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Abstract

We present a smooth surface construction based on the manifold
approach of Grimm and Hughes. We demonstrate how this ap-
proach can relatively easily produce a number of desirable prop-
erties which are hard to achieve simultaneously with polynomial
patches, subdivision or variational surfaces. Our surfaces are C∞-
continuous with explicit nonsingular C∞ parameterizations, high-
order flexible at control vertices, depend linearly on control points,
have fixed-size local support for basis functions, and have good vi-
sual quality.

CR Categories: I.3.5 Computational Geometry and Object Mod-
eling; Curve, surface, solid, and object representations

Keywords: Geometric modeling, manifolds.

1 Introduction

Much of the work on smooth surface representations, excluding
variational surfaces, is based on the paradigm of stitching poly-
nomial patches together. While subdivision surfaces are generally
defined as limits of recursive refinement algorithms, the surfaces
produced by most popular schemes can still be interpreted as infi-
nite collections of stitched spline patches.

In this paper we take a different, often neglected approach based
on the manifold construction of [Grimm and Hughes 1995]. We
demonstrate how this approach can produce with relative ease a
number of desirable properties which are hard to achieve simultane-
ously with polynomial patches, subdivision or variational surfaces.
Specifically, our surfaces have the following properties:

• Any prescribed degree of smoothness including C∞ with ex-
plicit nonsingular parameterizations of the same smoothness. It
is widely recognized that C2-continuity is important for visual
quality, as it insures smooth normal variation. Higher degrees
of smoothness are useful for numerical purposes: for example,
for C3-continuous surfaces variation of curvature functionals
are well-defined everywhere, Ck-continuity makes it possible
to use high-order quadratures to ensure rapid convergence (the-
oretically at super-algebraic rates for C∞-surfaces). Explicit
closed-form parameterizations are always preferable for a vari-
ety of tasks, from texturing to surface-surface intersections.

• The surfaces are at least 3-flexible. i.e. can have arbitrary pre-
scribed derivatives of order up to three at control vertices. This
property ensures that a surface does not have artificial flat spots.

• Linear dependence on control points, fixed-size local support
for basis functions. Linear dependence on control points con-
siderably simplifies formulation of a number of algorithms, e.g.

surface fitting. Localized influence of control points is impor-
tant both for efficiency and intuitive surface control.

• Good visual quality. Many surfaces constructed to precise math-
ematical specifications often suffer from inferior surface qual-
ity. We demonstrate how good visual surface quality can be
achieved simultaneously with many useful mathematical prop-
erties.

Apart from making this combination of desirable qualities pos-
sible, manifold representations are useful for a number of reasons.
For example, this is a natural setting for solving equations on sur-
faces (e.g. reaction-diffusion or fluid flow [Stam 2003]) as the
chart overlap simplifies maintaining smoothness of solutions across
boundaries. For manifolds it is easier to apply algorithms designed
for parametric patches which treat the surface as a function f(u, v)
to surfaces of arbitrary topology without handling special cases for
inter-patch boundaries needed for patch-based representations. If
one needs to define a hierarchical basis on a manifold surface, one
can simply define it on the plane and then use the chart parametriza-
tion to transfer it to the surface. Such bases can be used in many
contexts requiring approximation: fitting, trimming, boolean oper-
ations etc.

Our work was initially motivated by the needs of a specific ap-
plication in scientific computing: boundary integral equations on
surfaces, which, in graphics literature have appeared in [James and
Pai 1999]. Our application required high-order smooth nonsingu-
lar parametrization to ensure fast convergence of quadrature rules
on surfaces, i.e. for the parametrization to have good mathematical
quality; at the same time, it was essential to be able to model objects
of arbitrary shape and obtain good visual quality without additional
processing.

We have observed that even all existing flexible C2 construc-
tions are quite complex, and while higher-order constructions exist,
despite having nice mathematical properties, few were ever fully
implemented and visual surface quality was typically inferior to
lower-order schemes. Subdivision surfaces are a notable exception:
they were not constructed to satisfy a specific set of requirements.
Rather, it was observed that the subdivision algorithms for splines
generalize well to arbitrary control meshes, and the visual quality of
the surface is adequate in an intuitive sense, except for high-valence
vertices. Analysis of properties came later and is quite complex.
Even obtaining a C1 nonsingular parametrization is nontrivial and
requires inversion of the characteristic map [Stam 1998].

In our approach, we relax the requirement of representing sur-
faces using polynomial patches to simplify the construction needed
to achieve good mathematical quality, and we ensure that our sur-
faces closely approximate the shape of subdivision surfaces to
achieve acceptable visual quality for a similar range of vertex va-
lences.

We believe that due to the properties enumerated above, mani-
fold representations provide the most convenient basis for “black-
box” surface approximation software: the user provides an input
control mesh, and the surface and its parametric derivatives of any
order can be evaluated at any point. While the black-box approach
is not the most efficient, it is the most convenient and reliable one
for applications requiring a large variety of algorithms to operate
on surfaces.
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2 Previous work

We are not aware of any C∞ constructions for surfaces with general
control meshes.

The work on computational representations of surfaces based on
manifolds is relatively limited. The idea was introduced in [Grimm
and Hughes 1995]. More recently, [Navau and Garcia 2000] have
proposed a Ck construction based only on polynomials. Parameter-
ization techniques using the manifolds can also be found in [Grimm
2002] and [Grimm and Hughes 2003].

Extensive literature exists on spline-based constructions of
different types; Ck constructions include S-patches [Loop and
DeRose 1989], DMS splines [Seidel 1994], freeform splines
[Prautzsch 1997] and TURBS [Reif 1998]. DMS splines were de-
veloped to the greatest extent; as a large number of knots and con-
trol points need to be introduced for each triangle, an additional
algorithm is needed to position these points if only an initial mesh
is given. TURBS are based on singular parameterizations; for both
free-form splines and TURBS additional degrees need to be set,
which can be done using fairing functionals and precomputed ma-
trices, similar to the technique that we use. There are numerous C2

constructions, e.g. [Gregory and Hahn 1989], [Wang 1992], [Peters
1996], [Hermann 1996], [Bohl and Reif 1997], and most recently
[Peters 2002]. There is an even larger number of C1-constructions;
excluding subdivision surfaces, which are C2 away from isolated
points, these constructions rarely yield surfaces of acceptable qual-
ity. In all cases, the required polynomial degree and number of
additional patch control points to be set rapidly grows with smooth-
ness.

Unfortunately, in most cases it is impossible to compare the vi-
sual quality of resulting surfaces to our construction. The imple-
mentation is complex, and only few images of simple objects are
provided in the papers, as the stated goal in most cases is to obtain
surfaces satisfying a specific mathematical condition.

The literature related to subdivision surfaces is extensively re-
viewed in the book [Warren and Weimer 2001] and in the course
notes [Zorin et al. 2001]. Direct fixed-time evaluation of subdi-
vision surfaces was introduced in [Stam 1998], which is the only
known approach to directly cast subdivision surfaces in paramet-
ric form. [Peters 2000] describes a technique for approximating
Catmull-Clark surfaces with a collection of bicubic patches joined
with C1 continuity.

3 Construction

Manifold structure. We consider meshes consisting of quadri-
laterals, although this is not critical for our construction: it can be
carried out in a similar way using triangle meshes and Loop subdi-
vision surfaces, for example. We focus on the quadrilateral case as
it has more relevance for geometric modeling applications.

The foundation of our approach is a simple construction of a
C∞-manifold associated with a mesh. We refer the reader for de-
tailed discussion of manifolds to [Grimm and Hughes 1995]. Here
we just state the basic definition: a set M has 2D manifold struc-
ture, if a collection of charts (Ci, ϕi) is defined, where Ci are open
domains in the plane, ϕi are one-to-one maps Ci → M , such that

the images ϕi(Ci) cover all of M 1. M is a C∞ manifold if the
transition maps from chart to chart tji = ϕ−1

j ◦ϕi defined for pairs
of chart for which ϕi(Ci) and ϕj(Cj) intersect, are C∞. In our
construction, we use the control mesh as the domain M 2.

Another important idea that we use is the partition of unity. A
set of functions wi each defined on Ci, and having compact sup-
port, is called a partition of unity, if

∑
i wi ◦ ϕ−1

i = 1, where the
summation is over all charts.

Overview of the construction. The general approach is close
to the one in [Grimm and Hughes 1995]. We construct functions
f l

i : Ci → R3, defining the geometry locally on each chart; then,
we use a partition of unity to define the global geometry. On M ,
the complete surface is defined by

∑
i(wif

l
i ) ◦ ϕ−1

i . However, in
practice it is evaluated on individual charts Ci via

fi(x) =
∑

j:ϕi(x)∈ϕj(Cj)

wj(tji(x))f l
j(tji(x)) (1)

Note the complexity of evaluation of this expression is determined
by three factors: complexity of transition maps tij , weights wj

and geometry functions f l
j . In our case, the transition maps can

be expressed in complex form as zα (up to a rotation), the weights
are piecewise exponential and C∞, and the geometry functions are
polynomials of degrees proportional to the valence of vertices cor-
responding to the charts.

Another important observation is that every fi(x) is C∞ if all
components are C∞. Next, we discuss each component separately.

Charts and transition maps. As a basis for our construction,
we use the conformal atlas for meshes. Conformal atlas has al-
ready been used in several graphics applications, most recently in
[Gu and Yau 2003]. While many variations can be found in the
literature (e.g. [Duchamp et al. 1997] in the context of parametriza-
tion), a complete description of the specific structure is not eas-
ily available, and we present it here. We define charts per vertex.
Each chart domain is a curved star shape Di, shown in Figure 1.
The overlap region between the images of two charts in the con-
trol mesh is two faces of the mesh. Rather than constructing the
maps ϕi, we construct the maps ϕ−1

i . The chart construction pro-
ceeds in two steps: first, the faces adjacent to a given vertex are
mapped piecewise bilinearly to the plane (maps Li to domains Si).
Then a transformation ci is applied to each wedge of the regular star
Si; ci squeezes it so that it becomes a conformal image of square.
Maps ci have simple explicit expressions for each wedge. As il-
lustrated in Figure 2 for the shown choice of coordinate system,
these maps are compositions of a linear map lki defined as matrix
diag(cos(π/4)/ cos(π/ki), sin(π/4)/ sin(π/ki)), where ki is the
valence of Di and a simple map gki , which using standard iden-
tification of the plane with complex numbers z = x + iy, can be
written as z4/ki . The chart maps ϕ−1

i are compositions ci ◦ Li.
This atlas has an important property: all transition maps are con-

formal, in particular, C∞. In fact, the transition maps, for a certain
choice of the coordinate systems can be written as zk1/k2 . This is
proved in Appendix A. The fact that transition maps have simple
expressions is very important; it allows us to define the geometry in
an efficiently computable way. We can also replace z4/ki with more
general functions of the form |z|p(z/|z|)4/ki for p > 0, which are

1In our definition, the charts are maps from 2D domains to the manifold,
i.e. are inverses of chart maps defined in most differential geometry books.
We use the nonstandard definition to simplify notation.

2For this we need to assume that the mesh has no self-intersections. This
assumption is not crucial (we can construct the domain in a more abstract
manner) but simplifies explanations. It has no implications for implementa-
tion.
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Figure 1: Construction of the charts. The maps Li, i = 1, 2
are piecewise bilinear; the maps ci are constructed on individual
wedges as shown in Figure 2.
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Figure 2: On each wedge, the map ci is a composition of a linear
map and the map z4/ki .

again C∞-continuous. In the examples in Section 4, we choose
p = log2(1/λki) where λki is the second largest eigenvalue of
the Catmull-Clark subdivision matrix at valence ki, to improve the
quality of the geometry fit described below.

Partition of unity. The partition of unity is a crucial element
of our construction: the quality of surface is defined not only by
the quality of the geometry functions but also by how well they are
blended. Our empirical observations are that it cannot have tran-
sition regions which are too steep, and, even more importantly, its
support shape should match the shape of the star-like shape of the
corresponding chart.

We build the partition of unity from identical pieces defined ini-
tially on the standard square [0, 1] as a product of two identical
one-dimensional functions η(u)η(v). The function η is defined as
follows [Bruno and Kunyansky 2001]:

η(t) =




1 : 0 ≤ t ≤ δ
h((t−δ)/a)

h((t−δ)/a)+h(1−(t−δ)/a)
: δ < t < 1 − δ

0 : 1 − δ ≤ t ≤ 1

where δ > 0, a = 1− 2δ and h(s) = exp(2 exp(−1/s)/(s− 1)).
The resulting function is quite close in appearance to a Hermite
spline (Figure 3). We set δ > 0 for the following reason: When

0

1

1

Figure 3: Red: the function η(t) used in the construction of the
partition of unity. Black: a Hermite spline which is close to the
shape of η(t).

δ = 0, the transition maps has unbounded derivatives at the bound-

ary of the overlapping charts. While it is possible that the compo-
sition of the transition map and the partition of unity has bounded
derivatives if the partition of unity has sufficiently fast decay, we
simply choose the partition of unity to be constant near the bound-
ary. In our implementation, we use δ = 1/8.

Once the function is defined on the square, we obtain a weight,
defined on the whole chart as follows. First, we use a rotation by
π/4 combined with the map g−1

k = zk/4 to remap η(u)η(v) to a
single wedge. The function is defined by rotational symmetry on
the rest of the chart. The resulting function is C∞ on the whole
chart. The proof is outlined in Appendix A.

If only Ck surfaces for some finite k are desired, a suitably spline
function of degree k + 1 can be used instead of η(t).

Defining geometry. We define geometry using polynomials.
The basic idea is to apply several subdivision steps to define the
overall coarse shape of the surface, and use polynomials in the chart
to fit this shape in the least square sense. As the fit is linear and
the control points of refined subdivision mesh depend linearly on
the control points of the original mesh, the transformation matrix
converting control points to the polynomial coefficients can be pre-
computed. Thus, in practice the process is reduced to assembling a
vector of control points and multiplying them by a matrix.

Every control point of the refined mesh after two Catmull-Clark
subdivision steps can be assigned to the points with bilinear coor-
dinates (i/4, j/4) in each sector of the star Sk. For each vertex v,
we remap these points in Sk to the chart domain Dk by using the
map ci. There are m = 12k + 1 points inside Dk which we de-
note x0, . . . xm−1. We compute 3D limit positions for these points
in the same order, and denote them s0, . . . , sm−1. Our goal is to
define a geometry function f such that differences f(xi) − si are
minimized in the least squares sense.

In the fitting process, we use the monomials of total degree ≤
d = �min(14, k + 1)� as the basis functions. The choice of 14 as
the maximal degree is empirical: using higher-order polynomials
results in lower quality surfaces for high valences. We denote these
monomials p0, . . . , pn−1 where n = (d+1)(d+2)/2 is the number
of monomials used in the fitting. We use the least square fit to solve
for the basis coefficients aj , such that f =

∑n−1
j=0 ajpj . Let a be

the vector of coefficients aj , s be the vector of values si and U be
the m×n matrix of monomial values pj(xi) at points xi. Then the
least squares fit minimizing ‖Ua − s‖2 is given by

a = U+s

where (·)+ denotes pseudoinverse. The n × m matrix U+ only
depends on the valence k since xi and pj depend only on k. There-
fore, it can be precomputed once and used for all charts with the
same valence.

Flexibility of the surface at vertices in the center of the charts is
easy to show, as one can construct specific control point configura-
tions yielding various low-degree polynomials in a direct form.

We note that the above construction is the simplest among those
we have tried; its disadvantage is the relatively large size of Uk,
which can be reduced by using a more careful choice of polynomial
bases and the singular value decomposition (SVD) from n to 3k+1
without loosing surface quality.

If only Ck smoothness is needed, one can use tensor-product
splines of fixed bidegree k + 1 instead of polynomials; the nature
of the fitting process does not change.

4 Results

Implementing our scheme is relatively simple: our basic implemen-
tation has 1,500 lines of code including subdivision but excluding



SVD code. Most images in Figures 4 and 6 have a reflection map
on a part of the surface to show the surface quality.

Figure 4 shows the quality of the surface generated by our
method. On the left is a detailed comparison of the surfaces with
Catmull-Clark surfaces near valence 5, 8 and 12 vertices. The qual-
ity is close, except in the immediate neighborhood of the vertex,
where reflection lines show lack of C2-continuity of Catmull-Clark.
On the right, we present the plots for the principal curvature direc-
tions and Gaussian and mean curvatures.

Figure 5 shows the chart parameterization of our surfaces. On the
left, a uniformly spaced checkerboard demonstrates that our surface
parameterization is smooth at the extraordinary vertex, while the
natural parameterization of Catmull-Clark surface is singular there.
On the right, we show the sum of the magnitudes of the derivatives
of the parametrization on a chart, to demonstrate the variation. We
note that starting from fourth derivatives the behavior is dominated
by the behavior of the derivatives of the partition of unity functions.

Figure 6 shows several examples of surfaces obtained from var-
ious control meshes. In all cases, overall quality is quite similar to
Catmull-Clark surfaces; as expected, with smoother reflection lines
near extraordinary vertices as in Figure 4.

Conclusions and Future Work The development of the con-
struction described in this paper was initially driven by specific
needs of an application, and it nicely meets its needs while being a
completely general tool. We have no doubts that our construction
can be improved in a variety of ways, as most of the components
were identified empirically: in particular, to get good behavior of
higher order derivatives, one needs a better partition of unity. It
is quite possible that there are better charts, fewer or lower degree
polynomials can be used for geometric functions, or entirely differ-
ent geometric functions yield better results.

It is one of the many possible high-smoothness constructions of
this type. We hope it will inspire future work in similar directions;
as it is demonstrated by our construction, some problems which are
difficult or impossible to solve in a conventional framework can be
resolved much more easily using alternative approaches.

A Proof of C∞ continuity of transition
maps and partition of unity functions.

Transition maps. Let us fix coordinate systems in the domains
Si, i = 1, 2 depicted in Figure 1 with x direction along the com-
mon edge of two shaded wedges. Let L′

i, i = 1, 2 be the piecewise
linear maps from a pair of adjacent unit squares. We also assume
the coordinate system x axis to be along the common edge. A sim-
ilar choice is made for domains Di. The maps ci for these coordi-
nates can be written as R(π/ki)gki lkiR(−π/ki) for the top quad
and R(π/ki)gki lkiR(−π/ki), where ki is the valence of the corre-
sponding vertex, R(α) is the rotation by the angle α, and the maps
lki and gki are defined in Section 3.

The transition map c2L2L
−1
1 c−1

1 can then be written as
c2L

′
2L

′
1
−1

c−1
1 , with the mesh maps itself eliminated. This can be

done, as the composition of a linear and a bilinear map is bilinear,
and the maps are defined uniquely by the correspondence of the
domain corners, Li = L′

iL, so the bilinear part L is factored out.
Next, we observe that the two piecewise linear parts of L′

i are
just R(π/ki)l

−1
ki

R(−π/4) and R(−π/ki)l
−1
ki

R(π/4) in the cho-
sen coordinate system.

Therefore, the transition map can be rewritten, say, on the top
square as R(π/k2)gk2g−1

k1
R(−π/k1). In the complex form, the

rotation is just a multiplication by exp(iα). the transition map is
(exp(−iπ/k1)z)k1/k2 exp(iπ/k2) = zk1/k2 . Exactly the same
can be shown for the bottom square.

Partition of unity functions. One can easily verify that
derivatives of all orders of η(u)η(v), defined in Section 3 involv-
ing v, are zero at the boundary v = 0, and same is true for u = 0
by symmetry. Remapping to a wedge using a non-degenerate C∞

map does not change the fact that all derivatives vanish identically,
except derivatives along the boundary; the map that we use may not
be differentiable at zero, but in a neighborhood of zero the function
η(u)η(v) is constant. By symmetry, these match at all orders after
rotations extending the map to all wedges.
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Figure 4: Left: comparison of surface behavior near extraordinary points for valence 5, 8 and 12. Right: principal curvature directions,
Gaussian curvature and mean curvature around extraordinary vertices.
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Figure 5: Left: comparison of parameterization. Right: maps of the total derivative magnitudes under our parameterization for the first,
second and third derivatives.

Figure 6: Several examples of the surfaces produced by our method.


