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Abstract
We present an algorithm for mapping a triangle mesh, which is
homeomorphic to a disk, to a planar domain with arbitrary fixed
boundaries. The algorithm is guaranteed to produce a globally bi-
jective map when the boundary is fixed to a shape that does not
self-intersect. Obtaining a one-to-one map is of paramount im-
portance for many graphics applications such as texture mapping.
However, for other applications, such as quadrangulation, remesh-
ing, and planar deformations, global bijectively may be unnecessar-
ily constraining and requires significant increase on map distortion.
For that reason, our algorithm allows the fixed boundary to intersect
itself, and is guaranteed to produce a map that is injective locally (if
such a map exists). We also extend the basic ideas of the algorithm
to support the computation of discrete approximation for extremal
quasiconformal maps. The algorithm is conceptually simple and
fast. We demonstrate the superior robustness of our algorithm in
various settings and configurations in which state-of-the-art algo-
rithms fail to produce injective maps.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems

Keywords: parametrization, conformal mapping, bijective map-
ping, quasiconformal, deformation, quadrangulation, remeshing

Links: DL PDF

1 Introduction
Computing a surface-to-plane map is one of the most fundamental
tasks in geometry processing. Many computer graphics and geom-
etry processing applications rely heavily on solving the mapping
problem. Among the most important applications are: texture map-
ping, image and shape deformation-and-animation, finding corre-
spondence between shapes for comparison and analysis, remeshing,
mesh improvement-and-fairing, morphing, and image retargeting.
Given a triangle mesh, the goal is to find a piecewise-linear map
(parametrization) to a planar domain, satisfying different types of
boundary constraints. Among the typical ones are position, ori-
entation (alignment) and curvature constraints. Depending on the
application, different properties of the map are important: smooth-
ness, amount of metric or angle distortion, and the ability to handle
general boundary conditions. One of the most important properties
that is often required but seldom guaranteed is injectivity.
In the smooth setting, a map with strictly positive Jacobian is locally
injective. If in addition, the image of the boundary does not inter-
sect itself, the map will be a global bijection. In the discrete setting,
a piecewise-linear map of a triangle mesh will be a global bijection
if two conditions hold: (1) the orientations of all the triangles in the

image are positive (i.e. no flipped triangles) and (2) the boundary
does not intersect itself. However, in contrast to the smooth setting,
(1) alone is not sufficient for local injectivity. A counter example
is shown in Figure 1a. A piecewise-linear map is locally injective
only if the sum of (unsigned) triangle angles around each internal
vertex is precisely 2π .

(a) (b)

Figure 1: Non-injective discrete maps of a cone shaped mesh to
the plane with fixed boundary. (a) None of the triangles are flipped
but the angle sum around the center vertex is 4π rather than 2π .
(b) It is impossible to position the center vertex in a way that will
produce discrete injective map.

Even in the smooth setting, a locally injective map does not always
exist, if the boundary is allowed to intersect itself. For example,
there is no smooth (or discrete) locally injective map that can satisfy
the boundary configuration of Figure 1a. A self-intersecting curve
is called self-overlapping, if there exists a locally injective map with
this curve as its boundary (more details in Section 3.1). Another
difficulty that distinguishes the discrete setting from the smooth one
is illustrated in Figure 1b. Here, the boundary is a simple curve,
hence, it is obvious that a smooth bijective map exists. However,
for this particular coarse discretization, there is only one degree
of freedom that corresponds to the position of the center vertex.
Regardless of how we choose to set this degree of freedom, at least
one of the triangles will have negative orientation, meaning that a
discrete injective solution does not exist.
Few existing algorithms guarantee global or local injectivity. Most
importantly, the classic algorithm of Tutte computes a globally bi-
jective map from a 3-connected mesh to a planar polygon with a
convex boundary, and requires only a single linear solve.
Several existing algorithms for free-boundary parametrization with
no constraints provide local injectivity guarantees, typically condi-
tional on convergence (we discuss these algorithms in greater detail
in Section 2). Fixing the entire boundary position makes the prob-
lem more difficult.
We propose an algorithm for mesh parametrization problems with
arbitrary fixed boundaries, which guarantees that the resulting map
is locally injective. The only restriction is that the boundary will
be a self-overlapping polygon (otherwise, a solution does not even
exist in the smooth setting). To handle connectivity problems sim-
ilar to Figure 1b we relax the original problem by allowing mesh
refinement. The amount of refinement needed by our algorithm is
bounded; although the worst-case bound is quadratic in the num-
ber of mesh vertices, the observed number of added vertices is very
small. It is important to note that even though the algorithm may
change the connectivity of the input mesh, the actual shape of the
mesh is never altered.
The main idea of our algorithm is quite simple. First, we construct
a triangulation (denoted as target mesh) of the user prescribed fixed
boundary polygon. Then, we compute two globally bijective maps
of the source and target meshes into an intermediate convex do-
main. Finally, the source-to-target map is obtained by composing
the first map with the inverse of the second one.
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The concept of using two bijective maps to a common interme-
diate domain has been already explored in the context of finding
dense correspondence between two meshes with different connec-
tivity [Kanai et al. 1997; Lipman and Funkhouser 2009]. We im-
prove on this approach in several important ways: we demonstrate
how domains with self-overlaps can be handled (Section 3.1), we
show how to minimize mesh refinement needed for the map to be
locally injective (Section 4), and we demonstrate how to extend the
basic setup to compute discrete approximations of extremal quasi-
conformal maps.
We show how our algorithm can be used to ensure local injectivity
in a number of different settings. We further compare the results of
our algorithm with the state-of-the-art algorithms and demonstrate
the uncompromised robustness of our algorithm in cases where
other state-of-the-art algorithms fail.

2 Related work
Detailed reviews of parametrization literature can be found in [Hor-
mann et al. 2007; Sheffer et al. 2006]; we are primarily concerned
with the work related to injectivity. The idea of [Tutte 1963], in-
troduced to geometric modeling in [Floater 1997] is one of the
few algorithms that provides guarantees on injectivity; it is lim-
ited to maps to convex domains. [Kanai et al. 1997] uses a vari-
ant of Tutte’s algorithm to establish correspondence between two
meshes with different connectivity. This was done by mapping
both meshes to a common convex domain, an idea that we also
use. [Lipman and Funkhouser 2009] established bijective corre-
spondence between meshes by mapping both source and target to a
unit disk, using a discrete conformal map.
Conformal methods. Another setting for which parametriza-
tion algorithms with guarantees were proposed is free-boundary
parametrization. To the best of our knowledge, the only algo-
rithm that has injectivity guarantees, bounds on refinement and con-
vergence guarantees is the algorithm of [Kharevych et al. 2006].
However, it requires an intrinsic Delaunay triangulation of a sur-
face, which may not be a regular triangulation. ABF [Sheffer and
de Sturler 2001] and [Sheffer et al. 2005] guarantee injectivity, if
a solution is found. As these methods require solving a nonlinear
nonconvex problem, they provide no guarantees. Finally, [Spring-
born et al. 2008], describes a convex optimization formulation for
conformal mapping in terms of per-vertex scale factors. However,
the problem requires nonconvex constraints to guarantee the exis-
tence of a planar mesh for the optimal choice of scale factors.
Fixed boundary methods. MIPS parametrization [Hormann and
Greiner 2000] is a nonlinear method that aims to reduce angu-
lar distortion and can handle fixed position constraints. However,
the MIPS energy is nonlinear and nonconvex. As-rigid-as-possible
(ARAP) parametrization [Liu et al. 2008], measures deviation of
the Jacobian from being a rotation matrix. The corresponding
energy is also nonconvex and even when the global minimum is
reached, local injectivity is not guaranteed. [Xu et al. 2011] uses a
nonlinear method to embed a triangle mesh in a given simple pla-
nar boundary. This is done by minimizing the unsigned area of the
planar triangulation, which is a nonsmooth nonlinear function. The
method produce bijective maps in cases where the starting point is
close to being bijective but suffer from numerical issues otherwise.
[Schüller et al. 2013] show how to modify any deformation energy
to guarantee a locally injective map. This is done by introducing
a barrier term to prevent flipped triangles. For the method to work
successfully, an initial map with no flipped triangles should be used.
In order to use this method for parametrization with arbitrary (non-
convex) fixed boundary, one has to first obtain a valid parametriza-
tion, and then continuously deform the boundary till it is aligned
with the user prescribed boundary. For this to succeed, the bound-
ary at each step must be self-overlapping. The Composite Mean
Value algorithm [Schneider et al. 2013] produces smooth (as op-
posed to discrete) globally bijective maps from one planar simple

polygon to another. Similar to [Schüller et al. 2013], the algorithm
requires a smooth deformation of the boundary from source to tar-
get. In contrast to [Schüller et al. 2013], which considers injectivity
locally, here the source and target polygons, as well as all the inbe-
tween polygons, must be simple.
The work of [Lipman 2012], aims at producing piecewise-linear
maps of triangle meshes with a bounded amount of conformal dis-
tortion. Forcing the distortion of a triangle to be smaller than
a given threshold is a nonconvex inequality constraint, which is
convexified, at the expense of shrinking the feasible space. The
strength of [Lipman 2012] is that the chosen convex subspace is
shown to be optimal, in the sense that it is the largest convex sub-
space contained in the (nonconvex) full space. However, in extreme
cases it is possible that the method will not find a bijective solution
even when one exists. [Bommes et al. 2013] uses a similar idea, but
the specific convex subspace being used is different.
Quasiconformal maps are locally injective maps with a bounded
amount of conformal distortion. Consider the space of all quasi-
conformal maps from a given source domain to a target domain,
satisfying a set of boundary constraints. An extremal quasiconfor-
mal map f is a map within this space, that has the smallest maximal
distortion. Formally, f minimizes the following nonlinear, noncon-
vex, nonsmooth functional: inf f (supx(k(x))) where k is the con-
formal distortion. Unlike conformal maps, these maps are flexible
enough to allow for position constraints to be prescribed and can
handle multiply-connected domains as well as surfaces with high
genus [Ahlfors 1966; Gardiner and Lakic 2000]. Recently, [We-
ber et al. 2012] described a practical algorithm for the computation
of discrete approximation to extremal quasiconformal maps. Al-
though the method approximates extremal maps well in the average
sense, injectivity is not guaranteed. In Section 5.3, we show how to
combine this method with our method, in order to guarantee locally
injective maps.
As far as we know, no algorithms with injectivity guarantees were
proposed for arbitrary fixed boundaries.

3 Algorithm
Overview of the algorithm. The input of our algorithm is a mesh
of disk topology to parametrize and a target boundary planar poly-
gon P (which may be self-intersecting), optionally annotated with
angle information as explained in detail in Section 3.2.
The algorithm consists of two main parts: the first part constructs
a triangulation of the target boundary polygon P (in the sense de-
fined below), simultaneously determining if the polygon can be the
boundary of a locally injective map for any mesh. As a second
step, we construct two bijective maps to an intermediate domain,
from the triangulated target boundary and the original mesh, and
use their composition to find the source-to-target map. In the pro-
cess, the original mesh is possibly refined adaptively to guarantee
injectivity.

3.1 Admissible inputs and self-overlapping polygon
triangulation

The input to our algorithm is an arbitrary mesh M of disk topology
and a piecewise-linear map fb from the boundary of M to the plane.
We assume that no triangle of M is degenerate. We compute a lo-
cally injective piecewise-linear map f from the mesh Mr (obtained
by refining M), to the plane, such that f |∂Mr

= fb, and the amount
of refinement is minimized.
Denote by Θi the sum of triangle angles around vertex vi at the
image of the map f . f is locally injective if all triangles in the
image have positive orientation, Θi = 2π for each internal vertex,
and Θi ∈ (0,2π) for each boundary vertex.
Existence of solutions. The first question we ask is: under what
conditions on fb the problem has a solution? A necessary, but not
sufficient condition for a related problem for smooth curves first



appeared in [Whitney 1937], and more complete algorithmic tests
were described in [Marx 1974]. The foundation of our approach is
[Shor and Van Wyk 1992], which considers self-overlapping curves
and polygons.

As we are interested in piecewise-linear maps of meshes, we spe-
cialize definitions to this case. We say that a polygon P is self-
overlapping, if there is (any) mesh M, homeomorphic to a disk, and
a piecewise-linear locally injective map f from M to the plane, such
that f (∂M) = P (see Figure 2 for illustration).

locally injective map fself-overlapping self-intersecting

fP ∂M

Figure 2: Self-overlapping and non-self-overlapping polygons.
(left to right) A self-overlapping polygon P. A locally injective map
f from a mesh M satisfying f (∂M) = P. Two self-intersecting poly-
gons which are not self-overlapping.

While natural for smooth curves, this definition is not entirely nat-
ural for polygons. Start with a planar mesh M, and consider con-
tinuous deformation of this mesh, such that for any time t, f (M, t)
is nondegenerate (i.e. no triangle has zero area). It is natural to in-
clude f (∂M, t) in the class of polygons we consider. Yet, as shown
in Figure 3, not all such polygons are included in the class that we
consider, because they may lack injectivity at the boundary.

self-overlapping weakly self-overlapping

M1 M2

f

Figure 3: Weakly self-overlapping polygon. (left) The “pants”
mesh is bounded by a simple polygon. (right) The boundary poly-
gon is slightly perturbed to form a self-intersecting polygon which
is not self-overlapping. While there is no locally injective map from
M1 (or any other mesh) to M2, f is locally injective everywhere be-
side at the singular (marked red) boundary vertex. The boundary
of M2 is called a weakly self-overlapping polygon.

Instead we consider a broader class of polygons which we call
weakly self-overlapping. We use the same essential definition, ex-
cept that the map f is only required to be locally injective in the
interior of M. Specifically, a polygon P is weakly self-overlapping,
if there is a map f from (any) mesh M, homeomorphic to a disk,
such that f (∂M) = P, all triangles are mapped with positive orien-
tation, and Θi = 2π for each internal vertex.

Proposition 1. If a polygon P is weakly self-overlapping, for any
mesh M and a map f , such that P = ∂ f (M), there is a simplified
mesh M′ with no interior vertices and a map f ′ which is locally
injective in the interior of M′ and satisfies P = ∂ f ′(M′).

[Shor and Van Wyk 1992] shows that the property holds for self-
overlapping polygons, we extend it to weakly self-overlapping poly-
gons. The proof is given in Appendix A. Proposition 1 allows us
to drop the condition Θi = 2π for internal vertices, which greatly
simplifies the task of determining whether a polygon is weakly self-
overlapping or not. Determination is done by checking whether the
polygon can be triangulated with positively oriented triangles and
no internal vertices.

We assume that our input polygon P is weakly self-overlapping;
then we guarantee that for a refinement of the original mesh, a lo-
cally injective parametrization with P as the boundary will be con-
structed. Note that this assumption is not tautological: we say that
we can construct a locally injective map from a given mesh, if it
exists for any mesh at all.
Triangulation of weakly self-overlapping polygons. Next, we de-
scribe an algorithm (a version of Shor-van Wyck algorithm), that
determines if a polygon P is weakly self-overlapping, and simulta-
neously triangulates it. In the next section, we extend the algorithm
to support a more complex setting, where exact prescription of sin-
gular boundary vertices is given.

vi

vj+1vj

vi-1vi+1

vj-1

vj+2

P Pi,j Pj+1,i

vi vi

vj vj+1

vi+1

vj-1

vi-1

vj+2

Figure 4: The weakly self-overlapping polygon P is split into two
weakly self-overlapping polygons, Pi, j and Pj+1,i.

Suppose vi are the vertices of the polygon P enumerated counter-
clockwise. Note that one can always find a triangle in a triangula-
tion T of P with one side on the boundary; removing this triangle
splits T into two separate triangulations with no interior vertices. So
for any weakly self-overlapping polygon, it is possible to find 3 ver-
tices vi, v j, v j+1 on the boundary, two of them adjacent, such that
removing the edge (v j,v j+1), replicating vertex vi and adding edges
(vi,v j+1) and (v j,vi), yields two separate weakly self-overlapping
polygons (Figure 4). Furthermore, note that a triangle is weakly
self-overlapping if and only if it has positive (counter-clockwise)
orientation. So for a given polygon, one can determine if it is
weakly self-overlapping, by recursively splitting it in all possible
ways by valid choices of positively oriented triangles4(i, j, j+1)
and checking if each part is weakly self-overlapping. This yields an
algorithm for determining if a polygon is weakly self-overlapping
(and simultaneously generating a triangulation), which is a simpli-
fied version of the Shor-van Wyck algorithm (for which testing the
conditions ensuring local injectivity on the boundary adds complex-
ity).
Shor-van Wyck algorithm summary. A subpolygon Pi, j of P is
formed by joining all edges that lie between vi and v j in counter-
clockwise order: i, i+ 1, . . . , j− 1, j and then closing the polygon
by adding an edge that connects v j to vi (see Figure 5 left).
The algorithm constructs a table Q of size n×n (n is the number of
vertices in P), so that Qi, j is 1 if the subpolygon Pi, j is weakly self-
overlapping. Note that Pi,i+1 is a polygon with only two vertices, so
by convention, Qi,i+1 = 1. Also note that Pi,i−1 is equivalent to P.
This means that if Qi,i−1 = 1, for any i, the whole polygon can be
triangulated, so the algorithm can terminate as soon as one of these
is found.
The table Q is updated using dynamic programming. More con-
structively, one proceeds in the order of increasing counterclock-
wise distances d between i and j = (i + d)mod n, starting with
d = 2. In order to set Qi, j , the algorithm searches the table for a
splitting vertex k. Vertex k is a splitting vertex, if the orientation
of 4(i,k, j) is positive, Qi,k = 1, and Qk, j = 1 (see Figure 5 left).
Note that the entries Qi,k and Qk, j are already updated at this point
since the distance between i and k, and the distance between k and
j are smaller than d. The splitting vertices are stored in a second
table for future reference.
Once Q is fully updated, the subdiagonal elements, Qi,i−1 are
checked. If no subdiagonal element is 1, the algorithm declares



that the polygon is not weakly self-overlapping. Otherwise, the tri-
angulation itself can be reconstructed in a top down manner. Sup-
pose i is the first value such that Qi,i−1 = 1. Then add the triangle
4(i,k, i− 1) to the triangulation and continue recursively to trian-
gulate Pi,k and Pk,i−1.

The complexity of the algorithm is O(n3), where n is the size of the
boundary polygon. For a typical mesh, the size of the boundary is
O(
√

m), where m is the size of the mesh, so in practice, the com-
plexity is O(m1.5), which is the same as that of a direct linear solver
(which will be used in Section 4).
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Figure 5: Notations for the triangulation algorithm.

3.2 Angle compatibility

In some cases, it is important to distinguish between different valid
triangulations of P. A weakly self-overlapping polygon may have
singular vertices on the boundary for which the map is not locally
injective. It is often useful to control which vertices are allowed to
be singular. We now extend the basic algorithm to support precise
prescription of singularities.
Let αi be the clockwise angle between the vectors vivi−1 and vivi+1,
in the range (0,2π] (i.e., the angle on the left side of the polygon).
For every vertex vi of the boundary of the triangulation T, let4 j

i be
the triangles of T sharing the vertex i. Let α

j
i be the angles at vi of

4 j
i (see Figure 5 right).

We call α ′i = ∑ j α
j

i the triangulation angle of T at vi. Note that
in general, α ′i 6= αi, however, because all triangles are oriented in
the same way, α ′i = αi + 2Riπ . So if P is given, the triangulation
angles can be defined by assigning additional integers (full rotation
indices) Ri to each vertex. We say that triangulations T1 and T2 are
angle-compatible, if their triangulation angles agree at all vertices.
For example, with a parametrization intended for quadrangulation
(cf. [Kälberer et al. 2007; Bommes et al. 2009]), some vertices
on the boundary of the domain are cones with angles mπ/2+2πRi,
where m= 0,1,2,3. The cones of real interest are 3π/2 and 5π/2=
π/2+2π , so there is only one commonly occurring case with Ri 6=
0, Ri = 1.
Constructing a triangulation compatible with a given set of tri-
angulation angles. We would like to make sure that the triangu-
lation we construct has given triangulation angles. The simplest
approach is to consider joining two subpolygons valid only if the
resulting angle changes are compatible with the given triangulation
angles.
At each step, the triangulation of a polygon Pi, j is obtained from
subpolygons Pi,k and Pk, j by gluing along 4(i,k, j) (Figure 5 left).
Let the angles of4(i,k, j) be βi, βk, β j . The assumption is that for
a subpolygon Pi, j all the triangulation angles are identical to those
of P (as provided by the user) beside the two triangulation angles
at i and j. The algorithm maintains two additional n× n tables, to
keep track of these two triangulation angles for each subpolygon.
When the gluing of Pi, j happens, only two triangulation angles are
updated, at vertices i and j. The triangulation angles needed for

the update are: α
i,k
i , α

i,k
k , α

k, j
k , and α

k, j
j . The superscript indicates

which subpolygon this triangulation angle belongs to, and the sub-
script indicates the vertex index (see Figure 5 left).
Then the triangulation angles of Pi, j that needs to be updated are
given by:

• α
i, j
i = α

i,k
i +βi;

• α
i, j
j = α

k, j
j +β j.

Gluing Pi,k and Pk, j is valid, if and only if the following conditions
hold:

• α
i, j
i ≤ α ′i ;

• α
i, j
j ≤ α ′j;

• α
k, j
k +βk +α

i,k
k = α ′k.

In practice, it is highly undesirable to keep track of angles, due
to numerical accuracy problems. Instead, it is sufficient to keep
track of the full rotation indices Ri, and use robust orientation tests
with exact predicates [Shewchuk 1996] to determine how to update
full rotation indices when gluing polygons. Detailed explanation
is given in Appendix B. Note that this algorithm includes the al-
gorithm of Shor-van Wyck as a special case, which corresponds to
having all full rotation indices set to zero.
Acceleration of the triangulation algorithm. As explained in
[Shor and Van Wyk 1992], it is possible to simplify a self-
overlapping curve without altering its self-overlappingness as long
as self-intersection points are preserved, and no new intersection
points are created. This decreases the complexity of the triangula-
tion algorithm to O(k3), where k is the number of self-intersections.
A simplification technique for self-overlapping curves is provided
in [Shor and Van Wyk 1992]. However, rather than trying to adapt
this technique to the weakly self-overlapping case, we pursued a dif-
ferent strategy for polygon simplification which is easier to under-
stand and implement. Our technique is based on the “ear clipping”
algorithm [Eberly 1998] which is one of the simplest polygon tri-
angulation methods. While, it is not guaranteed that our procedure
will reduce the polygon to O(k3), in practice it provides consider-
able acceleration (up to two order of magnitudes). We describe this
optional acceleration procedure in Appendix C.

4 The remapping algorithm
The second stage of our algorithm is the construction of two glob-
ally bijective maps to a common intermediate domain, one from the
source mesh and the other from the triangulation of P constructed
at the first stage. Then, a locally injective map is being constructed
by composing two bijective maps and refining the original mesh (if
necessary).
Let the source mesh be M, and let Ωi be a polygonal intermediate
domain with boundary B, with the number of edges matching the
boundary of M. Let hs→i be a piecewise-linear globally bijective
map from the source M to the intermediate domain Ωi, mapping
vertices of ∂M to vertices of B one-to-one. Mt is the target mesh,
obtained by triangulating P, and ht→i is a piecewise-linear globally
bijective map from the target mesh Mt to the same intermediate
domain Ωi (illustrated in Figure 6).
For the purposes of our construction, the shape of the intermediate
domain Ωi, and the manner in which hs→i and ht→i are constructed
are irrelevant, as long as hs→i and ht→i are bijective. However, cur-
rently the only mapping algorithm that can fully guarantee a glob-
ally bijective map with fixed boundary is the algorithm of Tutte’s
and its variants [Tutte 1963; Floater 1997]. In order to obtain a
Tutte map, one has to fix the boundary vertices to form a strictly
convex polygon (in a one-to-one manner). The position of the in-
ternal vertices is obtained by solving a single linear system, where
each vertex is positioned at a convex combination of its neighbor
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Figure 6: Two globally bijective maps to a common intermediate
domain. hs→i maps the source mesh M to the intermediate domain
Ωi and ht→i maps the target mesh Mt to the same intermediate do-
main.

vertices. We choose B to be a polygon with evenly spaced vertices
on a unit disk, and hs→i and ht→i are chosen to be Tutte’s maps.
Meshing the target domain. The triangulation constructed at Sec-
tion 3.2 provides a coarse mesh bounded by P with no internal ver-
tices. We would like to replace the triangulation of this mesh with
another, angle compatible triangulation, which is finer. The bijec-
tivity of the result does not depend on how coarse or fine the mesh
is, but the quality of the map does. As illustrated in Figure 7b, the
initial triangulation may contain badly shaped triangles, so we first
simplify this mesh by removing as many internal edges as possible.
An internal edge can be removed if the union of the two subpoly-
gons that shares that edge is a simple polygon. This simplification
process result in a partition of P into a typically small number of
simple subpolygons. The interior edges of this partition are then
refined. Finally, each simple subpolygon is independently trian-
gulated to obtain a high quality triangulation, while preserving the
boundary edges (we use [Shewchuk 2005]). The meshing process
is illustrated in Figure 7. For all the examples in this paper, we set
the density of the target mesh to be the same as the source mesh.
The effect of using different densities on the quality of the final map
is illustrated in Figure 8.

self-overlapping
(a)

triangulation
(b)

simplification
(c)

fine mesh
(d)

Figure 7: Meshing the target domain. (a) The input self-
overlapping polygon. (b) Coarse mesh. (c) The mesh is simplified
into a partition with two simple subpolygons by repeatedly remov-
ing internal edges. (d) Each subpolygon is refined to obtain a high
quality triangulation.

The composition f = h−1
t→i ◦hs→i defines a bijective map from M to

Mt . However, this map is not piecewise-linear on triangles of M.
Let M join be the polygonal mesh on the intermediate domain ob-
tained by intersecting hs→i(M) and ht→i(Mt). Then f = h−1

t→i ◦hs→i

is piecewise-linear on h−1
s→i(M join), i.e. on a refinement of M ob-

tained by mapping M to the intermediate domain and intersecting
with the image of Mt . The worst-case complexity of M join is O(m2)
where m is the total number of vertices in two meshes, but worst-
case scenarios are unlikely for large m. Nonetheless, even in a typ-
ical situation, M join is likely to have an order of magnitude more
triangles compared to M and Mt , and many triangles are likely to
be poorly shaped. Instead, we use ht→i(Mt) to guide the refinement
of M to make f injective.
Source mesh refinement. To motivate our decision to allow mesh
refinement, we emphasise that for a mesh with a given connectivity,
some configurations of the boundary B do not permit an injective
map. A straight forward example is shown in Figure 1b. However,

front
view

top
view

79530 42446 23045 9023 6487#triangles

run time 4.23 sec 2.96 sec 2.32 sec 2.05 sec 1.96 sec

Figure 8: Target mesh density variation. The Julius model with
39164 triangles is parameterized using our method with different
target mesh densities. As evident from the visual results, the resolu-
tion of the target has little effect on the overall map quality.

similar problems can occur for arbitrarily large meshes. For exam-
ple, consider the snake-like mesh that appears in Figure 9a. Our
goal then is to construct a bijective map, which is piecewise-linear
on a refined mesh Mr, with minimum amount of refinement.

(a) source mesh M

(b) fixed target boundary B

(d) injective map

(c) refined mesh Mr

Figure 9: Mandatory refinement for a planar deformation example.
(a) A snake-like source mesh. (b) The boundary undergoes a very
small deformation. Nevertheless, it is impossible to position the
chain of 5 red edges inside the deformed target polygon. (c) Our
algorithm automatically refine M by adding 5 new vertices along
the red edge chain. (d) An injective map where the refined red chain
lies fully inside the polygon.

Consider the image of a triangle 4 of the source mesh M under
the map f (Figure 10). hs→i(4) is still a triangle in Ωi, as hs→i is
piecewise-linear on M. If we insert all points obtained by intersect-
ing edges of ht→i(Mt) with the edges of the triangle in Ωi, we can



compute the exact image f (4) by evaluating f at all intersection
points. The image is a “curved” triangle, which may potentially
have self intersections, but is guaranteed to be a self-overlapping
polygon.

hs→i ht→iM Mjoin Mt

source triangle Δ

h
s→i

(Δ)
“curved” triangle
h−1t→i∘hs→i(Δ)

Δ

Figure 10: The image of a triangle 4 under f = h−1
t→i ◦hs→i. (top

row) The source and target meshes and the intersection of both
maps at the intermediate domain. (bottom row) Zooming in on the
red triangle at all three domains. The black points are the original
vertices. The white points are generated by intersecting hs→i(4)
with ht→i(Mt).

In order to efficiently invert ht→i, as well as for computing inter-
sections robustly, we use CGAL 2D Arrangements with exact pred-
icates and exact constructions [Wein et al. 2013]. We start with a
piecewise linear map f r on M, obtained by evaluating f on every
vertex v of M. If all the triangles of M are mapped by f r to triangles
with positive orientation, the algorithm terminates and there is no
need to perform any refinement. Otherwise, we use the following
refinement algorithm.

place all triangles 4 of M having f r(4) with negative orienta-
tion on a stack
while stack not empty do

pop the first polygon p from the stack
I = the intersection points of hs→i(p) with ht→i(Mt)
refine p by adding I to p
let p1, p2, p3 be the neighboring polygons across p edges
for all i ∈ {1,2,3} do

if f r(pi) is not self-overlapping then
push pi into the stack

end if
end for

end while
The above algorithm terminates, because if all points of intersection
are inserted, the images of all triangles of M are self-overlapping.
Note that all the new vertices added by the algorithm lie on the
original edges of the mesh M. Hence, the refined triangles of M
become polygons, but maintain exactly the same triangular shape.
It is typically possible to further reduce the number of points added
by the refinement algorithm. Next, we describe a simplification
procedure that strives to remove as many as possible unnecessary
points from Mr. Obviously, we only try to remove points that were
added by the refinement algorithm, leaving out the original vertices
of M. Since new points are never inserted on the boundary, each
new point belongs to exactly two polygons on Mr. Let these poly-
gons be p1 and p2. A point can be removed from Mr if f r(p1) and
f r(p2) remains self-overlapping after its removal (Figure 11).

Mr

(a)

A
B

C

A
B

C

A B
C A

B
C

A
B

C

(b)

(d)(c)
f r(Mr)

Figure 11: The simplification procedure. (left) A mesh Mr with
three triangles. Two points (red and green) were added during
the refinement step. (a) The image of Mr under the map f r be-
fore simplification. (b) Removal of the red point is illegal since it
causes polygon B to stop being self-overlapping. (c) Removal of the
green point is possible since both neighboring polygons (A and B)
stays self-overlapping. (d) Once the green point is removed, the red
one can be removed as well, and the algorithm terminates since all
added points are removed.

The simplification procedure goes over all previously added points,
removing each point that does not violates the condition described
above. In some cases, a point that could not be removed at a certain
time, becomes removable after the removal of another point (Fig-
ure 11). For that reason, we repeat the above procedure until no
more points can be removed. Typically, 1-4 simplification rounds
are required to reach a state where no more points can be removed.
Upon termination of the algorithm, we convert the refined mesh Mr
into a triangle mesh. Each refined triangle and its “curved” triangle
image are triangulated in a compatible manner to obtain the final
mesh (Figure 12). It is important to note that while Mr may have
more vertices than M, both meshes have identical geometry.

refined source
triangle

mapped “curved”
triangle

compatible
triangulations

Figure 12: Compatible triangulation. (left to right) A refined tri-
angle of the mesh Mr. The “curved” triangle image (which is a
self-overlapping polygon). Compatible triangulations of these two
polygons.

Summary. To summarize, this part of the algorithm requires: (a)
Meshing the target domain Mt . (b) Computing two Tutte’s maps
hs→i and ht→i which amounts to solving two linear systems. (c)
Refining M adaptively to obtain Mr and evaluating the map on each
vertex of Mr. (d) Triangulating the faces of Mr.

5 Map quality
Till now, we focused mainly on map validity without paying much
attention to the quality of the map. Our algorithm succeeds as long
as the two maps, ht→i and hs→i, are bijective. However, we have
a lot of freedom in selecting the intermediate domain Ωi as well as
the maps ht→i and hs→i.

5.1 Dual harmonic maps

Radó’s theorem [Duren et al. 2004] states that a smooth harmonic
map of a surface S to a convex planar domain will be a global bi-
jection (even for highly curved S). We call a dual harmonic smooth
map, a map of the form gs→t = h−1

t→i ◦ hs→i, where ht→i and hs→i
are smooth harmonic maps, and Ωi is convex.



Dual harmonic maps possess various appealing properties. Most
importantly, since ht→i is bijective, so is h−1

t→i and gs→t . Moreover,
gs→t is C∞ which is very important for graphics applications (de-
noted as the smoothness property). Let gt→s be the inverse of gs→t
(i.e., gt→s = h−1

s→i ◦ht→i), then gt→s is also dual harmonic (the sym-
metry property). Note that conformal and extremal quasiconformal
maps also possess this property, but regular harmonic maps do not.
Finally, if the source domain Ωs is planar and gs→t(∂Ωs) = Id, then
gs→t = Id (the reproduction property).

In order for our discrete maps to follow the properties of smooth
dual harmonic maps, we replace the two Tutte’s maps used before
with discrete approximation of harmonic maps (obtained by the
standard cotangent weights FEM discretization [Pinkall and Polth-
ier 1993]). A sufficient condition for a discrete harmonic map to a
convex domain to be bijective is that all Laplacian weights are pos-
itive. Unfortunately, this is not the case for a general triangle mesh.
Nevertheless, we point out that having strictly positive weights is
sufficient, but not a necessary condition for bijectivity, and that in
practice (for fine meshes), the map turns out to be bijective even at
the presence of (many) negative weights. In the exceptional case
that flipped triangles do appear, we treat the obtained parametriza-
tion (with foldovers) as a new mesh, and map it again to the same
convex domain, only this time we use positive mean value weights
[Floater 2003]. The choice not to use mean value weights directly,
is related to its lack of convergence properties.

Figure 13 demonstrates the reproduction property of our discrete
dual harmonic maps, where a planar mesh is being deformed by our
algorithm, such that the boundary of the target is identical to that of
the source. The source and target domains are highly concave, and
their images under the discrete harmonic maps is highly distorted.
Nevertheless, the obtained source-to-target map, approximates the
identity map with high fidelity.

(a) source (c) Id map(b) unit disk

hs→i h-1
t→i

Ωi

Figure 13: Identity reproduction of discrete dual harmonic map.
(a) A planar mesh M with 3400 triangles and texture applied. (b)
Discrete harmonic map hs→i(M) to a unit disk. Note how extreme
the deformation is due to the dramatic difference between ∂M and
the boundary of the disk. (c) The deformed mesh, using the same
texture coordinates as in (a). The two images of the troll are visually
indistinguishable.

In Figure 14, we show a planar deformation example using the
technique described in this section. The user prescribes a self-
overlapping polygon as the boundary of the deformed raptor shape.
Our dual harmonic map algorithm produces a smooth and natural
deformation with very low conformal distortion and without intro-
ducing mesh refinement.

Figure 15 contains another deformation example for which the pre-
scribed target polygon is weakly self-overlapping. The head and tail
of the horse are bent sharply, creating two singular vertices.

Figure 16 shows a comparison of parametrization obtained using
the method of [Springborn et al. 2008] and our dual harmonic map.
A seam is introduced such that the cut meshes become homeomor-
phic to a disk. We extract the boundary position obtained from
[Springborn et al. 2008] and feed it to our algorithm.

1.0

0

0.5

dual harmonic map

source

conformal distortion

self-overlapping target polygon

Figure 14: Image deformation. The raptor source planar mesh
with 4554 triangles is being deformed. The user prescribes the
shape of the deformed boundary such that it intersect itself. Our
dual harmonic map algorithm produces a smooth and natural de-
formation of the image within a total time of 0.524 sec. The color
visualization shows the conformal distortion of the map. No mesh
refinement was needed.

source dual harmonic map

weakly self-overlapping polygon

Figure 15: Deformation of the horse. A sharp bend of the head and
tail leads to a weakly self-overlapping polygon with two singular
vertices (marked pink). Each singular vertex has full rotation index
1, meaning the triangulation angle at these vertices is in the range
[2π,4π). The obtained dual harmonic map is natural and smooth,
even in the vicinity of the singular vertices.

5.2 Variable metric

Dual harmonic maps possess various appealing properties (injectiv-
ity, smoothness, symmetry, reproduction). However, depending on
the application, additional properties of the parametrization, such
as low isometric or angle distortion, are desired. We next explain,
how dual harmonic maps can be combined with other mapping al-
gorithms to ensure injectivity while maintaining other properties.
The idea is to use a target parametrization (e.g., a parametrization
with low isometric distortion) to define a metric on the surface.
More specifically, let T : M → R2 be a parametrization, and as-
sign lengths `i = |T (vm)−T (vn)| to all edges ei = (vn,vm). Let M`
be the mesh M equipped with a metric ` = (`1, . . . `N), where N is
the number of edges. Recall that the entries of the discrete Lapla-
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Figure 16: Parametrization of the hand and bull models with
sphere topology. (left) [Springborn et al. 2008]. (right) Our dual
harmonic map. We fix the boundary of the dual harmonic maps
based on the result of [Springborn et al. 2008], such that both
methods have identical boundary. The discrete conformal maps
and the dual harmonic maps are remarkably similar and possess
low amount of conformal distortion. No refinement was needed for
the dual harmonic maps.

cian matrix can be computed from the edge lengths only, so one can
compute harmonic maps on M`.
If T is locally injective, then ` is a flat metric, and by solving for a
dual harmonic map h on M` with boundary conditions h(v) = T (v)
for vertices v ∈ ∂M we obtain the map T itself.

Indeed, the Laplacian matrix L` we construct on M, is identical
to the matrix LT we would obtain from the mesh T (M), thus, the
values of the first harmonic map in a dual harmonic map satisfy the
same equations whether the domain is M` or T (M). If on T (M)
we specify identity boundary conditions hT (v) = v, and solve for
a dual harmonic map hT : T (M)→ R2, then, by the reproduction
property, the whole of hT is identity. The values of h with the same
boundary conditions, i.e. h(v) = T (v) for any v ∈ ∂M`, and the
same intermediate domain, will be the same at vertices of M` as at
corresponding vertices of T (M), i.e. h(v) = T (v).
Obviously, reproducing an already injective map T is not very use-
ful. However, suppose T has some desired properties but is almost
injective, as it is often the case. Then the metric ` is no longer
flat (vertices shared by triangles with opposite orientation may have
nonzero curvature) and the dual harmonic map h = h[T ] will be dif-
ferent from T . However one can expect to have only a small differ-
ence, between these maps, while h[T ] is guaranteed to be injective

(in contrast to T ). The nonlinear operator P : T → h[T ] can be
viewed as a projection from the space of all maps T : M→R2 with
self-overlapping boundary, to the space of locally injective maps.
Figure 17 shows the result of our algorithm with a metric obtained
from running the Mixed-Integer (MI) algorithm [Bommes et al.
2009] with sharp features alignment. The parametrization of MI
contained flipped triangles around two of the cones, even after run-
ning many iterations of the stiffening procedure (as described in
MI). The mesh is cut into a topological disk where the image of the
boundary forms a weakly self-overlapping polygon with prescribed
singularities (Section 3.2).

Figure 17: The beetle model mapped using our algorithm to create
a seamless global parametrization with alignment to sharp borders.
10 new vertices were added. The weakly self-overlapping polygon
and the singularities were created by the Mixed-Integer algorithm.

5.3 Extremal quasiconformal maps

We consider one example of ensuring injectivity of a map using the
approach of Section 5.2 in greater detail, as in this case, using dual
harmonic maps makes it possible to guarantee injectivity simulta-
neously with improving robustness of a mapping algorithm.
A natural extension to the space of conformal maps is the richer
space of quasiconformal maps of bounded conformal distortion,
i.e., orientation-preserving maps for which at any point x, K(x) =
σ1/σ2 < K, where σ1 ≥ σ2 are singular values of the Jacobian at
x, and K is a constant bound. Unlike conformal maps, these maps
allow prescribing all boundary values, for a sufficiently high al-
lowed conformal distortion K. The extremal map f M : M→ R2 is
a bounded distortion map with minimal K, for a given boundary
conditions.
Recently, [Weber et al. 2012] presented an algorithm for computing
piecewise linear approximations of extremal quasiconformal maps
for genus-zero surfaces with boundaries. The core idea is based
on the fact that in all practically relevant cases, the extremal map
is unique, and it has an explicit characterization of a Teichmüller
map. A Teichmüller map f has a constant distortion K(x) = K for
all points; it turns out that under weak conditions on the domains,
the only such maps are extremal maps.
Computing Teichmüller maps. To explain our algorithm we need
to introduce more explicit notation for Teichmüller maps. It is con-
venient to use complex notation: let z ∈ C be the coordinate in the
tangent plane of M at a point x (in the discrete case, on a trian-
gle). The values of the map in the plane can also be viewed as
complex numbers. Viewing the Jacobian of the map as a pair of
complex functions fx(z), fy(z), we can introduce complex deriva-
tives fz = 1

2 ( fx− i fy) and fz̄ = 1
2 ( fx + i fy). An important quantity



associated with a Teichmüller map is a quadratic differential, which
is an analytic complex function φ(z). The map f satisfies

fz̄
fz

= k
φ̄

|φ |

where little dilatation k = const, in the range [0,1), is related to
K by K = (1 + k)/(1− k). Up to a uniform scale, the Beltrami
coefficient µ = k φ̄

|φ | defines the metric of f : specifically, the 1
2 Argµ

is the maximal stretch direction, and the ratio of singular values
is given by K = (1+ |µ|)/(1− |µ|). (see [Weber et al. 2012] for
details).
The algorithm of [Weber et al. 2012] aims to minimize a nonlinear
nonconvex energy, the least squares Beltrami energy that measures
deviation of the map f from being a Teichmüller map:

ELSB =
∫

M

∣∣∣∣ fz̄− k
φ̄

|φ |
fz

∣∣∣∣2 dA

The optimization is based on alternating-descent and is composed
of three main steps:

1. Optimize for φ , assuming that f and k are fixed.
2. Solve for the single scalar k, assuming f and φ are fixed.
3. Compute the map f , assuming k and φ are fixed.

Improving robustness with dual harmonic maps. A crucial ob-
servation, also used in [Weber et al. 2012], is an interpretation of
the algorithm above in terms of metric. For any map f : M→ R2,
the metric tensor G f = JT

f J f , where J f is the Jacobian of f , defines
the map uniquely, up to a rigid transform. As the image of the map
is a subset of the plane, the metric has to be flat.
The first two steps of the algorithm compute an approximation to µ;
from the theory of quasiconformal mappings, it is known that G f
can be computed from µ , up to a uniform pointwise scale s which
cannot be inferred from µ . s can be computed by first computing
a unit-norm metric tensor Gµ from µ , and then using the condition
that G f = sGµ is flat. If we denote by M f the surface M with met-
ric G f , this is equivalent to computing a conformal map from M f
to the target domain. Such a map exists only if the exact µ for the
extremal map is known; in the algorithm iteration, µ is approxi-
mate. As discussed in [Weber et al. 2012], minimizing ELSB for a
fixed µ , is actually equivalent to computing a harmonic map in the
metric Gµ which, in turn, is the same as computing a “least-squares
conformal” map for fixed boundaries [Lévy et al. 2002].
While we have observed that in all but extreme distortion cases the
algorithm of [Weber et al. 2012] converges to a close approximation
of a Teichmüller map; unlike a smooth Teichmüller map, the result-
ing map does not guarantee injectivity. Combining it with a dual
harmonic map allows to add an injectivity guarantee and improve
robustness of convergence.
The simplest approach, addressing the first challenge only, is to use
the method of Section 5.2 directly. Figure 18 shows the result of
our algorithm when a mesh is equipped with a metric obtained from
the map of [Weber et al. 2012]. Note that the initial map f , while
being close to having uniform K, has flipped triangles near the four
corners of the square, so f is not bijective. The dual harmonic
map based on the nonflat metric defined by f remains close but
is bijective (at the cost of adding 9 new vertices to M).
In extreme cases (boundaries with extreme concavities) the non-
linear optimization of [Weber et al. 2012] can converge to a local
minimum which is quite far from Teichmüller maps. While using
the metric of this map for a dual harmonic map ensures injectivity,
it does not bring the map closer to the global minimum.
Instead, we suggest to use the dual harmonic mapping framework
in a slightly different way. To this end, we use the following two
simple facts: 1) A Teichmüller map is invariant to pre-composition

M

Mr

f bad

f good

Figure 18: Dual harmonic map with variable metric. (top row)
a squared shape mesh M is mapped to a cross shape using the
method of [Weber et al. 2012]. The histograms show the distri-
bution of the conformal distortion. As evident by the histogram
and the applied texture, the map is a good approximation to the ex-
tremal map. Nonetheless, the map contains flipped triangles. (bot-
tom row) Our method uses the nearly flat metric obtained using
[Weber et al. 2012], to produce a bijective map from a refined mesh
Mr (with 9 new vertices) to the same target. Note that M is not 3-
connected (see the red “ear” triangle at the corner), so a bijective
map from M to the cross domain does not exist. Hence, any existing
parametrization method that prohibit mesh refinement will fail on
this particular input.

and post-composition with a conformal map. 2) We can make the
map ht→i in the dual map conformal by choosing a suitable domain.

We replace the harmonic map ht→i with a conformal map; we no
longer can fix the target domain, but we can add constraints ensur-
ing that it is convex: we prescribe (positive) curvatures at the ver-
tices of the boundary, while allowing the lengths of edges to vary
freely. We use the convex optimization of [Springborn et al. 2008];
in this framework, the variables are scale factors at vertices, which
directly determine edge scaling, and boundary curvatures can be
easily prescribed. While [Springborn et al. 2008] is not guaranteed
to produce a valid solution (the resulting edge lengths may not sat-
isfy triangle inequality), we found that even in such cases we can
still use a nonflat metric based on scale factors, as in [Ben-Chen
et al. 2008] and compute a discrete bijective harmonic map closely
approximating a conformal map, along with a convex domain Mc.

We modify [Weber et al. 2012]: instead of mapping directly to the
target domain, we map to the convex intermediate domain Mc first.
As a result, we have two maps: hs→i : M→Mc, which approximates
a Teichmüller map, and ht→i : Mt→Mc, which approximates a con-
formal map. Since, the inverse of a conformal map is also confor-
mal, the composition gs→t = h−1

t→i ◦ hs→i is also an approximation
of a Teichmüller map.

The advantage of this modified algorithm is that the target domain
for the Teichmüller map computation is always convex; while the
LSB energy remains nonconvex, convexity of the (intermediate) tar-
get significantly improves robustness.

Figure 19 shows the result of our algorithm on extreme deformation
of a planar shape, along with a comparison with other methods. The
algorithm of [Weber et al. 2012] converged to a non-injective map,
quite far from being extremal. The algorithm of [Lipman 2012],
which can be used to produce extremal maps by a binary search
for optimal k, failed to find a feasible solution with a bound on
conformal distortion set to k = 1. Our method produces a high
quality approximation to the extremal map.
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Figure 19: Computation of extremal quasiconformal map using our
method. The color visualization shows the conformal distortion,
where red indicates flipped triangles. Our method (bottom right)
produced a high quality approximation to the extremal map, as ev-
ident by the nearly constant conformal distortion.

6 Evaluation and discussion
We presented an algorithm for parametrization of meshes with arbi-
trary fixed boundaries. The basic algorithm described in the previ-
ous sections focuses on ensuring that the parametrization is locally
injective away from the boundary. To the best of our knowledge,
this is the only algorithm of its kind that provides full guarantees on
injectivity. Depending on the context, our algorithm can be com-
bined with a variety of other techniques for parametrization. Our
algorithm is considerably faster compared to competing methods
[Lipman 2012; Weber et al. 2012]. See Table 1 for a summary of
running times for the models that appear in the paper.

model pvertices ptriangles
pboundary9

vertices
pvertices9
inserted

triangulation
two9

harmonic9
maps

composition9
F9

refinement

total9
time

Snake 55 66 4) 5 fyff) fyf34 fyf)3 fyf59
Troll (839 34ff )76 f fyff6 fyf84 fy(f8 fy(98
Raptor )556 4554 556 f fyf9f fy(98 fy)36 fy5)4
Horse (574 )67f 476 f fyf6( fyf88 fy(f9 fy)58
Hand 37)34 7)958 (5f8 f fyf85 )y(89 )y97( 5y)45
Bull (79(8 345f4 (33f f fy733 (y()4 (y555 3y4()
Beetle (79f8 347)8 ()98 (f )y(3f (y))f (y8ff 5y(5f
SquarebCross )f96 4f48 (4) 9 fyff5 fyf97 fy()9 fy)3(
Extremal9qycy )f79 4f)) (39 ) fyf)7 fyf99 fy(4) fy)68
Fandisk )f)6 374( 3f9 f fyff5 fy(5f fy(66 fy3)(
Doughtnut 656f ()7)f 398 f fyf6) fy3f) fy473 fy837

run9time9CsecondsEstatistics

Table 1: Mesh statistics and running times of all steps of our al-
gorithm on an Intel i7-3770 machine with 16GB memory. Run-
ning time of [Weber et al. 2012], which was needed to produce the
“Square-Cross” and “Extremal q.c.” examples are excluded.

Our algorithm has two main limitations. First, it is limited to
meshes with disk-topology. As shown in Figures 16, 17, 21, and
22, it is possible to cut a mesh with arbitrary topology to a disk-like
mesh on which our algorithm can operate. However, by doing so,
one has to provide additional input for the algorithm which may not
always be trivially obtained. Namely, the position to which the cuts
should be mapped to.
The second limitation is the fact that our algorithm may require
that the input mesh will be refined. As evident from Table 1 (see
column labeled “#vertices inserted”), in the majority of practical
cases, our algorithm manages to avoid mesh refinement. However,
mesh refinement is unavoidable in some cases (for any algorithm).
It remains to understand when exactly refinement is mandatory, and
how one can ensure that only the minimal possible refinement is

done. Figure 20 provide a first step in answering this challenging
open question. The figure illustrates a way of using our algorithm
in conjunction with the method of [Lipman 2012], for the sake of
producing an injective map without the need to perform refinement.
We found out that the result obtained by our algorithm (without
refinement) provides an excellent initialization to [Lipman 2012].
This dramatically increase the chances of [Lipman 2012] to find a
feasible solution (in case it exists).

source [Weber et al. 2012]
2 flips

[Lipman 2012]
"combined"

0 flips

[Xu et al. 2011]
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dual harmonic
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Figure 20: Combining our method with the method of [Lipman
2012] in order to avoid mesh refinement. A mesh is deformed into
an unnatural highly distorted configuration. We applied the meth-
ods of [Liu et al. 2008; Xu et al. 2011; Weber et al. 2012] which
all failed to produce bijective maps. We also applied the algorithm
of [Lipman 2012], by setting the upper bound on conformal dis-
tortion to the maximum (k = 1). The method failed to find a bi-
jective solution within the restricted convex subspace in which it
operates, for several different initializations (as explained in [Lip-
man 2012]). Running our method (Section 5.1) produced a bijective
map by adding 9 new vertices. Finally, we used the result of our al-
gorithm without refinement (which contained 4 flipped triangles) to
initialize Lipman’s algorithm. This time, the algorithm of Lipman’s
produced a bijective result. The color visualization shows the con-
formal distortion k.
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Figure 21: Parametrization with aligned sharp features and bound-
ary. The front of the fandisk model is cut to a topological disk
and mapped using our algorithm to obtain an injective feature
aligned parametrization. The image of the boundary is a weakly
self-overlapping polygon with two singularities of index 1. The tri-
angulation angles (Section 3.2) at the singularities (marked black)
are precisely 2π . The color visualization and the histogram show
the conformal distortion. No refinement was needed.
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Figure 22: Image deformation. The thickness of the doughnut is
changed by scaling its inner boundary. A single straight cut is
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Appendix

A Proof of proposition 1

Let M be a mesh and f be a p.w. linear map f : M→ R2, locally
injective in the interior.
Consider a singular boundary vertex p of M for which f is not
injective, f (p) = v. For any ε > 0, we can construct a piecewise
linear path b with auxiliary vertices (p1, p2, . . . pk) on the 1-ring of
p, connecting two boundary segments incident at p, such that the
vertices wv

i = f (pi) of the path f (b) in P are on a circle Sε of ra-
dius ε , centered at v. We call vertices v and wv

i the group of v.
Non-singular vertices contain a single group. Let Mc be the mesh
obtained by removing the neighborhood cut out by b and retriangu-
lating triangles of M that became trapezoids, and P′ = f (∂Mc), a
new polygon obtained by replacing a small part of the boundary of
P with f (b). Repeating this operation, we obtain a self-overlapping
polygon P′, as away from cut out points v, f is locally injective. By
[Shor and Van Wyk 1992], there is a simplified mesh M′c with no
interior vertices and a p.w. linear map f ′c : M′c → R2, compatible
with the restriction of the map f to Mc. This defines a triangulation
T ′ of P′ with no interior points, with consistently oriented triangles.
(M′c, f ′c) define a triangulation of P′, i.e. a set of possibly overlap-
ping triangles in the plane, sharing some edges, such that the set of
non-shared edges of these triangles coincides with P′. We construct
a triangulation T of P from a triangulation of P′ by connecting each
singular vertex v to corresponding vertices wv

i . The only interior
points of the new triangulation are points wv

i . We transform the tri-
angulation T to one without interior vertices by collapsing all edges
(v,wv

i ).
To show that this operation does not result in any triangle inver-
sions, we consider triangles affected by the operation. Triangles
containing two or three auxiliary vertices corresponding to the same
vertex of v are eliminated by the collapse operation. It remains to
consider triangles with no more than one vertex from the set.
We define visibility in P as follows: if for an edge connecting two
points (a,b) in P, there is a subset U of M, such that f restricted to
M is bijective, and f (U) contains (a,b).
Consider all pairs of vertices (a,b) of P that do not see each other,
i.e. for any choice of U , (a,b) intersects the boundary of f (U). For
each such pair there is an ε(a,b) > 0, such that any two points in
Uε (a) and Uε (b) do not see each other. For every singular point v,
we choose ε for constructing wi, so that it is less than ε(v,b) for
all b not visible from v. Then if points (a,b) do not see each other,
same is true for any pair of points (wa

i ,w
b
i ).

If an edge (wa
i ,w

b
j) is an edge of a triangulation of P′, wa

i and wb
j

are visible to each other; by the choice of ε above, a and b must
also be visible. Thus, (a,b) we get from (wa

i ,w
b
j) after a collapse,

is a valid edge for a triangulation of P. Same is true for edge of the
form (wa

i ,b). It remains to show that no triangle is inverted. For a
triangle not to collapse to an edge, its vertices have to belong to the
expansions of different vertices of P; For any triple a,b,c of mutu-
ally visible, non-collinear vertices, there is a radius ε(a,b,c) such
that any triangle with vertices within ε of a, b and c has the same
orientation as (a,b,c). If in addition to the constraints on ε above
we add this constraint, then no triangle can be inverted. Finally,
if (a,b,c) are collinear, some triangles may degenerate as a result
of collapse. We eliminate these triangles by removing the longest
edge, and merging the triangle with the face across that edge.

B Robust angles update
Tracking and summing angles may lead to floating points numerical
accuracy problems. Instead, it is sufficient to keep track of the full
rotation indices Ri (which are integers), and use robust orientation
tests with exact predicates [Shewchuk 1996] to determine how to
update full rotation indices when gluing two polygons.

Given three vertex positions, vi−1,vi,vi+1, forming a triangle in the
plane, a robust orientation test precisely decides whether the orien-
tation of the triangle is negative, positive or zero (collapsed). By
convention a positive orientation indicates that the vertices are or-
dered counterclockwise.
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w1w2

w3 w1

w2

w3

α convex, β convex
Rα+β=Rα+Rβ

α convex, β reflex
Δ(w1,v,w3) negative

Rα+β=Rα+Rβ

α convex, β reflex
Δ(w1,v,w3) positive

Rα+β=Rα+Rβ+1

β
α

β

α

v β
v

α

Figure 23: Computing full rotation indices Rα+β for 3 different
configurations.

Suppose we attach two angles α and β , at a vertex v, associated
with full rotation indices Rα and Rβ . Our goal is to compute the
full rotation index Rα+β associated with α +β . Let 3 vectors in-
volved, all starting at v, be vw1, vw2 and vw3: α is the clockwise
rotation of vw1 to vw2, and β of vw2 to vw3, both in the (0,2π)
range (Figure 23). Two situations are possible: the full rotation in-
dex Rα+β is Rα +Rβ +δ , with either δ = 0 or 1. δ is 1 if and only
if, one of the following conditions holds:

• both α and β are reflex;
• α is reflex, β is convex, and 4(w1,v,w3) has positive orien-

tation;
• β is reflex, α is convex, and 4(w1,v,w3) has positive orien-

tation.
α is convex, if the4(w1,v,w2) has positive orientation, reflex oth-
erwise; similarly, β is convex, if 4(w2,v,w3) has positive orienta-
tion. Thus, one can always properly update the full rotation indices
by using robust orientation tests only.

C Simplification procedure for weakly self-
overlapping polygons

An ear of a weakly self-overlapping polygon with prescribed trian-
gulation angles is a triangle formed by three consecutive vertices
vi−1,vi,vi+1 such that:

• vi is strictly convex;
• the full rotation indices Ri−1, Ri, Ri+1 are zero;
• the segments (vi−1,vi), (vi,vi +1), (vi−1,vi +1) do not inter-

sect any other edge of the polygon.
Removing an ear from the polygon decrease its size while keeping
it weakly self-overlapping. In contrast to simple polygons, self-
overlapping polygons cannot be reduced completely by repetitively
removing ears. Hence, we use a variant of [Eberly 1998] to clip
as many ears as possible from the polygon, followed by running
our algorithm (Section 3.2) on the reduced size polygon. The final
triangulation is obtained by unifying the clipped ears with the trian-
gulation of the reduced weakly self-overlapping polygon. Similarly
to [Eberly 1998], our simplification procedure maintains two active
lists. One for the polygon vertices and another for all ears. Initial-
ization of the ear list is done in O(n2) as it involves testing whether
each edge of the polygon intersect any of the other edges. Whenever
an ear vi−1,vi,vi+1 is removed by removing vi from the vertex list,
we also check the ear status of vi−2,vi−1,vi+1 and vi−1,vi+1,vi+2
and update the ear list. This is done in O(n) and since any polygon
have up to n−2 ears, the entire algorithm runs in O(n2).


