, with 0 ≤ q < N ; then D(pm) < γkD(pq) and

∥∥L∞ − Lm
∥∥
∞ ≤

∞∑
j=0

∥∥Lm+j+1 − Lm+j
∥∥
∞

=

∞∑
j=0

∥∥(S −B)pj+m
∥∥
∞ ≤ c

∞∑
j=0

D
(
pm+j

)
= c

∞∑
i=1

N∑
q=1

D
(
pm+iN−q)

= c

∞∑
i=1

(
N−1∑
q=1

D
(
pm+iN−q)+D

(
pm+(i−1)N

))
.

If m ≥ N ,

∥∥L∞ − Lm
∥∥
∞ ≤ c

1− γ

(
γ
N−1∑
q=1

D
(
pm−q)+D (pm)

)
.(3.3)

Estimating c and γ. To use the estimates (3.3), we need to compute the constants
γN and c. These constants clearly depend on the choice of the contraction function
and on the choice of the comparison scheme. We use the contraction functions of the

form
∥∥∇p

∥∥
∞, where ∇ :

(
1∞2
)n → (

1∞2
)2n

is a difference operator, which assigns to
each vector p of length n the vector of differences in two independent directions of
length 2n. Specific choice of ∇ can be adapted to the scheme; the simplest choice
is
[(∇p2m+i

)
α

]m
=
[
pα+ei

]m − [pα]m = ∆ei

[
pα
]
, where ei, i = 0, 1, is one of the

multi-indices (0, 1) and (1, 0). The superscript m of p denotes the component of p,
m = 1 . . . n. Other possible choices include replacing vectors ei by displacements in
other directions. Specific choices are discussed in sections 5.1–5.3. Whenever a scheme
S converges, there is a difference scheme S′ satisfying the commutation formula

∇Sp = S′∇p(3.4)

for any p. If
∥∥S′N

∥∥
∞ < 1 for some N , we can use

∥∥∇p
∥∥
∞ as a contraction function,

because
∥∥∇SNp

∥∥
∞ ≤ ∥∥S′N

∥∥
∞
∥∥∇p

∥∥
∞. While in most cases the simplest choice of

∇ is theoretically possible, in practice the constant N can be quite large. In certain
cases, such as the butterfly scheme, different contraction functions yield better results.

For contraction functions of the type described above, computation of γN is re-
duced to computing the (matrix) difference scheme S′ and its sup norm. Lemma 2.3
from [2], which directly generalizes to the matrix case, yields formulas for computing
the matrix Laurent polynomial of the difference scheme.

Formulas for γ. We describe the formulas for computing the difference scheme in
the bivariate case, for the simplest comparison function D(p) =

∥∥∇p
∥∥
∞, p ∈ (1∞2 )n,

with ∇p described above. In a more explicit form,

D(p) = sup
α

max
m

([
∆(1,0)pα

]m
,
[
∆(0,1)pα

]m)
.

Let A(z) be the Laurent polynomial with matrix coefficients of a matrix scheme
S, with z = (z1, z2). The commutation formula in the z-domain can be written as(

(z1 − 1)A(z)P (z)
(z2 − 1)A(z)P (z)

)
= A′(z)

(
(z2

1 − 1)P (z)
(z2

2 − 1)P (z)

)

=

( (
T11(z)(z

2
1 − 1) + T12(z)(z

2
2 − 1)

)
P (z)(

T21(z)(z
2
1 − 1) + T22(z)(z

2
2 − 1)

)
P (z)

)(3.5)
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for any p, where P (z) denotes the Laurent polynomial corresponding to p. The matrix
Laurent polynomial A′ with the coefficients of size 2n× 2n is the Laurent polynomial
of the difference scheme S′. Each coefficient of A′ is composed out of the coefficients
of n× n blocks Tij(z). The blocks Tij are not defined uniquely and can be computed
in a variety of ways. A method suggested by Lemma 2.3 of [2] yields the following
formulas for a decomposition R(z) = (z2

1 − 1)T1(z) + (z2
2 − 1)T2(z):

T1(z) =
(1− z2)R(z1,−1) + (1 + z2)R(z1, 1)

2(z2
1 − 1)

,

T2(z) =
2R(z)− (1− z2)R(z2,−1)− (1 + z2)R(z1, 1)

2(z2
2 − 1)

.

(3.6)

Whenever a scheme with the Laurent polynomial A satisfies Theorem 3.1, it
follows that A(−1,−1) = A(1,−1) = A(−1, 1) = 0. Then T1(z) and T2(z) are
guaranteed to be matrix Laurent polynomials, rather than rational functions, for
R(z) = (zi − 1)A(z), i = 1, 2.

These formulas can be used to compute the blocks for each line in (3.5). Note
that the formulas are asymmetric, and care must be taken to choose the order of
variables z1 and z2 to obtain better estimates. The rule of thumb is that the norm
of the off-diagonal blocks should be small; then for schemes with factorizable Laurent
polynomials the 2n×2n difference scheme can be decomposed into two n×n schemes.

The same method can be used to compute difference schemes for other choices
of ∇ that we use. Once S′ is known, we compute γN as

∥∥S′N
∥∥
∞, which is equal to∥∥A(z)A(z2) . . . A(z2N

)
∥∥
∞ using the formula for the sup-norm of a bivariate polynomial

with n× n matrix coefficients Aij = [alm]ij :∥∥C(z)
∥∥
∞ = max

e1,e2∈{0,1},m=1...n

∑
l=1...n

∑
ij

∣∣clm2i+e1 2j+e2

∣∣ .(3.7)

Computing c. To compute c, it is sufficient to observe that if the comparison
scheme B is nondegenerate and convergent, then B(z)− A(z) can be always decom-
posed in a way similar to R(z) in (3.6). This means that we can represent B − S as
S̃∇, for some 2n× 2n matrix scheme S̃, which leads to the estimate of c as

∥∥S̃∥∥∞.
Summary of the estimates. We have obtained the following estimates for the pairs

of constants (γN ,c), and (γDN ,cD), characterizing the errors of the approximations of
the limit functions and its derivatives respectively via (3.3). Let S is a convergent
scalar subdivision scheme, satisfying commutation formula ∇Sp = S′∇p, where p ∈
1∞2 , and S′ is a 2 × 2 matrix scheme. Let B be a scalar comparison scheme, and
(B − S)p = S̃∇p. Then we can take γN =

∥∥S′N
∥∥
∞, and c =

∥∥S̃∥∥∞. If the difference
scheme 2S′ converges and satisfies the commutation formula ∇2S′p = S′′∇p, where
S′′ is a 4× 4 matrix subdivision scheme, γDN =

∥∥S′′∥∥
∞. If the difference scheme 2B′

corresponding to a comparison scheme B is also a comparison scheme, and (2S′ −
2B′)p = S̃′∇p, then cD =

∥∥S̃′∥∥
∞.

Limitations of the method. While for any C1-continuous subdivision scheme and
for all operators ∇ that we use the difference schemes S′ and S′′ are defined, it is
not guaranteed that there is N such that

∥∥S′N
∥∥
∞ < 1 or

∥∥S′′N
∥∥
∞ < 1. This is the

main limitation on the applicability of our method. Even for a convergent scheme
it might be possible that N

∥∥S′N
∥∥
∞ > 1 for all N . However, note that a sharper

estimate can be made for γ: we are interested in the action of the difference scheme

not on arbitrary elements of
(
1∞2
)2n

, but only on the elements that have the form
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∇p for some p ∈ (1∞2 )n. Therefore, we can use
∥∥S′N

∣∣
∇
∥∥
∞ instead of

∥∥S′N
∥∥
∞, where

|∇ denotes restriction to the subspace of differences. If we use this norm, then the
following theorem holds.

Theorem 3.3. A matrix subdivision scheme S is nondegenerate, convergent, and
stable if and only if the there is a difference scheme S′ satisfying the commutation
formula 3.4 and such that limN→∞

∥∥S′N
∣∣
∇
∥∥
∞ = 0.

The proof of the theorem is identical to the proof of [2, Theorem 2.3]. The
additional condition (stability of the scheme) is quite weak and in all cases of interest
is likely to be satisfied.

Computing the norm
∥∥·∣∣∇∥∥∞ is possible for schemes with finite support, but is

substantially more complicated than computing the sup norm. For schemes with
factorizable Laurent polynomials for suitable choices of ∇,

∥∥·∣∣∇∥∥∞ is often equal

to
∥∥·∥∥∞ (for example, this is true for tensor product schemes). However, for certain

schemes with nonfactorizable polynomials computing
∥∥·∣∣∇∥∥∞ may be the only option.

3.2. Injectivity of the characteristic map. In general, it is difficult to estab-
lish injectivity of a map defined as a limit of a subdivision process. Even if the Jacobian
of a map is nonzero everywhere, only local injectivity is guaranteed. However, the
special structure of the characteristic maps allows one to reduce the injectivity test to
computing the index of a curve, a relatively simple and fast operation; for example,
the index can be computed counting the number of intersections of the curve with a
line.

A step in this direction was made by Peters and Reif [15]. However, their method
still required closed-form expression for the derivative of the characteristic map along a
line and was formulated only for schemes invariant with respect rotations of k-regular
complexes (see section 2.4).

The characteristic map can be continuously extended using scaling relations to
the whole plane. The proof of this fact is straightforward but tedious; it can be found
in [20]. Moreover, if the scheme is C1-continuous on regular complexes, then the
extension is differentiable on each of the k sectors of the k-regular complex and has
continuous one-sided derivatives on the boundaries of segments, excluding zero. In
the following theorem we assume that the characteristic map is defined on R2. Recall
that although the map has only one-sided derivatives defined on the boundaries of
sectors, the Jacobian is well-defined everywhere (section 2.1).

Theorem 3.4. Suppose a characteristic map Φ = (fa, fc) satisfies the following
conditions:

1. the preimage Φ−1(0) contains only one element, 0;
2. the characteristic map has a Jacobian of constant sign everywhere on R2

except zero.
Then the extension of the characteristic map is a surjection and a covering away
from 0. In particular, if the winding number with respect to the origin of the image
Φ(γ) of a simple curve is 1, the characteristic map is injective and the scheme is
C1-continuous.

Proof. Three cases are possible: the characteristic map is defined by a pair of
real eigenvectors, by two generalized eigenvectors from the same Jordan block corre-
sponding to a real eigenvector, or by the real and imaginary parts of an eigenvector
corresponding to a complex eigenvalue.

A pair of real eigenvectors. In the first case the components of the characteristic
map satisfy the scaling relations of the simplest form fa(y/2) = λafa(y), fc(y/2) =
λcfc(y).
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First, we establish the following important fact: if a characteristic map satisfies
the first two conditions of the theorem, then the map is continuous at infinity.

Consider two circles of radii r and 2r centered at 0 in the domain of Φ. The image
Φ(R) of the ring R bounded by the two circles is compact and does not contain 0.
Thus, there is a constant M > 0 such that for any point p in the ring ‖Φ(p)‖ ≥ M .

Consider any point q in the domain of Φ. There is a number k ∈ Z such that 2kq
is contained in the ring R. Thus, by scaling relations, ‖Φ(q)‖ > min(|λa|, |λc|)kM .
Clearly, as ‖q‖ → ∞, k → ∞, and for any C there is C ′ such that if ‖q‖ > C ′,
‖Φ(q)‖ > C.

Consider the stereographic map P from the plane into the sphere without one
point. The map Φ corresponds to a map on the sphere: ΦS = PΦP−1 : S2\{N} → S2,
where N is the center of projection. From the continuity of Φ at infinity it follows that
if we extend the mapping by setting ΦS(N) = N , we get a continuous mapping. As
we have assumed that the Jacobian of the characteristic map has constant sign where
it is defined, the mapping is also a local homeomorphism away from 0. The sphere
is compact, thus its image is compact, hence closed, i.e., contains its boundary. But
under local homeomorphism the points on the boundary of the image can be images
only of the points of the boundary of the domain. Therefore, the only points that can
be contained in the boundary of the image are 0 and N . We conclude that the image
has no boundary, i.e., the mapping is surjective.

Finally, for any q set Φ−1
S (q) is finite: if it were not finite, it would have a limit

point (S2 is compact). As Φ−1
S (q) is a discrete set for any local homeomorphism, the

only limit points that it may have are 0 and N . But Φ(0) = 0 and Φ(N) = N , so this
is impossible. We conclude that for any point q the set Φ−1

S (q) is finite. As any point
y ∈ Φ−1

S (q), q �= 0, N has a neighborhood U(y) such that ΦS |U(y) is a homeomorphism,
then the intersection of all neighborhoods V = ΦS(U(y)) has inverse image consisting
of disjoint homeomorphic images of V . This proves that ΦS is a covering away from
0.

Two generalized eigenvectors. The case of the characteristic map generated by
imaginary and real parts of a complex eigenvector corresponding to a complex eigen-
value is similar to the case of two real eigenvectors; we proceed directly to the proof
for the case of two generalized eigenvectors from a single Jordan block Φ = (f0, f1),
satisfying f0(

y
2 ) = λf0(y) and f1(

y
2 ) = λf1(y) + f0(y).

From these equations we immediately obtain

Φ(2sy) =
1

λs

(
1 0
1 −s/λ

)
Φ(y) =

1

λs
TΦ(y).(3.8)

Consider the image of a circle γ of radius r centered at 0. Let Int(γ) be the interior
domain of the simple curve γ. As Φ−1(0) by assumption is {0}, then 0 is an interior
point of the image of Int(γ) and there is an open disk centered at 0 of some radius
r′, which is contained in Φ(Int(γ)). For any s the image of the disk bounded by 2sγ
is determined by (3.8). It can be obtained from the image of the disk bounded by γ
by affine transform 1

λsT from (3.8). If a disk Dr of radius r is contained in Φ(Int(γ)),
then the interior of the ellipse 1

λsTDr is contained in Φ(Int
(
2sγ
)
). We can estimate

the length of the minor axis of this ellipse: it can be represented parametrically as(
r
λs cos t,

r
λs (sin t− s

λ cos t)
)
. The square of the distance from 0 to a point on the

ellipse is

r2

λ2s

(
cos2 t+

(
sin t− s

λ
cos t

)2
)

=
r2

λ2s

(
1 +

s2

2λ
(cos 2t+ 1)− s

λ
sin 2t

)
.
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This quantity can be estimated from below by
(
r2/λ2s

) (
1 + s2/λ− s/λ

)
. As λ < 1,

the length of the minor axis increases with s for sufficiently large s. We conclude
that as s → ∞, the image of the exterior of 2sγ is arbitrarily far from zero, and Φ is
continuous at infinity. Then the rest of the argument of the previous case applies.

Finally, our covering is injective if and only if the winding number of the image of
a simple curve around zero is 1. This fact can be seen by looking at the fundamental
groups of the domain and the image. The assumptions guarantee that both have
fundamental group Z. As for a covering the fundamental group of the covering space
is a subgroup of the fundamental group of the base space, with a monomorphism
induced by the covering map. A simple curve around zero is the generating element
of the fundamental group of the domain. Thus, the mapping of fundamental groups
is an isomorphism which is necessary and sufficient for the covering mapping to be
an injection, if and only if the simple curve maps to a curve homotopic to a simple
curve, i.e., one with winding number 1.

Computing the winding number. In general, we do not have a closed-form expres-
sion for any curves on the limit surface. One way to compute the winding number of
a curve is to choose a sufficiently close linear approximation and compute the winding
number of the approximation. The following proposition can be easily proved (see
[20] for details).

Proposition 3.5. Let γ(t) be a curve in the domain of Φ, and let Lm be a
piecewise linear approximation to Φ. Suppose for some ε supt ‖Φ(γ(t))− Lm(γ(t))‖ ≤
ε and inft ‖Φ(γ(t))‖ ≥ 2ε. Then the winding number of Lm(γ(t)) with respect to zero
is equal to the winding number of Φ(γ(t)).

As subdivision computes linear approximations to the surface, and the approx-
imation estimates are known, we can use this proposition to compute the winding
number.

4. Algorithms. In this section we describe the algorithms for verification of C1-
continuity of subdivision near extraordinary points based on the theorems presented
in sections 3.1 and 3.2. Two algorithms are used to analyze C1-continuity of a scheme
near an extraordinary point of a fixed valence: the first one verifies regularity, the
second verifies injectivity. We give a brief description of the algorithms; more details
can be found in [20]. The source code is available from the author.

We assume that the eigenvectors and eigenvalues of the subdivision matrix defin-
ing the characteristic map are known with guaranteed precision: if x is a component
of an eigenvector or an eigenvalue, it is represented by a pair of exactly representable
numbers [xd, xu] such that xd ≤ x ≤ xu.

All calculations are performed in interval arithmetics, which makes it possible to
obtain guaranteed bounds on the computed quantities, despite using finite-precision
arithmetics. In this section, all underlined variables are intervals, with arithmetic
operations defined following [14].

4.1. Verification of C1-continuity for a fixed valence. C1-continuity is
verified by checking regularity and injectivity of the characteristic map on a ring, as
described in section 2.

First, we verify regularity, computing successive linear approximations to the
characteristic map and using error estimates of section 3.1 to estimate the range for
the Jacobian. If the computed bounds are on the same side of zero, this guarantees
that the Jacobian has constant sign on the domain. To guarantee that the condition
Φ−1(0) of Theorem 3.4 and the assumption of Proposition 3.5 are satisfied, it is
necessary to verify that the image of the characteristic map on the ring is sufficiently
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TestRegular( Gm, γD, cD)

Compute εij , i, j = 1, 2, using (3.3)
Jmin := [+∞,+∞], Jmax := [−∞,−∞]
foreach vertex vij ∈ vertices(Gm)

d1 := Gm(i+ 1, j)−Gm(i, j)
d2 := Gm(i, j + 1)−Gm(i, j)
compute 16 numbers Jl, l = 1 . . . 16,
choosing signs in (d1

1 ± ε11)(d
2
2 ± ε22)− (d1

2 ± ε12)(d
2
1 ± ε21)

Jmin := min(Jmin, Jl, l = 1 . . . 16)
Jmax := max(Jmax, Jl, l = 1 . . . 16)

endforeach

if 0 /∈ Jmin and 0 /∈ Jmax
and Jmin and Jmax have the same sign

then return true

return undefined

Fig. 4. The algorithm for testing regularity.

far from zero. The algorithm is straightforward, and we omit the detailed description.
Finally, we compute the winding number of the curve obtained by restricting the
linear approximation to the characteristic map to the boundary of the domain. If the
winding number is 1, this completes the proof that the characteristic map is injective
and regular.

In the descriptions of algorithms, Gm denotes the control mesh of the character-
istic map after m subdivision steps. The components of the control points are stored
in interval representation. The numbers and εij , i, j = 1, 2, are the estimates of the
error of the approximation by divided differences to the derivatives of the character-
istic map, computed using the right-hand side of (3.3) from Gm, γD, and cD, the
convergence constants defined by formulas in section 3.1.

Regularity. Once we know the error in the approximation of the derivatives by
the divided differences, we can estimate the Jacobian. Observe that the Jacobian
J [∂1f1, ∂2f2, ∂2f1, ∂1f2] = ∂1f1∂2f2 − ∂2f1∂1f2 is a bilinear function of the deriva-
tives. If the intervals for the derivatives are known, the Jacobian can be regarded as
a bilinear function on a four-dimensional cube, and it attains its minimal/maximal
value at a vertex of the cube. We present a slightly simplified version of the algorithm,
which does not detect the situation when the Jacobian is guaranteed to change sign,
and the map is verifiably nonregular. A complete version can be found in [20]. In
the pseudocode shown in Figure 4, ds = [ds1, d

s
2], s = 1, 2 are discrete approximations

of the two directional derivatives of the characteristic map; Jmin and Jmin are inter-
vals containing the estimates of the maximal and minimal value of the Jacobian of
the characteristic map. We use standard interval arithmetic definitions of algebraic
operations on interval as well as min and max [14].

Computing the winding number. While the simplest approach to this problem is
to count the number of intersections with a straight line, numerically this is not the
best choice when the curve is piecewise-linear. Instead, we choose a different approach:
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ComputeProj(Gi)
projLength := 0
for every segment s of the curve

ns := head(s)/max( head(s)1, head(s)2)
nf := tail(s)/max( tail(s)1, tail(s)2)
if |Sides(ns)| > 2 or |Sides(nf )| > 2
then return fail

intervSides := Sides(ns) ∪ Sides(nf )
if |intervSides| > 2 then return undefined

if 1 ∈ intervSides then projLength += nf2 − ns2
if 2 ∈ intervSides then projLength += ns1 − nf1
if 3 ∈ intervSides then projLength += ns2 − nf2
if 4 ∈ intervSides then projLength += nf1 − ns1

endfor

return projLength

Fig. 5. The algorithm for computing the projected length of a curve.

we observe that the winding number for a piecewise-linear curve can be computed as
1/4 of the sum of signed lengths of projections of segments onto a unit square centered
at zero. As the coordinates of the vertices are represented by intervals, the actual
calculation becomes somewhat more complicated. For each interval endpoint of the
segment we determine the sides of the square on which the endpoint may be projected.
We require the calculation to be sufficiently precise (i.e., the size of the intervals for the
points to be sufficiently small) for the total number of sides intersecting the projection
of the interval to be no more than two.

In the algorithm shown in Figure 5, head and tail return the endpoints of a
segment of the curve, subscripts 1 and 2 denote the coordinates, and the function
sides(x) returns the set of sides (identified by numbers 1, . . . ,4) to which a point x
with interval coordinates is projected.

The algorithms described in this section are quite efficient—even in the case of
the butterfly scheme, which required six subdivision levels to verify C1-continuity of a
single valence, the execution time per valence was about seven seconds on a 300MHz
Pentium II.

4.2. Verification of C1-continuity for all valences. The algorithms of the
previous section allow us to prove that a scheme is C1-continuous for any given va-
lence. We have made only weak assumptions about invariance of the schemes (ro-
tational invariance is not required), and we have not assumed any relations between
the subdivision rules used near extraordinary vertices of different valences. Although
one can verify C1-continuity for a number of valences that is sufficiently large for all
practical purposes, as was done, for example, in [19] and [15], this approach is not
satisfying theoretically.

We propose an algorithm that verifies C1-continuity for all sufficiently high va-
lences. Our approach to analysis of subdivision for large valences applies to schemes
invariant with respect to rotations of k-regular grids around the extraordinary vertex.
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In this case, the segments of the characteristic map are identical, and the analysis
has to be performed for a single segment. As the valence grows, the control points of
a segment approach a degenerate configuration for which all control points are on a
single line. However, by rescaling the control points in one direction by 1/ sin(2π/k),
where k is the valence, we typically remove the singularity. Because subdivision is
affine-invariant, verifying regularity and injectivity of the rescaled characteristic map
is equivalent to verifying injectivity and regularity of the original map. For all com-
mon subdivision rules, when the coefficients are defined as functions of cos(2π/k)
and sin(2π/k), as k approaches infinity, the control points of the rescaled segment
approach a nondegenerate limit configuration. More precisely, assume that the eigen-
values λa and λb and eigenvectors ea and eb defining the characteristic map are values
of continuous functions of a variable c, evaluated at discrete points c = cos(2π/k),
k = 3 . . . . Further, assume that these functions can be computed in the interval form:
given an interval of values of c, we can compute an interval of values of λa,b.

Recall that all algorithms that we have described operate with interval represen-
tations. Let ea and eb be the vectors with interval components obtained by evaluating
ea(c) and eb(c) on the interval c = [1 − ε, 1]. If we have verified that the limit map
defined by ea and eb is injective for these interval eigenvectors, we have verified that
it is injective for any valence for which cos(2π/k) > 1 − ε. Thus, we obtain a proof
of C1-continuity for all valences greater than some k0 at no additional cost — all we
have to do is to choose the value of c to be [1− ε, 1].

Finally, we observe that it is not always possible to represent an eigenvalue of the
subdivision matrix as an explicit function of c. For example, for Kobbelt’s scheme
the characteristic polynomial has degree 6 and is not factorizable. However, the
eigenvectors can always be represented as explicit functions of the eigenvalues and
coefficients of the subdivision scheme. Therefore, the problem is reduced to computing
the eigenvalue as a function of c with guaranteed intervals. While there are always
cases when this is difficult if at all possible, it appears to be an achievable goal — see
section 5.2 for an example.

5. Analysis of specific schemes. In this section we use our algorithms to
analyze several subdivision schemes: butterfly, modified butterfly, Kobbelt’s scheme,
Catmull–Clark, and Loop schemes. C1-continuity of the first three schemes was not
previously established. C1-continuity of the last two schemes was analyzed for large
ranges of valences; we present analysis for all valences.

5.1. Analysis of the butterfly and modified butterfly schemes. The But-
terfly subdivision scheme was proposed by Dyn, Levin, and Gregory in [6]. In [7],
it was proved that the scheme produces C1-continuous limit functions for regular
meshes. Here we present an analysis of the scheme near extraordinary vertices. It
turns out that for valences k = 3 and k ≥ 8 the scheme is not C1-continuous. We also
show that the modified butterfly scheme [24] is C1-continuous for all valences.

Definition of the schemes. The butterfly scheme is an interpolating scheme: once
a vertex is added to the complex, the control point corresponding to the vertex does
not change. In [6], the coefficients of the scheme are parameterized by a parameter w.
The scheme has maximal approximation order for w = 1/16; we analyze the scheme
for this value of w. The mask of the subdivision rule for newly inserted vertices is
shown in Figure 6 on the left. The attractive feature of the scheme is its simplicity:
the rules are the same for all vertices. However, as we will prove, the scheme does not
produce C1-continuous surfaces.



ANALYSIS OF C1-CONTINUITY OF SUBDIVISION 1697

Fig. 6. The masks of the butterfly and modified butterfly schemes.

In [24] we have proposed a modification of the butterfly scheme, which does not
have this problem. The rule for the immediate neighbors of an extraordinary vertex
is modified in such a way that the spectrum of the subdivision matrix is similar to
the spectrum of the subdivision matrix for valence 6, i.e., has eigenvalues 1, 1/4 in
block B(0), 1/2 in blocks B(e2πi/k) and B(e2(k−1)πi/k), and 1/2 in blocks B(e4πi/k)
and B(e2(k−2)πi/k). The rest of the eigenvalues should be less than 1/8. In order to
achieve this, we use a mask with coefficients s0, . . . , sk−1, as shown in Figure 6 on
the right. Note that this mask is asymmetric. For vertices on levels finer than 0, this
is not a problem: we are modifying coefficients of the scheme only for neighbors of
extraordinary vertices, and only one of the two neighbors can be extraordinary after
one subdivision step. On the top level both neighbors can be extraordinary. The
choice that we make on the top level does not affect C1-continuity. We make an ad
hoc choice to take the average of the results produced by each of the two possible
choices. For K ≥ 5 the coefficients are sj = (1/k) (1/4 + cos(2π/k) + 1/2 cos(4π/k)),
j = 0, . . . , k − 1. For k = 3 we use s0 = 5/12, s1,2 = −1/12, and for k = 4, s0 = 3/8,
s2 = −1/8, s1,3 = 0. The properties of the scheme are discussed in greater detail in
[24, 20].

Subdivision matrices. For the butterfly scheme, the size of the blocks B(ω) (sec-
tion 2.4) is 6× 6. There is no need to consider the block number zero separately, as
it can be split into a trivial 1× 1 block and a 6× 6 block.

All blocks have eigenvalues 0 and −1/16, the eigenvalue −1/16 having multiplicity
2 for each block.

The other eigenvalues are eigenvalues of the upper left 3×3 subblock B00(ω). Let
c = 
ω = cos(2mπ/k). Then the subblocks B00(ω) have the form

B00(ω) =




1
2 + 1

4c− 1
8 (2c

2 − 1) − 1
16 ω − 1

16 0

1
2 + 1

2ω − 1
16ω − 1

16 ω2 1
8 − 1

16 − 1
16 ω

1 0 0


 .

The characteristic polynomial of this matrix is

P (λ, d) = λ3 +
(−1/4− 3/2 d+ d2

)
λ2 +

(
1

64
+

23

64
d− 3/16 d2

)
λ− 1

64
d,

where d = c2.
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Fig. 7. The magnitudes of the eigenvalues of the block B00(ω) as functions of d = cos2(ω) for
the butterfly scheme. The vertical lines indicate the values of d for which the matrix has a nontrivial
Jordan structure. The circles indicate eigenvalues with multiplicity greater than 1, the numbers next
to the circles are multiplicities.

For the modified butterfly scheme, the first row ofB00(ω) is replaced by [λ(ω), 0, 0],
where λ(ω) is the prescribed largest eigenvalue for the block B(ω). The roots of the
characteristic polynomial in this case are λ(ω), 0, and 1/8.

Convergence rates. For both schemes, which coincide on the regular complexes,
we use the contraction function ‖∇p‖∞, with the difference operator ∇ :

(
1∞2
) →(

1∞2
)2
, ∇ = [∆(1,0),∆(0,1)] (cf. [7]). For the difference scheme acting on the vectors

[∆(1,0)p,∆(0,1)p] we use the difference operator ∇′ = [∆(0,1),∆(1,1),∆(1,0),∆(1,1)] :(
1∞2
)2 → (

1∞2
)4
. The convergence constants for the butterfly scheme are c = 1/2,

γ1 = 7/8, γ2 = 31/64, γ3 = 261/1024. The constants for the difference scheme are
cD = 1/2, γD1 = 1, γD2 = 7/8, γD3 = 11/16.

We have chosen to use γ for N = 3 levels of subdivision, as after three levels of
subdivision the convergence factor per level is close enough to what we would get if

we were to use more levels: γ
1/3
3 is close to γ

1/4
4 .

These estimates indicate that the convergence for derivatives is quite poor: γ
stays close to 0.9 per level. However, this is a worst-case estimate and in practice the
scheme converges much faster. The reason for this is that for schemes with negative
coefficients, the “worst case” happens when the initial values have changing signs, i.e.,
consist primarily out of high frequency components, which is uncommon for surfaces.

Analysis of the butterfly scheme. The following proposition summarizes the in-
formation about the roots of the characteristic polynomial that we need to analyze
the scheme. Whenever an approximate value of a root is given, it is implied that the
precision is given by the last digit. Roots as functions of c are shown in Figure 7. The
proof is straightforward, but tedious. An outline is presented in Appendix A.1. A
detailed proof with calculations can be found in [21] in the form of a Maple worksheet.

Proposition 5.1.

1. For d ∈ (1/4, dcr), dcr ≈ 0.84868 there are three real roots. The largest root
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is real, and is greater than 1/4; the other roots are less than 1/4.
2. For d ∈ (0, 1/4) ∪ (dcr, 1) there are two complex and one real roots. The

magnitude of the complex roots is always less than 1/4. For d ∈ (dcr, 1) the real root
is greater than 1/4; for d ∈ (0, 1/4), it is less than 1/4.

3. For d = 0, the characteristic polynomial has a double root 1/8 and a single
root 0.

For d = 1/4, there is a double root 1/4 and a single root 1/16.
For d = dcr, there is a single root λ1 ≈ 0.46503 and a double root λ2 ≈ 0.16887.
For d = 1, there is a triple root 1/4.
For d ∈ (dmax, 1), dmax ≈ 0.67600, the largest root decreases as a function of d.
Using the information about the eigenvalues given by Proposition 5.1, we conclude

that for k ≥ 10, the maximum eigenvalue of the second block B(4π/k) is greater than
the largest eigenvalue of the first block B(2π/k). Evaluating eigenvalues for k = 3 . . . 9
directly, we can see that this is also true for k = 8 and k = 9. For k = 3, (d = 1/4),
the blocks B(2π/3) and B(4π/3) have double eigenvalues 1/4.

Once the eigenvalues are known, the eigenvectors corresponding to the pair of
dominant eigenvalues can be found from the complex eigenvector of B(ω) given by

e0(ω) =

[
λ, 1,

(ω + 1)((2c− 9)λ+ 1)

2− 16λ

]
.

To compute the pair of eigenvectors defining the characteristic map, we first
extend e(ω) to an eigenvector of a full 6 × 6 block using v(ω) = (λI −B11)B10e0.
Then the complete complex eigenvector e for valence k is

[0, e(0), e(2π/k), e(4π/k), . . . , e(2(k − 1)π/k)] .

From this vector we obtain two real vectors 
e and �e defining the characteristic
map.

The algorithms that we use to check regularity of the characteristic map with
minor changes can be used to verify the assumptions of Lemma 2.2. For valences k =
4, 5, 7 we use these algorithms to show injectivity and regularity of the characteristic
map.

Our findings are summarized in the following proposition.
Proposition 5.2. The butterfly scheme is C1-continuous for valences k =

4, 5, 6, 7; it is not C1-continuous for any other valence and is not tangent plane con-
tinuous for k = 3.

While the scheme is not formally C1-continuous, the actual appearance of the
surfaces generated by the scheme is not obviously nonsmooth: for valences other than
three, the scheme produces tangent plane continuous surfaces, and the “twist” that
makes the surfaces non-C1-continuous is a relatively subtle effect. For more details,
see [20].

Modified butterfly scheme. As the eigenvalues of the subdivision matrix in this
case are prescribed, no eigenvalue analysis is necessary. The eigenvectors can be
determined in the same way as it was done for the butterfly scheme.

The control mesh for the ring consists of six rings of vertices around the central
vertex as shown in Figure 8.

The convergence rates for the modified butterfly scheme are exactly the same as
for the butterfly scheme, as these schemes coincide on the regular complexes. We used
our algorithms for verification of regularity and injectivity of the characteristic map
to prove that the scheme is C1-continuous for any fixed valence.
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Fig. 8. Control nets of the characteristic maps for the modified butterfly scheme and the Kobbelt
scheme.

limit

7 15249

Fig. 9. The convergence of the normalized control meshes of one segment of the characteristic
maps for the modified butterfly scheme as valence increases. Only the boundaries of the meshes are
shown.

As was discussed above, it is possible to prove convergence for all valences if suit-
ably chosen affine transforms of the control nets for one segment of the characteristic
map converge to a limit as k → ∞ and the normalized segment in the limit is regular
and injective. This is the case for the modified butterfly scheme; the affine transform
that we use is simply scaling along the y-axis by sin(2π/k).

Normalized control nets for several valences and the limit mesh are shown in
Figure 9.

The algorithm of section 4 steps through the valences, verifying C1-continuity for
each valence which has sufficiently different control net (Figure 10). In the case of
the modified butterfly scheme we were able to use only a relatively small step size
2.6×10−6, with all tests passing only after 6 steps of subdivision. The maximal valence
k0 that had to be tested (1481) is determined by the condition |cos(2π/k)− 1| < δ,
such that the tests succeed for e (λ([1− δ, 1])) (recall that all quantities are represented
as intervals). For each tested valence, we increase the interval size for control points,
in order to be able to analyze many valences simultaneously for large valences. We
have used the interval size 0.7 × 10−5 for valence greater than 6. The total number
of valences that had to be analyzed separately was 406.

5.2. Analysis of Kobbelt’s scheme. Kobbelt’s subdivision scheme [12], is an
interpolatory scheme defined on quad meshes; in the regular case, the scheme reduces
to the tensor product of four-point schemes [5]. There are two challenges in the
analysis of this scheme: First, as for the butterfly scheme, the limit surface cannot
be expressed in explicit form. In addition, the eigenvalues of the subdivision matrix
cannot be found explicitly.
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Fig. 10. The upper and lower bounds for the Jacobians; the error bars show the interval for
each bound; the step of the algorithm was chosen to be 2.6 × 10−6 so that the lower bound of the
interval for Jmin is close to zero. The initial anomaly in the lower bound is due to the fact that
eight subdivision steps, rather than six as for all other valences, were required to verify regularity
for valence 3.

Let α = (8 + w)/16 and β = −w/16 be the coefficients of the four point scheme,
where w is a parameter. Let pji,l be the control point corresponding to the vertex with
number l in sector i at subdivision level j. Then the control points for level j + 1 are
computed from the values on level j in two steps. First, the edge points are computed;
all vertices are computed in the usual manner using the four-point rule, excluding the
vertices pj+1

i,1 immediately adjacent to the extraordinary vertex. These vertices are
computed using the formulas

pj+1
i,1 = αc+ αpji,1 + βuji + βpji,3,

uji =
4

k

k−1∑
i=0

pji,1 − (pji−1,1 + pji,1 + pji+1,1)

−β

α
(pji−2,2 + pji−1,2 + pji,2 + pji+1,2) +

4β

αk

k−1∑
i=0

pji,2,

where uji are intermediate “virtual points.”

Next, the face points are computed. All face points are computed in the same
way: four-point coefficients are applied to four consecutive edge points on level j + 1,
as shown in Figure 11. It is important to note that there are two ways to choose four
consecutive edge points; the coefficients for the scheme are chosen in such way that
both choices produce the same result.

We performed the analysis of the scheme for w = 1, which is the value for which
the four point scheme has maximal smoothness. Let k be the valence, ω = e2imπ/k,
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Fig. 11. Rules for Kobbelt’s scheme. The stars indicate extraordinary vertices, α = (8+w)/16,
β = −w/16. In the masks for face control points (right) empty circles are edge vertices inserted on
the same subdivision step. The dashed lines show the two possible sequences of four edge points that
are used to compute a face point.

m = 1 . . . k, and

c00 = α+ 4β δm,0 − β (1 + 2 c) , c01 = 4β2δm,0/α− β2
(
ω̄2 + 2 c+ 1

)
/α,

c10 = 4β α δm,0 +
(
α2 − αβ

)
(1 + ω) , c11 = 4β2δm,0 − β2 (1 + 2 c) + 2αβ c+ α2.

After the standard operation of applying DFT to the subdivision matrix, we obtain
the following 12× 12 matrix B(ω):


c00 c01 β 0 0 0 0 0 0 0 0 0

c10 c11 (1+ω)αβ β2ω+αβ β2 β2ω̄+αβ 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

α α+β ω̄ 0 0 0 β 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

αω α+β ω 0 β 0 0 0 0 0 0 0 0

α 0 α 0 0 0 β 0 0 0 0 0

β2ω̄+α2+αβ ω αβ ω̄+α2 β2ω+α2 α2 αβ αβ (1+ω̄) αβ αβ β2 0 0 β2ω̄

β ω α 0 α 0 0 0 β 0 0 0 0

(1+ω)αβ α2 (1+ω)αβ α2 α2 α2 β2(1+ω) αβ αβ β2 αβ αβ

β α 0 0 0 α 0 0 0 0 0 β

αβ+α2ω+β2ω2 α2+αβ ω β2+α2ω (1+ω)αβ αβ α2 αβ ω β2ω 0 0 β2 αβ




.

As discussed in section 2.4, for any subdivision scheme each block can be separated
into subblocks, with eigenvalues of lower-right 6 × 6 subblock not depending on the
valence. The eigenvalues of this subblock are equal to −1/16, −1/32, −1/64 (double),
−1/128, and 1/256.

The larger eigenvalues are always eigenvalues of the upper-left 6 × 6 subblock.
The roots of the characteristic polynomial of that subblock cannot be found explicitly.
However, for fixed m and k, we can easily find the roots numerically, with guaranteed
lower and upper bounds on the roots. The characteristic polynomial has the form

P (c, λ) = λ6 +

(
− 3

64
c− 15

16

)
λ5

+

(
297

1024
− 9

1024
c

)
λ4 +

(
− 335

8192
+

21

4096
c− 7

16384
c2
)

λ3

+

(
183

65536
− 9

16384
c

)
λ2 +

(
− 45

524288
+

9

524288
c

)
λ+

1

1048576
.
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Fig. 12. The magnitudes of the eigenvalues of the subdivision matrix for Kobbelt’s scheme
as functions of c. Only the eigenvalues of the upper-right 6 × 6 subblock are shown. Note that
the magnitudes of the complex conjugate eigenvalues coincide, and there are fewer than six distinct
curves.

Numerically computed roots of this polynomial are plotted as functions of c in
Figure 12.

Analysis of the eigenvalues. From the plot it is clear that the largest eigenvalue
increases as a function of c; therefore, it appears that the largest eigenvalue of the
subdivision matrix for any valence corresponds to m = 1. Moreover, our calculations
indicate that the largest eigenvalue is always real. Using interval methods, we prove
the following proposition.

Proposition 5.3. For any valence k, and any m = 1 . . . k − 1, the largest
eigenvalue is real and unique, and for any block B(2mπ/k), m �= k − 1, 1, the largest
eigenvalue is less than the largest eigenvalue of the blocks B(2π/k) and B(2π(k−1)/k).
The unique largest eigenvalue is the only eigenvalue in the interval [0.5, 0.613] for
k > 4.

The detailed proof with all calculations, including the Maple code, can be found
in [21].

Here we present an outline of the proof. The proof is performed in several steps:

1. We show that for c < 0, all roots of the characteristic polynomial P (c, λ) are
likely to be less than 0.51

2. We show that for any c ∈ [0 . . . 1], there is a unique real root µ in the interval
[0.5, 0.613], and the function µ(c) is C1-continuous and increases.

3. We “deflate” the characteristic polynomial (that is, divide by the monomial
λ − µ) and verify that all roots of the deflated polynomial are inside the circle of
radius 0.5 for c ∈ [0, 1].

Marden–Jury test. On steps 1 and 3 we have to show that the roots of a poly-
nomial are inside a circle of radius r in the complex plane. This task is similar to
the task of establishing stability of a filter with the transfer function 1/a(z), where

a(z) =
∑M

i=0 aiz
i is a polynomial. The filter is stable, if all roots of the polynomial

a(z) are inside the unit circle. A variety of tests exist for this condition; for our pur-
poses, the algebraic Marden–Jury test is convenient [11]. With appropriate rescaling
of the variable it can be used to prove that all roots of a polynomial are inside the
circle of any given radius r. As the test requires only a simple algebraic calculation on
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the coefficients of the polynomial, it can easily be performed for symbolic and interval
coefficients.

To perform the test for a real polynomial
∑M

m=0 λ
m, a table is constructed. The

first line is given by r0
i = ai, i = 0 . . .M . The rest of the table is defined recursively:

ri+1
j =

∣∣∣∣ ri0 riM−i−j
riM−i rij

∣∣∣∣ , j = 0 . . .M − i.

Each row contains one element less than the previous row. Once the table is
computed, the necessary and sufficient condition for stability is r1

0 < 0, ri0 > 0 for
i = 1 . . .M .

A more detailed discussion of the proof of Proposition 5.3 can be found in Ap-
pendix A.2.

Analysis of C1-continuity. Using Proposition 5.3, we can easily compute the
largest eigenvalue with guaranteed bounds for any k: this will be the unique real
root in the interval [0.5, 0.613]. We compute roots up to a maximal valence k0. Once
the eigenvalues are known, the eigenvectors defining the characteristic map are com-
puted, and the tests described in section 4 are applied to establish C1-continuity of
the scheme for any fixed valence.

For this scheme we use the standard difference operator ∇ defined in section 3.1;
because this is a tensor product scheme, the matrix difference scheme is diagonal
and can be decomposed into scalar schemes. The convergence constants are c =
13/32, γ1 = 25/32, γ2 = 105/256, γ3 = 425/2048. The convergence constants for the
difference scheme are cD = 31/64, γD1 = 5/4, γD2 = 15/16, γD3 = 5/8.

To complete analysis of the scheme we need to describe the behavior of µ(c)
at infinity. Specifically, to use our algorithm for verification of smoothness for all
valences, for any interval value c = [1 − ε, 1] we need to estimate the corresponding
interval value µ(c). As µ(c) changes slowly, linear approximation is sufficient for our
purposes; the upper bound for the derivative µ′

c = 1/c′µ can easily be computed. This
allows us to compute the interval eigenvectors at infinity and verify C1-continuity for
all valences greater than k0.

The control mesh for the characteristic map of Kobbelt’s scheme for valence 7 is
shown in Figure 8. Figure 13 shows the dependence of the upper and lower estimates
of computed Jacobians on the valence. Valences up to 812 had to be examined; be-
cause eigenvectors for large valences were sufficiently close, it was possible to perform
analysis for a number of valences simultaneously; thus, only 193 valences had to be
tested.

We conclude that Kobbelt’s scheme is C1-continuous for all valences.

5.3. Other schemes. C1-continuity of the Loop scheme was verified in [19]
for valences up to 150. For the Catmull–Clark scheme, C1-continuity was analyzed
for valences up to 10,000 in [15]. As the subdivision matrices have relatively simple
form, and the eigenvalues and eigenvectors can be explicitly computed, our algorithms
can be applied without any extra effort to obtain a proof of C1-continuity for all
valences. Spline-based schemes have a remarkable property: the convergence rates γ1

and γD1 for the scheme and the difference scheme are both 1/2; this is due to the fact
that both the scheme and the derivative scheme have only positive coefficients. In
addition, replacing the coefficients of the scheme by intervals, we establish not only
C1-continuity of the schemes, but also stability for small perturbations of the nonzero
coefficients, as long as the perturbed coefficients lead to a convergent scheme. Due to
fast convergence and high stability, intervals of large size can be used in the analysis,
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Fig. 13. The upper and lower bounds for the Jacobian of the characteristic maps as functions
of the valence for Kobbelt’s scheme. The error bars indicate the size of the interval; the step of the
algorithm was chosen to be 3 × 10−5; the maximal examined valence was 818; the total number of
valences for which the test was performed was 193.

and only few valences (up to 58 for Loop, up to 89 for Catmull–Clark) have to be
analyzed. The number of subdivision iterations required to verify regularity is also
quite small: 3 iterations are sufficient in both cases.

Our techniques can be also applied in virtually unchanged form to the dual, or
corner cutting, subdivision schemes. Two schemes of this type are known to us: the
Doo–Sabin subdivision scheme [4] and the Midedge subdivision scheme [9, 16]. For
these schemes, C1-continuity was already proved for all valences [15, 9, 16]. Using
our method, it is possible to perform perturbation analysis of the type that we have
described above. We will discuss issues related to stability of smoothness properties
of subdivision in greater detail in a future paper.

6. Conclusions. We have presented a general method for the verification of C1-
continuity of stationary subdivision. This method allows us to analyze schemes which
are not derived from spline subdivision and perform most of the analysis automatically.

Our method opens the way for a general characterization of invariant C1-
continuous schemes with small support: such schemes are defined by a small number
of parameters, and our interval algorithms can be used to prove C1-continuity for
continuous ranges of these parameters.

Applications of our algorithms are not restricted to the invariant schemes for
closed meshes: in fact, we have successfully used them to establish C1-continuity on
the boundary of several variations of common subdivision schemes. These results are
discussed in a future paper [23].

One important, although typically not the most difficult, aspect of the problem is
not addressed by our method. As it could be seen from our analysis of the butterfly and
Kobbelt subdivision schemes, the eigenstructure of a particular scheme or family of
schemes still has to be analyzed separately in each case. To apply our method, we need
to find the Jordan normal form of the subdivision matrix; in general, it is not always
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possible to do this numerically or in closed form. However, we have demonstrated,
using the Kobbelt scheme as an example, that it is possible to use a combination of
symbolic and numerical methods to obtain all necessary information. We believe that
a satisfactory solution of this problem requires methods similar to those developed
in [8]. While it might not be possible to determine the Jordan normal form exactly,
one can find all possible Jordan normal forms of matrices that are obtained from the
original subdivision matrix by a small perturbation. This approach is likely to yield
an algorithm that would be capable of performing the analysis C1-continuity of a
scheme given only the coefficients of the scheme as the input.

While our method can be used to analyze parametric families of subdivision
schemes, due to its seminumeric nature, it cannot be used for such tasks as find-
ing precise ranges of the values of the parameters for which the scheme remains
C1-continuous. While this is of little relevance for practical applications, it can be
regarded as a theoretical drawback.

While in principle our method can be used to verify C1-continuity of any stable
scheme, in practice it is limited by the computational resources. If the convergence of
the difference scheme is too slow, the number of subdivision steps required to apply
the method may become prohibitive. Comparison of the performance of the method
for the loop scheme and the butterfly scheme is revealing: As the convergence rate of
the butterfly scheme is substantially slower, 6 subdivision steps are required and 1481
different valences have to be examined to verify C1-continuity. In contrast, for the
loop scheme the convergence rate is high, and only 3 subdivision steps and 58 valences
are necessary. The method is likely to perform very well for any scheme with positive
coefficients, but take substantially more time for schemes with negative coefficients,
which typically have slower convergence rates.

Appendix. Technical proofs. In this appendix we outline the proofs of two
propositions used in the analysis of the butterfly and Kobbelt schemes. These proofs
use symbolic and numeric computations. The complete Maple code with explanation
is available separately.

A.1. Proposition 5.1. The roots of the characteristic polynomial of the but-
terfly scheme can be found explicitly; depending on the value of d = c2, there can
be either one real and two complex roots or three real roots. For four special values
of d the matrix has nontrivial Jordan blocks; the special values of d are the roots of
the discriminant of the characteristic polynomial, which is a polynomial in d. These
roots are 0, 1/4, 1, and dcr ≈ 0.84868. The types of roots depend on the sign of the
discriminant of the characteristic polynomial; the discriminant is positive on (0, 1/4)
and (dcr, 1), negative on (1/4, dcr). On each interval, well-known formulas can be
used to find the roots of the characteristic polynomial as functions of d explicitly.
To determine the largest root for any value of d, that is, the largest magnitude of an
eigenvalue of a subblock B00(ω) for a given ω, we consider the cases of three real roots
and one real root separately.

Suppose λi(d), i = 1, 2, 3, are the three real roots for d ∈ [1/4, dcr]. As zero is
a root only for d = 0, the three real roots do not change signs for d ∈ [0, 1]. It is
sufficient to compute the value of roots at any point to show that all three roots are
nonegative. Therefore, the curves |λ1(d)|, |λ2(d)|, |λ3(d)| can intersect only if the
roots coincide, which means that the discriminant is zero. Thus, the curves cannot
intersect on the interval (1/4, dcr). The largest root can be determined simply by
evaluating the roots with guaranteed precision at any point of the interval.
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If there is only one real root, we can easily show that for d < 1/4, P (1/4, d) < 0
and for d > 1/4, P (1/4, d) > 0. We conclude that for d > dcr, the single real root is
greater than 1/4, and for d < 1/4 it is less than 1/4. The magnitude of the complex
roots also satisfies a cubic equation. Using the same method, we can show that these
roots have magnitudes less than 1/4 on (1, 4) and (3/4, 1).

Finally, we determine the range of d for which the largest root decreases as a
function of d. Note that λmax(d) is a unique solution of the equation P (λ, d) in the
domain (1/4, 1) × (1/4,∞). We can determine the zeros of the derivative λ′

max(d)
from the system of the equations P (λ, d) = 0, P ′

d(λ, d) = 0, solving for d. Excluding
λ using standard Gröbner basis techniques, and solving with guaranteed precision for
d, we obtain the value dmax. As the derivative is not zero on (dmax, 1), we determine
the sign simply evaluating it at a point, and we conclude that it is negative.

A.2. Proposition 5.3. Here we describe how steps 1–3 of the proof of Propo-
sition 5.3 are performed.

Step 1. We have to verify that all roots of the polynomial for c ∈ [0, 1] have
magnitude less than 1. We split the interval into sufficiently small subintervals, so
that we can evaluate Marden–Jury test in interval arithmetics for each subinterval
with definite results.

The following observation is crucial for steps 2 and 3. Although the characteristic
polynomial has degree 6 in λ, it is only quadratic in c, and has two solutions, c1(λ)
and c2(λ).

Step 2. Using interval evaluation of the derivative, one of the two solutions, say,
c1(λ), can be shown to be increasing for λ ∈ [0.5, 0.613]. As c1(0.5) = 0, and
c1(0.613) > 1, we conclude that for c ∈ [0, 1], there is always a real solution in
the range [0.5, 0.613]. If we evaluate the second root c2(λ) for the same interval of
λ, we can observe that the values of c2 are outside the range [−1, 1]. Therefore, for
c ∈ [0, 1] there is a unique real solution λ in the range [0.5, 0.613]. Because c1(λ) is
C1-continuous and its derivative is positive, the inverse function µ(c) has the same
properties (we use µ to distinguish between the real eigenvalue that we have identified
from the indeterminate λ of the characteristic polynomial).

Step 3. To show that all other roots of the characteristic polynomial for c ∈ [0, 1]
are smaller than µ(c), we perform deflation symbolically, using µ as a parameter: we
divide P (c, λ) by (λ − µ) symbolically and substitute c = c1(µ). The coefficients of
the resulting polynomial are functions of µ. Again, we separate the range of µ into
subintervals, small enough to be able to obtain a definite result from the Marden–Jury
test. This proves that for all values of µ in [0.5, 0.613], and, therefore, for all c ∈ [0, 1],
µ(c) is the largest root of P (λ, c).

The proposition is derived from the three statements in section 5.2 in the following
way.

As for k > 4, cos 2π
k > 0.51, the largest eigenvalue cannot possibly correspond to

a block m, for which cos 2mπ
k ≤ 0. From step 3, it follows that the largest root has

to be the real root µ(c) for some c. As for any m > 1,m < k − 1, cos 2mπ
k < cos 2π

k ,
and we have shown in step 1 that µ(c) increases, and for any c µ(c) is the largest root
(step 3), we conclude that the largest eigenvalue always corresponds to m = 1, is real,
and is the unique eigenvalue in the range [0.5, 0.613].
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